1
|
Felföldi T. Microbiological aspects of sewage odor problems in the urban environment - a review. Biol Futur 2024; 75:371-377. [PMID: 39251555 DOI: 10.1007/s42977-024-00242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Growing human population and increasing urbanization call for the need for proper wastewater treatment to reduce environmental pollution and reduce the excess use of natural resources. During the collection of municipal wastewater, the rapid aerobic respiration often causes oxygen depletion and anaerobic conditions in the sewer system resulting in the production of malodorous compounds. The odor problems may lead to public complaints, or in the case of the sewage workers the released volatile compounds even cause serious health hazards. Therefore, microbes have a dual contribution in the urban water cycle, since they have a decisive role in wastewater treatment and the removal of pollutants, but they can also cause problems in the artificial environment. In this review, I would like to summarize the processes underlying the generation of the bad smell associated with sewage and wastewater or with the collection and treatment infrastructure, tracking the way from the households to the plants, including the discussion of processes and possible mitigation related to the released hydrogen sulfide, volatile organics and other compounds.
Collapse
Affiliation(s)
- Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary.
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, 1113, Budapest, Hungary.
| |
Collapse
|
2
|
Sulaiman M, Khalaf OI, Khan NA, Alshammari FS, Hamam H. Mathematical modeling and machine learning-based optimization for enhancing biofiltration efficiency of volatile organic compounds. Sci Rep 2024; 14:16908. [PMID: 39043685 PMCID: PMC11266594 DOI: 10.1038/s41598-024-65153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Biofiltration is a method of pollution management that utilizes a bioreactor containing live material to absorb and destroy pollutants biologically. In this paper, we investigate mathematical models of biofiltration for mixing volatile organic compounds (VOCs) for instance hydrophilic (methanol) and hydrophobic ( α -pinene). The system of nonlinear diffusion equations describes the Michaelis-Menten kinetics of the enzymic chemical reaction. These models represent the chemical oxidation in the gas phase and mass transmission within the air-biofilm junction. Furthermore, for the numerical study of the saturation of α -pinene and methanol in the biofilm and gas state, we have developed an efficient supervised machine learning algorithm based on the architecture of Elman neural networks (ENN). Moreover, the Levenberg-Marquardt (LM) optimization paradigm is used to find the parameters/ neurons involved in the ENN architecture. The approximation to a solutions found by the ENN-LM technique for methanol saturation and α -pinene under variations in different physical parameters are allegorized with the numerical results computed by state-of-the-art techniques. The graphical and statistical illustration of indications of performance relative to the terms of absolute errors, mean absolute deviations, computational complexity, and mean square error validates that our results perfectly describe the real-life situation and can further be used for problems arising in chemical engineering.
Collapse
Affiliation(s)
- Muhammad Sulaiman
- Department of Mathematics, Abdul Wali Khan University, 23200, Mardan, Pakistan
| | - Osamah Ibrahim Khalaf
- Department of Solar, Al-Nahrain Research Center for Renewable Energy, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Naveed Ahmad Khan
- School of Information Technology and Systems, University of Canberra, Canberra, ACT, Australia.
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
| | - Fahad Sameer Alshammari
- Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Habib Hamam
- Faculty of Engineering, Université de Moncton, Moncton, NB, E1A3E9, Canada
- Hodmas University College, Taleh Area, Mogadishu, Somalia
- Bridges for Academic Excellence, Tunis, Centre-Ville, Tunisia
- School of Electrical Engineering, University of Johannesburg, Johannesburg, 2006, South Africa
| |
Collapse
|
3
|
Ma L, Zhao R, Li J, Yang Q, Zou K. Release characteristics and risk assessment of volatile sulfur compounds in municipal wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123946. [PMID: 38643932 DOI: 10.1016/j.envpol.2024.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/15/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
In recent years, the malodorous gases generated by sewage treatment plants have gradually received widespread attention due to their sensory stimulation and health hazards. The emission concentration, sensory evaluation and health risk assessment of volatile sulfur compounds (VSCs) were all explored in two municipal wastewater treatment plants (WWTPs) with oxidation ditch and anaerobic/oxic treatment process, respectively. The VSCs concentration showed the highest amount in the primary treatment unit in both the two WWTPs (73.3% in Plant A and 93.0% in Plant B), while the H2S took the main role in the composition of VSCs. However, H2S took a larger percentage in Plant A (84.5% ∼ 87.0%) rather than Plant B (61.2% ∼ 83.5%), which may be due to the different operating conditions and sludge properties in different treatment process. Besides, H2S also gained the first rank in the sensory evaluation and health risk assessment, which may cause considerable sensory irritation and health risk to workers and surrounding residents. Furthermore, the influencing factor analyses of VSCs emission showed that the temperature of water and air, ORP of sludge made the greatest effect on VSCs release. This study provides theoretical and data support for the research of VSCs emission control in WWTPs.
Collapse
Affiliation(s)
- Linlin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Odor Pollution Control in Ministry of Ecology and Environment of the People's Republic of China, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Ruhan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jiaxin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Kehua Zou
- Key Laboratory of Odor Pollution Control in Ministry of Ecology and Environment of the People's Republic of China, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| |
Collapse
|
4
|
Xiao X, Kuang K, Tang Z, Yang X, Wu H, Wang Y, Fang P. Emission and spatial variation characteristics of odorous pollutants in the aerobic tank of an underground wastewater treatment plant (UWWTP) in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123631. [PMID: 38395135 DOI: 10.1016/j.envpol.2024.123631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
In this study, the spatial concentration of odorous pollutants in the aerobic tank of an underground wastewater treatment plant (UWWTP) in southern China is monitored. The odour activity value, odour contribution rate, and chemical concentration contribution rate are used to evaluate the degree of contribution of odorous substances. Computational fluid dynamics (CFD) simulations of odorous pollutant diffusion are also established. The study shows that the odorous substances detected in the aerobic tank mainly included ammonia (NH3), hydrogen sulfide (H2S), trimethylamine (C3H9N), and methanethiol (CH3SH), and their concentrations are 1.160, 0.778, 0.022, and 0.0006 mg/m3, respectively. The total odour activity value of the aerobic tank is 450.72 (dimensionless), of which the odour activity value of H2S is 432.22, and the contribution rate reaches 95.9%. H2S is the main contributor to odour and a key controlled substance. The air inlets and exhaust outlets in the aerobic tank are cross-arranged at the top of the space, and the CFD model of odorous pollutant diffusion shows that the gas flow organization determines the odorous pollutant diffusion. The spatial distribution of gas flow and odorous substances in the aerobic tank is relatively uniform, and the odour collection efficiency is higher. The production flux and production coefficient of H2S in the aerobic tank are calculated as 25.831 mg/(m2·h) and 14.149 mg/t, respectively. This study determines the reasonable air supply and exhaust design of the aerobic tank, the number of odour pollutants, and the key controlled substances. These findings offer guidance and serve as useful references for the prevention and control of odour pollution in aerobic tanks of the same type of UWWTPs.
Collapse
Affiliation(s)
- Xiang Xiao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou, 510655, China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, 510655, China
| | - Ke Kuang
- Guangzhou Sewage Purification Co., Ltd., Guangzhou, 510655, China
| | - Zijun Tang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou, 510655, China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, 510655, China
| | - Xia Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou, 510655, China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, 510655, China
| | - Haiwen Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou, 510655, China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, 510655, China
| | - Yunqing Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou, 510655, China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, 510655, China
| | - Ping Fang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou, 510655, China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, 510655, China.
| |
Collapse
|
5
|
Lee J, Lee S, Lin KYA, Jung S, Kwon EE. Abatement of odor emissions from wastewater treatment plants using biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122426. [PMID: 37607647 DOI: 10.1016/j.envpol.2023.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023]
Abstract
Odor is a critical environmental problem that negatively affects people's quality of life. Wastewater treatment plants (WWTPs) often emit various odorous compounds, such as ammonia, sulfur dioxide, and organosulfur. Abatement of odor emissions from WWTPs using biochar may contribute to achieving carbon neutrality due to the carbon negative nature, CO2 sorption, and negative priming effects of biochar. Biochar has a high specific surface area and microporous structure with appropriate activation, which is suitable for sorption purposes. Various research directions have been proposed to determine the biochar removal efficiency for different odorants released from WWTPs. According to the literature survey, the pre- and post-treatments (e.g., thermal treatment, chemical treatment, and metal impregnation) of biochar could enhance the removal capacity for the odorants emitted from WWTPs at comparable conditions, compared to unmodified biochar. The feedstock and production condition (particularly, pyrolysis temperature) of a biochar and initial concentration of an odorant markedly affect the biochar's odorant removal capacity and efficiency. Moreover, different adsorption systems for the removal of odorants emitted from WWTPs follow different adsorption models. Further research is required to establish the practical use of biochar for the mitigation of odors released from WWTPs.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seonho Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
6
|
Kasper PL, Feilberg A. Regenerative one-stage catalytic absorption process with cupric ions for removal of reduced sulfur compounds in polluted air. ENVIRONMENTAL TECHNOLOGY 2023; 44:3926-3936. [PMID: 35574816 DOI: 10.1080/09593330.2022.2077132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Reduced volatile sulfur compounds emitted from e.g. livestock production and biogas production facilities contribute to general air pollution and local odour nuisance. Improved technologies are required to mitigate the emissions of both hydrogen sulfide and organic sulfur compounds. The present study examines the oxidative absorption of reduced sulfur compounds, i.e. hydrogen sulfide, methanethiol and dimethyl sulfide in a wet oxidation process with cupric chloride. It was found that this process efficiently removes both hydrogen sulfide and methanethiol with removal efficiencies >94% under all process conditions tested, while the removal of dimethyl sulfide was in the range 20-40%. The main products determined were dimethyl disulfide, dimethyl trisulfide and elemental sulfur. It was shown that the process was more efficient than the similar process with ferric ions and higher removal could be obtained with lower residence times. Furthermore, though employing cupric ion as metal catalysts results in the production of gaseous sulfur compounds, it is estimated that this process is efficient for deodorization due to the higher odour threshold values of the product compounds and the pH range is optimal for gas streams containing CO2.
Collapse
Affiliation(s)
- Pernille Lund Kasper
- Department of Biotechnology and Chemical Engineering, Aarhus University, Aarhus N, Denmark
- SEGES, Aarhus N, Denmark
| | - Anders Feilberg
- Department of Biotechnology and Chemical Engineering, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
7
|
Zhang X, Lu B, Chen G, Wang L, Lin B, Peng Z, Lu S, Li D, Chen J. Culturable and inhalable airborne bacteria in a semiunderground municipal wastewater treatment plant: Distribution, transmission, and health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132234. [PMID: 37586239 DOI: 10.1016/j.jhazmat.2023.132234] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Airborne pathogens constitute a growing threat to global public health. Wastewater treatment plants (WWTPs) are important sources of airborne bacteria, which pose great health risks to the employee and nearby residents. In this study, the distribution, transmission and health risk of the airborne culturable and inhalable bacteria carried by PM2.5 in a semiunderground WWTP were evaluated. The concentrations of culturable bacteria in the air were 21.2-1431.1 CFU/m3, with the main contributions of primary and biological treatments. The relative abundances of culturable and total inhalable bacterial taxa were positively correlated (p < 0.05). However, certain bacteria, including Bacillus, Acinetobacter and Enterococcus, exhibited high reproductive capacity despite their low concentration in the air, suggesting that they can survive and regrow in suitable environments. Transmission modeling revealed that the concentrations of airborne bacteria exponentially decreased with distance from 18.67 to 24.12 copies /m3 at the source to 0.06-0.14 copies /m3 at 1000 m downwind. The risks of 8-h exposure in this WWTP except the outlet exceeded the reference value recommended by WHO, which were primarily dependent on P. aeruginosa, Salmonella, and E. coli. Management practices should consider improved controls for bioaerosols in order to reduce the risk of disease transmission.
Collapse
Affiliation(s)
- Xiang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bingjie Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Guang Chen
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Lihua Wang
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Bingjie Lin
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Zhengliang Peng
- Shanghai Chengtou Sewage Treatment Co., LtD., Shanghai 201203, China
| | - Songliu Lu
- Shanghai Investigation, Design & Research Institute, Shanghai 200335, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Wang H, Yan Z, Zhang Z, Jiang K, Yu J, Yang Y, Yang B, Shu J, Yu Z, Wei Z. Real-time emission characteristics, health risks, and olfactory effects of VOCs released from soil disturbance during the remediation of an abandoned chemical pesticide industrial site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93617-93628. [PMID: 37516703 DOI: 10.1007/s11356-023-28942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Volatile organic compounds (VOCs) released along with soil disturbance during the remediation of abandoned industrial sites have attracted great attention due to their possible toxicity and odour. However, the real-time emission characteristics of these VOCs and their subsequent effects on health and olfaction are less understood. In this study, the gaseous VOCs released from soil disturbance by excavators and drilling rigs at an abandoned chemical pesticide plant were monitored online with a laboratory-built single photoionization time-of-flight mass spectrometer (SPI-TOFMS). Twelve main VOCs with total mean concentrations ranging from 2350 to 3410 μg m-3 were observed, with dichloromethane (DCM) having a significant contribution. The total concentrations of the remaining 11 VOCs increased substantially during soil disturbance, with the total mean concentrations increasing from 18.65-39.05 to 37.95-297.94 μg m-3 and those of peak concentrations increasing from 28.46-58.97 to 88.38-839.13 μg m-3. This increase in VOC concentrations during soil disturbance leads to an enhanced heath risk for on-site workers. The distinctive difference between the mean and peak concentrations of VOCs indicates the importance of using mean and peak concentrations, respectively, for risk and olfactory evaluation due to the rapid response of the human nose to odours. As a result, the cumulative noncarcinogenic risk at the relatively high pollutant plot was higher than the occupational safety limit, while the total carcinogenic risks at all monitored scenarios exceeded the acceptable limit. Among the VOCs investigated, DCM and trichloroethylene (TCE) were determined to be crucial pollutants for both noncarcinogenic and carcinogenic risks of VOCs. With regard to olfactory effects, organic sulphides, including dimethyl disulphide (DMDS), dimethyl sulphide (DMS), and dimethyl trisulphide (DMTS) were identified as dominant odour contributors (78.28-92.11%) during soil disturbance.
Collapse
Affiliation(s)
- Haijie Wang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zitao Yan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zuojian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Kui Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Jin Yu
- China State Science Dingshi Environmental Engineering Co., Ltd, Beijing, 100102, People's Republic of China
| | - Yong Yang
- China State Science Dingshi Environmental Engineering Co., Ltd, Beijing, 100102, People's Republic of China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China.
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zhangqi Yu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Zhiyang Wei
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| |
Collapse
|
9
|
Luckert A, Aguado D, García-Bartual R, Lafita C, Montoya T, Frank N. Odour mapping and air quality analysis of a wastewater treatment plant at a seaside tourist area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1013. [PMID: 37526776 DOI: 10.1007/s10661-023-11598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Although wastewater treatment plants (WWTPs) play a fundamental role in protecting the aquatic environment as they prevent organic matter, nutrients and other pollutants from reaching the natural ecosystems, near residential areas they can generate unpleasant smells and noise. The plant studied in the present work is in a seaside tourist area in the Valencian Community, Spain. The main aim was to detect any possible perceptible H2S concentrations from the WWTP by experimental measurement campaigns (including sensor readings and olfactometry measurements by two experts) plus mathematical modelling. After a thorough data analysis of the essential variables involved, such as wind speed, wind direction and H2S concentrations (the main odorant) and comparing their temporal patterns, it was found that the probability of affecting the residential area was highest from June to August before noon and in the late evening. The hourly H2S concentration, influent flow rate and temperature showed a positive correlation, the strongest (R2 = 0.89) being the relationship between the H2S concentration and influent flow rate. These two variables followed a similar daily pattern and indicated that H2S was emitted when influent wastewater was being pumped into the biological reactor. The H2S median concentration at the source of the emission was below 1393.865 μg/m3 (1 ppm), although concentrations 10 times higher were occasionally recorded. The observed H2S peak-to-mean ratio (1 min to 1 h of integration times) ranged from 1.15 to 16.03. This ratio and its attenuation with distance from the source depended on the atmospheric stability. Both H2S concentrations and variability were considerably reduced after submerging the inlet. The AERMOD modelling framework and applying the peak-to-mean ratio were used to map the peak H2S concentration and determine the best conditions to eliminate the unpleasant odour.
Collapse
Affiliation(s)
- Andreas Luckert
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| | - Daniel Aguado
- Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient-IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain.
| | - Rafael García-Bartual
- Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient-IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain
| | - Carlos Lafita
- Global Omnium Medioambiente S.L., Avenida Marqués del Turia 19, 46005, Valencia, Spain
| | - Tatiana Montoya
- Global Omnium Medioambiente S.L., Avenida Marqués del Turia 19, 46005, Valencia, Spain
| | - Norbert Frank
- Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Lee J, Lee S, Park YK. Reduction of Odor-causing Compounds in Wastewater using Biochar: A Review. BIORESOURCE TECHNOLOGY 2023:129419. [PMID: 37422094 DOI: 10.1016/j.biortech.2023.129419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Wastewater contains chemical compounds that cause malodors, such as ammonium cation, dimethyl sulfide, and volatile organic compounds. Biochar-based reduction in the odorants has been proposed as an effective approach along with maintaining environmental neutrality as biochar is a sustainable material made from biomass and biowaste. Biochar can have high specific surface area and microporous structure with proper activation, appropriate for sorption purposes. Recently, various research directions have been proposed to determine the removal efficiency of biochar for different odorants contained in wastewater. This article is aimed at providing the most updated review of biochar-based removal of odor-causing compounds in wastewater while highlighting the current advances. It was distinguished that the odorant removal performance of biochar is highly associated with the raw material and modification method of biochar, and the kind of odorants. Further research should be required for more practical use of biochar for the reduction of odorants in wastewater.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seonho Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
11
|
Wang Y, Shao L, Kang X, Zhang H, Lü F, He P. A critical review on odor measurement and prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117651. [PMID: 36878058 DOI: 10.1016/j.jenvman.2023.117651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Odor pollution has become a global environmental issue of increasing concern in recent years. Odor measurements are the basis of assessing and solving odor problems. Olfactory and chemical analysis can be used for odor and odorant measurements. Olfactory analysis reflects the subjective perception of human, and chemical analysis reveals the chemical composition of odors. As an alternative to olfactory analysis, odor prediction methods have been developed based on chemical and olfactory analysis results. The combination of olfactory and chemical analysis is the best way to control odor pollution, evaluate the performances of the technologies, and predict odor. However, there are still some limitations and obstacles for each method, their combination, and the prediction. Here, we present an overview of odor measurement and prediction. Different olfactory analysis methods (namely, the dynamic olfactometry method and the triangle odor bag method) are compared in detail, the latest revisions of the standard olfactometry methods are summarized, and the uncertainties of olfactory measurement results (i.e., the odor thresholds) are analyzed. The researches, applications, and limitations of chemical analysis and odor prediction are introduced and discussed. Finally, the development and application of odor databases and algorithms for optimizing odor measurement and prediction methods are prospected, and a preliminary framework for an odor database is proposed. This review is expected to provide insights into odor measurement and prediction.
Collapse
Affiliation(s)
- Yujing Wang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Liming Shao
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xinyue Kang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
12
|
Cao T, Zheng Y, Dong H. Control of odor emissions from livestock farms: A review. ENVIRONMENTAL RESEARCH 2023; 225:115545. [PMID: 36822532 DOI: 10.1016/j.envres.2023.115545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Odor emission seriously affects human and animal health, and the ecological environment. Nevertheless, a systematic summary regarding the control technology for odor emissions in livestock breeding is currently lacking. This paper summarizes odor control technology, highlighting its applicability, advantages, and limitations, which can be used to evaluate and identify the most appropriate methods in livestock production management. Odor control technologies are divided into four categories: dietary manipulation (low-crude protein diet and enzyme additives in feed), in-housing management (separation of urine from feces, adsorbents used as litter additive, and indoor environment/manure surface spraying agent), manure management (semi-permeable membrane-covered, reactor composting, slurry cover, and slurry acidification), and end-of-pipe measures for air treatment (wet scrubbing of the exhaust air from animal houses and biofiltration of the exhaust air from animal houses or composting). Findings of this paper provide a theoretical basis for the application of odor control technology in livestock farms.
Collapse
Affiliation(s)
- Tiantian Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| |
Collapse
|
13
|
Parzentna-Gabor A, Kasperczyk D, Barbusiński K, Rene ER, Urbaniec K. Odor and volatile organic compounds biotreatment using compact trickle bed bioreactors (CTBB) in a wastewater treatment plant. BIORESOURCE TECHNOLOGY 2023; 376:128876. [PMID: 36921640 DOI: 10.1016/j.biortech.2023.128876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The main aim of this study was to optimize and maximize the impacts of odor and volatile organic compounds (VOCs) biodegradation in a wastewater treatment plant utilizing a pilot-scale compact trickle bed bioreactor (CTBB). A CTBB was built and tested for its long-term performance during which gases were supplied from the tank containing semi-liquid fats, oils, and fat waste. The concentrations of pollutants ranged from 0 to 140.75 mg/m3 H2S, 0 to 2500 mg/m3 VOCs, and 0 to 21.5 mg/m3 NH3. The CTBB was tested at different gas flow rates and at two pH values for the liquid phase: pH = 7.0 and 5.0. In the liquid phase, the pollutant removal efficiency was higher at pH = 7.0 than at pH = 5.0. Overall, the removal efficiency was between 81.5 % and 99.5 % for the VOCs and 87.5 % and 98.9 % for H2S, while NH3 removals were >99 %.
Collapse
Affiliation(s)
- Anita Parzentna-Gabor
- Ekoinwentyka Ltd., Szyb Walenty 26, 41-700 Ruda Śląska, Poland; Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | | | - Krzysztof Barbusiński
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Krzysztof Urbaniec
- Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, Poland
| |
Collapse
|
14
|
Czarnota J, Masłoń A, Pajura R. Wastewater Treatment Plants as a Source of Malodorous Substances Hazardous to Health, Including a Case Study from Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5379. [PMID: 37047993 PMCID: PMC10093992 DOI: 10.3390/ijerph20075379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Using Poland as an example, it was shown that 41.6% of the requests for intervention in 2016-2021 by Environmental Protection Inspections were related to odour nuisance. Further analysis of the statistical data confirmed that approximately 5.4% of wastewater treatment plants in the group of municipal facilities were subject to complaints. Detailed identification of the subject of odour nuisance at wastewater treatment plants identified hydrogen sulphide (H2S), ammonia (NH3) and volatile organic compounds (VOCs) as the most common malodorous substances within these facilities. Moreover, the concentrations of hydrogen sulphide and ammonia exceed the reference values for some substances in the air (0.02 mg/m3 for H2S and 0.4 mg/m3 for NH3). A thorough assessment of the properties of these substances made it clear that even in small concentrations they have a negative impact on the human body and the environment, and their degree of nuisance is described as high. In the two WWTPs analysed in Poland (WWTP 1 and WWTP 2), hydrogen sulphide concentrations were in the range of 0-41.86 mg/m3 (Long-Term Exposure Limit for H2S is 7.0 mg/m3), ammonia 0-1.43 mg/m3 and VOCs 0.60-134.79 ppm. The values recognised for H2S cause lacrimation, coughing, olfactory impairment, psychomotor agitation, and swelling of the cornea with photophobia. Recognition of the methods used in practice at WWTPs to reduce and control malodorous emissions indicates the possibility of protecting the environment and human health, but these solutions are ignored in most facilities due to the lack of requirements specified in legislation.
Collapse
|
15
|
Batterman S, Grant-Alfieri A, Seo SH. Low level exposure to hydrogen sulfide: a review of emissions, community exposure, health effects, and exposure guidelines. Crit Rev Toxicol 2023; 53:244-295. [PMID: 37431804 PMCID: PMC10395451 DOI: 10.1080/10408444.2023.2229925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas that is well-known for its acute health risks in occupational settings, but less is known about effects of chronic and low-level exposures. This critical review investigates toxicological and experimental studies, exposure sources, standards, and epidemiological studies pertaining to chronic exposure to H2S from both natural and anthropogenic sources. H2S releases, while poorly documented, appear to have increased in recent years from oil and gas and possibly other facilities. Chronic exposures below 10 ppm have long been associated with odor aversion, ocular, nasal, respiratory and neurological effects. However, exposure to much lower levels, below 0.03 ppm (30 ppb), has been associated with increased prevalence of neurological effects, and increments below 0.001 ppm (1 ppb) in H2S concentrations have been associated with ocular, nasal, and respiratory effects. Many of the studies in the epidemiological literature are limited by exposure measurement error, co-pollutant exposures and potential confounding, small sample size, and concerns of representativeness, and studies have yet to consider vulnerable populations. Long-term community-based studies are needed to confirm the low concentration findings and to refine exposure guidelines. Revised guidelines that incorporate both short- and long-term limits are needed to protect communities, especially sensitive populations living near H2S sources.
Collapse
Affiliation(s)
- Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Amelia Grant-Alfieri
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sung-Hee Seo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
16
|
Lin X, Ma C, Wu D. New insight into the enhanced ozonation of malodorous compounds by Cu(II): Inhibiting the formation of free radicals to promote ozone utilization. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130190. [PMID: 36265383 DOI: 10.1016/j.jhazmat.2022.130190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Metal-enhanced ozonation can greatly improve the decay of organic matter; however, whether this method benefits the decay of malodorous compounds or not and the possible mechanism are not well understood. In this study, nine typical malodorous compounds were selected to reveal that Cu(II)-enhanced ozonation can greatly promote the decay of fatty amines because of the direct ozone oxidation, which was enhanced to promote ozone utilization. Moreover, trace Cu(II) can amplify the observed rate constants of dimethylamine and trimethylamine for 48.9% and 155.7%, respectively, and Cu(II) dosage was the determining factor using response surface methodology to investigate the interactions between initial pH, Cu(II) dosage and ozone dosage. These results demonstrated that the formation of •OH and O2•- was inhibited rather than promoted, which was quite different from some previously reported Cu(II)-enhanced ozonation counterparts. Moreover, the enhanced effect of trace Cu(II) was exhibited in both single and complex malodorous compounds. The conversion pathway of nitrogen and sulfur elements was clarified, with the targeted mineralization of nitrogen of nitrogen-containing malodorous compounds into NO3-N and the odor characteristics of sulfur-containing malodorous compounds disappeared. These findings provided new insight for utilizing metal ions to enhance the direct ozone oxidation capacity of malodorous compounds.
Collapse
Affiliation(s)
- Xiaoqing Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Canming Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Ruiz-Muñoz A, Siles JA, Márquez P, Toledo M, Gutiérrez MC, Martín MA. Odor emission assessment of different WWTPs with Extended Aeration Activated Sludge and Rotating Biological Contactor technologies in the province of Cordoba (Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116741. [PMID: 36399884 DOI: 10.1016/j.jenvman.2022.116741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
In this study, five urban WWTPs (Wastewater Treatment Plant) with different biological treatment (Extended Aeration Activated Sludge - EAAS; Rotating Biological Contactor - RBC), wastewater type (Urban; Industrial) and size, were jointly evaluated. The aim was twofold: (1) to analyze and compare their odor emissions, and (2) to identify the main causes of its generation from the relationships between physico-chemical, respirometric and olfactometric variables. The results showed that facilities with EAAS technology were more efficient than RBC, with elimination yields of organic matter higher than 90%. In olfactometric terms, sludge managements facilities (SMFs) were found to be the critical odor source in all WWTPs compared to the Inlet point (I) or Post primary treatment (PP), and for seasonal periods with ambient temperature higher than 25 °C. Moreover, the global odor emissions quantified in all SMFs revealed that facilities with EAAS (C-WWTP, V-WWTP and Z-WWTP) had a lower odor contribution (19,345, 14,800 and 11,029 ouE/s·m2, respectively) than for those with RBC technology (P-WWTP and NC-WWTP) which accounted for 19,747 ouE/s·m2 and 80,061 ouE/s·m2, respectively. In addition, chemometric analysis helped to find groupings and differences between the WWTPs considering the wastewater (71.27% of total variance explained) and sludge management (64.52% of total variance explained) lines independently. Finally, odor emissions were adequately predicted from the physico-chemical and respirometric variables in the wastewater (r2 = 0.8738) and sludge (r2 = 0.9373) lines, being pH, volatile acidity and temperature (wastewater line), and pH, moisture, temperature, SOUR (Specific Oxygen Uptake Rate) and OD20 (Cumulative Oxygen Demand at 20 h) (sludge line) the most influential variables.
Collapse
Affiliation(s)
- A Ruiz-Muñoz
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - J A Siles
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - P Márquez
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - M Toledo
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - M C Gutiérrez
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain
| | - M A Martín
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Universidad de Córdoba, Instituto Químico para La Energía y El Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Marie Curie, 14071, Córdoba, Spain.
| |
Collapse
|
18
|
Wysocka I. Absorption processes in reducing the odor nuisance of wastewater. MethodsX 2023; 10:101996. [PMID: 36700119 PMCID: PMC9868873 DOI: 10.1016/j.mex.2023.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Deep social awareness, especially in highly developed countries, imposes pressure on entrepreneurs and service providers, forcing them to undertake effective actions to minimize the effects of their activities also in terms of the emission of malodorous substances. The article presents information on the absorption processes harnessed in the deodorization of gases from wastewater management and the characteristics of these gases. Avoiding emissions is not always possible, hence there is a need to conduct an inventory of such gases and use deodorization methods. The specificity of gases from wastewater management and their prevalence urge the search for cheap and easy-to-use deodorization methods. It is obvious that the selection of deodorization technology is driven by many factors and should be preceded by a thorough analysis of the possibilities and limitations of various solutions. The aim of this article is, therefore, to present the characteristics of gases from wastewater management and to discuss various technologies based on absorption processes as a technology for deodorizing such gases in order to help potential investors choose an emission-reducing method suitable for particular conditions.•Malodorous substances in wastewater management.•Deodorization using water and chemical absorption.•Deodorization using biological purification.
Collapse
|
19
|
Tagliaferri F, Invernizzi M, Sironi S. Experimental evaluation on liquid area sources: Influence of wind velocity and temperature on the wind tunnel sampling of VOCs emissions from wastewater treatment plants. CHEMOSPHERE 2023; 312:137337. [PMID: 36414037 DOI: 10.1016/j.chemosphere.2022.137337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The investigation of Volatile Organic Compounds (VOCs) emission from wastewater basins is a challenging issue. In particular, the quantification of an accurate emission rate appears quite tricky, since the release of VOC compounds from this type of source, and the subsequent dispersion into the atmosphere, is ruled by different complex phenomena, potentially affected by a variety of external chemical and physical parameters. In this regard, the wind velocity and the liquid temperature represent variables that are worth investigating. Given this, the present paper discusses an experimental study aimed at evaluating the influence of these variables on the emission rate of VOCs (i.e. acetone, toluene and butanol) in solution with water at low concentrations (0.5 mL/L and 5 mL/L). The experimental trials are conducted using a wind tunnel system, changing the sweep air flow from 0.02 m/s to about 0.06 m/s and the liquid temperature from 20 °C to 35 °C. This study reveals that while the wind velocity seems to slightly influence the emission rate of VOCs estimated by wind tunnel sampling, the effect of the temperature appears much more significant. This behaviour is also confirmed by experimental trials conducted on real-case industrial wastewater, coming from an equalization tank. In view of this, the approach commonly applied to evaluate the influence of wind velocity (i.e. a dependence of the odour emission rate on the square root of the wind velocity) appears not fully consistent with the experimental results obtained at low concentrations by wind tunnel sampling. Also, the influence of temperature seems more pronounced in the case of butanol, in accordance with the theoretical trend of Henry constant as a function of temperature.
Collapse
Affiliation(s)
- Francesca Tagliaferri
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" - P.za Leonardo da Vinci 32, 20133, Milano, Italy
| | - Marzio Invernizzi
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" - P.za Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Selena Sironi
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" - P.za Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
20
|
Zarra T, Galang MGK, Oliva G, Belgiorno V. Smart instrumental Odour Monitoring Station for the efficient odour emission management and control in wastewater treatment plants. CHEMOSPHERE 2022; 309:136665. [PMID: 36191767 DOI: 10.1016/j.chemosphere.2022.136665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Odour emission assessment in wastewater treatment plants (WWTP) is a key aspect that needs to be improved in the plant management to avoid complaints and guarantee a sustainable environment. The research presents a smart instrumental odour monitoring station (SiOMS) composed of an advanced instrumental odour monitoring system (IOMS) integrated with other measurement units, for the continuous characterization and measurement of the odour emissions, with the aim of managing the potential odour annoyance causes in real time, in order to avoid negative effects. The application and on-site validation procedure of the trained IOMS is discussed. Experimental studies have been conducted at a large-scale WWTP. Fingerprint analysis has been applied to analyze and identify the principal gaseous compounds responsible for the odour annoyance. The artificial neural network has been adopted to elaborate and dynamically update the odour monitoring classification and quantification models (OMMs) of the IOMS. The results highlight the usefulness of a real-time measurement and control system to provide continuous and different information to the plant operators, thus allowing the identification of the odour sources and the most appropriate mitigation actions to be implemented. The paper provides important information for WWTP operators, as well as for the regulating bodies, authorities, manufacturers and end-users of odour monitoring systems involved in environmental odour impact management.
Collapse
Affiliation(s)
- Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Mark Gino K Galang
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
21
|
Gao W, Yang X, Zhu X, Zhao S, Yu J, Wang D, Yang M. The variation of odor characteristics of wastewater sludge treated by advanced anaerobic digestion (AAD) and the contribution pattern of key odorants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156722. [PMID: 35714751 DOI: 10.1016/j.scitotenv.2022.156722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Identification of the odor characteristics of wastewater sludge is important in the evaluation of sludge quality and disposal options considering that sludge odor nuisance may cause major environmental issues. In this study, raw sludge and sludge cake were collected from five WWTPs applied advanced anaerobic digestion (AAD) sludge treatment process to clarify the variation of odor characteristics using sensory analysis and instrumental analysis. The electronic nose, gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS) were used to profile and identify the chemical composition of key odorants. A total of 20 odorants were identified and quantified, including 6 groups of chemicals, among which volatile sulfur compounds (VSCs), indole, 3-methylindole and geosmin were identified as key odorants. The odor of the dewatered digested sludge was improved by means of changing the odor character from fecal/sulfide to earthy odor due to the reduction in VSCs concentration. The AAD and subsequent dewatering process resulted in effective removal of VSCs, which are important constituents that impact the sludge odor characteristics through synergistic effect on fecal odorants and masking effect on earthy odorants. Moreover, due to the variation of sludge quality after AAD treatment, the emission capacity of indole, 3-methylindole, and other volatiles increased, which could not be neglected for the formation of unique sludge odor.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China
| | - Xiaofang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China.
| | - Xinmeng Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China
| | - Shan Zhao
- Research and Development Center, Beijing Drainage Group Co., Ltd., Beijing 100124, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Department of Environment Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|
23
|
Dobrzyniewski D, Szulczyński B, Gębicki J. Determination of Odor Air Quality Index (OAQII) Using Gas Sensor Matrix. Molecules 2022; 27:molecules27134180. [PMID: 35807428 PMCID: PMC9268730 DOI: 10.3390/molecules27134180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
This article presents a new way to determine odor nuisance based on the proposed odor air quality index (OAQII), using an instrumental method. This indicator relates the most important odor features, such as intensity, hedonic tone and odor concentration. The research was conducted at the compost screening yard of the municipal treatment plant in Central Poland, on which a self-constructed gas sensor array was placed. It consisted of five commercially available gas sensors: three metal oxide semiconductor (MOS) chemical sensors and two electrochemical ones. To calibrate and validate the matrix, odor concentrations were determined within the composting yard using the field olfactometry technique. Five mathematical models (e.g., multiple linear regression and principal component regression) were used as calibration methods. Two methods were used to extract signals from the matrix: maximum signal values from individual sensors and the logarithm of the ratio of the maximum signal to the sensor baseline. The developed models were used to determine the predicted odor concentrations. The selection of the optimal model was based on the compatibility with olfactometric measurements, taking the mean square error as a criterion and their accordance with the proposed OAQII. For the first method of extracting signals from the matrix, the best model was characterized by RMSE equal to 8.092 and consistency in indices at the level of 0.85. In the case of the logarithmic approach, these values were 4.220 and 0.98, respectively. The obtained results allow to conclude that gas sensor arrays can be successfully used for air quality monitoring; however, the key issues are data processing and the selection of an appropriate mathematical model.
Collapse
|
24
|
Application of Field Olfactometry to Monitor the Odour Impact of a Municipal Sewage System. ENERGIES 2022. [DOI: 10.3390/en15114015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Odorant emissions are associated with, among other things, wastewater transport in sewer networks; they contribute to air pollution and result in complaints from residents living close to emission sources. The critical location in terms of the formation of unpleasant odour compounds is the pressure line that connects the pumping station and the expansion well; this is where they are released into the atmosphere. This paper presents comprehensive results of olfactometric and chromatographic tests in the Polish city of Białystok using portable devices that allow for multiple determinations and instant results. The study attempts to investigate the relationship between odour and odorant concentrations and check the suitability of field olfactometry as a tool for the ongoing monitoring of the emission of noxious odours and for verifying complaints submitted by residents. Statistical analysis shows a very high correlation coefficient between cod and the concentrations of individual odorants, ranging from 0.82 to 0.91. This olfactometric research, mainly conducted in situ, can be an appropriate method for the ad hoc monitoring of processes in sewage networks. This method allows the detection of unwanted emissions of odours at individual points in the network in concentrations that are not detected by standard sensors but that nevertheless cause odour nuisances, complaints, and social conflict. The research results provide evidence in favour of the energetic usage of wastewater, which is in line with circular economy conception, since odour nuisance is one of its indicators.
Collapse
|
25
|
Bu H, Carvalho G, Huang C, Sharma KR, Yuan Z, Song Y, Bond P, Keller J, Yu M, Jiang G. Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. CHEMOSPHERE 2022; 291:132723. [PMID: 34736744 DOI: 10.1016/j.chemosphere.2021.132723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Biotrickling filter (BTF) is a widely applied bioreactor for odour abatement in sewer networks. The trickling strategy is vital for maintaining a sound operation of BTF. This study employed a lab-scale BTF packed with granular activated carbon at a short empty bed residence time of 6 s and pH 1-2 to evaluate different trickling strategies, i.e., continuous trickling (different velocities) and intermittent trickling (different trickling intervals), in terms of the removal of hydrogen sulfide (H2S), bed pressure drop, H2S oxidation products and microbial community. The H2S removal performance decreased with the trickling velocity (∼3.6 m/h) in BTF. In addition, three intermittent trickling strategies, i.e., 10-min trickling per 24 h, 8 h, and 2 h, were investigated. The H2S elimination capacity deteriorated after about 2 weeks under both 10-min trickling per 24 h and 8 h. For both intermittent (10-min trickling per 2 h) and continuous trickling, the BTF exhibited nearly 100 % H2S removal for inlet H2S concentrations<100 ppmv, but intermittent BTF showed better removal performance than continuous trickling when inlet H2S increased to 120-190 ppmv. Furthermore, the bed pressure drops were 333 and 3888 Pa/m for non-trickling and trickling periods, respectively, which makes intermittent BTF save 83 % energy consumption of the blower compared with continuous tirckling. However, intermittent BTF exhibited transient H2S breakthrough (<1 ppmv) during trickling periods. Moreover, elemental sulfur and sulfate were major products of H2S oxidation and Acidithiobacillus was the dominant genus in both intermittent and continuous trickling BTF. A mathematical model was calibrated for the intermittent BTF and a sensitivity analysis was performed on the model. It shows mass transfer parameters determine the H2S removal. Overall, intermittent trickling strategy is promising for improving odour abatement performance and reducing the operating cost of the BTF.
Collapse
Affiliation(s)
- Hao Bu
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia.
| | - Casey Huang
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Keshab R Sharma
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Yarong Song
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Philip Bond
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Jurg Keller
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Miao Yu
- Science and Engineering Faculty, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia; School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
26
|
Piccardo MT, Geretto M, Pulliero A, Izzotti A. Odor emissions: A public health concern for health risk perception. ENVIRONMENTAL RESEARCH 2022; 204:112121. [PMID: 34571035 DOI: 10.1016/j.envres.2021.112121] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The olfactory nuisance, due to the emissions of active molecules, is mainly associated with unproperly managed waste disposal and animal farming. Volatile compounds e.g., aromatics, organic and inorganic sulfide compounds, as well as nitrogen and halogenated compounds are the major contributor to odor pollution generated by waste management plants; the most important source of atmospheric ammonia is produced by livestock farming. Although an odorous compound may represent a nuisance rather than a health risk, long-term exposure to a mixture of volatile compounds may represent a risk for different diseases, including asthma, atopic dermatitis, and neurologic damage. Workers and communities living close to odor-producing facilities result directly exposed to irritant air pollutants through inhalation and for this reason the cumulative health risk assessment is recommended. Health effects are related to the concentration and exposure duration to the odorants, as well as to their irritant potency and/or biotransformation in hazardous metabolites. The health effects of a single chemical are well known, while the interactions between molecules with different functional groups have still to be extensively studied. Odor emissions are often due to airborne pollutants at levels below the established toxicity thresholds. The relationship between odor and toxicity does not always occurs but depends on the specific kind of pollutant involved. Indeed, some toxic agents does not induce odor nuisance while untoxic agents do. Accordingly, the relationship between toxicity and odor nuisance should be always analyzed in detail evaluating on the characteristics of the airborne mixture and the type of the source involved.
Collapse
Affiliation(s)
- M T Piccardo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M Geretto
- Department of Experimental Medicine, University of Genoa, Italy
| | - A Pulliero
- Department of Health Sciences, University of Genoa, Italy
| | - A Izzotti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Experimental Medicine, University of Genoa, Italy.
| |
Collapse
|
27
|
Nardiello M, Scieuzo C, Salvia R, Farina D, Franco A, Cammack JA, Tomberlin JK, Falabella P, Persaud KC. Odorant binding proteins from Hermetia illucens: potential sensing elements for detecting volatile aldehydes involved in early stages of organic decomposition. NANOTECHNOLOGY 2022; 33:205501. [PMID: 35114654 DOI: 10.1088/1361-6528/ac51ab] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Organic decomposition processes, involving the breakdown of complex molecules such as carbohydrates, proteins and fats, release small chemicals known as volatile organic compounds (VOCs), smelly even at very low concentrations, but not all readily detectable by vertebrates. Many of these compounds are instead detected by insects, mostly by saprophytic species, for which long-range orientation towards organic decomposition matter is crucial. In the present work the detection of aldehydes, as an important measure of lipid oxidation, has been possible exploiting the molecular machinery underlying odour recognition inHermetia illucens(Diptera: Stratiomyidae). This voracious scavenger insect is of interest due to its outstanding capacity in bioconversion of organic waste, colonizing very diverse environments due to the ability of sensing a wide range of chemical compounds that influence the choice of substrates for ovideposition. A variety of soluble odorant binding proteins (OBPs) that may function as carriers of hydrophobic molecules from the air-water interface in the antenna of the insect to the receptors were identified, characterised and expressed. An OBP-based nanobiosensor prototype was realized using selected OBPs as sensing layers for the development of an array of quartz crystal microbalances (QCMs) for vapour phase detection of selected compounds at room temperature. QCMs coated with four recombinantH. illucensOBPs (HillOBPs) were exposed to a wide range of VOCs indicative of organic decomposition, showing a high sensitivity for the detection of three chemical compounds belonging to the class of aldehydes and one short-chain fatty acid. The possibility of using biomolecules capable of binding small ligands as reversible gas sensors has been confirmed, greatly expanding the state-of the-art in gas sensing technology.
Collapse
Affiliation(s)
- Marisa Nardiello
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Farina
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Antonio Franco
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Jonathan A Cammack
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Jeffrey K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Krishna C Persaud
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
De Sanctis M, Murgolo S, Altieri VG, De Gennaro L, Amodio M, Mascolo G, Di Iaconi C. An innovative biofilter technology for reducing environmental spreading of emerging pollutants and odour emissions during municipal sewage treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149966. [PMID: 34481161 DOI: 10.1016/j.scitotenv.2021.149966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) are known sources of contaminants of emerging concern (CECs) spreading into the environment, as well as, of unpleasant odors. CECs represent a potential hazard for human health and the environment being pharmaceutical or biologically active compounds and they are acquiring relevance in European directives. Similarly, the public concern about odour emissions from WWTPs is also increasing due to the decreasing distance between WWTP and residential areas. This study focuses on the effectiveness of the recently developed MULESL technology (MUch LEss SLudge; WO2019097463) in removing CECs and limiting odour emissions from WWTPs. MULESL technology has been developed for its ability to reduce up to 80% the sludge production from WWTPs. However, it is ought to evaluate if the benefits coming from sludge production reduction do not invalidate CECs removal or negatively affect odour emissions. Thus, the performances of a MULESL and a conventional WWTP (flow rate of 375 m3/d and 3600 m3/d, respectively) were compared while treating the same municipal sewage. Whereas both plants succeeded in removing the traditional gross parameters characterizing wastewaters (e.g. chemical oxygen demand, nitrogen), the MULESL was much more effective than the conventional one in terms of CECs removal for about 60% of the identified compounds showing, however, the same or lower effectiveness for about 30% and 10% of them, respectively. This result was attributed to the high sludge retention time and biomass concentration in the MULESL (enabling enrichment of slow growing microorganisms and forcing biomass to use unusual substrates, respectively), and to the biomass feature to grow in the form of biofilm and granules (favoring micropollutants absorption on biomass). Furthermore, odour impact analysis has shown that the MULESL was characterized by a much lower impact, i.e. 45% lower than that of primary and secondary treatments of the conventional WWTP.
Collapse
Affiliation(s)
- M De Sanctis
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy.
| | - S Murgolo
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy
| | - V G Altieri
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy
| | - L De Gennaro
- LEnviroS srl, spin off of University of Bari, Via degli antichi pastifici 8/B, IT-70056 Molfetta, Bari, Italy
| | - M Amodio
- LEnviroS srl, spin off of University of Bari, Via degli antichi pastifici 8/B, IT-70056 Molfetta, Bari, Italy
| | - G Mascolo
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy
| | - C Di Iaconi
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70132 Bari, Italy
| |
Collapse
|
29
|
Wang Z, An C, Lee K, Owens E, Boufadel M, Feng Q. Dispersion modeling of particulate matter from the in-situ burning of spilled oil in the northwest Arctic area of Canada. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113913. [PMID: 34731942 DOI: 10.1016/j.jenvman.2021.113913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In-situ burning can be used to prevent oil spreading in oil spill response. In this study, a steady-state Gaussian plume model was applied to analyze the concentration distribution of fine particulate matter produced by in-situ burning, as well as to assess the health risks associated with different combustion methods and ambient conditions, in reference to three simulation scenarios. The spatial and temporal distribution of emission sources can affect the dispersion pattern. The distribution into an array of different burning locations ensures better dispersion of emissions, thereby preventing the formation of high concentration regions. The wind and atmosphere stability play an important role in pollution dispersion. Lower wind and temperature inversion can seriously hinder the diffusion of pollutants. The health risk to technical staff adjacent to the burning areas is a serious concern, and when the community is more than 20 km away from the burning zone, there is few risks. Through simulation, the influences of combustion methods and natural factors on the concentration and diffusion of pollutants are evaluated. The results can help provide an optimized burning strategy for oil spill response in the Arctic area.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada.
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON, K1A 0E6, Canada
| | - Edward Owens
- Owens Coastal Consultants, Bainbridge Island, WA, 98110, United States
| | - Michel Boufadel
- Center for Natural Resources Development and Protection, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, United States
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| |
Collapse
|
30
|
Yuan Q, Qin C, Duan Y, Jiang N, Liu M, Wan H, Zhuang L, Wang P. An in vivo bioelectronic nose for possible quantitative evaluation of odor masking using M/T cell spatial response patterns. Analyst 2021; 147:178-186. [PMID: 34870643 DOI: 10.1039/d1an01569a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Odor masking is a prominent phenomenon in the biological olfactory perception system. It has been applied in industry and daily life to develop masking agents to reduce or even eliminate the adverse effects of unpleasant odors. However, it is challenging to assess the odor masking efficiency with traditional gas sensors. Here, we took advantage of the olfactory perception system of an animal to develop a system for the evaluation and quantification of odor masking based on an in vivo bioelectronic nose. The linear decomposition method was used to extract the features of the spatial response pattern of the mitral/tufted (M/T) cell population of the olfactory bulb of a rat to monomolecular odorants and their binary mixtures. Finally, the masking intensity was calculated to quantitatively measure the degree of interference of one odor to another in the biological olfactory system. Compared with the human sensory evaluation reported in a previous study, the trend of masking intensity obtained with this system positively correlated with the human olfactory system. The system could quantitatively analyze the masking efficiency of masking agents, as well as assist in the development of new masking agents or flavored food in odor or food companies.
Collapse
Affiliation(s)
- Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China.
| | - Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
31
|
Vitko TG, Suffet IHM. Corrective factors applied to reduced sulfur compounds in wastewater foul air. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1487-1495. [PMID: 33728726 DOI: 10.1002/wer.1558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
To determine accurately odorant concentrations at its worst-case condition for planning and odor treatment design purposes, corrective factors need to be factored into the foul air monitoring results of water resource recovery facilities. These corrective factors will adjust each odorant concentration for usual seasonal and daily odor variations. Typically, corrective factors are taken from hydrogen sulfide continuous readings and applied to all identified sulfur odorants. This paper demonstrates that it is incorrect to assume all reduced sulfur compounds mimic the daily fluctuations observed in hydrogen sulfide. Reduced sulfur odorant results from the foul air tested at two different water resource recovery facility process areas over a portion of the daily cycle have been found to behave independently from hydrogen sulfide. Tests have shown that the corrective factors for each reduced sulfur odorant vary notably from facility to facility and enormously from process area to process area. This discovery is important for the improvement of the science of odor control because accurately determining worst-case odor concentrations affects the modeling (the magnitude of odor nuisance) and the level of treatment (choosing a technology or combination of technologies) needed for odor abatement. PRACTITIONER POINTS: When conducting foul air assessments, corrective factors are recommended to adjust the results for daily and seasonal variations. H2 S continuous monitors are readily available and of widespread use, therefore they are certainly useful to determine corrective factors. H2 S continuous monitors, however useful for H2 S, do not necessarily apply to the rest of the reduced sulfur compounds. Intermittent sampling and analysis for reduced sulfur compounds at each facility process location over a daily cycle should be conducted. Results will show the independence of each reduced sulfur compound and the importance of this testing to obtain corrective factors applicable to the facility being assessed.
Collapse
|
32
|
Meena M, Yadav G, Sonigra P, Shah MP. A comprehensive review on application of bioreactor for industrial wastewater treatment. Lett Appl Microbiol 2021; 74:131-158. [PMID: 34469596 DOI: 10.1111/lam.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
In the recent past, wastewater treatment processes performed a pivotal role in accordance with maintaining the sustainable environment and health of mankind at a proper hygiene level. It has been proved indispensable by government regulations throughout the world on account of the importance of preserving freshwater bodies. Human activities, predominantly from industrial sectors, generate an immeasurable amount of industrial wastewater loaded with toxic chemicals, which not only cause dreadful environmental problems, but also leave harmful impacts on public health. Hence, industrial wastewater effluent must be treated before being released into the environment to restrain the problems related to industrial wastewater discharged to the environment. Nowadays, biological wastewater treatment methods have been considered an excellent approach for industrial wastewater treatment process because of their cost-effectiveness in the treatment, high efficiency and their potential to counteract the drawbacks of conventional wastewater treatment methods. Recently, the treatment of industrial effluent through bioreactor has been proved as one of the best methods from the presently available methods. Reactors are the principal part of any biotechnology-based method for microbial or enzymatic biodegradation, biotransformation and bioremediation. This review aims to explore and compile the assessment of the most appropriate reactors such as packed bed reactor, membrane bioreactor, rotating biological contactor, up-flow anaerobic sludge blanket reactor, photobioreactor, biological fluidized bed reactor and continuous stirred tank bioreactor that are extensively used for distinct industrial wastewater treatment.
Collapse
Affiliation(s)
- M Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - G Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - P Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - M P Shah
- Environmental Technology Lab, Bharuch, Gujarat, India
| |
Collapse
|
33
|
Li R, Han Z, Shen H, Qi F, Ding M, Song C, Sun D. Emission characteristics of odorous volatile sulfur compound from a full-scale sequencing batch reactor wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145991. [PMID: 33652319 DOI: 10.1016/j.scitotenv.2021.145991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Volatile sulfur compounds (VSCs) generated and discharged as air pollutants from wastewater treatment plants (WWTPs) pose a threat to human health and the environment. This study characterized VSC emissions from a full-scale sequencing batch reactor (SBR) WWTP at the water-air interface for one year. Results demonstrated that higher ambient temperatures and aeration contributed significantly to VSC emissions as the highest emissions occurred over summer during the feeding synchronous aeration period. VSC emissions were related to chemical oxygen demand and sulfate concentrations in wastewater, and empirical formulas based on these values were proposed that can be used to model VSC emission fluxes from SBR WWTP. VSC emission factors (μg·ton-1 wastewater) throughout the SBR treatment process were: 361 ± 101 hydrogen sulfide (H2S), 82 ± 76 methyl mercaptan (MT), 61 ± 31 dimethyl sulfide, 17 ± 5 carbon disulfide, and 46 ± 24 dimethyl disulfide. H2S and MT were the dominant odors released. Findings from this study may be applicable for calculating VSC emissions during SBR wastewater treatment stages, and may be beneficial for determining methods and strategies to reduce VSCs.
Collapse
Affiliation(s)
- Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhangliang Han
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hanzhang Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mengmeng Ding
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing 100048, China; Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| | - Cheng Song
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing 100048, China; Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Wang YC, Han MF, Jia TP, Hu XR, Zhu HQ, Tong Z, Lin YT, Wang C, Liu DZ, Peng YZ, Wang G, Meng J, Zhai ZX, Zhang Y, Deng JG, Hsi HC. Emissions, measurement, and control of odor in livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145735. [PMID: 33640544 DOI: 10.1016/j.scitotenv.2021.145735] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Odor emissions from intensive livestock farms have attracted increased attention due to their adverse impacts on the environment and human health. Nevertheless, a systematic summary regarding the characteristics, sampling detection, and control technology for odor emissions from livestock farms is currently lacking. This paper compares the development of odor standards in different countries and summarizes the odor emission characteristics of livestock farms. Ammonia, the most common odor substance, can reach as high as 4100 ppm in the compost area. Sampling methods for point and area source odor emissions are introduced in this paper, and odor analysis methods are compared. Olfactometers, odorometers, and the triangle odor bag method are usually used to measure odor concentration. Odor control technologies are divided into three categories: physical (activated carbon adsorption, masking, and dilution diffusion), chemical (plant extract spraying, wet scrubbing, combustion, non-thermal plasma, and photocatalytic oxidation), and biological (biofiltration, biotrickling, and bioscrubbing). Each technology is elucidated, and the performance in the removal of different pollutants is summarized. The application scopes, costs, operational stability, and secondary pollution of the technologies are compared. The generation of secondary pollution and long-term operation stability are issues that should be considered in future technological development. Lastly, a case analysis for engineering application is conducted.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Meng-Fei Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ti-Pei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Huai-Qun Zhu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhen Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - De-Zhao Liu
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Gen Wang
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Jie Meng
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Zeng-Xiu Zhai
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Yan Zhang
- State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China; Tianjin Sinodour Environmental Technology Co., Ltd, Tianjin 300191, China
| | - Ji-Guang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| |
Collapse
|
35
|
Ulutaş K, Kaskun S, Demir S, Dinçer F, Pekey H. Assessment of H 2S and BTEX concentrations in ambient air using passive sampling method and the health risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:399. [PMID: 34105054 DOI: 10.1007/s10661-021-09164-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plants (WWTPs) may be a source of nuisance in neighbouring places due to hydrogen sulphide (H2S) and BTEX (benzene, toluene, ethylbenzene, and xylenes) emissions. In this study, samples were collected from WWTP workplace ambient air and outdoor ambient air around one of the largest WWTPs in Istanbul with a capacity of 250,000 m3/day to evaluate the effects of H2S and BTEX emissions. Samples were collected in three seasons for 15-day durations: winter (November 2015), spring (May 2015), and summer (August 2016). Average concentrations of H2S and BTEX were determined as 1.1 and 56.2 µg/m3, respectively. Average concentrations BTEX components were 4.9, 20.7, 6.4, and 24.2 µg/m3, respectively. Health risk assessment for plant workers and local residents was performed for H2S and BTEX inhalation exposure using the method by USEPA. Results show that H2S and BTEX emissions do not have harmful effects on human health.
Collapse
Affiliation(s)
- Kadir Ulutaş
- Department of Environmental Engineering, Engineering Faculty, Karabuk University, 78050, Karabuk, Turkey.
| | - Songül Kaskun
- Department of Environmental Engineering, Engineering Faculty, Karabuk University, 78050, Karabuk, Turkey
| | - Selami Demir
- Department of Environmental Engineering, Davutpasa Campus, Yıldız Technical University, 34220, Esenler, Istanbul, Turkey
| | - Faruk Dinçer
- TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, Barış Mah. Dr. Zeki Acar Cad. No:1 Gebze, Kocaeli, Turkey
| | - Hakan Pekey
- Department of Environmental Engineering, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
36
|
Li X, Zou J, Zhang D, Xie L, Yuan Y. A new method for in-situ treatment of waste gas scrubbing liquid containing both NH 3 and H 2S based on sulfur autotrophic denitrification and partial nitrification-Anammox coupling system. BIORESOURCE TECHNOLOGY 2021; 329:124925. [PMID: 33676352 DOI: 10.1016/j.biortech.2021.124925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
In this study, an integrated device with scrubbing and biochemical treatment functions was used, and partial nitrification (PN)-Anammox and sulfur autotrophic denitrification (SADN) processes were coupled in a biochemical treatment pond to explore the feasibility of in-situ autotrophic removal of NH3 and H2S. The results showed that the removal efficiency of NH3 and H2S in waste gas are 95% and 87.5% respectively. The scrubbing liquid was efficiently treated in the biochemical treatment pond. Nitrogenous compounds weren't accumulated in liquid and converted to N2 by SADN and PN-Anammox coupling system. S2- was mainly used by SADN process to reduce NO3-. The scrubbing liquid processed by the biochemical treatment pond was refluxed to the scrubber to achieve continuous absorption of NH3 and H2S. Microbial community and functional microbial analysis showed that the PN-Anammox and SADN processes were the main processes to achieve the conversion of pollutants in the scrubbing liquid.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jiayi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dongyuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Linyan Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
37
|
Han Z, Li R, Shen H, Qi F, Liu B, Shen X, Zhang L, Wang X, Sun D. Emission characteristics and assessment of odors from sludge anaerobic digestion with thermal hydrolysis pretreatment in a wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116516. [PMID: 33529890 DOI: 10.1016/j.envpol.2021.116516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) with thermal hydrolysis pre-treatment (THP) is an effective sludge treatment method which provides several advantages such as enhanced biogas formation and fertilizer production. The main limitation to THP-AD is that hazardous odors, including NH3 and volatile sulfur compounds (VSCs), are emitted during the sludge treatment process. In order to develop strategies to eliminate odors, it is necessary to identify the key odors and emissions sites. This study identified production of NH3 (741.60 g·dry sludge t-1) and VSCs (277.27 g·dry sludge t-1) during sludge AD after THP, and measured emissions in each of the THP-AD sludge treatment sites. Odor intensity, odor active values, permissible concentration-time weighted average, and non-carcinogenic risks were also assessed in order to determine the sensory impact, odor contribution, and health impacts of NH3 and VSCs. The results revealed that odor pollution existed in all of the test sites, particularly in the sludge pump room and pre-dehydration workshop. NH3, H2S, and methyl mercaptan caused very strong odors, and levels of NH3 and H2S were enough to impact the health of on-site employees.
Collapse
Affiliation(s)
- Zhangliang Han
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hanzhang Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Baoxian Liu
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing, 100048, China
| | - Xiue Shen
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing, 100048, China
| | - Lin Zhang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing, 100048, China
| | - Xiaoju Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China; Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing, 100048, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
38
|
Limitations of GC-QTOF-MS Technique in Identification of Odorous Compounds from Wastewater: The Application of GC-IMS as Supplement for Odor Profiling. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Odorous emissions from wastewater treatment plants (WWTPs) cause negative impacts on the surrounding areas and possible health risks on nearby residents. However, the efficient and reliable identification of WWTPs’ odorants is still challenging. In this study, odorous volatile organic compounds (VOCs) from domestic wastewater at different processing units were profiled and identified using gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography quadrupole-time-of-flight mass spectrometry (GC-QTOF-MS). The GC-QTOF-MS results confirmed the odor contribution of sulfur organic compounds in wastewater before primary sedimentation and ruled out the significance of most of the hydrocarbons in wastewater odor. The problems in odorous compounds analysis using GC-QTOF-MS were discussed. GC-IMS was developed for visualized analysis on composition characteristics of odorants. Varied volatile compounds were detected by GC-IMS, mainly oxygen-containing VOCs including alcohols, fatty acids, aldehydes and ketones with low odor threshold values. The fingerprint plot of IMS spectra showed the variation in VOCs’ composition, indicating the changes of wastewater quality during treatment process. The GC-IMS technique may provide an efficient profiling method for the changes of inlet water and performance of treatment process at WWTPs.
Collapse
|
39
|
Abstract
This study reviews the available and most commonly used methods of gas deodorization. Comparing various methods of odor removal, undoubtedly biological methods of pollution degradation have an advantage over others—chemical and physical. This advantage is manifestedmainly in ecological and economic terms. The possibility of using biological methods to remove H2S and NH3, as the most common emitted by the municipal sector companies, was analyzed in terms of their removal efficiency. The method of bio-purification of air in biotrickling filters is more advantageous than the others, due to the high effectiveness of VOCs and odors degradation, lack of secondary pollutants, and economic aspects—it is a method competitive to the commonly used air purification method in biofilters.
Collapse
|
40
|
Tada S, Itoh Y, Kiyoshi K, Yoshida N. Isolation of ammonia gas-tolerant extremophilic bacteria and their application to the elimination of malodorous gas emitted from outdoor heat-treated toilets. J Biosci Bioeng 2021; 131:509-517. [PMID: 33485751 DOI: 10.1016/j.jbiosc.2020.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
Ammonia gas-tolerant extremophilic bacteria capable of growing in atmospheres containing up to 4000 ppm of gaseous ammonia were isolated. These bacteria were capable of growing in nutrient broth containing high concentrations of ammonia water, with growth in medium augmented with 0.1-0.2% ammonia exceeding that in medium without ammonia. The minimal inhibitory concentration of ammonia in the medium was 0.5%. The isolated ammonia gas-tolerant bacterium was moderately alkaliphilic, with optimum growth was observed at pH 9. DNA sequence analysis of the 16SrRNA gene revealed that the isolated bacterium was Bacillus lentus. Furthermore, extremophilic bacteria cultured in a 1300 ppm ammonia gas atmosphere on agar medium containing no nitrogen sources were observed to use ammonia gas for growth. These bacteria were identified as Paenibacillus lentus and Bacillus altitudinis based on 16SrRNA gene sequence analysis. The deodorizing effect of ammonia odor by the isolated bacteria immobilized on sawdust was evaluated. The findings showed that forcing ammonia gas through a column containing B. altitudinis immobilized on sawdust reduced the concentration of ammonia gas by 30% compared to columns containing sawdust only. The isolated bacteria immobilized on wood sawdust lost the capacity deodorization after drying, but this function could be restored with increased moisture. The ammonia gas-tolerant extremophilic bacteria immobilized on sawdust show considerable potential for use in ameliorating malodors associated with outdoor heat-treated toilets.
Collapse
Affiliation(s)
- Saika Tada
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Yugo Itoh
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Keiji Kiyoshi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Naoto Yoshida
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan.
| |
Collapse
|
41
|
Evaluating the Eco-Efficiency of Wastewater Treatment Plants: Comparison of Optimistic and Pessimistic Approaches. SUSTAINABILITY 2020. [DOI: 10.3390/su122410580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The assessment of wastewater treatment plant (WWTP) performance has gained the interest of water utilities and water regulators. Eco-efficiency has been identified as a powerful indicator, as it integrates economic and environmental variables into a single index. Most previous studies have employed traditional data envelopment analysis (DEA) for the evaluation of WWTP eco-efficiency. However, DEA allows the selection of input and output weights for individual WWTPs for the calculation of eco-efficiency scores. To overcome this limitation, we employed the double-frontier and common set of weights methods to evaluate the eco-efficiency of a sample of 30 WWTPs in Spain. The WWTPs were ranked based on eco-efficiency scores derived under several scenarios including best- and worst-case scenarios; this approach to performance assessment is reliable and robust. Twenty-six of the 30 WWTPs were not classified as eco-efficient, even under the most favorable scenario, indicating that these facilities have substantial room for the reduction of costs and greenhouse gas emissions. The ranking of WWTPs varied according to the scenario used for evaluation, which has notable consequences when eco-efficiency scores are used for regulatory purposes. The findings of this study are relevant for water regulators and water utilities, as they demonstrate the importance of weight allocation for eco-efficiency score estimation.
Collapse
|
42
|
Liu J, Kang X, Liu X, Yue P, Sun J, Lu C. Simultaneous removal of bioaerosols, odors and volatile organic compounds from a wastewater treatment plant by a full-scale integrated reactor. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2020; 144:2-14. [PMID: 32834560 PMCID: PMC7341965 DOI: 10.1016/j.psep.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 05/03/2023]
Abstract
Biological control of odors and bioaerosols in wastewater treatment plants (WWTPs) have gained more attention in recent years. The simultaneous removal of odors, volatile organic compounds (VOCs) and bioaerosols in each unit of a full-scale integrated-reactor (FIR) in a sludge dewatering room was investigated. The average removal efficiencies (REs) of odors, VOCs and bioaerosols were recorded as 98.5 %, 94.7 % and 86.4 %, respectively, at an inlet flow rate of 5760 m3/h. The RE of each unit decreased, and the activated carbon adsorption zone (AZ) played a more important role as the inlet flow rate increased. The REs of hydrophilic compounds were higher than those of hydrophobic compounds. For bioaerosols, roughly 35 % of airborne heterotrophic bacteria (HB) was removed in the low-pH zone (LPZ) while over 30 % of total fungi (TF) was removed in the neutral-pH zone (NPZ). Most bioaerosols removed by the biofilter (BF) had a particle size larger than 4.7 μm while bioaerosols with small particle size were apt to be adsorbed by AZ. The microbial community in the BF changed significantly at different units. Health risks were found to be associated with H2S rather than with bioaerosols at the FIR outlet.
Collapse
Affiliation(s)
- Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xinyue Kang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xueli Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jianbin Sun
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Lu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
43
|
Odour emission from primary settling tanks after air-tightening. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2020. [DOI: 10.2478/pjct-2020-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The purpose of the present article was to determine odour emission rate from primary settling tanks after hermetisation. The paper presents the results of the research on odour emission from four settling tanks, covered with self-supporting aluminium domes with a diameter of 52 meters, located on urban wastewater treatment plants, with the planned flow capacity equal to 200 000 m3/day. Altogether, the olfactometry analysis of 189 samples of polluted air pulled from the domes with the use of an air blower which has efficiency of 12 000 m3/h was conducted. The results of odour concentration measurements were in a range of approximately 10 800 to 763 600 ouE/m3. Average odour emission rate was equal to 102 ouE/(s · m2). The obtained value is much higher than the literature data, available for non-hermetised settlers only. This rate enables better estimation of the odour stream that has to be deodorised after sealing the settling tanks.
Collapse
|
44
|
Wei C, Wei J, Kong Q, Fan D, Qiu G, Feng C, Li F, Preis S, Wei C. Selection of optimum biological treatment for coking wastewater using analytic hierarchy process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140400. [PMID: 32629247 DOI: 10.1016/j.scitotenv.2020.140400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The design of biological treatment process for the coking wastewater (CW) is complicated since wastewater treatment demand is gradually increasing lacking the systematic strategy in efficiency evaluation and advisable selection. Therefore, this study develops a holistic approach by means of the analytic hierarchy process (AHP) that uses numerical representation to rank the preferences of each participating alternatives for evaluation of the advanced biological technologies in CW treatment. Based on survey results, six types reactor combinations were selected as the alternatives, which were further classified as two group according to COD load. The AHP methodology consists of weighting and ranking procedures considering technical, economic, environmental and administration factors defined as criteria layers. Eighteen indicators were chosen as sub-criteria layers. Inclusively beneficial and sustainable biological processes were assessed and ranked along the AHP implementation. The results placed technical indicators to the top position among the criteria layers in the weighting descending order 'technical indicators > economic indicators > environmental indicators > administrative indicators', whereas the weight of indicators in sub-criteria layers fitted in the range of 0.005 to 0.151. The inclusive priority calculation integrating all weight indices of criteria and sub-criteria layers resulted in the anaerobic-anoxic-oxic (A/A/O) combination rising in the hierarchy of the low load group, whereas the oxic-hydrolytic-oxic (O/H/O) process was prioritized in the high load group. The accuracy and objectivity of AHP application was also supported by sensitivity and variability analyses that examines a range for the weights' values and corresponding to alternative scenarios.
Collapse
Affiliation(s)
- Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jingyue Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Qiaoping Kong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Dan Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fusheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sergei Preis
- Department of Materials and Environment Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
45
|
Fan F, Xu R, Wang D, Meng F. Application of activated sludge for odor control in wastewater treatment plants: Approaches, advances and outlooks. WATER RESEARCH 2020; 181:115915. [PMID: 32485441 DOI: 10.1016/j.watres.2020.115915] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Odors from wastewater treatment plants (WWTPs) have attracted extensive attention and stringent environmental standards are more widely adopted to reduce odor emissions. Biological odor treatment methods have broader applications than the physical and chemical counterparts as they are environment-friendly, cost-effective and generate low secondary wastes. The aqueous activated sludge (AS) processes are among the most promising approaches for the prevention or end-of-pipe removal of odor emissions and have the potential to simultaneously treat odor and wastewater. However, AS deodorization biotechnologies in WWTPs still need to be further systematically summarized and categorized while in-depth discussions on the characteristics and underlying mechanisms of AS deodorization process are still lacking. Recently, considerable studies have been reported to elucidate the microbial metabolisms in odor control and wastewater treatment. This paper reviews the fundamentals, characteristics, advances and field experiences of three AS biotechnologies for odor treatment in WWTPs, i.e., AS recycling, microaeration in AS digester and AS diffusion. The underlying deodorization mechanisms of typical odors have been revealed through the summary of recent advances on multi-element conversions, metabolic interactions of bacteria, microscopic characterization and identification of functional microorganisms. Future research aspects to advance the emerging deodorization AS process, such as deodorization mechanisms, simultaneous odor and water treatment, synergistic treatment with other air emissions, are discussed.
Collapse
Affiliation(s)
- Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China.
| |
Collapse
|
46
|
Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). ATMOSPHERE 2020. [DOI: 10.3390/atmos11080784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The odor emitted from a wastewater treatment plant (WWTP) is an important environmental problem. An estimation of odor emission rate is difficult to detect and quantify. To address this, various approaches including the development of emission factors and measurement using a closed chamber have been employed. However, the evaluation of odor emission involves huge manpower, time, and cost. An artificial neural network (ANN) is recognized as an efficient method to find correlations between nonlinear data and prediction of future data based on these correlations. Due to its usefulness, ANN is used to solve complicated problems in various disciplines of sciences and engineering. In this study, a method to predict the odor concentration in a WWTP using ANN was developed. The odor concentration emitted from a WWTP was predicted by the ANN based on water quality data such as biological oxygen demand, dissolved oxygen, and pH. The water quality and odor concentration data from the WWTP were measured seasonally in spring, summer, and autumn and these were used as input variations to the ANN model. The odor predicted by the ANN model was compared with the measured data and the prediction accuracy was estimated. Suggestions for improving prediction accuracy are presented.
Collapse
|
47
|
Yang X, Wei J, Ye G, Zhao Y, Li Z, Qiu G, Li F, Wei C. The correlations among wastewater internal energy, energy consumption and energy recovery/production potentials in wastewater treatment plant: An assessment of the energy balance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136655. [PMID: 32018952 DOI: 10.1016/j.scitotenv.2020.136655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/03/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Given the economic and environmental importance of energy use in wastewater treatment plants (WWTPs), the need to assess the energy balance of WWTPs has become a growing concern. Previous studies have suggested that energy balance or even net energy production may be achieved in WWTPs under specific conditions. However, information regarding the energy consumption and the energy recovery/production potential in WWTPs as a function of the influent characteristics is still very limited. In this paper, by exploring the correlations among wastewater internal energy, energy consumption and energy recovery in WWTPs, a novel net energy consumption (NEC) model was developed for predicting the energy self-sufficiency level of WWTPs. From our results, exponential regression showed a high accuracy in predicting the annual energy consumption, the annual excess sludge production and the bioreactor footprints in WWTPs. Wastewater with more internal energy which is determined by influent chemical oxygen demand (COD) concentration and flow rate, not only leads to higher energy consumption in WWTPs, but also results in an increase in the excess sludge production, bioreactor footprints and wastewater volume. This means that the WWTPs could achieve energy saving or even net energy production by incorporating sludge incineration, photovoltaic (PV) generation and thermal energy recovery. By combing regression analysis with theoretical formula, the annual net energy demand of WWTPs reached -0.187-0.466 kWh·m-3 in the range of wastewater condition studied (the influent COD concentration range of 60-800 mg·L-1 and the flow rate range of 1296-100,000 m3·d-1). The NEC model reveals that the net zero energy consumption may be achieved by integrating the better understandings of wastewater internal energy, energy conversion methods and environmental media energy, which is of value to policy makers for the planning of new WWTPs and provides theoretical support for the selection of available energy recovery methods.
Collapse
Affiliation(s)
- Xingzhou Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, PR China
| | - Jingyue Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, PR China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Guojie Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, PR China
| | - Yasi Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, PR China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Fusheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, PR China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 51006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
48
|
Abstract
Context of the research: Research is increasingly carried out to take into account the social behavior of residents, the type of industry located in the area, and perceived preference for the place of residence. The quality of life in urban space is increasingly seen as a problem of cooperation between various stakeholders. These studies not only identify factors and sources of odor emissions, but also serve as the basis for creating systems to alert people living in areas adjacent to industrial areas or harmful and unpleasant industrial emissions. In recent years, environmental issues, particularly unpleasant sensory experiences, have been one of the most important acceptance criteria. Aim of the article: The aim of the study is to assess the impact of odor nuisance in the south-eastern part of Kraków (Płaszów) on the residents’ decision to leave their place of residence. In particular, the research goal was achieved to indicate which of the unpleasant odors may cause a change of residence, as well as to assess the degree of their impact on the decision to move, taking into account the social and demographic characteristics of residents. New in the article: The novelty of the work was the finding out of the residents’ opinions about the quality of life by accepting the place of residence, taking into account the aspect of odor nuisance. Previous studies on odor nuisance have focused on the emission of odors from individual plants. A novelty of this research is its implementation in an urban area, in which numerous industrial plants are located, with various odors emitted. Research methodology: To assess odor nuisance, a measuring tool developed in accordance with VDI 3883 guidelines was used, based on the latest research results on odor and noise nuisance. The questionnaire was developed based on German experience. Conclusions from the research: The data obtained as a result of the research allow us to state that specific smells are so burdensome that they may cause the necessity to leave the place of residence, because the respondents feel various unpleasant smells that have an adverse impact upon the quality of life that they perceive. A possible need for relocation of domiciles out of the current place of residence due to unpleasant smells would affect the perceptible, specific level of grief—the greater it is, the more attached the residents are to their current place of residence.
Collapse
|
49
|
Ravina M, Panepinto D, Mejia Estrada J, De Giorgio L, Salizzoni P, Zanetti M, Meucci L. Integrated model for estimating odor emissions from civil wastewater treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3992-4007. [PMID: 31823259 DOI: 10.1007/s11356-019-06939-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The objective of this research project was the design and development of an integrated model for odor emission estimation in wastewater treatment plants. The SMAT's plant, the largest wastewater treatment facility in Italy, was used as a case study. This article reports the results of the characterization phase that led to the definition and design of the proposed conceptual model for odor emission estimation. In this phase, concentrations of odor chemical tracers (VOC, H2S, NH3) and odor concentrations were monitored repeatedly. VOC screening with GC-MS analysis was also performed. VOC concentrations showed significant variability in space and magnitude. NH3 and H2S were also detected at considerable concentrations. Results were elaborated to define a spatially variable linear relationship between the sum of odor activity values (SOAV) and odor concentrations. Based on the results, a conceptual operational model was presented and discussed. The proposed system is composed by a network of continuous measurement stations, a set of algorithms for data elaboration and synchronization, and emission dispersion modeling with the application of Lagrangian atmospheric models.
Collapse
Affiliation(s)
- Marco Ravina
- Department of Environment, Land and Infrastructure Engineering, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Deborah Panepinto
- Department of Environment, Land and Infrastructure Engineering, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Jheyson Mejia Estrada
- Laboratoire de Mécanique des Fluides et d'Acoustique, UMR CNRS 5509, University of Lyon - École Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, 36, Avenue Guy de Collongue, 69134, Écully CEDEX, France
| | - Luca De Giorgio
- SMAT Research Centre, Corso XI Febbraio 14, 10152, Turin, Italy
| | - Pietro Salizzoni
- Laboratoire de Mécanique des Fluides et d'Acoustique, UMR CNRS 5509, University of Lyon - École Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, 36, Avenue Guy de Collongue, 69134, Écully CEDEX, France
| | - Mariachiara Zanetti
- Department of Environment, Land and Infrastructure Engineering, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Lorenza Meucci
- SMAT Research Centre, Corso XI Febbraio 14, 10152, Turin, Italy
| |
Collapse
|
50
|
Assessment of the Effects of Wastewater Treatment Plant Modernization by Means of the Field Olfactometry Method. WATER 2019. [DOI: 10.3390/w11112367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methodological aspects of odor studies in ex-post analyses for Polish wastewater management facilities were analyzed based on the example of a modernized and enlarged wastewater treatment plant (WWTP) in Mazovia, in the vicinity of the Warsaw agglomeration. It is a mechanical–biological treatment plant with increased efficiency of biogen removal, using activated sludge in the treatment process, with a maximum hydraulic capacity of 60,000 m3/day. Olfactometric research was carried out by means of a method based on identification and characterization of the odor plume emitted from the examined source. This paper presents the results of odor intensity assessment (in sensory examinations according to a 6-stage scale) and odor concentration measurement (using portable field olfactometers) after the completion of the project, and compares them with similar studies conducted before the commencement of the investment. A total of 10 measurement series were carried out before modernization, and 12 after modernization of the WWTP. Odor concentration and intensity were determined, and the current meteorological situation was assessed at the measurement and observation points (receptors) located within the premises (in total 462 points) and around the WWTP (342 points). In each series of measurements on the windward side of the treatment plant, the background of air pollution with odorous substances was marked. The research showed that air flowing into the area of the sewage treatment plant is clean in terms of odor. During the research, basic sources of odor nuisance were identified, and their impact before and after modernization was characterized. The results presented in radar diagrams show changes in the percentage distribution of frequency of occurrence of individual intensity values at receptor points within and outside the area of the treatment plant. After modernization, a significant decrease in the concentration of odor emitted from the sludge dewatering building and sludge containers was determined. The air-tightness of the sewage channel (covered with concrete slabs and sealed) resulted in a significant decrease in the concentration of odor emitted from this source. Waste (in particular, sewage sludge) collected in the emergency waste storage yard was identified as the main source of odor nuisance. The waste, even after modernization, was an emitter of odorous compounds spreading outside the area of the WWTP. Nevertheless, as a result of the investment, the desired effect of reduction of the degree of odor nuisance was achieved.
Collapse
|