1
|
Bommarito PA, Blaauwendraad SM, Stevens DR, van den Dries MA, Spaan S, Pronk A, Tiemeier H, Gaillard R, Trasande L, Jaddoe VV, Ferguson KK. Prenatal Exposure to Nonpersistent Chemicals and Fetal-to-childhood Growth Trajectories. Epidemiology 2024; 35:874-884. [PMID: 39042458 PMCID: PMC11444368 DOI: 10.1097/ede.0000000000001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Prenatal exposure to nonpersistent chemicals, including organophosphate pesticides, phthalates, and bisphenols, is associated with altered fetal and childhood growth. Few studies have examined these associations using longitudinal growth trajectories or considering exposure to chemical mixtures. METHODS Among 777 participants from the Generation R Study, we used growth mixture models to identify weight and body mass index trajectories using weight and height measures collected from the prenatal period to age 13. We measured exposure biomarkers for organophosphate pesticides, phthalates, and bisphenols in maternal urine at three timepoints during pregnancy. Multinomial logistic regression was used to estimate associations between averaged exposure biomarker concentrations and growth trajectories. We used quantile g-computation to estimate joint associations with growth trajectories. RESULTS Phthalic acid (OR = 1.4; 95% CI = 1.01, 1.9) and bisphenol A (OR = 1.5; 95% CI = 1.0, 2.2) were associated with higher odds of a growth trajectory characterized by smaller prenatal and larger childhood weight relative to a referent trajectory of larger prenatal and average childhood weight. Biomarkers of organophosphate pesticides, individually and jointly, were associated with lower odds of a growth trajectory characterized by average prenatal and lower childhood weight. CONCLUSIONS Exposure to phthalates and bisphenol A was positively associated with a weight trajectory characterized by lower prenatal and higher childhood weight, while exposure to organophosphate pesticides was negatively associated with a trajectory of average prenatal and lower childhood weight. This study is consistent with the hypothesis that nonpersistent chemical exposures disrupt growth trajectories from the prenatal period through childhood.
Collapse
Affiliation(s)
- Paige A. Bommarito
- From the Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| | - Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Danielle R. Stevens
- From the Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| | - Michiel A. van den Dries
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development (RAPID), TNO, Utrecht, CB, the Netherlands
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development (RAPID), TNO, Utrecht, CB, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Erasmus University Medical Centre, Rotterdam, the Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Romy Gaillard
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, NY
| | - Vincent V.W. Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Kelly K. Ferguson
- From the Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| |
Collapse
|
2
|
Pan Y, Jia C, Zhu Z, Su Z, Wei X, Yin R, Ma C, Sun W, Wu H, Wu F, Li AJ, Qiu R. Occurrence and health risks of multiple emerging bisphenol S analogues in pregnant women from South China. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135431. [PMID: 39128146 DOI: 10.1016/j.jhazmat.2024.135431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/21/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Recently, there has been increasing concern regarding the emergence of bisphenol S analogues (BPSs) due to their potential toxicity. However, their exposure levels and associated health risks in susceptible populations remain unknown. In our study, we analyzed bisphenol A (BPA), along with 11 common BPA analogues (BPAs), and nine emerging BPSs in urine samples collected from 381 pregnant women in South China. All nine BPSs were first detected in pregnant women's urine. In addition to BPA, two BPAs, three BPSs including Diphenylsulfone (DPS), Bis(phenylsulfonyl)phenol (DBSP) and Bis(3-allyl-4-hydroxyphenyl)sulfone (TGSA), were identified as the predominant bisphenols, with detection frequencies ranging from 53-100 %. BPA still exhibited the highest median concentration at 0.624 ng/mL, followed by DPS (0.169 ng/mL), BPS (0.063 ng/mL) and DBSP (0.023 ng/mL). Importantly, mothers with higher levels of BPA, DBSP, DPS, and TGSA in their urine are statistically more likely to give birth to premature infants with shorter lengths at birth or smaller head circumference (p < 0.05). Although the median exposure to 21 bisphenols did not exceed the tolerable daily intake (TDI) of BPA, it did surpass the recently proposed BPA TDI (0.2 ng/kg bw/day) by a factor ranging from 1.1-99 times. This study signifies the first report unveiling the prevalence of multiple bisphenols, particularly emerging BPSs, in the urine of pregnant women in South China.
Collapse
Affiliation(s)
- Yanan Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, China
| | - Chunhong Jia
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Zhenni Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhiwen Su
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xin Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Renli Yin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chongjian Ma
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, China; College of Agricultural Science and Engineering, Shaoguan University, Shaoguan, Guangdong 512005, China
| | - Wenwen Sun
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Shanghai 200335, China
| | - Haijun Wu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd, Shanghai 200335, China
| | - Fan Wu
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| | - Adela Jing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Harray A, Herrmann S, Papendorf H, Miller C, Vermeersch A, Smith T, Lucas M. Plastics in human diets: development and evaluation of the 24-h Dietary Recall - Plastic Exposure and the Dietary Plastics Score. Front Nutr 2024; 11:1443792. [PMID: 39360279 PMCID: PMC11444960 DOI: 10.3389/fnut.2024.1443792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Background Humans are commonly exposed to plastic through their dietary intake and food consumption patterns. Plastic-associated chemicals (PAC), such as bisphenols and phthalates, are recognized as endocrine-disrupting and are associated with increased risk of cardiovascular disease and metabolic syndrome. However, accurate methods to assess dietary exposure to plastic products and PAC are inadequate, limiting interrogation of health impacts. Aim To develop a tool that captures complete dietary exposure to plastics and establish a diet quality score to measure adherence to a low plastic dietary pattern. Methods We developed the 24-h Dietary Recall - Plastic Exposure (24DR-PE) and administered it to healthy adults (n = 422). This computer-assisted, interviewer-administered tool systematically collects data on food volumes and types, packaging materials, storage, processing, cooking, and consumption methods to assess a food's exposure to plastic. Specifically, the 24DR-PE incorporates predefined criteria for identifying high-risk practices and food characteristics, such as individually packaged items or those microwaved in plastic, enabling the assignment of scores based on a theoretically derived Dietary Plastics Scoring Matrix. Conclusion The 24DR-PE is the first tool specifically designed to capture detailed data on dietary exposures to plastic products. The next step is to validate the score using laboratory results of urine samples we collected contemporaneous to the dietary information. Once validated, the tool has potential for widespread distribution making it valuable for population monitoring, intervention guidance, and future research investigating the interplay between plastics, diet, and human health.
Collapse
Affiliation(s)
- Amelia Harray
- Medical School, The University of Western Australia, Nedlands, WA, Australia
- Children’s Diabetes Centre, The Kids Research Institute Australia, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| | - Susan Herrmann
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Hannah Papendorf
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Claire Miller
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Andrea Vermeersch
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Tony Smith
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Michaela Lucas
- Medical School, The University of Western Australia, Nedlands, WA, Australia
- Department of Immunology, PathWest Laboratory Medicine, Nedlands, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Department of Immunology, Perth Children’s Hospital, Nedlands, WA, Australia
| |
Collapse
|
4
|
Irvine N, Bell RC, Subhan FB, Field CJ, Liu J, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D, England-Mason G. Maternal pre-pregnancy BMI influences the associations between bisphenol and phthalate exposures and maternal weight changes and fat accumulation. ENVIRONMENTAL RESEARCH 2024; 257:119276. [PMID: 38830392 DOI: 10.1016/j.envres.2024.119276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Bisphenols and phthalates are two classes of endocrine-disrupting chemicals (EDCs) thought to influence weight and adiposity. Limited research has investigated their influence on maternal weight changes, and no prior work has examined maternal fat mass. We examined the associations between exposure to these chemicals during pregnancy and multiple maternal weight and fat mass outcomes. METHODS This study included a sample of 318 women enrolled in a Canadian prospective pregnancy cohort. Second trimester urinary concentrations of 2 bisphenols and 12 phthalate metabolites were quantified. Self-reported and measured maternal weights and measured skinfold thicknesses were used to calculate gestational weight gain, 3-months and 3- to 5-years postpartum weight retention, late pregnancy fat mass gain, total postpartum fat mass loss, and late postpartum fat mass retention. Adjusted robust regressions examined associations between chemicals and outcomes in the entire study population and sub-groups stratified by pre-pregnancy body mass index (BMI). Bayesian kernel machine regression examined chemical mixture effects. RESULTS Among women with underweight or normal pre-pregnancy BMIs, MBzP was negatively associated with weight retention at 3- to 5-years postpartum (B = -0.04, 95%CI: -0.07, -0.01). Among women with overweight or obese pre-pregnancy BMIs, MEHP and MMP were positively associated with weight retention at 3-months and 3- to 5-years postpartum, respectively (B's = 0.12 to 0.63, 95%CIs: 0.02, 1.07). DEHP metabolites and MCNP were positively associated with late pregnancy fat mass gain and late postpartum fat mass retention (B's = 0.04 to 0.18, 95%CIs: 0.001, 0.32). Further, the mixture of EDCs was positively associated with late pregnancy fat mass gain. CONCLUSION In this cohort, pre-pregnancy BMI was a key determinant of the associations between second trimester exposure to bisphenols and phthalates and maternal weight changes and fat accumulation. Investigations of underlying physiological mechanisms, windows of susceptibility, and impacts on maternal and infant health are needed.
Collapse
Affiliation(s)
- Nathalie Irvine
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Fatheema B Subhan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Department of Nutrition and Food Science, California State Polytechnic University, Pomona, California, United States
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary. Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary. Alberta, Canada.
| |
Collapse
|
5
|
England-Mason G, Merrill SM, Liu J, Martin JW, MacDonald AM, Kinniburgh DW, Gladish N, MacIsaac JL, Giesbrecht GF, Letourneau N, Kobor MS, Dewey D. Sex-Specific Associations between Prenatal Exposure to Bisphenols and Phthalates and Infant Epigenetic Age Acceleration. EPIGENOMES 2024; 8:31. [PMID: 39189257 PMCID: PMC11348373 DOI: 10.3390/epigenomes8030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal-infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from -0.36 to -0.66, 95% CIs from -1.28 to -0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarah M. Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jonathan W. Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
| | - Amy M. MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W. Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Gladish
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L. MacIsaac
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Gerald F. Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Blaauwendraad SM, Dykgraaf RH, Gaillard R, Liu M, Laven JS, Jaddoe VW, Trasande L. Associations of bisphenol and phthalate exposure and anti-Müllerian hormone levels in women of reproductive age. EClinicalMedicine 2024; 74:102734. [PMID: 39114272 PMCID: PMC11304696 DOI: 10.1016/j.eclinm.2024.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Background In women, exposure to endocrine disrupting chemicals might accelerate the depletion of the ovarian reserve and might be associated with accelerative reproductive aging and fertility. We examined the longitudinal associations of exposure to bisphenols and phthalates with anti-Müllerian hormone concentrations. Methods Pregnant women of 18 years or older that resided in Rotterdam between 2002 and 2006 were eligible for participation in this longitudinal prospective cohort study. We measured urinary bisphenol and phthalate concentration at three time-points in pregnancy among 1405 women, of whom 1322 women had serum Anti-Müllerian Hormone (AMH) measurements 6 and/or 9 years postpartum. We performed linear regression models to assess the association of urinary bisphenol and phthalate metabolites with AMH after 6 and 9 years, and linear mixed-effect model to assess the association with AMH over time. Models were adjusted for sociodemographic and lifestyle factors. Findings In our multivariable linear regression models we observed associations of higher urinary pregnancy-averaged mono-isobutyl phthalate (mIBP), mono-(2-ethyl-5-oxohexyl) phthalate (mEOHP), and monobenzyl phthalate (mBzBP) with lower serum AMH after both 6 and 9 years. However, these associations did not remain after adjustment for multiple testing. No significant associations of bisphenol A with AMH were present in our study sample. In our linear mixed-effects models, higher mIBP, mono-(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP), mEOHP, and mBzBP were associated with lower overall AMH levels (differences -0.07 (95% CI -0.13, -0.02), -0.09 (-0.15, -0.02), -0.08 (95% CI -0.14, -0.02), and -0.08 (-0.13, -0.03) μg/L per doubling in mIBP, mEHHP, mEOHP, and mBzBP respectively) (all False Discovery Rate adjusted p-values < 0.05). Interpretation We identify decreases in indices of ovarian reserve in relationship to prenatal phthalate exposures. Studies are needed replicating our results among large multi-ethnic non-pregnant populations and assessing transgenerational effects of exposure on ovarian reserve. Funding This study was supported by the Erasmus Medical Center and Erasmus University Rotterdam, the Netherlands Organisation for Health Research and Development, the European Research Council, the Dutch Heart Foundation, the Dutch Diabetes Foundation, the European Union's Horizon 2020 Research and Innovation Program, the National Institutes of Health, Ansh Labs Webster, and the Royal Netherlands Academy of Arts and Sciences.
Collapse
Affiliation(s)
- Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ramon H.M. Dykgraaf
- Department of Obstetrics and Gynecology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- New York University College of Global Public Health, New York University, New York, NY, USA
| | - Joop S. Laven
- Department of Obstetrics and Gynecology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- New York University College of Global Public Health, New York University, New York, NY, USA
| |
Collapse
|
7
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
8
|
Li X, Chen Q, Wu D, Xiao Z, Shi C, Dong Y, Jia L. High Levels of BPA and BPF Exposure during Pregnancy Are Associated with Lower Birth Weight in Shenyang in Northeast China. Chem Res Toxicol 2024; 37:1199-1209. [PMID: 38953537 DOI: 10.1021/acs.chemrestox.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Animal studies indicate that bisphenol A (BPA) has obesogenic effects. Recent experiments reported similar endocrine-disrupting effects of bisphenol F (BPF) and bisphenol S (BPS), which are substitutes of BPA. The aim of this study was to investigate the exposure levels of these bisphenols in pregnant women and their effects on the physical development of infants aged 0-12 months. This study recruited pregnant women who gave birth at a hospital between February 2019 and September 2020. Urine samples from these pregnant women in the third trimester of pregnancy were detected by using ultrahigh-performance liquid chromatography-triple quadruple mass spectrometry. Follow-ups at 6 and 12 months of age were conducted by telephone by pediatricians using a structured questionnaire. Multiple linear regressions were used to determine the associations between bisphenol concentrations and infant weight. A total of 113 mother-child pairs had complete questionnaires and urine samples as well as data on newborns aged 6 months and 12 months. The detection rates of urinary BPA, BPF, and BPS in pregnant women were 100, 62.83, and 46.02%, respectively. Their median levels are 5.84, 0.54, and 0.07 μg/L, respectively. Increased urinary BPA and BPF concentrations during pregnancy were significantly associated with lower birth weight (standardized regression coefficients [β] = -0.081 kg, 95% confidence interval [CI]: -0.134 to -0.027; β = -0.049 kg, 95% CI: -0.097 to -0.001). In addition, urinary BPA and BPF concentrations during pregnancy were positively associated with weight growth rate from 0 to 6 months (β = 0.035 kg/mouth, 95% CI: 0.00-0.064; β = 0.028 kg/mouth, 95% CI: 0.006-0.050), especially in female infants (β = 0.054 kg/mouth, 95% CI: 0.015-0.093; β = 0.035 kg/mouth, 95% CI: 0.005-0.065). Therefore, maternal BPA and BPF levels during pregnancy were negatively correlated with birth weight and positively correlated with the growth rate of infant weight at 0-6 months of age, especially in female infants.
Collapse
Affiliation(s)
- Xuening Li
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Qi Chen
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China
- Environmental Health Department of Xiqing District Center for Disease Control and Prevention, Tianjin 300380, China
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China
| | - Zhe Xiao
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China
| | - Ce Shi
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, Liaoning, China
| |
Collapse
|
9
|
Gao Z, He W, Liu Y, Gao Y, Fan W, Luo Y, Shi X, Song S. Perinatal bisphenol S exposure exacerbates the oxidative burden and apoptosis in neonatal ovaries by suppressing the mTOR/autophagy axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123939. [PMID: 38593938 DOI: 10.1016/j.envpol.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.
Collapse
Affiliation(s)
- Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wanqiu He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yapei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yixin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Xizhi Shi
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
10
|
Trasande L, Nelson ME, Alshawabkeh A, Barrett ES, Buckley JP, Dabelea D, Dunlop AL, Herbstman JB, Meeker JD, Naidu M, Newschaffer C, Padula AM, Romano ME, Ruden DM, Sathyanarayana S, Schantz SL, Starling AP, Hamra GB. Prenatal phthalate exposure and adverse birth outcomes in the USA: a prospective analysis of births and estimates of attributable burden and costs. Lancet Planet Health 2024; 8:e74-e85. [PMID: 38331533 PMCID: PMC11444077 DOI: 10.1016/s2542-5196(23)00270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Phthalates are synthetic chemicals widely used in consumer products and have been identified to contribute to preterm birth. Existing studies have methodological limitations and potential effects of di-2-ethylhexyl phthalate (DEHP) replacements are poorly characterised. Attributable fractions and costs have not been quantified, limiting the ability to weigh trade-offs involved in ongoing use. We aimed to leverage a large, diverse US cohort to study associations of phthalate metabolites with birthweight and gestational age, and estimate attributable adverse birth outcomes and associated costs. METHODS In this prospective analysis we used extant data in the US National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) Program from 1998 to 2022 to study associations of 20 phthalate metabolites with gestational age at birth, birthweight, birth length, and birthweight for gestational age z-scores. We also estimated attributable adverse birth outcomes and associated costs. Mother-child dyads were included in the study if there were one or more urinary phthalate measurements during the index pregnancy; data on child's gestational age and birthweight; and singleton delivery. FINDINGS We identified 5006 mother-child dyads from 13 cohorts in the ECHO Program. Phthalic acid, diisodecyl phthalate (DiDP), di-n-octyl phthalate (DnOP), and diisononyl phthalate (DiNP) were most strongly associated with gestational age, birth length, and birthweight, especially compared with DEHP or other metabolite groupings. Although DEHP was associated with preterm birth (odds ratio 1·45 [95% CI 1·05-2·01]), the risks per log10 increase were higher for phthalic acid (2·71 [1·91-3·83]), DiNP (2·25 [1·67-3·00]), DiDP (1·69 [1·25-2·28]), and DnOP (2·90 [1·96-4·23]). We estimated 56 595 (sensitivity analyses 24 003-120 116) phthalate-attributable preterm birth cases in 2018 with associated costs of US$3·84 billion (sensitivity analysis 1·63- 8·14 billion). INTERPRETATION In a large, diverse sample of US births, exposure to DEHP, DiDP, DiNP, and DnOP were associated with decreased gestational age and increased risk of preterm birth, suggesting substantial opportunities for prevention. This finding suggests the adverse consequences of substitution of DEHP with chemically similar phthalates and need to regulate chemicals with similar properties as a class. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; New York University Wagner School of Public Service, New York, NY, USA.
| | | | | | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana Dabelea
- Lifecourse Epidemiology Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mrudula Naidu
- Department of Pediatrics, Division of Environmental Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Craig Newschaffer
- College of Human Health and Development, Penn State University, Hershey, PA, USA
| | - Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anne P Starling
- Lifecourse Epidemiology Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
11
|
Suwannarin N, Nishihama Y, Isobe T, Nakayama SF. Urinary concentrations of environmental phenol among pregnant women in the Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2024; 183:108373. [PMID: 38088018 DOI: 10.1016/j.envint.2023.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
Humans are exposed to various bisphenols, alkylphenols and nitrophenols through dietary intake, food packaging and container materials, indoor and outdoor air/dust. This study aimed to evaluate exposure of Japanese pregnant women to environmental phenols by measuring target compounds in urine samples. From a cohort of the Japan Environment and Children's Study, 4577 pregnant women were selected. Bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), para-nitrophenol (PNP), 3-methyl-4-nitrophenol (PNMC), branched 4-nonylphenol (4-NP), linear 4-nonylphenol and 4-tert-octylphenol (4-t-OP) were analysed using a high-performance liquid chromatograph coupled to a triple-quadrupole mass spectrometer. The urinary metabolite data were combined with a questionnaire to examine the determinants of phenol exposure by machine learning. The estimated daily intake (EDI) and hazard quotient (HQ) of BPA were calculated. PNP (68.2%) and BPA (71.5%) had the highest detection frequencies, with median concentrations of 0.76 and 0.46 μg/g creatinine, respectively. PNMC, BPS, BPF and 4-NP were determined in 24.9%, 11.9%, 1.3% and 0.4% of samples, respectively, whereas BPAF (0.02%) and 4-t-OP (0.02%) were only determined in a few samples. The PNP concentrations measured in this study were comparable with those reported in previous studies, whereas the BPA concentrations were lower than those reported previously worldwide. The EDI of BPA was 0.014 μg/kg body weight/day. Compared with the tolerable daily intake set by the German Federal Institute for Risk Assessment, the median (95th percentile) HQ was 0.044 (0.2). This indicates that the observed levels of BPA exposure pose a negligible health risk to Japanese pregnant women. Determinants of bisphenol and nitrophenol exposure could not be identified by analysing the questionnaire solely, suggesting that biological measurement is necessary to assess exposure of pregnant women to bisphenols and nitrophenols. This is the first study to report environmental phenol exposure of Japanese pregnant women on a nationwide scale.
Collapse
Affiliation(s)
- Neeranuch Suwannarin
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| | - Yukiko Nishihama
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan; Paediatric Environmental Medicine, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Tomohiko Isobe
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| | - Shoji F Nakayama
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| |
Collapse
|
12
|
Głód P, Borski N, Gogola-Mruk J, Opydo M, Ptak A. Bisphenol S and F affect cell cycle distribution and steroidogenic activity of human ovarian granulosa cells, but not primary granulosa tumour cells. Toxicol In Vitro 2023; 93:105697. [PMID: 37717640 DOI: 10.1016/j.tiv.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Bisphenol S (BPS) and F (BPF), a new generation of bisphenols (BPs), are the main substitutes for bisphenol A (BPA). Both have been detected in human body fluids. Importantly, bisphenols are structurally similar to oestrogen, the main sex hormone in females. Because bisphenols bind to nuclear oestrogen receptors (ESR1 and ESR2) and to membrane G-coupled receptor 30 (GPR30), they can disrupt ovarian function. Here, we reveal the molecular mechanism underlying the effects of BPS and BPF on the cell cycle and steroidogenesis in the human ovarian granulosa cell (GC) line HGrC1. We show that BPS and BPF arrest GCs at the G0/G1 phase by inducing expression of cyclin D2, an important event that triggers maximal steroid synthesis in response to the BPS and BPF. We used pharmacological inhibitors to show that BPS and BPF, despite acting via already described pathways, also stimulate steroid secretion via IGF1R pathways in HGrC1 cells. Moreover, we identified differences critical to bisphenols response between normal (HGrC1) and primary tumour granulosa (COV434) cells, that enable COV434 cells to be more resistant to bisphenols. Overall, the data suggest that BPS and BPF drive steroidogenesis in human ovarian GCs by affecting the cell cycle. Furthermore, the results indicate that BPS and BPF act not only via the classical and non-classical ESR pathways, but also via the IGF1R pathway.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
13
|
Ghassabian A, van den Dries M, Trasande L, Lamballais S, Spaan S, Martinez-Moral MP, Kannan K, Jaddoe VWV, Engel SM, Pronk A, White T, Tiemeier H, Guxens M. Prenatal exposure to common plasticizers: a longitudinal study on phthalates, brain volumetric measures, and IQ in youth. Mol Psychiatry 2023; 28:4814-4822. [PMID: 37644173 PMCID: PMC11062447 DOI: 10.1038/s41380-023-02225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Exposure to phthalates, used as plasticizers and solvents in consumer products, is ubiquitous. Despite growing concerns regarding their neurotoxicity, brain differences associated with gestational exposure to phthalates are understudied. We included 775 mother-child pairs from Generation R, a population-based pediatric neuroimaging study with prenatal recruitment, who had data on maternal gestational phthalate levels and T1-weighted magnetic resonance imaging in children at age 10 years. Maternal urinary concentrations of phthalate metabolites were measured at early, mid-, and late pregnancy. Child IQ was assessed at age 14 years. We investigated the extent to which prenatal exposure to phthalates is associated with brain volumetric measures and whether brain structural measures mediate the association of prenatal phthalate exposure with IQ. We found that higher maternal concentrations of monoethyl phthalate (mEP, averaged across pregnancy) were associated with smaller total gray matter volumes in offspring at age 10 years (β per log10 increase in creatinine adjusted mEP = -10.7, 95%CI: -18.12, -3.28). Total gray matter volumes partially mediated the association between higher maternal mEP and lower child IQ (β for mediated path =-0.31, 95%CI: -0.62, 0.01, p = 0.05, proportion mediated = 18%). An association of higher monoisobutyl phthalate (mIBP) and smaller cerebral white matter volumes was present only in girls, with cerebral white matter volumes mediating the association between higher maternal mIBP and lower IQ in girls. Our findings suggest the global impact of prenatal phthalate exposure on brain volumetric measures that extends into adolescence and underlies less optimal cognitive development.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Michiel van den Dries
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- New York University College of Global Public Health, New York City, NY, USA
- New York University Wagner School of Public Service, New York City, NY, USA
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, the Netherlands
| | | | | | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stephanie M Engel
- Department of Epidemiology, Gilling School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, the Netherlands
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health Bethesda, Bethesda, MD, USA
| | - Henning Tiemeier
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Social and Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
14
|
Hu Y, Lai S, Li Y, Wu X, Xing M, Li X, Xu D, Chen Y, Xiang J, Cheng P, Wang X, Chen Z, Ding H, Xu P, Lou X. Association of urinary bisphenols with thyroid function in the general population: a cross-sectional study of an industrial park in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107517-107532. [PMID: 37735335 DOI: 10.1007/s11356-023-29932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Bisphenols (BPs) are potential thyroid disruptors that are widely used in many consumer products, leading to their widespread exposure in the general population. Current cross-sectional and case-control studies have found associations between exposure to BPs and serum thyroid function, but the results were contradictory. The objectives of this study are to describe demographic characteristics, BP exposure levels, and thyroid function measurements in potentially exposed and control districts and to investigate the association of urinary BPs with thyroid function. Data were collected from a general population aged 3-79 years (N = 281) recruited by the Zhejiang Human Biomonitoring Program (ZJHBP). The concentrations of 10 kinds of BPs in urine and serum free triiodothyronine (FT3), total triiodothyronine (TT3), free thyroxine (FT4), total thyroxine (TT4), thyroid-stimulating hormone (TSH), thyroglobulin (Tg), thyroglobulin antibodies (TgAb), thyroid peroxidase antibodies (TPOAb), and thyrotropin receptor antibody (TRAb) in serum were measured. Multiple linear regression and weighted quantile sum (WQS) regression were used to estimate the relationship between single and mixed exposure of BPs and thyroid function. Bisphenol A (BPA), bisphenol S (BPS), and bisphenol P (BPP) were detected, respectively, in 82.73%, 94.24%, and 55.40% of the population in the exposed area and 81.69%, 61.27%, and 43.66% of the population in the control area. Among adult females, serum TT3 was negatively associated with urinary BPA (β = -0.033, 95% CI = -0.071, -0.008, P = 0.021). Among minor females, FT4 and Tg levels were negatively associated with the urinary BPA (β = -0.026, 95% CI = -0.051, -0.002, P = 0.032 for FT4; β = -0.129, 95% CI = -0.248, -0.009, P = 0.035 for Tg), and TPOAb was positively associated with urinary BPA (β = 0.104, 95% CI = 0.006, 0.203, P = 0.039). In WQS models, BPs mixture was positively associated with FT3 (βWQS = 0.022, 95% CI = 0.002, 0.042) and TT3 (βWQS = 0.033, 95% CI = 0.004, 0.062), and negatively associated with FT4 (βWQS = -0.024, 95% CI = -0.044, 0.004). We found widespread exposure to BPA, BPS, and BPP in the general population of Zhejiang province and found an association between BPA and thyroid hormones. This association is gender- and age-dependent and needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shiming Lai
- Quzhou Center for Disease Control and Prevention, 154 Xi'an Road, Ke Cheng District, Quzhou, 324000, China
| | - Ying Li
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Xiaodong Wu
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Hao Ding
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
15
|
Borghese MM, Huang R, MacPherson S, Gaudreau E, Gagné S, Ashley-Martin J, Fisher M, Booij L, Bouchard MF, Arbuckle TE. A descriptive analysis of first trimester urinary concentrations of 14 bisphenol analogues in the MIREC Canadian pregnancy cohort. Int J Hyg Environ Health 2023; 253:114225. [PMID: 37542835 DOI: 10.1016/j.ijheh.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Concern over the health effects of BPA, particularly for the developing fetus, has led to an increasing use of bisphenol analogues in industrial and consumer products, which may be as hormonally active as BPA. Biomonitoring data for many bisphenol analogues, especially in pregnant populations, are limited. METHODS We measured concentrations of 14 bisphenol analogues in 1st trimester urine samples (n = 1851) from the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort (2008-2011). We examined patterns of exposure according to sociodemographic and sampling characteristics as well as occupation and frequency of consumption of canned fish within the previous 3 months. RESULTS BPA was detected in 89% of participants with a specific gravity standardized geometric mean concentration of 0.990 μg/L. Biphenol 4,4' (BP 4,4'), 4,4'-dihydroxydiphenyl ether (DHDPE), and bisphenol E (BPE) were detected in >97% of participants. Bisphenol F (BPF) and bisphenol S (BPS) were detected in >60% of participants. Specific gravity standardized geometric mean concentrations of these 5 compounds ranged from 0.024 to 0.564 μg/L. Nine bisphenol analogues were detected in <9% of participants. Concentrations of BP 4,4', DHDPE, and BPE were higher in younger women and those with higher pre-pregnancy BMI, lower household income, lower education, and among smokers. We found a similar pattern of differences in BPF for age, education, and smoking status while BPS similarly differed across categories of pre-pregnancy BMI. Participants who were unemployed or working in the service industry had higher molar sum of 7 bisphenol analogues than those working in healthcare, education, or an office setting. Canned fish consumption was not related to bisphenol analogue concentrations. CONCLUSION BP 4,4', DHDPE, BPE, BPF, and BPS were highly detected in 1st trimester urine samples in this large pan-Canadian pregnancy cohort. This suggests widespread exposure to these analogues around 2008-2011 and warrants further investigation into associations with health outcomes.
Collapse
Affiliation(s)
- M M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - R Huang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - S MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - E Gaudreau
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - S Gagné
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - J Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - M Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - L Booij
- Department of Psychiatry, McGill University, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - M F Bouchard
- Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - T E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Varghese SV, Hall JM. Bisphenol A substitutes and obesity: a review of the epidemiology and pathophysiology. Front Endocrinol (Lausanne) 2023; 14:1155694. [PMID: 37529602 PMCID: PMC10390214 DOI: 10.3389/fendo.2023.1155694] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
The prevalence of obesity, a condition associated with increased health risks, has risen significantly over the past several decades. Although obesity develops from energy imbalance, its etiology involves a multitude of other factors. One of these factors are endocrine disruptors, or "obesogens", when in reference to obesity. Bisphenol A (BPA), a known endocrine disruptor used in plastic materials, has recently been described as an environmental obesogen. Although BPA-free products are becoming more common now than in the past, concerns still remain about the obesogenic properties of the compounds that replace it, namely Bisphenol S (BPS), Bisphenol F (BPF), and Bisphenol AF (BPAF). The purpose of this review is to investigate the relationship between BPA substitutes and obesity. Literature on the relationship between BPA substitutes and obesity was identified through PubMed and Google Scholar, utilizing the search terms "BPA substitutes", "bisphenol analogues", "BPS", "BPF", "BPAF", "obesity", "obesogens", "adipogenesis", "PPARγ", and "adipocyte differentiation". Various population-based studies were assessed to gain a better understanding of the epidemiology, which revealed evidence that BPA substitutes may act as obesogens at the pathophysiological level. Additional studies were assessed to explore the potential mechanisms by which these compounds act as obesogens. For BPS, these mechanisms include Peroxisome proliferator-activated receptor gamma (PPARγ) activation, potentiation of high-fat diet induced weight-gain, and stimulation of adipocyte hypertrophy and adipose depot composition. For BPF and BPAF, the evidence is more inconclusive. Given the current understanding of these compounds, there is sufficient concern about exposures. Thus, further research needs to be conducted on the relationship of BPA substitutes to obesity to inform on the potential public health measures that can be implemented to minimize exposures.
Collapse
|
17
|
Ter Borg S, Koopman N, Verkaik-Kloosterman J. An Evaluation of Food and Nutrient Intake among Pregnant Women in The Netherlands: A Systematic Review. Nutrients 2023; 15:3071. [PMID: 37447397 DOI: 10.3390/nu15133071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Nutritional deficiencies during pregnancy can have serious consequences for the health of the (unborn) child. This systematic review provides an updated overview of the available food and nutrient intake data for pregnant women in The Netherlands and an evaluation based on the current recommendations. Embase, MEDLINE, and national institute databases were used. Articles were selected if they had been published since 2008 and contained data on food consumption, nutrient intake, or the status of healthy pregnant women. A qualitative comparison was made with the 2021 Dutch Health Council recommendations and reference values. A total of 218 reports were included, representing 54 individual studies. Dietary assessments were primarily performed via food frequency questionnaires. Protein, vitamin A, thiamin, riboflavin, vitamin B6, folate, vitamin B12, vitamin C, iron, calcium, and magnesium intakes seemed to be adequate. For folate and vitamin D, supplements were needed to reach the recommended intake. The reasons for concern are the low intakes of fruits, vegetables, and (fatty) fish, and the intakes of alcohol, sugary drinks, and salt. For several foods and nutrients, no or limited intake data were found. High-quality, representative, and recent data are needed to evaluate the nutrient intake of pregnant women in order to make accurate assessments and evaluations, supporting scientific-based advice and national nutritional policies.
Collapse
Affiliation(s)
- Sovianne Ter Borg
- National Institute for Public Health and the Environment, 3721 BA Bilthoven, The Netherlands
| | - Nynke Koopman
- National Institute for Public Health and the Environment, 3721 BA Bilthoven, The Netherlands
| | | |
Collapse
|
18
|
Wu LH, Liu YX, Zhang YJ, Jia LL, Guo Y. Occurrence of bisphenol diglycidyl ethers and bisphenol analogs, and their associations with DNA oxidative damage in pregnant women. ENVIRONMENTAL RESEARCH 2023; 227:115739. [PMID: 36963715 DOI: 10.1016/j.envres.2023.115739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Bisphenol diglycidyl ethers (BDGEs) and Bisphenol A and its analogs (bisphenols) may have the same exposure routes and coexposure phenomenon in sensitive populations such as pregnant women. Previous biomonitoring studies on BDGEs are limited. Levels of fifteen bisphenols, six BDGEs and the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) were measured in the urine of pregnant women recruited in south China (n = 358). We aimed to provide the occurrence of bisphenols and BDGEs in pregnant women, and to investigate the potential relationship between their exposure and oxidative stress. Bisphenol A, bisphenol S, bisphenol F, bisphenol AP and all BDGEs (except for BADGE·2HCl) were frequently detected. The total concentrations of all bisphenols and BDGEs were 0.402-338 and 0.104-32.5 ng/mL, with geometric means of 2.87 and 2.48 ng/mL, respectively. BFDGE was the most abundant chemical of BDGEs, with a median concentration of 0.872 ng/mL, followed by BADGE·H2O·HCl (0.297 ng/mL). Except for pre-pregnancy obesity, maternal age/height, employment, fasting in the morning and parity did not affect the urinary concentrations of BDGEs. Significant and weak correlations were observed between concentrations (unadjusted) of total bisphenols and BDGEs (r = 0.389, p < 0.01), indicating their similar sources and exposure routes. The biomarker 8-OHdG was detected in all samples, with concentrations ranging from 1.98 to 32.6 ng/mL (median: 9.96 ng/mL). Levels of 8-OHdG were positively correlated with urinary several bisphenol concentrations (adjusted β range: 0.037-0.089, p < 0.05) but were not correlated with those of BDGEs. Further studies should focus on whether BDGEs and bisphenols exert combined effects on oxidative stress. Our study provided the first BDGEs exposure data in pregnant women and indicated that BDGEs exposure was highly prevalent in pregnant women as early as 2015 in south China.
Collapse
Affiliation(s)
- Liu-Hong Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Xiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Karramass T, Sol C, Kannan K, Trasande L, Jaddoe V, Duijts L. Bisphenol and phthalate exposure during pregnancy and the development of childhood lung function and asthma. The generation R study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121853. [PMID: 37247769 DOI: 10.1016/j.envpol.2023.121853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Fetal exposure to bisphenols and phthalates may lead to alterations in the respiratory and immune system development in children, and to adverse respiratory health. AIMTO STUDY: the associations of fetal bisphenols and phthalates exposure with lung function and asthma at age 13 years. STUDY DESIGN and Methods This study among 1020 children was embedded in a population-based prospective cohort study. We measured maternal urine bisphenol and phthalate concentrations in first, second and third trimester of pregnancy, and lung function by spirometry and asthma by questionnaires at age 13 years. Multivariable linear and logistic regression models were applied. RESULTS Maternal urine bisphenol and phthalate concentrations averaged during pregnancy were not associated with childhood lung function or asthma. Associations of maternal urine bisphenol and phthalate concentrations in specific trimesters with respiratory outcomes showed that one interquartile range increase in the natural log transformed maternal urine mono-isobutyl phthalate concentration in second trimester was associated with a higher FEV1/FVC, but not with asthma, accounting for confounders and multiple-testing correction. Although there were associations of higher second trimester bisphenol S with a lower FVC and FEV1 in boys and girls, and of higher first trimester bisphenol S with a decreased risk of asthma in boys and an increased risk of asthma in girls, these results did not remain significant after correction for multiple testing. Results were not modified by maternal history of asthma or atopy. CONCLUSIONS Maternal urine bisphenol and phthalate concentrations averaged or in specific trimesters during pregnancy were not strongly associated with childhood lung function and asthma at age 13 years. BPS, as a BPA substitute, tended to be associated with impaired lung function and altered risk of asthma, partly sex-dependent, but its strength was limited by a relatively low detection rate and should be queried in contemporary cohorts.
Collapse
Affiliation(s)
- Tarik Karramass
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chalana Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Department of Health, Wadsworth Center, New York State, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, United States
| | - Leonardo Trasande
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, United States; Department of Pediatrics, New York, University School of Medicine, United States; Department of Environmental Medicine, New York University School of Medicine, United States; Department of Population Health, New York University School of Medicine, United States; New York Wagner School of Public Service, United States; New York University Global Institute of Public Health, New York, United States
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Sun F, Huang Y, Chen H, Huang J, Zhang L, Wei S, Liu F, Chen D, Huang W. BPA and its alternatives BPF and BPAF exaggerate hepatic lipid metabolism disorders in male mice fed a high fat diet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161521. [PMID: 36632902 DOI: 10.1016/j.scitotenv.2023.161521] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Alternatives to Bisphenol A (BPA), such as BPF and BPAF, have found increasing industrial applications. However, toxicological research on these BPA analogues remains limited. This study aimed to investigate the effects of BPA, BPF, and BPAF exposure on hepatotoxicity in mice fed with high-fat diets (HFD). Male mice were exposed to the bisphenols at a dose of 0.05 mg per kg body weight per day (mg/kg bw/day) for eight consecutive weeks, or 5 mg/kg bw/day for the first week followed by 0.05 mg/kg bw/day for seven weeks under HFD. The low dose (0.05 mg/kg bw/day) was corresponding to the tolerable daily intake (TDI) of BPA and the high dose (5 mg/kg bw/day) was corresponding to its no observed adverse effect level (NOAEL). Biochemical analysis revealed that exposure to these bisphenols resulted in liver damage. Metabolomics analysis showed disturbances of fatty acid and lipid metabolism in bisphenol-exposed mouse livers. BPF and BPAF exposure reduced lipid accumulation in HFD mouse liver by lowering glyceride and cholesterol levels. Transcriptomics analysis demonstrated that expression levels of genes related to fatty acid synthesis and metabolism were changed, which might be related to the activation of the PPAR signaling pathway. Besides, a feedback regulation mechanism might exist to maintain hepatic metabolic homeostasis. For the first time, this study demonstrated the effects of BPF and BPAF exposure in HFD-mouse liver. Considering the reality of the high prevalence of obesity nowadays and the ubiquitous environmental distribution of bisphenols, this study provides insight and highlights the adverse effects of BPA alternatives, further contributing to the consideration of the safe use of such compounds.
Collapse
Affiliation(s)
- Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hexia Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jialing Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Long Zhang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Shuchao Wei
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Fangyi Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Herbstman JB, Romano ME, Li X, Jacobson LP, Margolis AE, Hamra GB, Bennett DH, Braun JM, Buckley JP, Colburn T, Deoni S, Hoepner LA, Morello-Frosch R, Riley KW, Sathyanarayana S, Schantz SL, Trasande L, Woodruff TJ, Perera FP, Karagas MR. Characterizing changes in behaviors associated with chemical exposures during the COVID-19 pandemic. PLoS One 2023; 18:e0277679. [PMID: 36638141 PMCID: PMC9838870 DOI: 10.1371/journal.pone.0277679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
The COVID-19 pandemic-and its associated restrictions-have changed many behaviors that can influence environmental exposures including chemicals found in commercial products, packaging and those resulting from pollution. The pandemic also constitutes a stressful life event, leading to symptoms of acute traumatic stress. Data indicate that the combination of environmental exposure and psychological stress jointly contribute to adverse child health outcomes. Within the Environmental influences on Child Health Outcomes (ECHO)-wide Cohort, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether there were pandemic-related changes in behavior that may be associated with environmental exposures. A total of 1535 participants from nine cohorts completed a survey via RedCap from December 2020 through May 2021. The questionnaire identified behavioral changes associated with the COVID-19 pandemic in expected directions, providing evidence of construct validity. Behavior changes reported by at least a quarter of the respondents include eating less fast food and using fewer ultra-processed foods, hair products, and cosmetics. At least a quarter of respondents reported eating more home cooked meals and using more antibacterial soaps, liquid soaps, hand sanitizers, antibacterial and bleach cleaners. Most frequent predictors of behavior change included Hispanic ethnicity and older age (35 years and older). Respondents experiencing greater COVID-related stress altered their behaviors more than those not reporting stress. These findings highlight that behavior change associated with the pandemic, and pandemic-related psychological stress often co-occur. Thus, prevention strategies and campaigns that limit environmental exposures, support stress reduction, and facilitate behavioral change may lead to the largest health benefits in the context of a pandemic. Analyzing biomarker data in these participants will be helpful to determine if behavior changes reported associate with measured changes in exposure.
Collapse
Affiliation(s)
- Julie B. Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, United States of America
| | - Xiuhong Li
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Lisa P. Jacobson
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Amy E. Margolis
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California—Davis, Davis, CA, United States of America
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
| | - Jessie P. Buckley
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Trina Colburn
- Department of Child Health, Behavior, and Development, Seattle Children’s Hospital, Seattle, WA, United States of America
| | - Sean Deoni
- Department of Pediatrics, Rhode Island Hospital, Providence, RI, United States of America
| | - Lori A. Hoepner
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health and Department of Environmental and Occupational Health Sciences, SUNY Downstate Health Sciences University School of Public Health, New York, NY, United States of America
| | - Rachel Morello-Frosch
- Department of Environmental Health Sciences, University of California—Berkeley, Berkeley, CA, United States of America
| | - Kylie Wheelock Riley
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Health, New York, NY, United States of America
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington and Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Susan L. Schantz
- Department of Comparative Biosciences, University of Illinois—Urbana-Champaign, Champaign, IL, United States of America
| | - Leonardo Trasande
- Departments of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Tracey J. Woodruff
- Department of Obstetrics and Gynecology, University of California San Francisco School of Medicine, San Francisco, CA, United States of America
| | - Frederica P. Perera
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Margaret R. Karagas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, United States of America
| | | |
Collapse
|
22
|
Qin JY, Jia W, Ru S, Xiong JQ, Wang J, Wang W, Hao L, Zhang X. Bisphenols induce cardiotoxicity in zebrafish embryos: Role of the thyroid hormone receptor pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106354. [PMID: 36423468 DOI: 10.1016/j.aquatox.2022.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bisphenols are frequently found in the environment and have been of emerging concern because of their adverse effects on aquatic animals and humans. In this study, we demonstrated that bisphenol A, S, and F (BPA, BPS, BPF) at environmental concentrations induced cardiotoxicity in zebrafish embryos. BPA decreased heart rate at 96 hpf (hours post fertilization) and increased the distance between the sinus venosus (SV) and bulbus arteriosus (BA), in zebrafish. BPF promoted heart pumping and stroke volume, shortened the SV-BAdistance, and increased body weight. Furthermore, we found that BPA increased the expression of the dio3b, thrβ, and myh7 genes but decreased the transcription of dio2. In contrast, BPF downregulated the expression of myh7 but upregulated that of thrβ. Molecular docking results showed that both BPA and BPF are predicted to bind tightly to the active pockets of zebrafish THRβ with affinities of -4.7 and -4.77 kcal/mol, respectively. However, BPS did not significantly affect dio3b, thrβ, and myh7 transcription and had a higher affinity for zebrafish THRβ (-2.13 kcal/mol). These findings suggest that although BPA, BPS, and BPF have similar structures, they may induce cardiotoxicity through different molecular mechanisms involving thyroid hormone systems. This investigation provides novel insights into the potential mechanism of cardiotoxicity from the perspective of thyroid disruption and offer a cautionary role for the use of BPA substitution.
Collapse
Affiliation(s)
- Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenyi Jia
- College of urban and environmental sciences, Peking University, Beijing 100871, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
23
|
Luo C, Deng J, Chen L, Wang Q, Xu Y, Lyu P, Zhou L, Shi Y, Mao W, Yang X, Xiong G, Liu Z, Hao L. Phthalate acid esters and polycyclic aromatic hydrocarbons concentrations with their determining factors among Chinese pregnant women: A focus on dietary patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158344. [PMID: 36058337 DOI: 10.1016/j.scitotenv.2022.158344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pregnant women are susceptible to adverse health effects associated with phthalate acid esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs), and diet is a significant exposure source. Little is known about the contributions of dietary patterns during pregnancy to the exposure variability of these environmental contaminants. OBJECTIVES To identify dietary patterns in relation to PAEs and PAHs exposure in the Chinese pregnant population. METHODS Dietary data and urinary concentrations of environmental pollutants were obtained from 1190 pregnant women in the Tongji Birth Cohort (TJBC). PAEs and PAHs were measured in spot urine samples. Food intake was assessed using a food-frequency questionnaire. Dietary patterns were constructed by principal component analysis (PCA). Through PCA, we also extracted three chemical mixture scores that represent different co-exposure patterns of PAEs and PAHs. Multiple linear regression models were adopted to identify predictors of PAEs and PAHs exposure. RESULTS Four dietary patterns were identified by PCA that explained 44.9 % of the total variance of food intake. We found egg-dairy products pattern, whole grain-tuber crop pattern, and meat-aquatic products pattern were positively associated with specific pollutants exposure. In contrast, fruit-nut-vegetable pattern was negatively correlated with PAEs and PAHs exposure. Every SD increase in this pattern score was associated with 14.36 % reduced mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) (95 % CI: -24.50 ~ -2.96, p-trend = 0.01), 10.86 % reduced 2-hydroxynaphthalene (2-OHNap) (95 % CI: -20.07 ~ -0.60, p-trend = 0.04), 19.35 % reduced 9-hydroxyphenanthrene (9-OHPhe) (95 % CI: -34.49 ~ -0.70, p-trend = 0.01), and 8.33 % reduced scores of PAHs group (95 % CI: -15.97 ~ -0.10, p-trend = 0.02). In addition, disposable tableware usage and passive smoking were suggested as potentially modifiable sources of PAEs and PAHs exposure, respectively. CONCLUSION Adhering to egg-dairy products pattern, whole grain-tuber crop pattern, and meat-aquatic products pattern may be related to increased PAEs and PAHs exposure, while following fruit-nut-vegetable pattern seems to correlate with a lower burden of such exposure.
Collapse
Affiliation(s)
- Can Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Deng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Leilei Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing 100022, PR China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guoping Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Wuhan, China
| | - Zhaoping Liu
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing 100022, PR China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
24
|
Blaauwendraad SM, Wahab RJ, van Rijn BB, Koletzko B, Jaddoe VWV, Gaillard R. Associations of Early Pregnancy Metabolite Profiles with Gestational Blood Pressure Development. Metabolites 2022; 12:metabo12121169. [PMID: 36557206 PMCID: PMC9785484 DOI: 10.3390/metabo12121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Blood pressure development plays a major role in both the etiology and prediction of gestational hypertensive disorders. Metabolomics might serve as a tool to identify underlying metabolic mechanisms in the etiology of hypertension in pregnancy and lead to the identification of novel metabolites useful for the prediction of gestational hypertensive disorders. In a population-based, prospective cohort study among 803 pregnant women, liquid chromatography—mass spectrometry was used to determine serum concentrations of amino-acids, non-esterified fatty acids, phospholipids and carnitines in early pregnancy. Blood pressure was measured in each trimester of pregnancy. Information on gestational hypertensive disorders was obtained from medical records. Higher individual metabolite concentrations of the diacyl-phosphatidylcholines and acyl-lysophosphatidylcholines group were associated with higher systolic blood pressure throughout pregnancy (Federal Discovery Rate (FDR)-adjusted p-values < 0.05). Higher concentrations of one non-esterified fatty acid were associated with higher diastolic blood pressure throughout pregnancy (FDR-adjusted p-value < 0.05). Using penalized regression, we identified 12 individual early-pregnancy amino-acids, non-esterified fatty acids, diacyl-phosphatidylcholines and acyl-carnitines and the glutamine/glutamic acid ratio, that were jointly associated with larger changes in systolic and diastolic blood pressure from first to third trimester. These metabolites did not improve the prediction of gestational hypertensive disorders in addition to clinical markers. In conclusion, altered early pregnancy serum metabolite profiles mainly characterized by changes in non-esterified fatty acids and phospholipids metabolites are associated with higher gestational blood pressure throughout pregnancy within the physiological ranges. These findings are important from an etiological perspective and, after further replication, might improve the early identification of women at increased risk of gestational hypertensive disorders.
Collapse
Affiliation(s)
- Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Rama J. Wahab
- The Generation R Study Group, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Bas B. van Rijn
- Department of Gynecology and Obstetrics, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, LMU—Ludwig-Maximilians Universität München, 80337 Munich, Germany
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
25
|
Sol CM, Gaylord A, Santos S, Jaddoe VWV, Felix JF, Trasande L. Fetal exposure to phthalates and bisphenols and DNA methylation at birth: the Generation R Study. Clin Epigenetics 2022; 14:125. [PMID: 36217170 PMCID: PMC9552446 DOI: 10.1186/s13148-022-01345-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phthalates and bisphenols are non-persistent endocrine disrupting chemicals that are ubiquitously present in our environment and may have long-lasting health effects following fetal exposure. A potential mechanism underlying these exposure-outcome relationships is differential DNA methylation. Our objective was to examine the associations of maternal phthalate and bisphenol concentrations during pregnancy with DNA methylation in cord blood using a chemical mixtures approach. METHODS This study was embedded in a prospective birth cohort study in the Netherlands and included 306 participants. We measured urine phthalates and bisphenols concentrations in the first, second and third trimester. Cord blood DNA methylation in their children was processed using the Illumina Infinium HumanMethylation450 BeadChip using an epigenome-wide association approach. Using quantile g-computation, we examined the association of increasing all mixture components by one quartile with cord blood DNA methylation. RESULTS We did not find evidence for statistically significant associations of a maternal mixture of phthalates and bisphenols during any of the trimesters of pregnancy with DNA methylation in cord blood (all p values > 4.01 * 10-8). However, we identified one suggestive association (p value < 1.0 * 10-6) of the first trimester maternal mixture of phthalates and bisphenols and three suggestive associations of the second trimester maternal mixture of phthalates and bisphenols with DNA methylation in cord blood. CONCLUSIONS Although we did not identify genome-wide significant results, we identified some suggestive associations of exposure to a maternal mixture of phthalates and bisphenols in the first and second trimester with DNA methylation in cord blood that need further exploration in larger study samples.
Collapse
Affiliation(s)
- Chalana M. Sol
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Abigail Gaylord
- grid.137628.90000 0004 1936 8753Department of Population Health, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY 10016 USA
| | - Susana Santos
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W. V. Jaddoe
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F. Felix
- grid.5645.2000000040459992XThe Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Pediatrics, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Population Health, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,Department of Pediatrics, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,Department of Environmental Medicine, New York University School of Medicine, 403 East 34th Street, Room 115, New York City, NY, 10016, USA. .,New York Wagner School of Public Service, New York City, NY, 10016, USA. .,New York University Global Institute of Public Health, New York City, NY, 10016, USA.
| |
Collapse
|
26
|
Blaauwendraad SM, Jaddoe VW, Santos S, Kannan K, Dohle GR, Trasande L, Gaillard R. Associations of maternal urinary bisphenol and phthalate concentrations with offspring reproductive development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119745. [PMID: 35820574 DOI: 10.1016/j.envpol.2022.119745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Fetal exposure to bisphenols and phthalates may influence development of the reproductive system. In a population-based, prospective cohort study of 1059 mother-child pairs, we examined the associations of maternal gestational urinary bisphenols and phthalates concentrations with offspring reproductive development from infancy until 13 years. We measured urinary bisphenol and phthalate concentrations in each trimester. We obtained information on cryptorchidism or hypospadias after birth from medical records. At 9.7 years, we measured testicular and ovarian volume by MRI. At 13.5 years, we measured child Tanner stages and menstruation through questionnaire. We performed linear or logistic regression models for boys and girls to assess the associations of maternal urinary average and trimester-specific bisphenols and phthalates with child reproductive outcomes. Next, to further explore potential synergistic or additive effects of exposures together, we performed mixed exposure models using a quantile g computation approach. Models were adjusted for maternal age, ethnicity, body-mass index, education, parity, energy intake, smoking and alcohol use, and child's gestational age at birth, birthweight and body-mass index. In boys, no associations of maternal gestational phthalate or bisphenol with offspring cryptorchidism and hypospadias were found. Higher maternal high-molecular-weight phthalate and total bisphenol, but not phthalic acid or low-molecular-weight phthalate, were associated with larger child testicular volume at 10 years. Higher maternal phthalic acid and total bisphenol were associated with earlier genital and pubic hair development at 13 years, respectively (p-values<0.05). In girls, we found no associations of maternal urinary bisphenol and phthalate with ovarian volume or menstrual age. Only higher maternal urinary high-molecular-weight phthalate was associated with earlier pubic hair development at 13 years (p-values <0.05). Higher mixture exposure was associated with earlier pubic hair development in both sexes. In conclusion, higher maternal gestational urinary bisphenol and phthalate concentrations were associated with alterations in offspring reproductive development, mainly in boys.
Collapse
Affiliation(s)
- Sophia M Blaauwendraad
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA
| | - Gert R Dohle
- Department of Urology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Leonardo Trasande
- Department of Paediatrics, New York University School of Medicine, New York City, NY, 10016, USA; Department of Environmental Medicine, New York University School of Medicine, New York City, NY, 10016, USA; Department of Population Health, New York University School of Medicine, New York City, NY, USA; New York University Wagner School of Public Service, New York City, NY, 10016, USA; New York University College of Global Public Health, New York City, NY, 10016, USA
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
27
|
Liu H, Wang Y, Kannan K, Liu M, Zhu H, Chen Y, Kahn LG, Jacobson MH, Gu B, Mehta-Lee S, Brubaker SG, Ghassabian A, Trasande L. Determinants of phthalate exposures in pregnant women in New York City. ENVIRONMENTAL RESEARCH 2022; 212:113203. [PMID: 35358547 PMCID: PMC9232940 DOI: 10.1016/j.envres.2022.113203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 05/17/2023]
Abstract
Previous studies have provided data on determinants of phthalates in pregnant women, but results were disparate across regions. We aimed to identify the food groups and demographic factors that predict phthalate exposure in an urban contemporary pregnancy cohort in the US. The study included 450 pregnant women from the New York University Children's Health and Environment Study in New York City. Urinary concentrations of 22 phthalate metabolites, including metabolites of di-2-ethylhexylphthalate (DEHP), were determined at three time points across pregnancy by liquid chromatography coupled with tandem mass spectrometry. The Diet History Questionnaire II was completed by pregnant women at mid-pregnancy to assess dietary information. Linear mixed models were fitted to examine determinants of urinary phthalate metabolite concentrations. Using partial-linear single-index (PLSI) models, we assessed the major contributors, among ten food groups, to phthalate exposure. Metabolites of DEHP and its ortho-phthalate replacement, diisononyl phthalate (DiNP), were found in >90% of the samples. The sum of creatinine-adjusted DiNP metabolite concentrations was higher in older and single women and in samples collected in summer. Hispanic and non-Hispanic Black women had lower urinary concentrations of summed metabolites of di-n-octyl phthalate (DnOP), but higher concentrations of low molecular weight phthalates compared with non-Hispanic White women. Each doubling of grain products consumed was associated with a 20.9% increase in ∑DiNP concentrations (95%CI: 4.5, 39.9). PLSI models revealed that intake of dried beans and peas was the main dietary factor contributing to urinary ∑DEHP, ∑DiNP, and ∑DnOP levels, with contribution proportions of 76.3%, 35.8%, and 27.4%, respectively. Urinary metabolite levels of phthalates in pregnant women in NYC varied by age, marital status, seasonality, race/ethnicity, and diet. These results lend insight into the major determinants of phthalates levels, and may be used to identify exposure sources and guide interventions to reduce exposures in susceptible populations.
Collapse
Affiliation(s)
- Hongxiu Liu
- Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China; Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yuyan Wang
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Hongkai Zhu
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Yu Chen
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Melanie H Jacobson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Gu
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Shilpi Mehta-Lee
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, New York University Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA
| |
Collapse
|
28
|
Yang Z, Zhang T, Shan D, Li L, Wang S, Li Y, Du R, Wu S, Jin L, Lu X, Shang X, Wang Q. Associations between phthalate exposure and thyroid function in pregnant women during the first trimester. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113884. [PMID: 35853363 DOI: 10.1016/j.ecoenv.2022.113884] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a class of environmental endocrine disruptors. Previous studies have demonstrated that phthalate exposure can affect thyroid function; however, limited studies have assessed the associations between phthalate exposure and thyroid function, especially thyroid autoimmunity in pregnant women during the first trimester. We recruited participants from a cohort of pregnant women in Beijing, China, and collected urine samples to measure ten phthalate metabolites, serum samples to measure free thyroxine (FT4), thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb) during the first trimester. We included 325 pregnant women without thyroid diseases or dysfunction in this study. Associations between phthalate metabolites and thyroid function parameters were assessed with the Bayesian kernel machine regression (BKMR) model, multiple linear regression model, and restricted cubic spline. In the BKMR model analysis, compared to the 50th percentile, total urinary phthalate metabolites levels were negatively associated with serum TPOAb levels when phthalate metabolites were at or below the 40th percentile. Stratifying by body mass index, total urinary phthalate metabolites levels were negatively associated with serum TPOAb levels in normal weight women when phthalate metabolites were at or below the 45th percentile. However, total urinary phthalate metabolites levels were positively associated with serum TPOAb levels in underweight women when phthalate metabolites were at or below the 30th percentile. In restricted cubic spline analysis, L-shaped nonlinear associations of mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), di-(2-ethylhexyl) phthalate (ΣDEHP), and inverted S-shaped nonlinear association of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with TPOAb were observed. In conclusion, our findings suggest that phthalate exposure may affect thyroid autoimmunity in underweight pregnant women during early pregnancy, and the potential effects of phthalate exposure on thyroid autoimmunity may be nonlinear.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Danping Shan
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shuo Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ruihu Du
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Lu
- Maternal and Child Health Care Hospital of Haidian District, Beijing 100080, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
29
|
Uldbjerg CS, Lim YH, Krause M, Frederiksen H, Andersson AM, Bräuner EV. Sex-specific associations between maternal exposure to parabens, phenols and phthalates during pregnancy and birth size outcomes in offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155565. [PMID: 35508231 DOI: 10.1016/j.scitotenv.2022.155565] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Current evidence on the effects of prenatal exposure to endocrine disrupting chemicals on birth size remains largely inconclusive. We aimed to investigate sex-specific associations between maternal exposure to parabens, phenols and phthalates during pregnancy and birth weight, length and head/abdominal circumferences. We performed a prospective study of 88 pregnant women who underwent amniocentesis in the period 2012 to 2014. Maternal urine samples were collected during pregnancy in weeks 12 to 36 (median: 18 weeks). The concentrations of parabens, phenols and individual phthalate diester metabolites were analyzed by isotope-diluted liquid chromatography-tandem mass spectrometry and osmolality adjusted. Linear regression models estimated the associations between urinary levels of selected compounds (tertile(T2-T3)medium/high versus T1low exposure) and birth size, stratified by offspring sex. A total of three parabens, two phenols, four individual phthalate metabolites and four sums of diester metabolites were detectable above limits of detection in at least 60% of urine samples. Overall, we observed few statistically significant associations, but medium/high exposure to bisphenol A (BPA) in male offspring was associated with statistically significant lower birth size across most outcomes [birth weight: -428 g (95% CI -756 to -99.4); birth length: -1.76 cm (95% CI -3.28 to -0.25); abdominal circumference: -1.97 cm (95% CI -3.55 to -0.39)]. Similarly, medium/high exposure to methyl paraben (MeP) in male offspring was associated with lower birth weight (-661 g, 95% CI -1251 to -70.7) and length (-3.11 cm, 95% CI -5.76 to -0.46) compared to low exposure. None of these associations were statistically significant in female offspring. Across all compounds, individual exposures were associated with more negative estimates of birth weight for male than for female offspring. Our study indicates that prenatal exposure to BPA and MeP may negatively affect birth size outcomes, with a possible sex effect. Given the small sample size, these findings need to be replicated in future larger studies.
Collapse
Affiliation(s)
- Cecilie S Uldbjerg
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Marianna Krause
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Elvira V Bräuner
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
30
|
Abrantes-Soares F, Lorigo M, Cairrao E. Effects of BPA substitutes on the prenatal and cardiovascular systems. Crit Rev Toxicol 2022; 52:469-498. [PMID: 36472586 DOI: 10.1080/10408444.2022.2142514] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.
Collapse
Affiliation(s)
- Fatima Abrantes-Soares
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
31
|
Li A, Wang F, Tao L, Ma C, Bi L, Song M, Jiang G. Rapid and simultaneous determination of multiple endocrine-disrupting chemicals and their metabolites in human serum and urine samples. Talanta 2022; 248:123639. [PMID: 35661003 DOI: 10.1016/j.talanta.2022.123639] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Bisphenols, parabens, and their metabolites are a group of chemical compounds with a wide range of polarities but similar chemical structures, which presents a challenge for the simultaneous determination of these compounds in complex biological samples. In this study, a rapid and sensitive method for simultaneous quantification of free bisphenol A (BPA), conjugated BPA, bisphenols, and parabens analogs was developed using solid-phase extraction (SPE) tandem liquid-liquid extraction (LLE). We compared the effects of different types of SPE cartridges, diluents, and LLE solvents on the analyte recovery. Utilizing the direct and indirect determination methods (enzyme hydrolysis), we confirmed the accuracy of the direct method for measuring BPA glucuronide and BPA disulfate. The method enabled the analysis of 24 endocrine-disrupting chemicals (EDCs) in one injection through UHPLC-MSMS measurements, with satisfactory recovery (mean: 91.8-98.6% for urine, 80.2%-96.8% for serum) and precision (RSD <15%). The LOD and LOQ values were 0.003 and 0.01 ng/mL for serum, and 0.002 and 0.006 ng/mL for urine samples, respectively. For real sample analysis, the median concentration of analytes in serum and urine samples ranged from 0.04 ng/mL (BPS) to 56.4 ng/mL (4-HB) and 0.11 ng/mL (BPA) to 136 ng/mL (4-HB), respectively. This method provides a new strategy to simultaneously identify compounds with a wide range of polarities from complicated biological matrices.
Collapse
Affiliation(s)
- Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Le Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Téteau O, Liere P, Pianos A, Desmarchais A, Lasserre O, Papillier P, Vignault C, Lebachelier de la Riviere ME, Maillard V, Binet A, Uzbekova S, Saint-Dizier M, Elis S. Bisphenol S Alters the Steroidome in the Preovulatory Follicle, Oviduct Fluid and Plasma in Ewes With Contrasted Metabolic Status. Front Endocrinol (Lausanne) 2022; 13:892213. [PMID: 35685208 PMCID: PMC9172638 DOI: 10.3389/fendo.2022.892213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Philippe Liere
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Pianos
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
| | | | | | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Chirurgie pédiatrique viscérale, urologique, plastique et brûlés, CHRU de Tours, Tours, France
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
33
|
Ao J, Wang Y, Tang W, Aimuzi R, Luo K, Tian Y, Zhang Q, Zhang J. Patterns of environmental exposure to phenols in couples who plan to become pregnant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153520. [PMID: 35101495 DOI: 10.1016/j.scitotenv.2022.153520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Phenols are widely used in consumer products and known for their reproductive toxicities. Little is known regarding the environmental exposure to phenols in couples prior to conception, a key period affecting fertility. We measured the urinary concentrations of six parabens and seven bisphenols in 903 pre-conception couples in China. We investigated the occurrence, distribution, source and health risk of phenols in husbands and wives separately, and the correlation and difference in phenol concentrations between couples. Similar distribution profiles of urinary phenols were observed between females and males. Methyl 4-hydroxybenzoate (MeP) and bisphenol A (BPA) were the predominant compounds. The level of urinary phenols in our population was mostly lower than the global levels. Exposure to phenols was linked to processed food and personal care products. The correlations between phenols in males and females were moderate (0.218-0.686), while the correlation in phenols between husband and wife was low (0.009-0.215). Female had a significantly higher urinary phenol levels than male (P < 0.05). Urinary phenols in couples were associated with family income, type of drinking water and frequency of household cleaning. Household factors accounted for ≤1.5% of variance in phenol levels between couples, suggesting that individual variations may be the major factor. Risk assessment showed that exposure to phenols posed a low hazard to 17.5% of the couples in our population. Our findings provide important evidence of environmental exposure to phenols in couples of child-bearing age.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruxianguli Aimuzi
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
34
|
Tyner MD, Maloney MO, Kelley BJ, Combelles CM. Comparing the Effects of Bisphenol A, C, and F on Bovine Theca Cells In Vitro. Reprod Toxicol 2022; 111:27-33. [DOI: 10.1016/j.reprotox.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
35
|
Dias P, Tvdrý V, Jirkovský E, Dolenc MS, Peterlin Mašič L, Mladěnka P. The effects of bisphenols on the cardiovascular system. Crit Rev Toxicol 2022; 52:66-87. [PMID: 35394415 DOI: 10.1080/10408444.2022.2046690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bisphenols, endocrine disrupting chemicals, have frequently been used for producing food packaging materials. The best-known member, bisphenol A (BPA), has been linked to impaired foetal development in animals. Possible negative effects of BPA on human health have resulted in the production of novel, so-called next-generation (NextGen) bisphenols whose effects on humans are much less explored or even missing. This review aimed to summarise and critically assess the main findings and shortages in current bisphenol research in relation to their potential impact on the cardiovascular system in real biological exposure. Because of the common presence of bisphenols in daily use products, humans are clearly exposed to these compounds. Most data are available on BPA, where total serum levels (i.e. included conjugated metabolite) can reach up to ∼430 nM, while free bisphenol levels have been reported up to ∼80 nM. Limited data are available for other bisphenols, but maximal serum levels of bisphenol S have been reported (680 nM). Such levels seem to be negligible, although in vitro studies have showed effects on ion channels, and thyroid, oestrogenic and androgenic receptors in low micromolar concentrations. Ex vivo studies suggest vasodilatory effects of bisphenols. This stays in clear contrast to the elevation of arterial blood pressure documented in vivo and in observatory cross-sectional human studies. Bisphenols are also claimed to have a negative effect on lipidic spectrum and coronary artery disease. Regardless, the reported data are generally inconsistent and unsatisfactory. Hence novel well-designed studies, testing in particular NextGen bisphenols, are needed.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Václav Tvdrý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
36
|
Pacyga DC, Haggerty DK, Nicol M, Henning M, Calafat AM, Braun JM, Schantz SL, Strakovsky RS. Identification of profiles and determinants of maternal pregnancy urinary biomarkers of phthalates and replacements in the Illinois Kids Development Study. ENVIRONMENT INTERNATIONAL 2022; 162:107150. [PMID: 35247685 PMCID: PMC8967784 DOI: 10.1016/j.envint.2022.107150] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND/OBJECTIVES Pregnant women are exposed to multiple phthalates and their replacements, which are endocrine disrupting chemicals associated with adverse maternal and child health outcomes. Identifying maternal characteristics associated with phthalate/replacement exposure during pregnancy is important. METHODS We evaluated 13 maternal sociodemographic and lifestyle factors, enrollment year, and conception season as determinants of exposure biomarkers of phthalates and their replacements in 482 pregnant women from the Illinois Kids Development Study (I-KIDS, enrolled 2013-2018). We quantified 19 phthalate/replacement metabolites in pools of five first-morning urines collected across pregnancy. K-means clustering identified women with distinct patterns of biomarker concentrations and principal component analysis (PCA) identified principal component (PC) profiles of biomarkers that exist together. We used multivariable regression models to evaluate associations of predictors with identified k-means clusters and PCs. RESULTS K-means clustering identified two clusters of women: 1) low phthalate/di(2-ethylhexyl) terephthalate (∑DEHTP) and 2) high phthalate/∑DEHTP biomarker concentrations. PCA identified four PCs with loadings heaviest for biomarkers of plasticizer phthalates [di-isononyl, di-isodecyl, di-n-octyl phthalates] (PC1), of other phthalates [dibenzyl, di-n-butyl, di-iso-butyl phthalates] (PC2), of phthalate replacements [∑DEHTP, di(isononyl) cyclohexane-1,2-dicarboxylate (∑DiNCH)] (PC3), and of monoethyl phthalate [MEP] (PC4). Overall, age, marital status, income, parity, pre-pregnancy BMI, caffeine intake, enrollment year, and conception season were independently associated with k-means cluster membership and at least one PC. Additionally, race/ethnicity, education, employment, pregnancy intention, smoking status, alcohol intake, and diet were associated with at least one PC. For instance, women who conceived in the spring, summer, and/or fall months had lower odds of high phthalate/∑DEHTP cluster membership and had lower plasticizer phthalate, phthalate replacement, and MEP PC scores. CONCLUSIONS Conception season, enrollment year, and several sociodemographic/lifestyle factors were predictive of phthalate/replacement biomarker profiles. Future studies should corroborate these findings, with a special focus on replacements to which pregnant women are becoming increasingly exposed.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Diana K Haggerty
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA
| | - Megan Nicol
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA
| | - Melissa Henning
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
| | - Susan L Schantz
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL 61801, USA; The Beckman Institute, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
37
|
Abellan A, Mensink-Bout SM, Garcia-Esteban R, Beneito A, Chatzi L, Duarte-Salles T, Fernandez MF, Garcia-Aymerich J, Granum B, Iñiguez C, Jaddoe VWV, Kannan K, Lertxundi A, Lopez-Espinosa MJ, Philippat C, Sakhi AK, Santos S, Siroux V, Sunyer J, Trasande L, Vafeiadi M, Vela-Soria F, Yang TC, Zabaleta C, Vrijheid M, Duijts L, Casas M. In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: a prospective meta-analysis of 8 European birth cohorts. ENVIRONMENT INTERNATIONAL 2022; 162:107178. [PMID: 35314078 DOI: 10.1016/j.envint.2022.107178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In utero exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only. OBJECTIVE To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex. METHODS We included 3,007 mother-child pairs from eight European birth cohorts. Bisphenol concentrations were determined in maternal urine samples collected during pregnancy (1999-2010). Between 7 and 11 years of age, current asthma and wheeze were assessed from questionnaires and lung function by spirometry. Wheezing patterns were constructed from questionnaires from early to mid-childhood. We performed adjusted random-effects meta-analysis on individual participant data. RESULTS Exposure to BPA was prevalent with 90% of maternal samples containing concentrations above detection limits. BPF and BPS were found in 27% and 49% of samples. In utero exposure to BPA was associated with higher odds of current asthma (OR = 1.13, 95% CI = 1.01, 1.27) and wheeze (OR = 1.14, 95% CI = 1.01, 1.30) (p-interaction sex = 0.01) among girls, but not with wheezing patterns nor lung function neither in overall nor among boys. We observed inconsistent associations of BPF and BPS with the respiratory outcomes assessed in overall and sex-stratified analyses. CONCLUSION This study suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girls.
Collapse
Affiliation(s)
- Alicia Abellan
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Raquel Garcia-Esteban
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Mariana F Fernandez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Berit Granum
- Norwegian Institute of Public Health, Oslo, Norway
| | - Carmen Iñiguez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Department of Statistics and Operational Research. Universitat de València. València, Spain
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Preventive medicine and public health department, University of Basque Country (UPV/EHU), Leioa, Spain; Biodonostia Health research institute, Donostia-San Sebastian, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | | | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Valérie Siroux
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | | | | | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
38
|
Blaauwendraad SM, Gaillard R, Santos S, Sol CM, Kannan K, Trasande L, Jaddoe VW. Maternal Phthalate and Bisphenol Urine Concentrations during Pregnancy and Early Markers of Arterial Health in Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47007. [PMID: 35471947 PMCID: PMC9041527 DOI: 10.1289/ehp10293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Fetal exposure to endocrine-disrupting chemicals such as phthalates and bisphenols might lead to fetal cardiovascular developmental adaptations and predispose individuals to cardiovascular disease in later life. OBJECTIVES We examined the associations of maternal urinary bisphenol and phthalate concentrations in pregnancy with offspring carotid intima-media thickness and distensibility at the age of 10 y. METHODS In a population-based, prospective cohort study of 935 mother-child pairs, we measured maternal urinary phthalate and bisphenol concentrations at each trimester. Later, we measured child carotid intima-media thickness and distensibility in the children at age 10 y using ultrasound. RESULTS Maternal urinary average or trimester-specific phthalate concentrations were not associated with child carotid intima-media thickness at age 10 y. Higher maternal average concentrations of total bisphenol, especially bisphenol A, were associated with a lower carotid intima-media thickness [differences - 0.15 standard deviation score and 95% confidence interval (CI): - 0.24 , - 0.09 and - 0.13 (95% CI: - 0.22 , - 0.04 ) per interquartile range (IQR) increase in maternal urinary total bisphenol and bisphenol A concentration]. Trimester-specific analysis showed that higher maternal third-trimester total bisphenol and bisphenol A concentrations were associated with lower child carotid intima-media thickness [differences - 0.13 (95% CI: - 0.22 , - 0.04 ) and - 0.13 (95% CI: - 0.22 , - 0.05 ) per IQR increase in maternal urinary bisphenol concentration]. Maternal urinary bisphenol or phthalate concentrations were not associated with child carotid distensibility. DISCUSSION In this large prospective cohort, higher maternal urinary bisphenols concentrations were associated with smaller childhood carotid intima-media thickness. Further studies are needed to replicate this association and to identify potential underlying mechanisms. https://doi.org/10.1289/EHP10293.
Collapse
Affiliation(s)
- Sophia M. Blaauwendraad
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Chalana M. Sol
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- Department of Population Health, New York University School of Medicine, New York, New York, USA
- New York University Wagner School of Public Service, New York University, New York, New York, USA
- New York University College of Global Public Health, New York University, New York, New York, USA
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
39
|
Singh RD, Koshta K, Tiwari R, Khan H, Sharma V, Srivastava V. Developmental Exposure to Endocrine Disrupting Chemicals and Its Impact on Cardio-Metabolic-Renal Health. FRONTIERS IN TOXICOLOGY 2022; 3:663372. [PMID: 35295127 PMCID: PMC8915840 DOI: 10.3389/ftox.2021.663372] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Developmental origin of health and disease postulates that the footprints of early life exposure are followed as an endowment of risk for adult diseases. Epidemiological and experimental evidence suggest that an adverse fetal environment can affect the health of offspring throughout their lifetime. Exposure to endocrine disrupting chemicals (EDCs) during fetal development can affect the hormone system homeostasis, resulting in a broad spectrum of adverse health outcomes. In the present review, we have described the effect of prenatal EDCs exposure on cardio-metabolic-renal health, using the available epidemiological and experimental evidence. We also discuss the potential mechanisms of their action, which include epigenetic changes, hormonal imprinting, loss of energy homeostasis, and metabolic perturbations. The effect of prenatal EDCs exposure on cardio-metabolic-renal health, which is a complex condition of an altered biological landscape, can be further examined in the case of other environmental stressors with a similar mode of action.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ratnakar Tiwari
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University Chicago, Chicago, IL, United States
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
40
|
Beausoleil C, Le Magueresse-Battistoni B, Viguié C, Babajko S, Canivenc-Lavier MC, Chevalier N, Emond C, Habert R, Picard-Hagen N, Mhaouty-Kodja S. Regulatory and academic studies to derive reference values for human health: The case of bisphenol S. ENVIRONMENTAL RESEARCH 2022; 204:112233. [PMID: 34688643 DOI: 10.1016/j.envres.2021.112233] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
The close structural analogy of bisphenol (BP) S with BPA, a recognized endocrine-disrupting chemical and a substance of very high concern in the European Union, highlights the need to assess the extent of similarities between the two compounds and carefully scrutinize BPS potential toxicity for human health. This analysis aimed to investigate human health toxicity data regarding BPS, to find a point of departure for the derivation of human guidance values. A systematic and transparent methodology was applied to determine whether European or international reference values have been established for BPS. In the absence of such values, the scientific literature on human health effects was evaluated by focusing on human epidemiological and animal experimental studies. The results were analyzed by target organ/system: male and female reproduction, mammary gland, neurobehavior, and metabolism/obesity. Academic experimental studies were analyzed and compared to regulatory data including subchronic studies and an extended one-generation and reproduction study. In contrast to the regulatory studies, which were performed at dose levels in the mg/kg bw/day range, the academic dataset on specific target organs or systems showed adverse effects for BPS at much lower doses (0.5-10 μg/kg bw/day). A large disparity between the lowest-observed-adverse-effect levels (LOAELs) derived from regulatory and academic studies was observed for BPS, as for BPA. Toxicokinetic data on BPS from animal and human studies were also analyzed and showed a 100-fold higher oral bioavailability compared to BPA in a pig model. The similarities and differences between the two bisphenols, in particular the higher bioavailability of BPS in its active (non-conjugated) form and its potential impact on human health, are discussed. Based on the available experimental data, and for a better human protection, we propose to derive human reference values for exposure to BPS from the N(L)OAELs determined in academic studies.
Collapse
Affiliation(s)
| | | | - Catherine Viguié
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Nicolas Chevalier
- Université Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, INSERM U1065, C3M, Nice, France
| | - Claude Emond
- University of Montreal, School of Public Health, DSEST, Montreal, Quebec, Canada
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, University Paris Diderot, Institut National de la Santé et de la Recherche Médicale (Inserm) U 967 - CEA, Fontenay-aux-Roses, France
| | - Nicole Picard-Hagen
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| |
Collapse
|
41
|
Reed JM, Spinelli P, Falcone S, He M, Goeke CM, Susiarjo M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37010. [PMID: 35343813 PMCID: PMC8959013 DOI: 10.1289/ehp10640] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to miscarriages and pregnancy complications in humans. In contrast, the potential reproductive toxicity of BPA analogs, including tetrabromobisphenol A (TBBPA), is understudied. Furthermore, although environmental exposure has been linked to altered immune mediators, the effects of BPA and TBBPA on maternal-fetal immune tolerance during pregnancy have not been studied. The present study investigated whether exposure resulted in higher rates of pregnancy loss in mice, lower number of regulatory T cells (Tregs), and lower indoleamine 2,3 deoxygenase 1 (Ido1) expression, which provided evidence for mechanisms related to immune tolerance in pregnancy. OBJECTIVES The purpose of this investigation was to characterize the effects of BPA and TBBPA exposure on pregnancy loss in mice and to study the percentage and number of Tregs and Ido1 expression and DNA methylation. METHODS Analysis of fetal resorption and quantification of maternal and fetal immune cells by flow cytometry were performed in allogeneic and syngeneic pregnancies. Ido1 mRNA and protein expression, and DNA methylation in placentas from control and BPA- and TBBPA-exposed mice were analyzed using real-time quantitative polymerase chain reaction, immunofluorescence, and bisulfite sequencing analyses. RESULTS BPA and TBBPA exposure resulted in higher rates of hemorrhaging in early allogeneic, but not syngeneic, conceptuses. In allogeneic pregnancies, BPA and TBBPA exposure was associated with higher fetal resorption rates and lower maternal Treg number. Importantly, these differences were associated with lower IDO1 protein expression in trophoblast giant cells and higher mean percentage Ido1 DNA methylation in embryonic day 9.5 placentas from BPA- and TBBPA-exposed mice. DISCUSSION BPA- and TBBPA-induced pregnancy loss in mice was associated with perturbed IDO1-dependent maternal immune tolerance. https://doi.org/10.1289/EHP10640.
Collapse
Affiliation(s)
- Jasmine M. Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sierra Falcone
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Calla M. Goeke
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
42
|
Varghese B, Jala A, Das P, Borkar RM, Adela R. Estimation of parabens and bisphenols in maternal products and urinary concentrations in Indian pregnant women: daily intake and health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21642-21655. [PMID: 34767169 DOI: 10.1007/s11356-021-17298-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The presence of parabens and bisphenols in maternal products and usage during pregnancy have raised serious concern about their possible harm to pregnant women. The concentrations of six parabens and eight bisphenols were quantified by high-performance liquid chromatography-tandem mass spectrometry in the samples of commercially available herbal-based ayurvedic maternal products and urine of healthy pregnant women from Assam, India. Methyl paraben (MP) and bisphenol AF (BPAF) were found to be more dominant in the maternal products, whereas MP, bisphenol A (BPA), and BPAF were dominant in urine samples of healthy pregnant women. The sum of the mean concentrations of all forms of parabens and bisphenols in maternal products were 48,308.50 ng/g and 542.42 ng/g, respectively, and urine 101.33 ng/mL and 23.42 ng/mL, respectively. The estimated daily intake (EDI) of total parabens and bisphenols in maternal products were 7378.02 and 19.78 ng/kg body weight/day, respectively. EDI of total parabens and bisphenols from urinary concentrations were 690.12 and 111.33 μg/kg body weight/day, respectively. The concentrations of butyl (BP) and heptyl (HP) parabens have a significant positive correlation with birth weight. The hazard quotient (HQ) value of MP, EP, and BPA was less than 1, and margin of exposure (MOE) identified potential risk associated with propyl paraben. Results from Monte-Carlo risk assessment analysis did not exceed the acceptable daily intake (ADI). Our results showed that higher concentrations of parabens and bisphenols are present in maternal products and the urine of healthy pregnant women. Hence maternal products containing bisphenols and parabens should be used cautiously during pregnancy to avoid maternal and fetal complications.
Collapse
Affiliation(s)
- Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India, 781101
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India, 781101
| | - Panchanan Das
- Department of Obstetrics and Gynecology, Gauhati Medical College, Guwahati, India, 781032
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, India, 781101.
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, India, 781101.
| |
Collapse
|
43
|
van den Dries MA, Ferguson KK, Keil AP, Pronk A, Spaan S, Ghassabian A, Santos S, Jaddoe VWV, Trasande L, Tiemeier H, Guxens M. Prenatal Exposure to Nonpersistent Chemical Mixtures and Offspring IQ and Emotional and Behavioral Problems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16502-16514. [PMID: 34878787 PMCID: PMC11148873 DOI: 10.1021/acs.est.1c04455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prenatal exposure to nonpersistent chemicals such as phthalates, bisphenols, and organophosphate (OP) pesticides is ubiquitous and occurs in mixtures. So far, epidemiological studies investigating neurodevelopmental consequences of these exposures have mainly been restricted to single-pollutant models. Thus, we studied the association between prenatal exposure to nonpersistent chemical mixtures and child IQ and emotional and behavioral problems. Data came from 782 mother-child pairs. Eleven phthalate, one bisphenol, and five OP pesticide urinary exposure biomarkers were measured three times during pregnancy and averaged. Nonverbal IQ, internalizing and attention problems, aggressive behavior, and autistic traits were assessed at child age 6 years. We used quantile g-computation to estimate the change in each outcome per quartile increase in all chemicals within the mixture. Higher exposure to the mixture was associated with lower nonverbal IQ (-4.0 points (95%CI = -7.0, -1.0), -5.5 points (95%CI = -10.2, -0.9), and -4.6 points (95%CI = -10.8, 1.5) for the second, third, and fourth quartile, respectively, compared to the first quartile). These results were mainly driven by the phthalate mixture. No association was observed with emotional and behavioral problems. Prenatal exposure to nonpersistent chemical mixtures was associated with lower nonverbal IQ in children. Exposure to chemical mixtures during gestation is universal and may impact neurodevelopment.
Collapse
Affiliation(s)
- Michiel A van den Dries
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN The Netherlands
- ISGlobal, Barcelona, 08003, Spain
- Pompeu Fabra University, Barcelona, 08002, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina 27709, United States
| | - Alexander P Keil
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina 27709, United States
- Department of Epidemiology, University of North Carolina, Chapel Hill North Carolina 27516, United States
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, The Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, The Netherlands
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York City, New York 10016, United States
- Department of Environmental Medicine, New York University School of Medicine, New York City, New York 10016, United States
- Department of Population Health, New York University School of Medicine, New York City, New York 10016, United States
| | - Susana Santos
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York City, New York 10016, United States
- Department of Environmental Medicine, New York University School of Medicine, New York City, New York 10016, United States
- Department of Population Health, New York University School of Medicine, New York City, New York 10016, United States
- New York University Wagner School of Public Service, New York City, New York 10012, United States
- New York University College of Global Public Health, New York City, New York 10003, United States
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
- ISGlobal, Barcelona, 08003, Spain
- Pompeu Fabra University, Barcelona, 08002, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain
| |
Collapse
|
44
|
Li C, Zhao Y, Chen Y, Wang F, Tse LA, Wu X, Xiao Q, Deng Y, Li M, Kang L, Lu S. The internal exposure of bisphenol analogues in South China adults and the associated health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148796. [PMID: 34246145 DOI: 10.1016/j.scitotenv.2021.148796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/13/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is widely applied in industrial products and household products, leading to ubiquitous occurrences in environmental and biological samples. However, knowledge on human internal exposure to bisphenol analogues remains limited. Our study determined nine bisphenol analogues in urine samples collected from 1168 South China adults. BPA and bisphenol F (BPF) exhibited the highest detection frequencies in urine, i.e., 99.4% and 74.6%, respectively. BPA dominated over other analogues, with a median concentration of 1.74 μg/L, while BPF had a median concentration of 0.08 μg/L. Significant positive correlation was observed between urinary BPA and BPF (r = 0.201, p < 0.01), indicating similar exposure sources or pathways of these two chemicals. Urinary BPA concentrations were significantly correlated with age, marital status, drinking status and history of hyperlipidemia (p < 0.05). The median estimated daily intake (EDI) of Σ3BPs (the sum concentrations of BPA, BPF and BPAF) was determined to be 53.6 ng/kg-bw/day for adults. The EDIs were much lower than the temporary tolerable reference dose of BPA recommended by the European Food Safety Authority, indicating the bisphenol analogues presented no obvious health risks to South China adults.
Collapse
Affiliation(s)
- Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Feng Wang
- JC School of Public Health and Primary Care, the Chinese University of Hong Kong, New Territories, Hong Kong
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, the Chinese University of Hong Kong, New Territories, Hong Kong
| | - Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yilan Deng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Minhui Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Li Kang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
45
|
Li XN, Wu D, Liu Y, Zhang SS, Tian FL, Sun Q, Wei W, Cao X, Jia LH. Prenatal exposure to bisphenols, immune responses in cord blood and infantile eczema: A nested prospective cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112987. [PMID: 34781129 DOI: 10.1016/j.ecoenv.2021.112987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence shows that human exposure to bisphenols can increase the risk of allergic disease, such as child asthma. However, the mechanism by which exposure to bisphenols causes allergic disease is unclear. In addition, the effects of exposure to bisphenols during pregnancy on infantile eczema have been poorly studied. The aim of our study was to investigate the effect of bisphenols (BPA, BPF and BPS) exposure during pregnancy on immune cells in cord blood, and on the occurrence of infantile eczema. 111 mother-child pairs with urine samples from pregnant women and cord blood were recruited from a birth cohort established in February 2019 in Shenyang, China. The levels of urinary bisphenols and Th1-, Th2-, Treg- and Th17-related genes, and cytokines in cord blood, as well as the incidence of infantile eczema at 6 and 12 months follow up were determined. Our results show that BPA, BPF and BPS were detected in 100%, 63.1% and 46.8% of the urine samples, respectively. The median concentration of urine specific gravity adjusted BPA (SG-BPA) was 7.46 ng/mL. High SG-BPA levels during pregnancy was independently associated with increased risk of infantile eczema (adjusted OR = 2.731, 95%CI: 1.064-7.012, P = 0.037). Higher levels of FOXP3 gene in cord blood had a significantly lower risk of developing eczema in infants (adjusted OR=0.430, 95%CI: 0.190-0.972, P = 0.042). However, BPS and BPF levels were not associated with infantile eczema. FOXP3 gene levels in cord blood mediated the relationship between SG-BPA levels during pregnancy and infantile eczema (indirect effect: β = 0.350 [CI:0.011,1.077]). Our findings indicate that high levels of BPA exposure during pregnancy increase the risk of infantile eczema, which may be associated with down-regulation of FOXP3 gene expression in cord blood.
Collapse
Affiliation(s)
- Xue-Ning Li
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China; Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ying Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Shuang-Shuang Zhang
- Department of Pediatrics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Fu-Lin Tian
- Center for Public Health Safety Risk Assessment, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xia Cao
- Department of obstetrics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Li-Hong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang 110122, China.
| |
Collapse
|
46
|
Gayrard V, Moreau J, Picard-Hagen N, Helies V, Marchand P, Antignac JP, Toutain PL, Leandri R. Use of Mixture Dosing and Nonlinear Mixed Effect Modeling of Eight Environmental Contaminants in Rabbits to Improve Extrapolation Value of Toxicokinetic Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117006. [PMID: 34786950 PMCID: PMC8597046 DOI: 10.1289/ehp8957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Although in vivo studies of internal exposure to hazardous substances have been carried out for many years, there is room for progress to improve their informative value while adhering to the four R's: replacement, reduction, refinement, and responsibility rule. OBJECTIVES The objective of the study was to illustrate how toxicokinetic (TK) study design and data analysis can be implemented under the 4R rule to plan a chronic dosage regimen for investigating TK/toxicodynamic (TD) relationships. METHODS The intravenous (IV) and oral serum concentrations of eight hazardous environmental contaminants including 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (pp'DDE), ß-Hexachlorocyclohexane (β-HCH), hexachlorobenzene (HCB), 2,2'4,4'-tetrabromodiphenyl ether (BDE-47), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), di(2ethylhexyl)phthalate (DEHP), and bisphenol S (BPS) were obtained after mixture dosing in rabbits using a sparse sampling design. Data were comprehensively analyzed using nonlinear mixed effect (NLME) modeling. RESULTS The short persistence of BPS and of the DEHP metabolite (mono-2-ethylhexyl phthalate), reflected by their mean residence times (MRT) of a few hours, was due to their efficient clearance (CL, 3.2 and 0.47L/kg/h). The longer MRT of the other compounds (1-48 d) resulted either from their extremely low clearance (lower than 0.01L/kg/h for PFOA and PFOS) or from their very large volume of distribution (VSS) ranging from 33 to 45L/kg. Estimates of CL, VSS, and bioavailability were used to compute the oral loading and daily maintenance doses required to attain a nominal steady-state serum concentration of 1 ng/mL. Simulations with the NLME model were applied to predict the serum concentration profile and to contrast the differential rates of accumulation in the central vs. peripheral compartments. CONCLUSION NLME modeling of the IV and oral TK of hazardous environmental contaminants, in rabbits while fulfilling the 4R rule, was able to provide the physiological basis for interspecies extrapolation of exposure rates in a TK/TD approach to risk assessment. https://doi.org/10.1289/EHP8957.
Collapse
Affiliation(s)
- Véronique Gayrard
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Jessika Moreau
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Virginie Helies
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, Castanet Tolosan, France
| | | | | | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
- The Royal Veterinary College, University of London, London, UK
| | - Roger Leandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- Médecine de la Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
47
|
Liu X, Xue Q, Zhang H, Fu J, Zhang A. Structural basis for molecular recognition of G protein-coupled estrogen receptor by selected bisphenols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148558. [PMID: 34328988 DOI: 10.1016/j.scitotenv.2021.148558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Complicated ligand-dependent signaling pathways of bisphenol A (BPA) and its analogues involve not only intranuclear estrogen receptor but also membrane receptor G protein-coupled estrogen receptor (GPER). However, the structural basis for molecular recognition of GPER by the environmental chemicals remains unknown. To reveal the structural dependence of GPER recognition by bisphenols, a systematic molecular dynamics simulation study was performed for selected bisphenols with different electron hybrid orbitals and substituents on their C atoms connecting two phenol rings. BPA was used as a control, bisphenol C(BPC) as an example for a connecting C with sp2 hybrid orbitals to provide more ligand rigidity, bisphenol E(BPE) and bisphenol F(BPF) for decreased steric hindrance and hydrophobicity around the connecting C, and bisphenol B(BPB) and bisphenol AF(BPAF) for increased hydrophobicity and steric hindrance. All the tested bisphenols can bind with GPER at its classic orthosteric site to obtain GPER-ligand complexes, while van der Waals interactions and direct inter-molecular electrostatic energies provide the driving forces for ligand binding. Bulky substituents and structural rigidity of the connecting C dramatically impair hydrogen bonding between GPER and the bisphenols, which results in decreased contribution of both favorable intermolecular hydrogen bonds and unfavorable polar solvation effect to complex stability of BPB and BPC since decreased number of key residues is expected. Increase in substituent lipophilicity enhances the van der Waals interactions and favorable non-polar solvation effect. The six bisphenols of high structural similarity shared two key recognition residues, Leu137TM3 and Trp272TM6, the latter of which was in the highly conserved CWxP motif of TM6 and has been reported as key residue for G protein-coupled receptor activation. Based on the obtained knowledge, GPER affinity and relevant toxicity of BPA alternatives can be easily predicted, and the calculated binding free energies are consistent with the available experimental observations.
Collapse
Affiliation(s)
- Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, PR China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, PR China.
| |
Collapse
|
48
|
van den Dries MA, Keil AP, Tiemeier H, Pronk A, Spaan S, Santos S, Asimakopoulos AG, Kannan K, Gaillard R, Guxens M, Trasande L, Jaddoe VWV, Ferguson KK. Prenatal Exposure to Nonpersistent Chemical Mixtures and Fetal Growth: A Population-Based Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117008. [PMID: 34817287 PMCID: PMC8612241 DOI: 10.1289/ehp9178] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Prenatal exposure to mixtures of nonpersistent chemicals is universal. Most studies examining these chemicals in association with fetal growth have been restricted to single exposure models, ignoring their potentially cumulative impact. OBJECTIVE We aimed to assess the association between prenatal exposure to a mixture of phthalates, bisphenols, and organophosphate (OP) pesticides and fetal measures of head circumference, femur length, and weight. METHODS Within the Generation R Study, a population-based cohort in Netherlands (n=776), urinary concentrations of 11 phthalate metabolites, 3 bisphenols, and 5 dialkylphosphate (DAP) metabolites were measured at <18, 18-25, and >25 weeks of gestation and averaged. Ultrasound measures of head circumference, femur length, and estimated fetal weight (EFW) were taken at 18-25 and >25 weeks of gestation, and measurements of head circumference, length, and weight were performed at delivery. We estimated the difference in each fetal measurement per quartile increase in all exposures within the mixture with quantile g-computation. RESULTS The average EFW at 18-25 wk and >25wk was 369 and 1,626g, respectively, and the average birth weight was 3,451g. Higher exposure was associated with smaller fetal and newborn growth parameters in a nonlinear fashion. At 18-25 wk, fetuses in the second, third, and fourth quartiles of exposure (Q2-Q4) had 26g [95% confidence intervals (CI):-38, -13], 35g (95% CI: -55, -15), and 27g (95% CI: -54, 1) lower EFW compared with those in the first quartile (Q1). A similar dose-response pattern was observed at >25wk, but all effect sizes were smaller, and no association was observed comparing Q4 to Q1. At birth, we observed no differences in weight between Q1-Q2 or Q1-Q3. However, fetuses in Q4 had 91g (95% CI: -258, 76) lower birth weight in comparison with those in Q1. Results observed at 18-25 and >25wk were similar for femur length; however, no differences were observed at birth. No associations were observed for head circumference. DISCUSSION Higher exposure to a mixture of phthalates, bisphenols, and OP pesticides was associated with lower EFW in the midpregnancy period. In late pregnancy, these differences were similar but less pronounced. At birth, the only associations observed appeared when comparing individuals from Q1 and Q4. This finding suggests that even low levels of exposure may be sufficient to influence growth in early pregnancy, whereas higher levels may be necessary to affect birth weight. Joint exposure to nonpersistent chemicals may adversely impact fetal growth, and because these exposures are widespread, this impact could be substantial. https://doi.org/10.1289/EHP9178.
Collapse
Affiliation(s)
- Michiel A van den Dries
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anjoeka Pronk
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Suzanne Spaan
- Department Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Kurunthachalam Kannan
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, Netherlands
- ISGlobal, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
- Robert F. Wagner School of Public Service, New York University, New York, New York, USA
- School of Global Public Health, New York University, New York, New York, USA
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| |
Collapse
|
49
|
Rebai I, Fernandes JO, Azzouz M, Benmohammed K, Bader G, Benmbarek K, Cunha SC. Urinary bisphenol levels in plastic industry workers. ENVIRONMENTAL RESEARCH 2021; 202:111666. [PMID: 34265347 DOI: 10.1016/j.envres.2021.111666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor compound that is widely applied as a monomer base in polycarbonate plastics and as a binding agent in several epoxy resins. Plastic industry workers have usually heavier and prolonged exposures to BPA. Hence, the present work aims to assess the levels of BPA and their analogs (S, F, B, AF, Z, E, and AP) in 170 urine samples from a cross-sectional study of workers from a plastic industry located in north Constantine (Algeria). This work was complemented with a questionnaire about sexual functions and evaluation of sexual hormone levels. The results showed a stable presence of BPA (average of 3.24 μg/L), accounting for more than 90% of the total BPs. Of the remaining BP analogs, only trace amounts of BPB were detected in three samples (average of 2.73 μg/L). Significant associations with BPA urinary levels were noted with age (p = 0.006), occupational level of exposure (p = 0.023), and years of experience (p = 0.001).
Collapse
Affiliation(s)
- Iméne Rebai
- Laboratory of Toxicology, Faculty of Medicine, Salah Boubnider University 3, Constantine, Algeria; Laboratory of Preventive Medicine for Chronic Diseases, Salah Boubnider University 3, Constantine, Algeria.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Mohamed Azzouz
- Laboratory of Toxicology, Faculty of Medicine, Youcef Benkhedda University I, Algiers, Algeria
| | - Karima Benmohammed
- Laboratory of Preventive Medicine for Chronic Diseases, Salah Boubnider University 3, Constantine, Algeria; Endocrinology Department, Faculty of Medicine, Salah Boubnider University 3, Constantine, Algeria
| | - Ghania Bader
- Occupational Medicine Department, Local Health Establishment of Hamma Bouziane, Constantine, Algeria
| | - Karima Benmbarek
- Biochemistry Department, Faculty of Medicine, Salah Boubnider University 3, Constantine, Algeria
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
50
|
Recent advances in analysis of bisphenols and their derivatives in biological matrices. Anal Bioanal Chem 2021; 414:807-846. [PMID: 34652496 DOI: 10.1007/s00216-021-03668-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Biomonitoring is a very useful tool to evaluate human exposure to endocrine-disrupting compounds (EDCs), like bisphenols (BPs), which are widely used in the manufacture of plastics. The development of reliable analytical methods is key in the field of public health surveillance to obtain biomonitoring data to determine what BPs are reaching people's bodies. This review discusses recent methods for the quantitative measurement of bisphenols and their derivatives in biological samples like urine, blood, breast milk, saliva, and hair, among others. We also discuss the different procedures commonly used for sample treatment, which includes extraction and clean-up, and instrumental techniques currently used to determine these compounds. Sample preparation techniques continue to play an important role in the analysis of complex matrices, for liquid matrices the most commonly employed is solid-phase extraction, although microextraction techniques are gaining importance in this field, and for solid samples ultrasound-assisted extraction. The main instrumental techniques used are liquid and gas chromatography coupled with mass spectrometry. Finally, we present data on the main parameters obtained in the validation of the revised methods. This review focuses on various methods developed and applied for trace analysis of bisphenols, their conjugates, halogenated derivatives, and diglycidyl ethers in biological samples to enable the required selectivity and sensitivity. For this purpose, a review is carried out of the most recent relevant publications from 2016 up to present.
Collapse
|