1
|
Rojas-Lima E, Ortega-Romero M, Aztatzi-Aguilar OG, Rubio-Gutiérrez JC, Narváez-Morales J, Esparza-García M, Méndez-Hernández P, Medeiros M, Barbier OC. Vanadium exposure and kidney markers in a pediatric population: a cross-sectional study. Pediatr Nephrol 2024:10.1007/s00467-024-06561-9. [PMID: 39644336 DOI: 10.1007/s00467-024-06561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Anthropogenic vanadium (V) emissions and exposure in the general population have recently increased. Experimental studies have shown that V is a nephrotoxic agent, but little is known about its effects on human kidney health. This work evaluated the association between urinary V concentrations with early kidney damage biomarkers and function in a pediatric population without any disease diagnosed. METHODS A cross-sectional study was carried out and included 914 healthy subjects and determined urinary V concentrations, glomerular filtration rate (eGFR), albumin-creatinine ratio (ACR), and the presence of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in urine. We evaluated the V effect using linear and logistic regression models adjusted by confounders. RESULTS Subjects found in the second and third tertiles of V showed an increase in urinary log-NGAL levels (βT2 vs. T1 = 0.39; 95% CI 0.14, 0.64, and βT3 vs. T1 = 1.04; 95% CI 0.75, 1.34) and log-KIM-1(βT2 vs. T1 = 0.25; 95% CI 0.04, 0.45 and βT3 vs. T1 = 0.39; 95% CI 0.15, 0.63); in addition, subjects in the third tertile had a positive and significant association with ACR (ORT3 vs. T1 = 1.96; 95% CI 1.29, 2.97) and increased in eGFR (βT3 vs. T1 = 3.98, 95% CI 0.39, 7.58), compared with subjects in the first tertile. CONCLUSIONS Our study reports the effect of V on kidney markers in a healthy pediatric population. It could be related to tubulointerstitial lesions and function abnormalities.
Collapse
Affiliation(s)
- Elodia Rojas-Lima
- Unidad de Investigación en Salud en El Trabajo, Centro Médico Nacional "Siglo XXI", Instituto Mexicano Del Seguro Social (IMSS), Ciudad de Mexico, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt), Ciudad de Mexico, Mexico
| | - Manolo Ortega-Romero
- Unidad de Investigación en Salud en El Trabajo, Centro Médico Nacional "Siglo XXI", Instituto Mexicano Del Seguro Social (IMSS), Ciudad de Mexico, Mexico
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt), Ciudad de Mexico, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigacio´n y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Juan Carlos Rubio-Gutiérrez
- Departamento de Toxicología, Centro de Investigacio´n y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigacio´n y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Mariela Esparza-García
- Unidad de Investigación y Diagnóstico en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de Mexico, Mexico
| | - Pablo Méndez-Hernández
- Secretaría de Salud de Tlaxcala, Tlaxcala, Mexico
- Facultad de Ciencias de la Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Mara Medeiros
- Unidad de Investigación y Diagnóstico en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de Mexico, Mexico
- Departamento de Farmacología, Facultad de Medicina, UNAM, Ciudad de Mexico, Mexico
| | - Olivier Christophe Barbier
- Unidad de Investigación en Salud en El Trabajo, Centro Médico Nacional "Siglo XXI", Instituto Mexicano Del Seguro Social (IMSS), Ciudad de Mexico, Mexico.
- Departamento de Toxicología, Centro de Investigacio´n y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Price NF, Lin PID, Cardenas A, Rifas-Shiman SL, Zota AR, Hivert MF, Oken E, Aris IM, Sanders AP. Prenatal metal exposures and kidney function in adolescence in Project Viva. Environ Health 2024; 23:94. [PMID: 39478558 PMCID: PMC11526622 DOI: 10.1186/s12940-024-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND The developing kidney is vulnerable to prenatal environmental factors such as metal exposure, potentially altering the risk of later-life kidney dysfunction. This study examines the relationship between prenatal metal exposures, individually and as mixtures, and adolescent kidney function in Project Viva, a prospective longitudinal birth cohort in Massachusetts, USA. METHODS We used data on metals measured in blood during pregnancy including 15 in the first trimester and four in the second trimester. We calculated estimated glomerular filtration rate (eGFR) in adolescents (mean: 17.7 years) using cystatin C- (eGFRcys) and creatinine-based (eGFRcreat) equations for children. We used linear regression for single metal analyses, and Bayesian kernel machine regression and quantile-based g-computation for mixture analyses, adjusting for relevant covariates. To account for multiple comparisons in the single metal analyses, we applied the Holm-Bonferroni procedure to control the false discovery rate. RESULTS This study included 371 participants with first trimester metals and adolescent eGFR, and 256 with second trimester metals. Each doubling in first trimester cadmium concentration was associated with lower adolescent eGFRcys (β:-1.51; 95% CI:-2.83, -0.18). Each doubling in first trimester chromium (β:-1.45; 95% CI:-2.71, -0.19), nickel (β:-1.91; 95% CI:-3.65, -0.16), and vanadium (β:-1.69; 95% CI:-3.21, -0.17) was associated with lower adolescent eGFRcreat. After adjusting for multiple comparisons, p-values for associations between adolescent eGFR and chromium, nickel, vanadium and cadmium did not meet the criteria for significance. Metal mixture analyses did not identify statistically significant associations with adolescent eGFR. CONCLUSIONS These findings have important implications for future studies investigating the potential mechanisms through which prenatal metal exposures affect long-term kidney health in children.
Collapse
Affiliation(s)
- Natalie F Price
- Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ami R Zota
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Alison P Sanders
- Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Yin G, Xin M, Zhao S, Zhao M, Xu J, Chen X, Xu Q. Heavy metals and elderly kidney health: A multidimensional study through Enviro-target Mendelian Randomization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116659. [PMID: 38964060 DOI: 10.1016/j.ecoenv.2024.116659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Chronic Kidney Disease (CKD), closely linked to environmental factors, poses a significant public health challenge. This study, based on 529 triple-repeated measures from key national environmental pollution area and multiple gene-related public databases, employs various epidemiological and bioinformatics models to assess the impact of combined heavy metal exposure (Chromium [Cr], Cadmium [Cd], and Lead [Pb]) on early renal injury and CKD in the elderly. Introducing the novel Enviro-Target Mendelian Randomization method, our research explores the causal relationship between metals and CKD. The findings indicate a positive correlation between increased levels of metal and renal injury, with combined exposure caused renal damage more significantly than individual exposure. The study reveals that metals primarily influence CKD development through oxidative stress and metal ion resistance pathways, focusing on three related genes (SOD2, MPO, NQO1) and a transcription factor (NFE2L2). Metals were found to regulate oxidative stress levels in the body by increasing the expression of SOD2, MPO, NQO1, and decreasing NFE2L2, leading to CKD onset. Our research establishes a new causal inference framework linking environmental pollutants-pathways-genes-CKD, assessing the impact and mechanisms of metal exposure on CKD. Future studies with more extensive in vitro evidence and larger population are needed to validate.
Collapse
Affiliation(s)
- Guohuan Yin
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Mingjun Xin
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shuanzheng Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xingyu Chen
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qun Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
4
|
Danziger J. Synergistic susceptibility to environmental lead toxicity in chronic kidney disease. Curr Opin Nephrol Hypertens 2024:00041552-990000000-00174. [PMID: 39017648 DOI: 10.1097/mnh.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW While high levels of lead exposure, as occurs accidentally or occupationally, can cause toxicity across multiple organ systems, the hazard of commonly encountered levels of lead in the environment remains unresolved. Challenges to researching the health effects of lead include its complex interplay with renal function, rendering analyses at risk of unaccounted confounding, and the likely small effect size of environmental levels of exposure. While children are known to be disproportionately susceptible to lead toxicity, resulting in appropriately more stringent regulatory surveillance for those under 5 years old, emerging evidence suggests that those with chronic kidney disease (CKD) similarly are at a greater risk. This review summarizes the role of environmental lead toxicity as a potential cause and consequence of CKD. RECENT FINDINGS Whether environmental lead exposure causes CKD remains debatable, with little recent research advancing the conflicting, mostly cross-sectional, analyses from years ago. However, an emerging body of evidence suggests that CKD increases the susceptibility to lead toxicity. Higher circulating lead levels and lower urinary excretion result in greater lead accumulation in CKD, with simultaneous greater risk of clinically meaningful disease. Recent studies suggest that levels of lead found commonly in the United States drinking water supply, and currently permissible by the Environmental Protection Agency, associate with hematologic toxicity in those with advanced CKD. Whether environmental lead contamination may have additional negative health impact among this at-risk population, including cardiovascular and neurocognitive disease, warrants further study. SUMMARY The underlying pathophysiology of kidney disease synergizes the susceptibility to environmental lead toxicity for those with CKD. Low levels of exposure, as found commonly in the United States water supply, may have adverse health impact in CKD. Further research will be needed to determine if more stringent environmental regulations are warranted to protect the health of all.
Collapse
Affiliation(s)
- John Danziger
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Mendoza-Cano O, Ríos-Silva M, Gonzalez-Curiel I, Camacho-delaCruz AA, Romo-García MF, Cuevas-Arellano HB, Quintanilla-Montoya AL, Martínez-Preciado MA, Rincón-Avalos P, Hilerio-López ÁG, Murillo-Zamora E. Metal concentrations and KIM-1 levels in school-aged children: a cross-sectional study. Sci Rep 2024; 14:13464. [PMID: 38866845 PMCID: PMC11169506 DOI: 10.1038/s41598-024-62320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Environmental exposure to heavy metals and metalloids, originating from sources such as mining and manufacturing activities, has been linked to adverse renal effects. This cross-sectional study assessed children's exposure to these elements and its association with urinary kidney injury molecule-1 (KIM-1). We analyzed data from 99 school-aged children residing in nine localities within the state of Colima, Mexico, during the latter half of 2023. Levels of 23 metals/metalloids and urinary KIM-1 were measured using inductively coupled plasma mass spectrometry (ICP-MS) and enzyme-linked immunosorbent assay, respectively. Detectable levels of these contaminants were found in over 91% of participants, with varied exposure profiles observed across locations ( p = 0.019). After adjusting for confounding factors like gender, age, and locality, higher levels of six metals/metalloids (boron, cadmium, cesium, lithium, selenium, zinc) were significantly associated with increased KIM-1 levels. Tailored mitigation efforts are crucial to protect children from regional pollutant burdens. However, limitations exist, as our study did not capture all potential factors influencing heavy metal/metalloid and KIM-1 levels.
Collapse
Affiliation(s)
- Oliver Mendoza-Cano
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, 28400, Coquimatlán, México
| | - Mónica Ríos-Silva
- Facultad de Medicina, Universidad de Colima, Av. Universidad 333, Col. Las Víboras, 28040, Colima, México
| | - Irma Gonzalez-Curiel
- Laboratorio de Inmunotoxicología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ Siglo XXI, Carretera Zacatecas-Guadalajara KM.6, Col. Ejido La Escondida, 98160, Zacatecas, México
| | - Arlette A Camacho-delaCruz
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, 28400, Coquimatlán, México
| | - María Fernanda Romo-García
- Posdoctorante del Laboratorio de Inmunotoxicología, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ Siglo XXI, Carretera Zacatecas-Guadalajara KM.6, Col. Ejido La Escondida, 98160, Zacatecas, México
| | | | - Ana Luz Quintanilla-Montoya
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, 28400, Coquimatlán, México
| | - Miguel A Martínez-Preciado
- Comisión Nacional del Agua Dirección Local Colima, Avenida Carlos de La Madrid Béjar S/N, Col. Centro, 28000, Colima, México
| | - Pedro Rincón-Avalos
- Facultad de Ingeniería Civil, Universidad de Colima, Carretera Colima-Coquimatlán km 9, Col. Jardines del Llano, 28400, Coquimatlán, México
| | - Ángel Gabriel Hilerio-López
- Facultad de Enfermería, Universidad de Colima, Avenida Universidad 333, Col. Las Víboras, 28040, Colima, México
| | - Efrén Murillo-Zamora
- Unidad de Investigación en Epidemiología Clínica, Av. Lapislázuli 250, Col. El Haya, 28984, Villa de Álvarez, México.
| |
Collapse
|
6
|
Pereira EC, Piai KDA, Salles FJ, Silva ASD, Olympio KPK. A comprehensive analysis of children's blood lead levels in Latin America and the Caribbean over the last eight years: Progress and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172372. [PMID: 38604359 DOI: 10.1016/j.scitotenv.2024.172372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
In 2017 we published a review on blood lead levels (BLL) in children from Latin America and the Caribbean (LAC) for data available up to 14th of March 2014 and recommended the identification and control of "lead hot spots". In the present study, an evaluation of progress toward reducing BLL in the region was carried out. A systematic review of the latest literature on lead exposure in the LAC region held on the PubMed, Web of Science and LILACS databases (January 2014 to March 2022) was conducted using the PRISMA methodology. Only original papers published in peer-reviewed English, Spanish, or Portuguese journals were eligible. A total of 558 papers were retrieved, 77 of which met the selection criteria and 31 (40.25 %) were carried out in Mexico. The prevalence of children with BLL above 10 μg. dL-1 was 22.08 % in the previous review versus 6.78 % in the current study. In the present review, the prevalence of children with BLL above 5 μg. dL-1 was 29.62 %, and only one study reported a BLL prevalence rate between 3.3 and 5 μg. dL-1. The highest BLLs were associated with well-known sources or occupational exposures. The number of countries (n = 13) that published data on BLL in children was lower compared to the previous review (n = 16). Most studies were conducted in areas with known lead exposure sources, similar to the earlier review. The percentage of children at risk of lead poisoning in the region remains unknown because few studies have published data on environmental exposure levels and most samples were relatively small. The recommendation to identify and control sources of lead exposure was maintained, while further suggestions for establishing a systematic public health surveillance system for lead were proposed to help reduce the knowledge gap and inform public health policy-making in LAC.
Collapse
Affiliation(s)
- Elizeu Chiodi Pereira
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kamila de Almeida Piai
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Junqueira Salles
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Agnes Soares da Silva
- Departamento de Vigilância em Saúde Ambiental e Saúde do Trabalhador, Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brazil
| | | |
Collapse
|
7
|
Claudel SE, Waikar SS. Systematic Review of Kidney Injury Biomarkers for the Evaluation of CKD of Uncertain Etiology. Kidney Int Rep 2024; 9:1614-1632. [PMID: 38899184 PMCID: PMC11184258 DOI: 10.1016/j.ekir.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Chronic kidney disease of uncertain etiology (CKDu) is an incompletely defined phenotype of chronic kidney disease (CKD) affecting young individuals mostly in agricultural communities in Central America and South Asia. CKDu is a diagnosis of exclusion made in individuals from endemic regions. Methods We conducted a systematic review of the primary literature on urinary and plasma kidney injury biomarkers measured in the setting of CKDu (through February 2023). The literature was identified via a Web of Science search and hand search of the references of previously identified literature. Search terms included "CKDu," "Mesoamerican Nephropathy," "CKD of unknown etiology," "Chronic Interstitial Nephritis in Agricultural Communities," "biomarker," "urin∗," and/or "plasma." Results A total of 25 papers were included. The 2 most frequently measured biomarkers were urinary kidney injury molecule-1 (KIM-1) and urinary neutrophil gelatinase-associated lipocalin (NGAL). There was substantial variability in study design, laboratory assay methods, and statistical methodology, which prohibited meta-analysis. Conclusion Biomarkers that identify tubulointerstitial disease early and accurately may substantially accelerate progress in the study of CKDu and facilitate public health approaches that eventually lead to its prevention and elimination. To date, the literature is limited by relatively small sample sizes and methodological limitations which should be addressed in future studies.
Collapse
Affiliation(s)
- Sophie E. Claudel
- Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sushrut S. Waikar
- Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ortega-Romero M, Rojas-Lima E, Rubio-Gutiérrez JC, Aztatzi-Aguilar OG, Narváez-Morales J, Esparza-García M, Barrera-Hernández Á, Mejia MÁ, Mendez-Hernández P, Medeiros M, Barbier OC. Associations among environmental exposure to trace elements and biomarkers of early kidney damage in the pediatric population. Biometals 2024; 37:721-737. [PMID: 38642266 DOI: 10.1007/s10534-024-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population. METHODS In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass. RESULTS The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters. DISCUSSION and Conclusions. Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.
Collapse
Affiliation(s)
- Manolo Ortega-Romero
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Elodia Rojas-Lima
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juan Carlos Rubio-Gutiérrez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Mariela Esparza-García
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Ángel Barrera-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Miguel Ángel Mejia
- Fundación Franco-Mexicana Para La Medicina, I.A.P, Ciudad de México, Mexico
| | - Pablo Mendez-Hernández
- Departamento de Calidad y Educación en Salud, Secretaría de Salud de Tlaxcala, Tlaxcala, Mexico
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Mara Medeiros
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Kierans C, Padilla-Altamira C. Failing kidneys: Hotspots, blind spots and biopolitics of indifference. Med Anthropol Q 2024; 38:24-39. [PMID: 37853527 DOI: 10.1111/maq.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/07/2023] [Indexed: 10/20/2023]
Abstract
Chronic kidney disease of non-traditional cause (CKDnt) is commonly associated with monocropping agriculture, heat stress and impoverished working conditions, referred to as CKDnt "hotspots." The condition is also emerging in various sites of environmental contamination, raising questions as to whether multiple variants of the condition exist as a result of different ecologies and different human-environment interactions. This paper examines the emergence of CKDnt around Lake Chapala in Mexico, where we document local efforts to gain recognition and reparation for CKDnt. We follow the ways patients, families and activists have mobilized specific and interlocking infrastructural failures to enact complaint and confront state inaction and neglect of their bodies, communities, and environments. Though their labors have formally achieved little, we discuss how they make visible a biopolitics of indifference, one bound to the production of structural "blindspots."
Collapse
Affiliation(s)
- Ciara Kierans
- Department of Public Health, Policy and Systems, The University of Liverpool, Liverpool, UK
| | - César Padilla-Altamira
- Centre for Research and Higher Studies in Social Anthropology (CIESAS), Unidad Occidente, Guadalajara, Mexico
| |
Collapse
|
10
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
11
|
Wu J, Xu J, Zhao M, Li K, Yin G, Ge X, Zhao S, Liu X, Wei L, Xu Q. Threshold effect of urinary chromium on kidney function biomarkers: Evidence from a repeated-measures study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115139. [PMID: 37327523 DOI: 10.1016/j.ecoenv.2023.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Chronic kidney disease (CKD) is a public health concern worldwide, and chromium exposure may be a risk factor due to its potential nephrotoxicity. However, research on the association between chromium exposure and kidney function especially the potential threshold effect of chromium exposure is limited. A repeated-measures study involving 183 adults (641 observations) was conducted from 2017 to 2021 in Jinzhou, China. Urinary albumin-to-creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were measured as kidney function biomarkers. Generalized mixed models and two-piecewise linear spline mixed models were used to assess the dose-response relationship and potential threshold effect of chromium on kidney function, respectively. Temporal analysis was conducted by the latent process mixed model to depict the longitudinal change of kidney function over age. Urinary chromium was associated with CKD (odds ratio [OR] = 1.29; 95 % confidence interval [CI], 6.41, 14.06) and UACR (Percent change = 10.16 %; 95 % CI, 6.41 %, 14.06 %), and we did not find significant association between urinary chromium and eGFR (Percent change = 0.06 %; 95 % CI, -0.80 %, 0.95 %). The threshold analyses suggested the existence of threshold effects of urinary chromium, with inflection points at 2.74 μg/L for UACR and 3.95 μg/L for eGFR. Furthermore, we found that chromium exposure exhibited stronger kidney damage over age. Our study provided evidence for the threshold effects of chromium exposure on kidney function biomarkers and the heightened nephrotoxicity of chromium in older adults. More attention should be paid to the supervision of chromium exposure concentrations for preventing kidney damage, especially in older adults.
Collapse
Affiliation(s)
- Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Shuanzheng Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou 121001, Liaoning Province, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
12
|
Kierans C, Padilla-Altamira C. Anthropological perspectives on CKDnt in Mexico: time for a paradigm shift on the social determinants of health. FRONTIERS IN NEPHROLOGY 2023; 3:1155687. [PMID: 37675371 PMCID: PMC10479662 DOI: 10.3389/fneph.2023.1155687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 09/08/2023]
Abstract
In Mexico, the kidneys of individuals in poor and marginalized communities are failing with little warning and no explanation. Commonly referred to as chronic kidney disease of non-traditional origin (CKDnt), this new variant of kidney disease cannot be accounted for by conventional or discrete etiological explanations, but is instead understood to be a consequence of economic development, environmental degradation and precarious working and living conditions. Drawing on two interconnected ethnographic studies, and the intertwining problems of causation and care, this paper will (1) document the social conditions of disease emergence around Lake Chapala, Central Mexico, and (2) follow the haphazard routes kidney patients take to access resource-intensive biotechnical treatments. Its aim is to both challenge and reconceptualize social determinants as social relations in order to fully account for the profoundly contextual, temporal, and dynamic character of this condition, and to rethink opportunities for care and intervention.
Collapse
Affiliation(s)
- Ciara Kierans
- Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| | - Cesar Padilla-Altamira
- Unidad Occidente, Center for Research and Higher Studies in Social Anthropology, Guadalajara, Mexico
| |
Collapse
|
13
|
Cisneros-García DL, Sandoval-Pinto E, Cremades R, Ramírez-de-Arellano A, García-Gutiérrez M, Martínez-de-Pinillos-Valverde R, Sierra-Díaz E. Non-traditional risk factors of progression of chronic kidney disease in adult population: a scoping review. Front Med (Lausanne) 2023; 10:1193984. [PMID: 37332753 PMCID: PMC10272583 DOI: 10.3389/fmed.2023.1193984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic kidney disease (CKD) has become a public health concern over the last several years. Nowadays developed countries spend around 3% of their annual health-care budget on patients with CKD. According to the scientific community the most remarkable risk factors for CKD are diabetes and hypertension. Unknown CKD etiology has been reported as a global phenomenon including uncommon risk factors such as: dehydration, leptospirosis, heat stress, water quality, and others. This study aims to report non-traditional risk factors for ESRD based on a scoping review methodology. The scoping review methodology described by Arksey and O'Malley was used by performing an extensive review of the information. A total of 46 manuscripts were reviewed. The non-traditional ESRD risk factors are depicted based on six categories. Gender and ethnicity have been considered as risk factors for ESRD. Erythematous systemic lupus (ESL) is reported as an important risk factor for ESRD. Pesticide use has been an significant risk factor due to its effects on human and environmental health. Some compounds commonly used in homes against insects and plants are related to ESRD. Congenital and hereditary diseases in the urinary tract have been studied as a cause of ESRD in children and young adults. End-stage renal disease is a major concern for public health on a global level. As it can be seen, non-traditional risk factors are several and have different etiologies. It is necessary to put the issue on the table and add it to the public agenda in order to find multidisciplinary solutions.
Collapse
Affiliation(s)
- Diana Lorena Cisneros-García
- Departamento de Salud Pública, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Elena Sandoval-Pinto
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológico Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rosa Cremades
- Departamento de Microbiología y Parasitología, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mariana García-Gutiérrez
- Centro Metropolitano de Atención de la Diabetes Tipo 1, Secretaría de Salud Jalisco, Guadalajara, Jalisco, Mexico
| | | | - Erick Sierra-Díaz
- Departamentos de Clínicas Quirúrgicas y Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- División de Epidemiología, UMAE Hospital de Especialidades Centro Médico Nacional de Occidente del IMSS, Guadalajara, Mexico
| |
Collapse
|
14
|
Ortega-Romero M, Jiménez-Córdova MI, Barrera-Hernández Á, Sepúlveda-González ME, Narvaez-Morales J, Aguilar-Madrid G, Juárez-Pérez CA, Del Razo LM, Cruz-Angulo MDC, Mendez-Hernández P, Medeiros M, Barbier OC. Relationship between urinary biomarkers of early kidney damage and exposure to inorganic toxins in a pediatric population of Apizaco, Tlaxcala, Mexico. J Nephrol 2023; 36:1383-1393. [PMID: 37253904 DOI: 10.1007/s40620-023-01598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/12/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND In recent years, chronic kidney disease has increased in the pediatric population and has been related to environmental factors. In the diagnosis of kidney damage, in addition to the traditional parameters, early kidney damage biomarkers, such as kidney injury molecule 1, cystatin C, and osteopontin, among others, have been implemented as predictors of early pathological processes. OBJECTIVE This study aimed to evaluate the relationship between exposure to environmental pollutants and early kidney damage biomarkers. METHODS A cross-sectional pilot study was conducted in February 2016 and involved 115 apparently healthy children aged 6-15 residing in Apizaco, Tlaxcala. Participant selection was carried out randomly from among 16,472 children from the municipality of Apizaco. A socio-demographic questionnaire included age, sex, education, duration of residence in the area, occupation, water consumption and dietary habits, pathological history, and some non-specific symptoms. Physical examination included blood pressure, weight, and height. The urine concentrations of urinary aluminum, total arsenic, boron, calcium, chromium, copper, mercury, potassium, sodium, magnesium, manganese, molybdenum, lead, selenium, silicon, thallium, vanadium, uranium, and zinc, were measured. Four of the 115 participants selected for the study were excluded due to an incomplete questionnaire or lack of a medical examination, leaving a final sample population of 111 participants. RESULTS The results showed a mean estimated glomerular filtration rate of 89.1 ± 9.98 mL/min/1.73m2 and a mean albumin/creatinine ratio of 12.9 ± 16.7 mg/g urinary creatinine. We observed a positive and significant correlation between estimated glomerular filtration rate with fluoride, total arsenic and lead, and a correlation of albumin/creatinine ratio with fluoride, vanadium, and total arsenic. There was also a significant correlation between the early kidney damage biomarkers and fluoride, vanadium, and total arsenic, except for cystatin C. CONCLUSION In conclusion, our results show that four urinary biomarkers: α1-microglobulin, cystatin C, kidney injury molecule 1, and neutrophil gelatinase-associated lipocalin are related to environmental exposure to urinary fluoride, vanadium, and total arsenic in our pediatric population.
Collapse
Affiliation(s)
- Manolo Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Mexico City, México
| | - Mónica I Jiménez-Córdova
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
- Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional (SIP-IPN), Mexico City, México
| | - Ángel Barrera-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
| | - María Eugenia Sepúlveda-González
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Mexico City, México
| | - Juana Narvaez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
| | - Guadalupe Aguilar-Madrid
- Claustro Universitario de Chihuahua, Dirección de Investigación y de Posgrado, Chihuahua, México
| | - Cuauhtémoc Arturo Juárez-Pérez
- Unidad de Investigación de Salud en El Trabajo, Centro Médico Nacional SXXI Instituto Mexicano del Seguro Social, Mexico City, México
| | - Luz María Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México
| | | | - Pablo Mendez-Hernández
- Departamento de Calidad y Educación en Salud, Secretaría de Salud de Tlaxcala, Tlaxcala, México
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Mara Medeiros
- Unidad de Investigación en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Mexico City, México
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, México.
| |
Collapse
|
15
|
Yi X, Shen M, Yang F. Epidemiological research progress in the effects of metal exposure on kidney. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:601-607. [PMID: 37385623 PMCID: PMC10930251 DOI: 10.11817/j.issn.1672-7347.2023.220361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 07/01/2023]
Abstract
Chronic kidney disease (CKD) is suffered progressive loss of kidney function lasting more than 3 months and is classified according to the degree of kidney damage (level of proteinuria) and the decreased glomerular filtration rate (GFR). The most severe form of CKD is end-stage renal disease. The prevalence of CKD is high with fast growth rate and the disease burden has become increasingly serious. CKD has become an important public health problem threatening human health. The etiology of CKD is complex. In addition to genetic factors, environmental factors are an important cause of CKD. With the development of industrialization, environmental metal pollution has become increasingly severe, and its impact on human health has received widespread attention. A large number of studies have shown that metals such as lead, cadmium, and arsenic can accumulate in the kidney, which can cause damage to the structure and function of the kidney, and play an important role in the development of CKD. Therefore, summarizing the epidemiological research progress in the relationship between arsenic, cadmium, lead, and other metal exposures and kidney diseases can provide new ideas for the prevention and control of kidney diseases caused by metal exposure.
Collapse
Affiliation(s)
- Xiping Yi
- Emergency Management Office, Chenzhou Center for Disease Control and Prevention, Chenzhou Hunan 423000.
| | - Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410078
| | - Fei Yang
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410078.
- Department of Occupational and Environmental Health, School of Public Health, University of South China, Hengyang Hunan 421000, China.
| |
Collapse
|
16
|
Dessie BK, Mehari B, Gari SR, Mihret A, Desta AF, Melaku S, Alamirew T, Walsh CL, Werner D, Zeleke G. Trace Element Levels in Nails of Residents of Addis Ababa Are Shaped by Social Factors and Geography. Biol Trace Elem Res 2023; 201:577-591. [PMID: 35233714 DOI: 10.1007/s12011-022-03181-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
The Akaki catchment in Ethiopia is home to Addis Ababa and about five million people. Its watercourses receive a variety of wastes released by the residents and industries. River water is being used for irrigation, livestock watering, and other domestic purposes. This study tested the hypothesis that the river pollution would be reflected in higher levels of trace elements in the nails of residents living in Akaki-Kality Sub-City in the downstream, as compared to those living in Gullele Sub-City in the upstream of the Akaki catchment. Samples were taken and subsequently analysed for metals using inductively coupled plasma optical emission spectrometry (ICP-OES). The mean concentrations of Fe, Zn, Cu, Mn, Ni, Cr, Pb, and As in nails from Akaki-Kality were 488 ± 49, 106 ± 10, 5.2 ± 0.3, 13 ± 1.5, 11 ± 8, 2.2 ± 0.3, 0.09 ± 0.01, and 0.16 ± 0.01 μg/g, respectively. Likewise, the concentrations of Fe, Zn, Cu, Mn, Ni, Cr, Pb, and As in nails from Gullele were 1035 ± 135, 251 ± 10, 6.6 ± 0.4, 31 ± 3.7, 7.4 ± 1.7, 2.0 ± 0.3, 0.63 ± 0.01, and 0.25 ± 0.01 μg/g, respectively. Co and Cd were not detected. Contrary to the initial hypothesis, higher metal levels were found in nails of residents living in the upstream rather than the downstream area of the catchment. In particular, the concentrations of Fe (p = 0.000), Zn (p = 0.01), and Mn (p = 0.000) were significantly elevated in nails from Gullele and also high in comparison with internationally reported values. Besides, geography and social factors, especially education level, correlated to trace metals in nails. Most of the elements were significantly lower in the nails of individuals with a university degree compared to those who were illiterate or only completed primary school.
Collapse
Affiliation(s)
- Bitew K Dessie
- Water and Land Resource Centre, Addis Ababa University, Addis Ababa, Ethiopia.
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia.
| | - Bewketu Mehari
- College of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar, Ethiopia
| | - Sirak Robele Gari
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adey F Desta
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Samuel Melaku
- Department of Chemistry, Columbus State University, 4225 University Avenue, Columbus, GA, 31907, USA
| | - Tena Alamirew
- Water and Land Resource Centre, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claire L Walsh
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Gete Zeleke
- Water and Land Resource Centre, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Rodriguez-Villamizar LA, Medina OM, Flórez-Vargas O, Vilanova E, Idrovo AJ, Araque-Rodriguez SA, Henao JA, Sánchez-Rodríguez LH. Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2321. [PMID: 36767692 PMCID: PMC9914985 DOI: 10.3390/ijerph20032321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/27/2023]
Abstract
The exposure to chemical mixtures is a problem of concern in developing countries and it is well known that the kidney is the major target organ for toxic elements. This cross-sectional study aimed to estimate the individual and composite mixture effect of a large number of chemical elements on kidney function in gold-mining and surrounding non-mining populations in northeast Colombia. We measured concentrations of 36 chemical elements in hair as indicators of chronic exposure from 199 adult participants. We estimated the effect of exposure to mixtures of chemical elements on estimated glomerular filtration rate (eGFR) using weighted quantile sum regression (WQS). The WQS index of the mixture was associated with reduced eGFR (Coefficient -2.42; 95%CI: -4.69, -0.16) being Be, Cd, Pb, As, and Mn, the principal contributors of the toxic mixture. Mining activities and Hg concentration were not associated with decreased kidney function. Our results suggest that complex mixtures of chemical elements, mainly heavy metals, act as nephrotoxic in these populations and therefore the analysis of chemical element mixtures is a better approach to identify environmental and occupational chemical risks for kidney damage.
Collapse
Affiliation(s)
- Laura A. Rodriguez-Villamizar
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Olga M. Medina
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga 68002, Colombia
| | - Oscar Flórez-Vargas
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga 68002, Colombia
| | - Eugenio Vilanova
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Spain
| | - Alvaro J. Idrovo
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Santiago A. Araque-Rodriguez
- Facultad de Ciencias de la Salud Programa de Medicina, Universidad Autónoma de Bucaramanga, Bucaramanga 681003, Colombia
| | - José A. Henao
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680006, Colombia
| | | |
Collapse
|
18
|
Wu S, Huang H, Ji G, Li L, Xing X, Dong M, Ma A, Li J, Wei Y, Zhao D, Ma W, Bai Y, Wu B, Liu T, Chen Q. Joint Effect of Multiple Metals on Hyperuricemia and Their Interaction with Obesity: A Community-Based Cross-Sectional Study in China. Nutrients 2023; 15:nu15030552. [PMID: 36771259 PMCID: PMC9921062 DOI: 10.3390/nu15030552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Metal exposures have been inconsistently related to the risk of hyperuricemia, and limited research has investigated the interaction between obesity and metals in hyperuricemia. To explore their associations and interaction effects, 3300 participants were enrolled from 11 districts within 1 province in China, and the blood concentrations of 13 metals were measured to assess internal exposure. Multivariable logistic regression, restricted cubic spline (RCS), Bayesian kernel machine regression (BKMR), and interaction analysis were applied in the single- and multi-metal models. In single-metal models, five metals (V, Cr, Mn, Co, and Zn) were positively associated with hyperuricemia in males, but V was negatively associated with hyperuricemia in females. Following the multi-metal logistic regression, the multivariate-adjusted odds ratios (95% confidence intervals) of hyperuricemia were 1.7 (1.18, 2.45) for Cr and 1.76 (1.26, 2.46) for Co in males, and 0.68 (0.47, 0.99) for V in females. For V and Co, RCS models revealed wavy and inverted V-shaped negative associations with female hyperuricemia risk. The BKMR models showed a significant joint effect of multiple metals on hyperuricemia when the concentrations of five metals were at or above their 55th percentile compared to their median values, and V, Cr, Mn, and Co were major contributors to the combined effect. A potential interaction between Cr and obesity and Zn and obesity in increasing the risk of hyperuricemia was observed. Our results suggest that higher levels of Cr and Co may increase male hyperuricemia risk, while higher levels of V may decrease female hyperuricemia risk. Therefore, the management of metal exposure in the environment and diet should be improved to prevent hyperuricemia.
Collapse
Affiliation(s)
- Shan Wu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Huimin Huang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Guiyuan Ji
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Lvrong Li
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Xiaohui Xing
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Ming Dong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510399, China
| | - Anping Ma
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510399, China
| | - Jiajie Li
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yuan Wei
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Dongwei Zhao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Yan Bai
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Banghua Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510399, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510630, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
- Correspondence: (T.L.); (Q.C.)
| | - Qingsong Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, 283 Jianghai Avenue, Guangzhou 510300, China
- Correspondence: (T.L.); (Q.C.)
| |
Collapse
|
19
|
Mu J, Guo Z, Wang X, Wang X, Fu Y, Li X, Zhu F, Hu G, Ma X. Seaweed polysaccharide relieves hexavalent chromium-induced gut microbial homeostasis. Front Microbiol 2023; 13:1100988. [PMID: 36726569 PMCID: PMC9884827 DOI: 10.3389/fmicb.2022.1100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Heavy metals released in the environment pose a huge threat to soil and water quality, food safety and public health. Additionally, humans and other mammals may also be directly exposed to heavy metals or exposed to heavy metals through the food chain, which seriously threatens the health of animals and humans. Chromium, especially hexavalent chromium [Cr (VI)], as a common heavy metal, has been shown to cause serious environmental pollution as well as intestinal damage. Thus, increasing research is devoted to finding drugs to mitigate the negative health effects of hexavalent chromium exposure. Seaweed polysaccharides have been demonstrated to have many pharmacological effects, but whether it can alleviate gut microbial dysbiosis caused by hexavalent chromium exposure has not been well characterized. Here, we hypothesized that seaweed polysaccharides could alleviate hexavalent chromium exposure-induced poor health in mice. Mice in Cr and seaweed polysaccharide treatment group was compulsively receive K2Cr2O7. At the end of the experiment, all mice were euthanized, and colon contents were collected for DNA sequencing analysis. Results showed that seaweed polysaccharide administration can restore the gut microbial dysbiosis and the reduction of gut microbial diversity caused by hexavalent chromium exposure in mice. Hexavalent chromium exposure also caused significant changes in the gut microbial composition of mice, including an increase in some pathogenic bacteria and a decrease in beneficial bacteria. However, seaweed polysaccharides administration could ameliorate the composition of gut microbiota. In conclusion, this study showed that seaweed polysaccharides can restore the negative effects of hexavalent chromium exposure in mice, including gut microbial dysbiosis. Meanwhile, this research also lays the foundation for the application of seaweed polysaccharides.
Collapse
Affiliation(s)
- Jinghao Mu
- Department of Urology, Chinese PLA General Hospital, Beijing, China,Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenhuan Guo
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Zhenhuan Guo, ✉
| | - Xiujun Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xuefei Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yunxing Fu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xianghui Li
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Fuli Zhu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guangyuan Hu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xia Ma
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,Xia Ma, ✉
| |
Collapse
|
20
|
Absence of significant association of trace elements in nails with urinary KIM-1 biomarker among residents of Addis Ababa in Upper Awash Basin, Ethiopia: a cross-sectional study. Biometals 2022; 35:1341-1358. [PMID: 36163536 DOI: 10.1007/s10534-022-00448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
The Akaki River in the Upper Awash Basin, which flows through Addis Ababa, the capital city of Ethiopia, has been highly polluted by sewage from factories and residential areas. A population-based cross-sectional study was used to assess the association between trace elements and kidney injury from residents living in polluted areas downstream (Akaki-Kality) versus upstream (Gullele) in Sub-Cities of Addis Ababa. A total of 95 individuals (53 from Akaki-Kality and 42 from Gullele) were included in the study. Kidney injury molecule 1 (KIM-1), lead, arsenic, cadmium, cobalt, lead, manganese, zinc, iron, copper, chromium and nickel were evaluated in residents' urine and nail samples. A large proportion (74%) of the sample population contained KIM-1, including 81% residents in Akaki-Kality and 64% residents in Gullele. KIM-1 was, however, not significantly different (p = 0.05) between the two Sub-Cities, with median of 0.224 ng/mL in Akaki-Kality and 0.152 ng/mL in Gullele. Most of the analyzed elements, except Pb, As, Cd and Co, were found in all of the nail samples, with median (µg/g) in the range of 442‒714 Fe, 97.0‒246 Zn, 11.6‒24.1 Mn, 4.49‒5.85 Cu, 1.46‒1.66 Cr and 1.22‒1.41 Ni. The high incidence of KIM-1 indicates a potential for long term renal tubular damage among residents of the Sub-Cities. The concentrations of the elements in nails were, however, not significantly associated (p = 0.05) with the corresponding levels of KIM-1 in urine. Hence, the observed KIM-1 might be related to exposure to toxic substances or factors other than those included in this study.
Collapse
|
21
|
Politis MD, Yao M, Gennings C, Tamayo-Ortiz M, Valvi D, Kim-Schulze S, Qi J, Amarasiriwardena C, Pantic I, Tolentino MC, Estrada-Gutierrez G, Greenberg JH, Téllez-Rojo MM, Wright RO, Sanders AP, Rosa MJ. Prenatal Metal Exposures and Associations with Kidney Injury Biomarkers in Children. TOXICS 2022; 10:692. [PMID: 36422900 PMCID: PMC9699100 DOI: 10.3390/toxics10110692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Prenatal exposure to arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) may be nephrotoxic, yet limited studies have examined subclinical kidney injury biomarkers in children. We assessed whether metal exposure in the second trimester (2T), a crucial time of kidney development, is associated with altered urine kidney injury and function biomarkers in preadolescent children. Analyses included 494 children participating in a birth cohort study in Mexico City. Concentrations of As, Cd, and Pb were measured from pregnant women in 2T blood and urine, and Hg in urine only. Kidney biomarkers were measured from children in urine at age 8-12 years. We assessed the associations between individual metals and (1) kidney biomarkers using linear regression and (2) a multi-protein kidney mixture using weighted quantile sum (WQS) regression. Associations of separate urine and blood metal mixtures with individual kidney biomarkers were assessed via WQS. Within the multi-protein mixture, the association with increased urinary As was predominated by urine alpha-1-microglobulin (A1M), interferon gamma-induced protein 10 (IP10), and fatty acid binding protein 1; the association with increased urinary Cd was predominated by A1M, clusterin, and albumin. The urine metal mixture was associated with increased albumin (0.23 ng/mL; 95% confidence interval (CI): 0.10, 0.37), IP10 (0.15 ng/mL; 95% CI: 0.02, 0.28), and cystatin C (0.17 ng/mL; 95% CI: 0.04, 0.31); these associations were mainly driven by urinary As and Cd. We observed null associations between prenatal blood or urine metal mixtures and estimated glomerular filtration rate. Higher prenatal urinary metals, individually and as a mixture were associated with altered kidney injury biomarkers in children. Further research and longer participant follow-up are required to ascertain the risk of kidney disease later in life.
Collapse
Affiliation(s)
- Maria D. Politis
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City 06600, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jingjing Qi
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Pantic
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City 06600, Mexico
| | - Mari Cruz Tolentino
- Department of Nutrition, National Institute of Perinatology, Mexico City 06600, Mexico
| | | | - Jason H. Greenberg
- Department of Pediatrics, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alison P. Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
Wang B, Gao F, Li Y, Lin C, Cheng H, Duan X. Assessment of Children's Metal Exposure via Hand Wipe, Outdoor Soil and Indoor Dust and Their Associations with Blood Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14614. [PMID: 36361494 PMCID: PMC9653965 DOI: 10.3390/ijerph192114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The soil environment contributes considerably to human exposure to metals. This study aimed to comprehensively compare children's exposure to soil metals using different sampling approaches (i.e., hand wipe, indoor dust and outdoor soil) and assessment strategies, combing the method of external exposure evaluation and the correlation with internal biomarkers. Environmental exposure samples (hand wipe, outdoor soil and indoor dust), blood samples and child-specific exposure factors were simultaneously collected for 60 children aged 3 to 12 years from an area of northwestern China. Eight typical toxic metals were analyzed. Results showed that metal levels in hand wipes were associated with children's age, years of residency and the ground types of the play areas. Hand-to-mouth contact was an important pathway for children's metal exposure, with the corresponding oral exposure cancer risk to Cr already exceeding the maximum acceptable level. In comparison, metal concentrations in hand wipes were one to seven times higher than those in outdoor soil and indoor dust. Even greater discrepancies were found for the estimated exposure dose, which could lead to differences of several to dozens of times. In addition, Pb, Mn and Cr in hand wipes were significantly correlated with those in blood, whereas no relationships were found with soil and dust. This study indicates that the selection of different sampling and assessing strategies could lead to great differences in children metal exposure outcomes. It also suggests that hand wipe, which could reflect the true and integrated exposure level and the individual difference, serves as a better matrix to assess children's metal exposure compared to soil and dust. Further studies should standardize the sampling method for hand wipes and verify its applicability for other age groups.
Collapse
Affiliation(s)
- Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yujie Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hongguang Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Sanders AP, Gennings C, Tamayo-Ortiz M, Mistry S, Pantic I, Martinez M, Estrada-Gutierrez G, Espejel-Nuñez A, Olascoaga LT, Wright RO, Téllez-Rojo MM, Arora M, Austin C. Prenatal and early childhood critical windows for the association of nephrotoxic metal and metalloid mixtures with kidney function. ENVIRONMENT INTERNATIONAL 2022; 166:107361. [PMID: 35797845 PMCID: PMC9792626 DOI: 10.1016/j.envint.2022.107361] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 05/30/2023]
Abstract
INTRODUCTION As renal development and maturation processes begin in utero and continue through early childhood, sensitive developmental periods arise during which metal exposures can program subclinical nephrotoxicity that manifests later in life. We used novel dentine biomarkers of established nephrotoxicants including arsenic (As), cadmium (Cd), lead (Pb), chromium (Cr), and lithium (Li), and their mixtures, to identify critical windows of exposure-associated kidney function alterations in preadolescents. METHODS Participants included 353 children in the Programming Research in Obesity Growth, Environment and Social Stressors (PROGRESS) longitudinal birth cohort study based in Mexico City. Estimated glomerular filtration rate (eGFR) was assessed in 8-12 year old children using serum cystatin C measures. Pre- and postnatal metal(loid) concentrations were assessed in weekly increments by analyzing deciduous teeth with laser ablation-inductively coupled plasma-mass spectrometry. We used reverse distributed lag models (rDLMs) and lagged Weighted Quantile Sum (L-WQS) regression to examine time-varying associations between weekly perinatal metal(loid) exposure or metal(loid) mixtures and preadolescent eGFR while adjusting for age, sex, BMI z-score, SES and prenatal tobacco smoke exposure. RESULTS We identified a critical window of susceptibility to Pb exposure, in the late 3rd trimester (5 weeks prior to birth) during which higher Pb exposure was associated with children's increased eGFR. When all elements were assessed as a mixture, we identified late 2nd/early 3rd trimester (weeks 8-17 of gestation) as a window of vulnerability associated with decreased eGFR, with Li and Cr contributing the greatest weights to the association. When stratified by sex, we observed stronger effects among boys than girls. CONCLUSIONS Using tooth-matrix biomarkers, we identified discrete developmental exposure windows wherein Pb and metal(loid) mixtures were associated with altered preadolescent kidney function.
Collapse
Affiliation(s)
- Alison P Sanders
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico
| | - Shachi Mistry
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Pantic
- Research Division, National Institute of Perinatology, Mexico City, Mexico
| | - Mauro Martinez
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Libni Torres Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Pócsi I, Dockrell ME, Price RG. Nephrotoxic Biomarkers with Specific Indications for Metallic Pollutants: Implications for Environmental Health. Biomark Insights 2022; 17:11772719221111882. [PMID: 35859925 PMCID: PMC9290154 DOI: 10.1177/11772719221111882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental and occupational exposure to heavy metals and metalloids is a major global health risk. The kidney is often a site of early damage. Nephrotoxicity is both a major consequence of heavy metal exposure and potentially an early warning of greater damage. A paradigm shift occurred at the beginning of the 21st century in the field of renal medicine. The medical model of kidney failure and treatment began to give way to a social model of risk factors and prevention with important implications for environmental health. This development threw into focus the need for better biomarkers: markers of exposure to known nephrotoxins; markers of early damage for diagnosis and prevention; markers of disease development for intervention and choice of therapy. Constituents of electronic waste, e-waste or e-pollution, such as cadmium (Cd), lead (Pb), mercury (HG), arsenic (As) and silica (SiO2) are all potential nephrotoxins; they target the renal proximal tubules through distinct pathways. Different nephrotoxic biomarkers offer the possibility of identifying exposure to individual pollutants. In this review, a selection of prominent urinary markers of tubule damage is considered as potential tools for identifying environmental exposure to some key metallic pollutants.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Mark E Dockrell
- SWT Institute of Renal Research, Carshalton, London, UK.,Department of Molecular and Clinical Sciences, St George's University, London, UK
| | - Robert G Price
- Department of Nutrition, Franklin-Wilkins Building, King's College, London, UK
| |
Collapse
|
25
|
Khan MI, Ahmad MF, Ahmad I, Ashfaq F, Wahab S, Alsayegh AA, Kumar S, Hakeem KR. Arsenic Exposure through Dietary Intake and Associated Health Hazards in the Middle East. Nutrients 2022; 14:2136. [PMID: 35631276 PMCID: PMC9146532 DOI: 10.3390/nu14102136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Dietary arsenic (As) contamination is a major public health issue. In the Middle East, the food supply relies primarily on the import of food commodities. Among different age groups the main source of As exposure is grains and grain-based food products, particularly rice and rice-based dietary products. Rice and rice products are a rich source of core macronutrients and act as a chief energy source across the world. The rate of rice consumption ranges from 250 to 650 g per day per person in South East Asian countries. The source of carbohydrates through rice is one of the leading causes of human As exposure. The Gulf population consumes primarily rice and ready-to-eat cereals as a large proportion of their meals. Exposure to arsenic leads to an increased risk of non-communicable diseases such as dysbiosis, obesity, metabolic syndrome, diabetes, chronic kidney disease, chronic heart disease, cancer, and maternal and fetal complications. The impact of arsenic-containing food items and their exposure on health outcomes are different among different age groups. In the Middle East countries, neurological deficit disorder (NDD) and autism spectrum disorder (ASD) cases are alarming issues. Arsenic exposure might be a causative factor that should be assessed by screening the population and regulatory bodies rechecking the limits of As among all age groups. Our goals for this review are to outline the source and distribution of arsenic in various foods and water and summarize the health complications linked with arsenic toxicity along with identified modifiers that add heterogeneity in biological responses and suggest improvements for multi-disciplinary interventions to minimize the global influence of arsenic. The development and validation of diverse analytical techniques to evaluate the toxic levels of different As contaminants in our food products is the need of the hour. Furthermore, standard parameters and guidelines for As-containing foods should be developed and implemented.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Buraydah 58883, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Sachil Kumar
- Department of Forensic Chemistry, College of Forensic Sciences, Naif Arab University for Security Sciences (NAUSS), Riyadh 14812, Saudi Arabia;
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
26
|
Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 2022; 39:85-110. [PMID: 35362847 PMCID: PMC10042769 DOI: 10.1007/s10565-022-09710-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
Worldwide, more than 200 million people are estimated to be exposed to unsafe levels of arsenic. Chronic exposure to unsafe levels of groundwater arsenic is responsible for multiple human disorders, including dermal, cardiovascular, neurological, pulmonary, renal, and metabolic conditions. Consumption of rice and seafood (where high levels of arsenic are accumulated) is also responsible for human exposure to arsenic. The toxicity of arsenic compounds varies greatly and may depend on their chemical form, solubility, and concentration. Surprisingly, synthetic organoarsenicals are extremely toxic molecules which created interest in their development as chemical warfare agents (CWAs) during World War I (WWI). Among these CWAs, adamsite, Clark I, Clark II, and lewisite are of critical importance, as stockpiles of these agents still exist worldwide. In addition, unused WWII weaponized arsenicals discarded in water bodies or buried in many parts of the world continue to pose a serious threat to the environment and human health. Metabolic inhibition, oxidative stress, genotoxicity, and epigenetic alterations including micro-RNA-dependent regulation are some of the underlying mechanisms of arsenic toxicity. Mechanistic understanding of the toxicity of organoarsenicals is also critical for the development of effective therapeutic interventions. This review provides comprehensive details and a critical assessment of recently published data on various chemical forms of arsenic, their exposure, and implications on human and environmental health.
Collapse
Affiliation(s)
- Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Ritesh Srivastava
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, School of Optometry, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
27
|
Shaari NEM, Tajudin MTFM, Khandaker MM, Majrashi A, Alenazi MM, Abdullahi UA, Mohd KS. Cadmium toxicity symptoms and uptake mechanism in plants: a review. BRAZ J BIOL 2022; 84:e252143. [PMID: 35239785 DOI: 10.1590/1519-6984.252143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Cadmium (Cd) is one of non-essential heavy metals which is released into environment naturally or anthropogenically. It is highly persistent toxic metals that are exceptionally distressing industrial and agriculture activities by contaminating soil, water and food. Its long-duration endurance in soil and water results in accumulation and uptake into plants, leading to the food chain. This becomes a serious global problem threatening humans and animals as food chain components. Living organisms, especially humans, are exposed to Cd through plants as one of the main vegetative food sources. This review paper is concentrated on the symptoms of the plants affected by Cd toxicity. The absorption of Cd triggers several seen and unseen symptoms by polluted plants such as stunted growth, chlorosis, necrosis and wilting. Apart from that, factors that affect the uptake and translocation of Cd in plants are elaborated to understand the mechanism that contributes to its accumulation. By insight of Cd accumulation, this review also discussed the phytoremediation techniques-phytoextraction, phytostimulation, phytostabilization, phytovolatization and rhizofiltration in bioremediating the Cd.
Collapse
Affiliation(s)
- N E M Shaari
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - M T F M Tajudin
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - M M Khandaker
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - A Majrashi
- Taif University, Faculty of Science, Department of Biology, Taif, Saudi Arabia
| | - M M Alenazi
- King Saud University, College of Food and Agricultural Sciences, Plant Production Department, Riyadh, Saudi Arabia
| | - U A Abdullahi
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| | - K S Mohd
- Universiti Sultan Zainal Abidin, School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Besut, Terengganu, Malaysia
| |
Collapse
|
28
|
Díaz de León-Martínez L, Ortega-Romero M, Gavilán-García A, Barbier OC, Carrizalez-Yáñez L, Van-Brusel E, Díaz-Barriga F, Flores-Ramírez R. Assessment of biomarkers of early kidney damage and exposure to pollutants in artisanal mercury mining workers from Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13333-13343. [PMID: 34590225 DOI: 10.1007/s11356-021-16628-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Artisanal mercury mining (AMM) is an informal economic activity that employs low technology and limited protection, and poses a risk to workers and their families; due to the extraction process, these scenarios involve exposure to complex mixtures of pollutants that synergistically aggravate the health of miners and people living near the site. Although mercury is the predominant pollutant, there are others such as polycyclic aromatic hydrocarbons (PAHs), toluene, arsenic, and lead which have been classified as nephrotoxic pollutants. Therefore, the purpose of this research was to evaluate the association between exposure to a complex mixture of pollutants (mercury, lead, arsenic, PAHs, and toluene) and kidney damage in artisanal Hg mining workers through early kidney damage proteins (KIM-1, OPN, RBP-4, NGAL, and Cys-C). The results demonstrate the presence of OH-PAHs at concentrations of 9.21 (6.57-80.63) μg/L, hippuric acid as a biomarker of exposure to toluene, As and Pb (655. 1 (203.8-1231) mg/L, 24.05 (1.24-42.98) g/g creatinine, and 4.74 (2.71-8.14) g/dL, respectively), and urinary Hg (503.4 (177.9-878.7) g/g creatinine) in the study population. As well as biomarkers of kidney damage, NGAL and RPB-4 were found in 100% of the samples, KIM-1 and Cys-C in 44.1%, and OPN in 41% of the miners. Significant correlations were found between several of the evaluated pollutants and early kidney damage proteins. Our results demonstrate the application of the early kidney damage biomarkers for the assessment of damage caused by the exposure to mixtures of pollutants and, therefore, the urgent need for monitoring in AMM areas.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico, Mexico
| | - Arturo Gavilán-García
- National Institute of Ecology and Climate Change, SEMARNAT, Blvd. Adolfo Ruíz Cortines 4209, Jardines en la Montaña, Ciudad de Mexico, Mexico
| | - Olivier C Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, Mexico, Mexico
| | - Leticia Carrizalez-Yáñez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Evelyn Van-Brusel
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
29
|
Ijaz MU, Jabeen F, Ashraf A, Imran M, Ehsan N, Samad A, Saleemi MK, Iqbal J. Evaluation of possible protective role of Chrysin against arsenic-induced nephrotoxicity in rats. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1993261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Faryal Jabeen
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Samad
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | | - Javed Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
30
|
Mehmood K, Bao Y, Abbas R, Petropoulos GP, Ahmad HR, Abrar MM, Mustafa A, Abdalla A, Lasaridi K, Fahad S. Pollution characteristics and human health risk assessments of toxic metals and particle pollutants via soil and air using geoinformation in urbanized city of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58206-58220. [PMID: 34110590 DOI: 10.1007/s11356-021-14436-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Toxic metals and particle pollutants in urbanized cities have significantly increased over the past few decades mainly due to rapid urbanization and unplanned infrastructure. This research aimed at estimating the concentration of toxic metals and particle pollutants and the associated risks to public health across different land-use settings including commercial area (CA), urban area (UA), residential area (RA), and industrial area (IA). A total of 47 samples for both soil and air were collected from different land-use settings of Faisalabad city in Pakistan. Mean concentrations of toxic metals such as Mn, Zn, Pb, Ni, Cr, Co, and Cd in all land-use settings were 92.68, 4.06, 1.34, 0.16, 0.07, 0.03, and 0.02 mg kg-1, respectively. Mean values of PM10, PM2.5, and Mn in all land-use settings were found 5.14, 1.34, and 1.9 times higher than the World Health Organization (WHO) guidelines. Mn was found as the most hazardous metal in terms of pollution load index (PLI) and contamination factor (CF) in the studied area. Health risk analysis for particle pollutants using air quality index (AQI) and geoinformation was found in the range between good to very critical for all the land-use settings. The hazard quotient (HQ) and hazard index (HI) were higher for children in comparison to adults, suggesting that children may be susceptible to potentially higher health risks. However, the cancer risk (CR) value for Pb ingestion (1.21 × 10-6) in children was lower than the permissible limit (1 × 10-4 to 1 × 10-6). Nonetheless, for Cr inhalation, CR value (1.09 × 10-8) was close to tolerable limits. Our findings can be of valuable assistance toward advancing our understanding of soil and air pollutions concerning public health in different land-use settings of the urbanized cities of Pakistan.
Collapse
Affiliation(s)
- Khalid Mehmood
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD) / CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, 210044, China
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yansong Bao
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD) / CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Roman Abbas
- Multan Medical and Dental College, Multan, Pakistan
| | - George P Petropoulos
- Department of Geography, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17671, Athens, Greece
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Mohsin Abrar
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Alwaseela Abdalla
- Agricultural Research Corporation, P.O. Box 126, 11111, Wad Medani, Sudan
| | - Katia Lasaridi
- Department of Geography, Harokopio University of Athens, El. Venizelou 70, Kallithea, 17671, Athens, Greece
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- Department of Agronomy, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
31
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
32
|
Chen Z, Liang Y, Lu Q, Nazar M, Mao Y, Aboragah A, Yang Z, Loor JJ. Cadmium promotes apoptosis and inflammation via the circ08409/miR-133a/TGFB2 axis in bovine mammary epithelial cells and mouse mammary gland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112477. [PMID: 34237642 DOI: 10.1016/j.ecoenv.2021.112477] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Cadmium is a common environmental heavy metal pollutant that can accumulate over long periods of time and cause disease. Thus, analysis of the molecular mechanisms affected by cadmium in the body could be of great significance for the prevention and treatment of cadmium-related diseases. In this study, flow cytometry, immunofluorescence, transmission electron microscopy, H&E (Hematoxylin Eosin) staining and TUNEL (TdT-mediated dUTP Nick-End Labeling) assays were used to verify that cadmium induced apoptosis and immune responses in bovine mammary epithelial cells (BMECs) and in mouse mammary gland. Isolated BMECs cultured with or without cadmium were collected to screen miRNA (microRNA) using high-throughput sequencing. There were 42 differentially-expressed miRNAs among which 27 were upregulated and 15 downregulated including bta-miR-133a, bta-miR-23b-5p, bta-miR-29e, bta-miR-365-5p, bta-miR-615, bta-miR-7, bta-miR-11975, bta-miR-127, and bta-miR-411a. Among those, miR-133a (which can specifically target TGFB2 (Recombinant Transforming Growth Factor Beta 2) was the most significantly downregulated with a fold-change of 5.27 in BMECs cultured with cadmium. Application of the double luciferase reporter system, western blotting, and qRT-PCR (Quantitative Real-time PCR) revealed that circ08409 can directly bind to miR-133a. Experiments demonstrated that circRNA-08409 could adsorb bta-miR-133a. Both circ08409 and TGFB2 significantly increased apoptosis and altered expression level of a series of inflammatory factors in BMECs. In contrast, miR-133a decreased significantly apoptosis and inflammation in the cells. Compared with cultures receiving only cadmium, the miR-133a+cadmium cultures exhibited significant reductions in the occurrence of late apoptosis. Overall, results indicated that circ08409 could relieve the inhibitory effect of miR-133a on TGFB2 expression by combining with miR-133a and subsequently modulating cell proliferation, apoptosis and inflammation. Overall, the data suggested that the circ08409/miR-133a/TGFB2 axis might play a role in mediating the effect of cadmium on BMECs. As such, data provide novel insights into controlling hazards that cadmium could induce in the mammary gland.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Yan Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - QinYue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, PR China
| | - Ahmad Aboragah
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Díaz de León-Martínez L, Ortega-Romero MS, Barbier OC, Pérez-Herrera N, May-Euan F, Perera-Ríos J, Rodríguez-Aguilar M, Flores-Ramírez R. Evaluation of hydroxylated metabolites of polycyclic aromatic hydrocarbons and biomarkers of early kidney damage in indigenous children from Ticul, Yucatán, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52001-52013. [PMID: 33997934 DOI: 10.1007/s11356-021-14460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental persistent chemicals, produced by the incomplete combustion of solid fuels, found in smoke. PAHs are considered carcinogenic, teratogenic, and genotoxic. Children are susceptible to environmental pollutants, particularly those living in high-exposure settings. Therefore, the main objective of this study was to evaluate the exposure to PAHs through hydroxylated metabolites of PAHs (OH-PAHs), 1-hydroxynaphtalene (1-OH-NAP), and 2-hydroxynaphtalene (2-OH-NAP); 2-,3-, and 9-hydroxyfluorene (2-OH-FLU, 3-OH-FLU, 9-OH-FLU); 1-,2-,3-, and 4-hydroxyphenanthrene (1-OH-PHE, 2-OH-PHE, 3-OH-PHE, 4-OH-PHE); and 1-hydroxypyrene (1-OH-PYR), as well as kidney health through biomarkers of early kidney damage (osteopontin (OPN), neutrophil gelatinase-associated lipocalin (NGAL), α1-microglobulin (α1-MG), and cystatin C (Cys-C)) in children from an indigenous community dedicated to footwear manufacturing and pottery in Ticul, Yucatán, Mexico. The results show a high exposure to PAHs from the found concentrations of OH-PAHs in urine in 80.5% of the children in median concentrations of 18.4 (5.1-71.0) μg/L of total OH-PAHs, as well as concentrations of kidney damage proteins in 100% of the study population in concentrations of 4.8 (3-12.2) and 7.9 (6.5-13.7) μg/g creatinine of NGAL and Cys-C respectively, and 97.5% of the population with concentrations of OPN and α1-MG at mean concentrations of 207.3 (119.8-399.8) and 92.2 (68.5-165.5) μg/g creatinine. The information provided should be considered and addressed by the health authorities to establish continuous biomonitoring and programs to reduce para-occupational exposure in the vulnerable population, particularly children, based on their fundamental human right to health.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Manolo S Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | - Olivier C Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | | | - Fernando May-Euan
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Javier Perera-Ríos
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maribel Rodríguez-Aguilar
- Department of Pharmacy, Health Sciences Division, Universidad de Quintana Roo, Av. Erick Paolo Martínez, Chetumal, Quintana Roo, Mexico.
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
34
|
Farkhondeh T, Naseri K, Esform A, Aramjoo H, Naghizadeh A. Drinking water heavy metal toxicity and chronic kidney diseases: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:359-366. [PMID: 33128529 DOI: 10.1515/reveh-2020-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals in drinking water can threat human health and may induce several diseases. The association between heavy metals exposure and chronic kidney disease (CKD) has been indicated by few epidemiological studies. We conducted a systematic review of the epidemiologic publications of the association between exposure to heavy metals through drinking water and CKD. Keywords related to heavy metals and kidney diseases on MeSH were identified and searched in PubMed, Google Scholar, Scopus, Ovid-Medline and Web of Science until July 2020. 14 publications met our inclusion criteria and included in the current review. The included articles were conducted on the association between arsenic, cadmium, lead and chromium in drinking water and CKD. Our study could not find strong evidence between heavy exposure to through drinking water and CKD, except for arsenic. The negative association was found between arsenic and lead and glomerular filtration rate (eGFR). The positive correlation was observed between cadmium exposure and urinary N-acetyl-β-d-glucosaminidase (NAG) concentrations, and also arsenic and chromium exposure and kidney injury molecule (KIM-1). Assessment of studies showed an association between arsenic, cadmium, lead and chromium and albuminuria and proteinuria, without CKD outcomes. Current systematic study showed few evidence for exposure to arsenic, cadmium, lead and chromium through drinking water and incidence of kidney problems. However, more epidemiological studies are required to confirm this association.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Adeleh Esform
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Department of Environmental Health Engineering, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
35
|
Vargas GC. Micro RNA (miRNA) Differential Expression and Exposure to Crude-Oil-Related Compounds. Microrna 2021; 10:97-108. [PMID: 34086553 PMCID: PMC9178514 DOI: 10.2174/2211536610666210604122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
This review summarizes studies on miRNA differential regulation related to exposure to crude oil and 20 different crude oil chemicals, such as hydrocarbons, sulphur, nitrogen, and metal- containing compounds. It may be interesting to explore the possibility of using early post-transcriptional regulators as a potential novel exposure biomarker. Crude oil has been defined as a highly complex mixture of solids, liquids, and gases. Given the toxicological properties of the petroleum components, its extraction and elaboration processes represent high-risk activities for the environment and human health, especially when accidental spills occur. The effects on human health of short-term exposure to petroleum are well known, but chronic exposure effects may variate depending on the exposure type (i.e., work, clean-up activities, or nearby residence). As only two studies are focused on miRNA differential expression after crude-oil exposure, this review will also analyse the bibliography concerning different crude-oil or Petroleum-Related Compounds (PRC) exposure in Animalia L. kingdom and how it is related to differential miRNA transcript levels. Papers include in vitro, animal, and human studies across the world. A list of 10 miRNAs (miR-142-5p, miR-126-3p, miR-24-3p, miR-451a, miR-16-5p, miR-28-5p, let-7b-5p, miR-320b, miR-27a-3p and miR-346) was created based on bibliography analysis and hypothesised as a possible “footprint” for crude-oil exposure. miRNA differential regulation can be considered a Big-Data related challenge, so different statistical programs and bioinformatics tools were used to have a better understanding of the biological significate of the most interesting data.
Collapse
|
36
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
37
|
Flores-Ramírez R, Ortega-Romero M, Christophe-Barbier O, Meléndez-Marmolejo JG, Rodriguez-Aguilar M, Lee-Rangel HA, Díaz de León-Martínez L. Exposure to polycyclic aromatic hydrocarbon mixtures and early kidney damage in Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23060-23072. [PMID: 33432415 DOI: 10.1007/s11356-021-12388-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The traditions and habits of indigenous communities in México include the use of wood and biomass burning to cook their food, which generates large amounts of smoke and therefore pollution inside the households. This smoke is composed of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) which at high levels of exposure cause carcinogenic, genotoxic effects and some chronic pulmonary and cardiovascular diseases; however, few studies relate kidney health with exposure to PAHs. Thus, the aim of this study was the evaluation of 10 hydroxylated metabolites of PAHs (OH-PAHs), and their correlation with biomarkers of early kidney damage renal (cystatin-C (Cys-C)), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL) in the indigenous population of the Huasteca Potosina in Mexico. The results demonstrate the presence of the OH-PAHs and kidney damage biomarkers in 100% of the study population. The OH-PAHs were shown in the following order of frequency, 1-OH-PYR > 4-OH-PHE > 2-OH-NAP > 1-OH-NAP > 9-OH-FLU > 3-OH-FLU > 2-OH-FLU > 3-OH-PHE and with the following percentages of detection 97.6, 87.8, 78, 73.2, 68.3, 31.7, 14.6, and 12.2%, respectively. NGAL and RBP-4 were present in above 85% of the population, with mean concentrations of 78.5 ± 143.9 and 139.4 ± 131.7 ng/g creatinine, respectively, OPN (64%) with a mean concentration of 642.6 ± 723.3 ng/g g creatinine, and Cys-C with a mean concentration of 33.72 ± 44.96 ng/g creatinine. Correlations were found between 1-OH-NAP, 2-OH-NAP, 9-OH-FLU, and 4-OH-PHE and the four biomarkers of early kidney damage. 3-OH-FLU with OPN and 1-OH-PYR correlated significantly with NGAL, OPN, and RPB-4.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Olivier Christophe-Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Jessica Guadalupe Meléndez-Marmolejo
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | | | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Universidad Autonoma de San Luis Potosí, km. 14.5 Carr. San Luis Potosí-Matehuala, 78321, San Luis Potosí, SLP, Mexico
| | - Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
38
|
Ochoa-Martínez ÁC, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Lead (Pb) exposure is associated with changes in the expression levels of circulating miRNAS (miR-155, miR-126) in Mexican women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103598. [PMID: 33516900 DOI: 10.1016/j.etap.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 μg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
39
|
Abdul K, De Silva PMC, Ekanayake E, Thakshila W, Gunarathna S, Gunasekara T, Jayasinghe S, Asanthi H, Chandana E, Chaminda G, Siribaddana S, Jayasundara N. Occupational Paraquat and Glyphosate Exposure May Decline Renal Functions among Rural Farming Communities in Sri Lanka. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3278. [PMID: 33810013 PMCID: PMC8005187 DOI: 10.3390/ijerph18063278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/21/2023]
Abstract
Extensive use of herbicides is common among rural agricultural workers in Sri Lanka. Recent studies have postulated their role in the development of chronic kidney disease of unknown etiology (CKDu). Paraquat and glyphosate are leading herbicides used by sugarcane farmers (SF), hence occupational exposure is inevitable. This study examined the expression of urinary paraquat, glyphosate and biomarkers among residential SF in CKDu emerging regions, Warunagama (WA) and Rahathangama (RH), in the Uva Province with non-endemic Matara (MA) in the Southern Province of Sri Lanka. Urinary glyphosate, Paraquat, kidney injury molecule -1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and β2-microglobulin (B2M) were determined using enzyme-linked immunosorbent assays (ELISA). Urinary creatinine, microalbumin, serum creatinine (SCr), serum cystatin C, estimated glomerular filtration rate (eGFR), and albumin creatinine ratio (ACR) were also assessed. Generally, herbicide residues and kidney injury biomarkers were higher in SF compared to the non-endemic MA. Creatinine-adjusted urinary glyphosate and paraquat levels were significantly higher in WA compared to MA. ACR in RH (median 14.9; IQR 5.4-393.1 mg/g) and WA (23.7; 11.5-64.6) was significantly higher than MA (4.3; 2.2-6.7). This study reports 39 individuals with impaired kidney function among SF in Sri Lanka for the first time. Urinary NGAL levels were significantly higher in both WA (median 2.14; IQR 1.28-6.15 ng/mg Cr) and RH (3.09; 1.15-9.09) compared to MA (1.28; 0.56-2.81). However, urinary KIM-1 levels in RH (3.2; 1.29-106.1 ng/g Cr) and WA (3.6; 1.94-115.1) were not significantly higher in MA (1.74; 0.76-116.9). Urinary NGAL (r = 0.493), eGFR (r = -0.147) and ACR (r = 0.171) significantly correlated with urinary glyphosate, but not with urinary paraquat levels. Urinary KIM-1 levels did not correlate with either urinary glyphosate or paraquat, while urinary B2M and serum cystatin C levels showed significant correlation with urinary glyphosate levels. The current study reports higher urinary herbicide levels among sugarcane farmers in WA and RH, and that is potentially linked to the subsequent decline in kidney function, as indicated by ACR, eGFR, and NGAL. We posit that these indicators may serve as markers to detect renal injury among herbicide-exposed SF in Rural Sri Lanka.
Collapse
Affiliation(s)
- K.S.M. Abdul
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka; (E.M.D.V.E.); (W.A.K.G.T.); (S.D.G.); (T.D.K.S.C.G.)
| | - P. Mangala C.S. De Silva
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka; (E.M.D.V.E.); (W.A.K.G.T.); (S.D.G.); (T.D.K.S.C.G.)
| | - E.M.D.V. Ekanayake
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka; (E.M.D.V.E.); (W.A.K.G.T.); (S.D.G.); (T.D.K.S.C.G.)
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - W.A.K.G. Thakshila
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka; (E.M.D.V.E.); (W.A.K.G.T.); (S.D.G.); (T.D.K.S.C.G.)
| | - S.D. Gunarathna
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka; (E.M.D.V.E.); (W.A.K.G.T.); (S.D.G.); (T.D.K.S.C.G.)
| | - T.D.K.S.C. Gunasekara
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka; (E.M.D.V.E.); (W.A.K.G.T.); (S.D.G.); (T.D.K.S.C.G.)
| | - S.S. Jayasinghe
- Department of Pharmacology, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka;
| | - H.B. Asanthi
- Department of Limnology, Faculty of Fisheries and Marine Sciences and Technology, University of Ruhuna, Matara 81000, Sri Lanka;
| | - E.P.S. Chandana
- Department of Biosystems Technology, Faculty of Technology, University of Ruhuna, Matara 81000, Sri Lanka;
| | - G.G.T. Chaminda
- Department of Civil Engineering, Faculty of Engineering, University of Ruhuna, Hapugala 80000, Sri Lanka;
| | - S.H. Siribaddana
- Department of Medicine, Faculty of Medical & Allied Sciences, Rajarata University, Saliyapura 50008, Sri Lanka;
| | - Nishad Jayasundara
- The Nicholas School of the Environment, Duke University, Durham, NC 27708, USA;
| |
Collapse
|
40
|
Hoffman JF, Vergara VB, Fan AX, Kalinich JF. Effect of embedded metal fragments on urinary metal levels and kidney biomarkers in the Sprague-Dawley rat. Toxicol Rep 2021; 8:463-480. [PMID: 33717999 PMCID: PMC7933717 DOI: 10.1016/j.toxrep.2021.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Wounds with embedded metal fragments are an unfortunate consequence of armed conflicts. In many cases the exact identity of the metal(s) and their long-term health effects, especially on the kidney, are not known. AIM OF STUDY The aim of this study was to quantitate the urinary levels of metals solubilized from surgically implanted metal pellets and to assess the effect of these metals on the kidney using a battery of biomarker assays. MATERIALS AND METHODS Using a rodent model system developed in our Institute to simulate embedded fragment injuries, eight metals considered likely components of an embedded fragment wound were individually implanted into the gastrocnemius muscle of male Sprague-Dawley rats. The rats were followed for 12 months post-implantation with urine collected prior to surgery then at 1-, 3-, 6-, 9-, and 12-months post-implantation to provide a within-subjects cohort for examination. Urinary metal levels were determined using inductively coupled plasma-mass spectrometry and urinary biomarkers assessed using commercially available kits to determine metal-induced kidney effects. RESULTS With few exceptions, most of the implanted metals rapidly solubilized and were found in the urine at significantly higher levels than in control animals as early as 1-month post-implantation. Surprisingly, many of the biomarkers measured were decreased compared to control at 1-month post-implantation before returning to normal at the later time points. However, two metals, iron and depleted uranium, showed increased levels of several markers at later time points, yet these levels also returned to normal as time progressed. CONCLUSION This study showed that metal pellets surgically implanted into the leg muscle of Sprague-Dawley rats rapidly solubilized with significant levels of the implanted metal found in the urine. Although kidney biomarker results were inconsistent, the changes observed along with the relatively low amounts of metal implanted, suggest that metal-induced renal effects need to be considered when caring for individuals with embedded metal fragment wounds.
Collapse
Key Words
- AAALAC-I, Association for Assessment and Accreditation of Laboratory Animal Care International
- AFRRI, Armed Forces Radiobiology Research Institute
- ALB, Albumin
- ALP, Alkaline phosphatase
- Al, Aluminum
- B2m, Beta-2-microglobulin
- Biomarker
- Co, Cobalt
- Cu, Copper
- DU, Depleted uranium
- DoD, Department of Defense
- Embedded metals
- Fe, Iron
- IACUC, Institutional Animal Care and Use Committee
- ICP-MS, Inductively coupled plasma-mass spectroscopy
- IL-18, Interleukin-18
- KIM-1, Kidney injury molecule-1
- Kidney
- LoD, Limit of detection
- LoQ, Limit of quantitation
- NAG, N-acetyl-beta-d-glucosaminidase
- NGAL, Neutrophil gelatinase-associated lipocalin
- Ni, Nickel
- OPN, Osteopontin
- Pb, Lead
- RBP, Retinal binding protein
- Rat
- Ta, Tantalum
- Urine
- W, Tungsten
Collapse
Affiliation(s)
- Jessica F. Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Vernieda B. Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Anya X. Fan
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - John F. Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
41
|
Jain RB. Concentrations of selected arsenic species in urine across various stages of renal function including hyperfiltration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8594-8605. [PMID: 33067786 DOI: 10.1007/s11356-020-11189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Data (N = 10,590) from National Health and Nutrition Examination Survey for 2005-2016 for US adults aged ≥ 20 years were analyzed to study how concentrations of arsenobetaine (UAB), monomethylarsonic acid (UMMA), dimethylarsenic acid (UDMA), and total arsenic (UAS) in urine vary across the stages of renal function (RF). Data were analyzed over RF-1A (eGFR > 110 mL/min/1.73 m2), RF-1B (eGFR between 90 and 110 mL/min/1.73 m2), RF-2 (eGFR between 60 and 90 mL/min/1.73 m2), RF-3A (eGFR between 45 and 60 mL/min/1.73 m2), and RF-3B/4 (eGFR between 15 and 45 mL/min/1.73 m2). Adjusted geometric mean (AGM) concentrations of the total population, males, and females for UAS, UAB, and UDMA were observed to follow inverted U-shaped distributions with points of inflection located at RF-3A. For example, adjusted concentrations for the total population for UAS were 8.8, 8.8, 9.5, 11.7, and 9.6 μg/L for those in RF-1A, RF-1B, RF-2, RF-3A, and RF-3B/4 respectively. While statistically significant differences were only occasionally observed, males, in general, had lower AGMs than females for UAS and UDMA, but females had lower AGMs than males for UAB. Among the various racial/ethnic groups, non-Hispanic whites had the lowest adjusted concentrations of all four arsenic variables. Adjusted levels of all four arsenic variables were observed to decrease over survey years of 2005-2006 through 2015-2016. However, statistical significance was not necessarily reached for all RF stages. Smoking was associated with reduced levels of four arsenic variables over RF-1A through RF-2. Diabetes was associated with increased levels of UMMA and UDMA at RF-2.
Collapse
|
42
|
Navarro-Espinoza S, Angulo-Molina A, Meza-Figueroa D, López-Cervantes G, Meza-Montenegro M, Armienta A, Soto-Puebla D, Silva-Campa E, Burgara-Estrella A, Álvarez-Bajo O, Pedroza-Montero M. Effects of Untreated Drinking Water at Three Indigenous Yaqui Towns in Mexico: Insights from a Murine Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020805. [PMID: 33477870 PMCID: PMC7832869 DOI: 10.3390/ijerph18020805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Background: Reports in a northwestern Mexico state linked arsenic (As) in drinking water to DNA damage in people from indigenous communities. However, this correlation remains under discussion due to unknown variables related to nutrition, customs, and the potential presence of other metal(oid)s. Methods: To determine this association, we sampled water from three Yaqui towns (Cócorit, Vícam, and Pótam), and analyzed the metals by ICP-OES. We exposed four separate groups, with five male CD-1 mice each, to provide further insight into the potential effects of untreated drinking water. Results: The maximum concentrations of each metal(oid) in µg·L−1 were Sr(819) > Zn(135) > As(75) > Ba(57) > Mo(56) > Cu(17) > Al(14) > Mn(12) > Se(19). Histological studies revealed brain cells with angulation, satellitosis, and reactive gliosis with significant statistical correlation with Mn and As. Furthermore, the liver cells presented hepatocellular degeneration. Despite the early response, there is no occurrence of both statistical and significative changes in hematological parameters. Conclusions: The obtained results provide experimental insights to understand the potential effects of untreated water with low As and Mn contents in murine models. This fact is noteworthy because of the development of histological changes on both the brain and liver at subchronic exposure.
Collapse
Affiliation(s)
- Sofia Navarro-Espinoza
- Department of Geology, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
| | - Aracely Angulo-Molina
- Department of Biological Chemical Sciences, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
- Correspondence: (D.M.-F.); (M.P.-M.)
| | - Guillermo López-Cervantes
- Department of Medicine, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico;
| | - Mercedes Meza-Montenegro
- Department of Natural Resources, Sonora Technological Institute, 5 de Febrero 818 Sur, Obregon City 85000, Sonora, Mexico;
| | - Aurora Armienta
- Institute of Geophysics, National Autonomous University of Mexico-UNAM, Coyoacán 04510, Ciudad de Mexico, Mexico;
| | - Diego Soto-Puebla
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Erika Silva-Campa
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Alexel Burgara-Estrella
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
| | - Osiris Álvarez-Bajo
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
- Consejo Nacional de Ciencia y Tecnología CONACyT, Insurgentes 1582, Benito Juárez 03940, Ciudad de Mexico, Mexico
| | - Martín Pedroza-Montero
- Department of Physics Research, University of Sonora, Rosales and Encinas, Hermosillo 83000, Sonora, Mexico; (D.S.-P.); (E.S.-C.); (A.B.-E.); (O.Á.-B.)
- Correspondence: (D.M.-F.); (M.P.-M.)
| |
Collapse
|
43
|
Urinary MicroRNAs in Environmental Health: Biomarkers of Emergent Kidney Injury and Disease. Curr Environ Health Rep 2021; 7:101-108. [PMID: 32166731 DOI: 10.1007/s40572-020-00271-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW There is a critical need for sensitive biomarkers of renal disease and progression. Micro(mi)RNAs are attractive as next-generation biomarkers in kidney disease, particularly as urine miRNAs can inform kidney function and cellular integrity. This review summarizes recent epidemiologic and toxicologic advances using urinary miRNAs and exosomal miRNAs as novel biomarkers of chemical exposure and of kidney damage and disease. RECENT FINDINGS Urine miRNA biomarkers offer improved stability over protein in stored samples, relative ease of collection and quantitation, and conserved sequence homology across species. Particularly in the case of emergent environmental health threats such as chronic kidney disease of unknown origin, urinary miRNAs hold promise as biomarkers of disease and/or exposure. We present evidence to address scientific knowledge gaps, comment on the relevance of urine-derived miRNAs in environmental health research, and discuss limitations and recommendations for future directions needed to advance miRNA biomarker strategies.
Collapse
|
44
|
Rypdal V, Jørandli S, Hemmingsen D, Solbu MD, Klingenberg C. Exposure to an Extended-Interval, High-Dose Gentamicin Regimen in the Neonatal Period Is Not Associated With Long-Term Nephrotoxicity. Front Pediatr 2021; 9:779827. [PMID: 34917565 PMCID: PMC8669790 DOI: 10.3389/fped.2021.779827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives: To assess the association between gentamicin exposure and subclinical signs of nephrotoxicity in school children who were exposed to a high-dose gentamicin regimen in the neonatal period. Methods: Children receiving three or more doses (6 mg/kg) of gentamicin as neonates were invited to a follow-up in school age. We evaluated potential signs of subclinical nephrotoxicity with four validated urine biomarkers: protein-creatinine ratio (PCR), albumin-creatinine ratio (ACR), kidney injury molecule-1 (KIM-1), and N-acetyl-beta-D-glucosaminidase (NAG) normalized for urine creatinine (NAG-Cr). In addition, blood pressure was measured. The measures of gentamicin exposure were cumulative dose (mg/kg) and highest trough plasma concentration (TPC) in mg/L. We used logistic and linear regression and non-parametric kernel regression to analyze the relationship between gentamicin exposure and the urine biomarkers. Results: A total of 222 gentamicin exposed children were included. As neonates, the children were exposed to a median (interquartile range-IQR) cumulative gentamicin dose of 36 (26-42) mg/kg and the median (IQR) TPC was 1.0 (0.7-1.3) mg/L. At follow-up, 15 children (6.8%) had either one abnormal urine biomarker value (13 children) or two abnormal urine biomarker values (2 children). These 17 biomarker values were all marginally above the suggested upper cutoff, and included the following markers; KIM-1 (n = 2), NAC-Cr (n = 5), ACR (n = 6), and PCR (n = 4). All other 207 children had normal sets of all four urine biomarkers. One child had hypertension. There were no differences in gentamicin exposure, gestational age (GA) at birth or birth weight between the group of 15 children with one or two abnormal urine biomarker values compared to the other 207 children who had normal biomarker values. Using different regression analyses, we did not find any association between gentamicin exposure (cumulative dose and/or TPC) and the urine biomarker values. Conclusions: Exposure to an extended-interval, high-dose gentamicin regimen in the neonatal period was not associated with signs of subclinical nephrotoxicity in schoolchildren. We therefore suggest that the gentamicin treatment regimen evaluated in this study is safe in terms of long-term nephrotoxicity. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT03253614.
Collapse
Affiliation(s)
- Veronika Rypdal
- Department of Pediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway.,Pediatric Research Group, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Sondre Jørandli
- The Faculty of Health Sciences, Medical School, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Dagny Hemmingsen
- Pediatric Research Group, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway.,Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Marit Dahl Solbu
- Section of Nephrology, University Hospital of North Norway, Tromsø, Norway.,Metabolic and Renal Research Group, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Claus Klingenberg
- Department of Pediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway.,Pediatric Research Group, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
45
|
Ochoa-Martínez ÁC, Araiza-Gamboa Y, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Effect of gene-environment interaction (arsenic exposure - PON1 Q192R polymorphism) on cardiovascular disease biomarkers in Mexican population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103519. [PMID: 33164855 DOI: 10.1016/j.etap.2020.103519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular diseases (CVDs) are the primary cause of death worldwide. However, little is known about how the interaction between risk factors affects CVDs. Therefore, the aim of this study was to evaluate the effect of the gene-environment interaction (arsenic exposure x PON1 Q192R polymorphism) on serum levels of CVDs biomarkers in Mexican women. Urinary arsenic levels (UAs) ranged from 5.50-145 μg/g creatinine. The allele frequency was 0.38 and 0.62 for the Q and R alleles, respectively. Moreover, significant associations (p<0.05) were detected between UAs and CVDs biomarkers (ADMA, FABP4, and miR-155). Comparable data were found when CVDs biomarkers were evaluated through PON1 genotype, significant (p<0.05) higher serum concentrations of CVDs biomarkers were identified in R allele carriers compared to levels found in Q allele carriers. Besides, a gene-environment interaction was documented. The results of this study we believe should be of significant interest to regulatory authorities worldwide.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Yesenia Araiza-Gamboa
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra T Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
46
|
Fernández-Macias JC, Ochoa-Martínez ÁC, Orta-García ST, Varela-Silva JA, Pérez-Maldonado IN. Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:712. [PMID: 33070268 DOI: 10.1007/s10661-020-08675-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
A major public health concern in Mexico is the natural contamination of groundwater with fluoride and arsenic. Therefore, this work aimed to evaluate the magnitude of human health risk after determining fluoride and arsenic concentrations in groundwater samples (n = 50) from the Metropolitan area of the city of San Luis Potosi, Mexico. Fluoride levels in water were determined via a potentiometric method using an ion-selective electrode. Arsenic concentrations in water samples were determined with an Atomic Absorption technique. Subsequently, a probabilistic health risk assessment was developed (Monte Carlo Analysis). Fluoride levels in water ranged from 0.20 to 3.50 mg/L. For arsenic, the mean level found in the assessed water samples was 15.5 ± 5.50 μg/L (range: 2.50-30.0 μg/L). In addition, when the probabilistic health risk assessment was completed, a mean HI (cumulative hazardous index) of higher than 1 was detected, indicating a high NCR (non-carcinogenic risk) for children and adults. According to the results found in this study, exposure protection campaigns are imperative in the Metropolitan area of the city of San Luis Potosí, Mexico, to successfully diminish exposure to arsenic and fluoride and, as a consequence, decrease the NCR in the population living in that region of Mexico.
Collapse
Affiliation(s)
- Juan C Fernández-Macias
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico
| | - Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico
| | - Sandra T Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, Mexico.
| |
Collapse
|
47
|
Chan HM, Hu XF, Cheung JS, Parajuli RP, Rosol R, Yumvihoze E, Williams L, Mohapatra A. Cohort profile: health effects monitoring programme in Ndilǫ, Dettah and Yellowknife (YKHEMP). BMJ Open 2020; 10:e038507. [PMID: 32988947 PMCID: PMC7523220 DOI: 10.1136/bmjopen-2020-038507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 11/03/2022] Open
Abstract
PURPOSE The Yellowknife Health Effects Monitoring Programme (YKHEMP) was established to examine the relationship of exposure to arsenic and other chemicals of potential concern such as antimony, cadmium, lead, manganese and vanadium and health outcomes. PARTICIPANTS A total of 2037 individuals were recruited, including children (age 3-19) and adults (age 20+), residing in Dettah, Ndilǫ and Yellowknife, in the Northwest Territories, Canada, in two waves in Fall 2017 and Spring 2018. In Yellowknife, there were 891 (675 adults, 216 children), randomly selected participants with a participation rate of 64%. In addition, we also recruited a total of 875 (669 adults, 206 children) volunteer participants. A total of 225 (137 adults, 88 children) of the Yellowknives Dene First Nation (YKDFN), and 46 (33 adults, 13 children) of the North Slave Métis Alliance participated in the study. Each participant answered a lifestyle questionnaire as well as provided toenail clippings and urine for contaminant testing and saliva samples for testing of genetic polymorphisms associated with arsenic metabolism. Participants also provided consent to have their medical records reviewed by the research team for the past 5 years to allow for the investigation between exposure and health outcomes. FINDINGS TO DATE The adult YKHEMP participants had lower urinary total arsenic but the children had higher inorganic arsenic than the general Canadian population. There was no difference in urinary total arsenic concentrations between adults and children, however, urinary inorganic arsenic concentrations were generally higher in children than in adults in all four YKHEMP sampling groups. The adult YKDFN participants had lower urinary total arsenic and inorganic arsenic concentrations compared with the random selected and volunteer participants. FUTURE PLANS YKHEMP is designed as a prospective cohort study; the children participants will be re-examined in 2022 and both adult and children participants in 2027.
Collapse
Affiliation(s)
- Hing Man Chan
- Biology, University of Ottawa Faculty of Science, Ottawa, Ontario, Canada
| | - Xue Feng Hu
- Biology, University of Ottawa Faculty of Science, Ottawa, Ontario, Canada
| | - Janet S Cheung
- Biology, University of Ottawa Faculty of Science, Ottawa, Ontario, Canada
| | | | - Renata Rosol
- Biology, University of Ottawa Faculty of Science, Ottawa, Ontario, Canada
| | - Emmanuel Yumvihoze
- Biology, University of Ottawa Faculty of Science, Ottawa, Ontario, Canada
| | - Linna Williams
- Health and Social Services, Government of the Northwest Territories, Yellowknife, Northwest Territories, Canada
| | - Asish Mohapatra
- Environmental Health Program, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
48
|
Díaz de León-Martínez L, Ortega-Romero M, Grimaldo-Galeana JM, Barbier O, Vargas-Berrones K, García-Arreola ME, Rodriguez-Aguilar M, Flores-Ramírez R. Assessment of kidney health and exposure to mixture pollutants in the Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34557-34566. [PMID: 32557022 DOI: 10.1007/s11356-020-09619-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 05/18/2023]
Abstract
The indigenous population is one of the most vulnerable to suffer from contaminated environments. One of the target organs to suffer early deterioration from exposure to toxins is the kidney. The objective of this article was to evaluate biomarkers of exposure to organic and inorganic toxins and biomarkers of early kidney damage in urine from an indigenous Tenek population in Mexico. The biomarkers of exposure were Li, Be, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Mo, Sn, Ba, and Pb evaluated by ICP-MS and hippuric acid for toluene exposure evaluated by UV-coupled with liquid chromatography; the biomarkers of kidney damage were cystatin C (Cys-C), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL). Thirty-one urine samples were obtained from indigenous people; 16, 42, 45.1, and 45.2% of the population exceeded the reference values for Pb, Zn, As, and hippuric acid respectively. Our results demonstrate significant correlations between the metals tested and the proteins associated with renal damage; Cys-C, OPN, and RPB4 showed a significant correlation with Li, B, and Mo, as well as hippuric acid in the case of Cys-C and Zn in OPN and RPB-4; NGAL did not present significant correlations with any of the pollutants of the study. This pilot study contributes to the evidence of great inequity in health associated to environmental pollution matters faced by indigenous people and addresses the need of initiatives for mitigation under the perspective that health is a fundamental human right.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Manolo Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, México
| | - José Moisés Grimaldo-Galeana
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, México
| | - Karla Vargas-Berrones
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - María Elena García-Arreola
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Maribel Rodriguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, México.
| |
Collapse
|
49
|
Garnier R, Mathieu-Huart A, Ronga-Pezeret S, Nouyrigat E, Benoit P, Goullé JP, Granon C, Manel J, Manouchehri N, Nisse P, Normand JC, Roulet A, Simon F, Gabach P, Tournoud C. Exposition de la population française à l’arsenic inorganique. Identification de valeurs toxicologiques de référence. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Sosa C, Guillén N, Lucea S, Sorribas V. Effects of oral exposure to arsenite on arsenic metabolism and transport in rat kidney. Toxicol Lett 2020; 333:4-12. [PMID: 32736004 DOI: 10.1016/j.toxlet.2020.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
Nephrotoxicity is within the recognized toxic effects of arsenic. In this study we assessed the effect of arsenite on the renal capacity to metabolize and handle arsenicals in rats exposed to drinking water with 0, 1, 5, or 10 ppm sodium arsenite for ten days. Arsenite treatment did not affect the gene expression of the main enzyme catalyzing methylation of arsenite, As3mt, while it reduced the expression of GSTO1 mRNA and protein. Arsenite decreased the expression of Aqp3, Mrp1, Mrp4, and Mdr1b (i.e., transporters and channels used by arsenic), but not that of Aqp7, Glut1, Mrp2, and Mdr1a. The protein abundance of AQP3 was also reduced by arsenite. Arsenite increased urinary NGAL and FABP3 and decreased Klotho plasma levels, without alteration of creatinine, which evidenced early tubular damage. Renal Klotho mRNA and protein expressions were also downregulated, which may exacerbate renal damage. No effect was observed in selected miRNAs putatively associated with renal injury. Plasma PTH and FGF23 were similar between groups, but arsenite decreased the renal expression of Fgfr1 mRNA. In conclusion, exposure to arsenite alters the gene expression of proteins involved in the cellular handling of arsenical species and elicits tubular damage.
Collapse
Affiliation(s)
- Cecilia Sosa
- Toxicology, Veterinary Faculty, University of Zaragoza. Miguel Servet 177, 50.013 Zaragoza, Spain.
| | - Natalia Guillén
- Toxicology, Veterinary Faculty, University of Zaragoza. Miguel Servet 177, 50.013 Zaragoza, Spain
| | - Susana Lucea
- Toxicology, Veterinary Faculty, University of Zaragoza. Miguel Servet 177, 50.013 Zaragoza, Spain
| | - Víctor Sorribas
- Toxicology, Veterinary Faculty, University of Zaragoza. Miguel Servet 177, 50.013 Zaragoza, Spain
| |
Collapse
|