1
|
Wang X, Lu Y, Li X, Wang M, Liu X, Huang H, Cao W, Liu Y, Ren L, Xu Y. Integrated metabolomics and transcriptomics analyses for understanding the mechanism underlying amantadine-induced toxicity in Laminaria japonica. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137616. [PMID: 39965339 DOI: 10.1016/j.jhazmat.2025.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
The antiviral agent, amantadine, is widely present in marine ecosystems and poses a significant threat to marine organisms. However, studies on the toxicity of amantadine across the full life cycle of the brown alga Laminaria japonica, particularly during the microscopic gametophyte stage, remain lacking. A comprehensive approach combing biochemical analyses and multi-omics techniques was employed to investigate the mechanisms underlying amantadine-induced toxicity in L. japonica gametophytes. The development rate of algal cells was less than 3 % from 103 to 107 ng/L of amantadine. In total, 1049 differentially expressed genes and 215-231 differential metabolites were detected, with the majority involved in amino acid, lipid, and carbohydrate metabolism. Integrated analysis showed that alginate biosynthesis and glycerophospholipid metabolism were affected, suggesting damage to the cell wall and membrane structure. Key genes (e.g., SOD2) and metabolites (e.g., arachidonic acid and α-linolenic acid), associated with the antioxidant system and arachidonic acid metabolism, were identified, leading to oxidative stress in the algae. Furthermore, the downregulation of genes and metabolites involved in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, and the pentose phosphate pathway may inhibit ATP supply and NADPH generation, negatively affecting metabolic processes and inhibiting algal cell growth. In contrast to disrupting protein synthesis in juvenile sporophytes, amantadine primarily interferes with photosynthesis and carbohydrate metabolism in gametophytes. These findings offer new insights into the mechanisms by which amantadine impedes the growth and metabolism of algae throughout their life cycle in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaohan Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yao Lu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiaojie Li
- Shandong Oriental Ocean Sci-Tech Co., Ltd., Shandong Technology Innovation Center of Algae and Sea Cucumber, Yantai 264003, China
| | - Minglei Wang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiaojing Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Hui Huang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Wei Cao
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yongchun Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Lihua Ren
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yingjiang Xu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China.
| |
Collapse
|
2
|
Ouaksel A, Carboni A, Slomberg D, Vidal V, Proux O, Santaella C, Brousset L, Angeletti B, Thiéry A, Rose J, Auffan M. Behavior and fate of ITER-like tungsten nanoparticles in freshwater ecosystems produced during operation and maintenance. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137201. [PMID: 39854992 DOI: 10.1016/j.jhazmat.2025.137201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Within the ITER project (International Thermonuclear Experimental Reactor) an international project building a magnetic confinement device to achieve fusion as a sustainable energy source, tungsten (W) is planned to serve as a plasma-facing component (PFC) in the tokamak, a magnetic confinement device used to produce controlled thermonuclear fusion power. Post plasma-W interactions, submicron tungsten particles can be released. This study investigated the exposure of lentic freshwater ecosystems to ITER-like tungsten nanoparticles in indoor aquatic mesocosms. Monitoring included tungsten (bio)distribution, (bio)transformation, speciation, and impacts following a relevant exposure scenario (chronic, medium-term, low-dose contamination). Additionally, mechanistic studies using a combination of microfluidic cells and X-ray Absorption Spectroscopy (XAS) provided a time-resolved understanding of tungsten's oxidative dissolution in freshwater. Following contamination, tungsten persisted in the water column (over 90 %), showing significant (∼40 %) and rapid (< 7 days) oxidation-dissolution and polymerization. This led to significant exposure of planktonic niches, strong affinity of polymeric tungsten species for aquatic vegetation, and potential transfer to higher trophic levels like aquatic snails. Over five weeks, the bio-physicochemical parameters of the mesocosms remained stable, and no acute impacts were observed on micro- and macro-organisms.
Collapse
Affiliation(s)
- A Ouaksel
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France.
| | - A Carboni
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - D Slomberg
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - V Vidal
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - O Proux
- OSUG UMR832 UGA, Grenoble, France; FAME-UHD, FAME, ESRF, Grenoble, France
| | - C Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint-Paul-Lez-Durance, France
| | - L Brousset
- CNRS, Aix-Marseille Université, CNRS, IMBE, UMR 7263, Marseille, France
| | - B Angeletti
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France
| | - A Thiéry
- CNRS, Aix-Marseille Université, CNRS, IMBE, UMR 7263, Marseille, France
| | - J Rose
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC, United States
| | - M Auffan
- CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
Ma J, Liu Y, Zhang L, Yao L, Ding Y, Qin H, Wang Z, Zheng X, Yang X, Tian H, Zeng L, Chen L, Liu R, Gao J, Wu Q, Qu G, Jiang G. Size-dependent internalization of gold nanoparticles in individual Tetrahymena thermophila characterized by single-cell mass cytometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126030. [PMID: 40064228 DOI: 10.1016/j.envpol.2025.126030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Aquatic organisms are inevitably exposed to metallic nanoparticles (NPs) in natural environments, leading to potential harm, ecological disruption, and environmental pollution concerns. Importantly, the size of NPs plays a critical role in influencing their uptake by these organisms. Utilizing mass cytometry, we investigated the internalization characteristics of different-sized gold NPs (AuNPs) in an unicellular ciliate Tetrahymena thermophila, under a low exposure concentration of 1 ngmL-1. This investigation, conducted at both the population and single-cell levels, revealed that the size of AuNPs significantly affected their uptake by T. thermophila cells. The average mass of intracellular AuNPs peaked at 0.5 h and subsequently decreased, attributed to the efflux of AuNPs or cell proliferation. Larger AuNPs resulted in a lower average intracellular AuNPs mass and a smaller proportion of T. thermophila cells accumulating AuNPs (Au-positive (AuP) T. thermophila). However, when exposed to larger AuNPs, the AuPT. thermophila cells had a higher AuNPs mass and volumetric concentration factors compared to their exposure to smaller AuNPs. After exposure, while most AuPT. thermophila cells had intracellular Au content below 2.41 × 10-15 g cell-1, the small groups of T. thermophila cells that accumulated higher mass of AuNPs may be the ones more susceptible to the effects of AuNPs exposure. Additionally, we developed a three-dimensional fitting surface model to depict the relationship among exposure time, AuNP size, and intracellular AuNPs mass in individual T. thermophila cells. This study enhances our understanding of size-specific NPs accumulation in unicellular organisms and provides valuable insights for ecological risk assessment of different sized NPs.
Collapse
Affiliation(s)
- Junjie Ma
- College of Sciences, Northeastern University, Shenyang, 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Zhang
- College of Sciences, Northeastern University, Shenyang, 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yun Ding
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hua Qin
- College of Sciences, Northeastern University, Shenyang, 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ziniu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehan Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang, 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Romero N, Kergaravat SV, Regaldo L, Hernández SR, Seabra AB, Ferreira FF, Lourenço IM, Castro GR, Gagneten AM. Multiple physiological response analyses of Chlorella vulgaris exposed to silver nanoparticles, ciprofloxacin, and their combination. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1051-1065. [PMID: 39820261 DOI: 10.1093/etojnl/vgaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/19/2025]
Abstract
The combination of silver nanoparticles (AgNPs) and ciprofloxacin (CIP) can be considered an alternative to combat multidrug-resistant microbial infections. However, knowledge about their combined toxicity after being released in an aquatic environment is scarce. This study evaluated the individual toxicity of AgNPs and CIP and their combined toxicity on the unicellular green microalga Chlorella vulgaris, evaluating cellular responses and conducting metabolomic analysis. The median effect concentrations at 96 h (EC50-96h) for AgNPs, CIP, and the mixture were 132 µg L-1, 7,000 µg L-1, and 452 µg L-1, respectively. Ciprofloxacin exhibited a synergistic effect with AgNPs. The toxic ranking for C. vulgaris was AgNPs > AgNPs + CIP > CIP. The growth rate was the most evident parameter of toxicity. Cell diameter significantly increased (p < 0.001) at 96 h for the highest concentrations tested of AgNPs, CIP, and the mixture, with increases of 24%, 41%, and 19%, respectively, compared with the control. Photosynthetic pigment analyses revealed that C. vulgaris upregulated chlorophyll, carotenoids, and pheophytin. Cell exposure to CIP caused an emergency response involving increased protein and carbohydrate concentrations to tolerate antibiotic stress. Exposure to AgNPs and CIP increased catalase and glutathione S-transferase activity, but the mixture decreased the activity. Silver nanoparticles increased malondialdehyde content in exposed cells due to fatty acid peroxidation. These pollutants revealed their potential risks in interfering with survival and metabolism. Our findings highlight the possible hazards of copollutants at environmentally relevant quantities, providing insights into the individual and combined ecotoxicity of AgNPs and CIP.
Collapse
Affiliation(s)
- Natalí Romero
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- CONICET, CCT Santa Fe, Santa Fe, Argentina
| | - Silvina V Kergaravat
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- CONICET, CCT Santa Fe, Santa Fe, Argentina
- Laboratorio de Sensores y Biosensores, Facultad de Bioquímica y Ciencias Biológicas, UNL-CONICET, CCT Santa Fe, Santa Fe, Argentina
| | - Luciana Regaldo
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- CONICET, CCT Santa Fe, Santa Fe, Argentina
| | - Silvia R Hernández
- Laboratorio de Sensores y Biosensores, Facultad de Bioquímica y Ciencias Biológicas, UNL-CONICET, CCT Santa Fe, Santa Fe, Argentina
| | - Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Fábio F Ferreira
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Isabella M Lourenço
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Guillermo R Castro
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
- Nanomedicine Research Unit (Nanomed), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ana M Gagneten
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| |
Collapse
|
5
|
Michalec S, Nieckarz W, Klimek W, Lange A, Matuszewski A, Piotrowska K, Hotowy A, Kunowska-Slósarz M, Sosnowska M. Green Synthesis of Silver Nanoparticles from Chlorella vulgaris Aqueous Extract and Their Effect on Salmonella enterica and Chicken Embryo Growth. Molecules 2025; 30:1521. [PMID: 40286137 PMCID: PMC11990373 DOI: 10.3390/molecules30071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Silver nanoparticles (AgNPs), synthesised using Chlorella vulgaris algal extract and silver nitrate, are studied in medicine for their antibacterial properties in poultry. This study assessed the effect of AgNPs on bacterial inhibition and early development and blood parameters in Ross 308 chicken embryos. AgNPs were characterised using transmission electron microscopy, scanning electron microscopy with a focused ion beam, UV-Vis spectroscopy, and a zetasizer. The antibacterial properties of the AgNP colloid against S. enterica were assessed using minimal inhibitory concentration, minimal bacterial concentration, and PrestoBlue assays. AgNP colloid (2 mg/L) was injected into egg albumen on day 0. Chicken embryos were incubated for 3 and 16 d. The effect of AgNPs on 3 d old embryos was evaluated based on mortality and somite count using the Hamburger-Hamilton classification. For older embryos, mortality, dimensions, anatomical changes, organ mass, plasma liver enzymes and antioxidants, and red blood cell morphology were determined. Blood samples from the control group embryos were assessed for the impact of AgNPs on hemolysis. AgNPs inhibited S. enterica growth at concentrations >6.75 mg/L. A 3 d exposure to AgNPs caused an insignificant decrease in the number of somites without affecting embryo mortality. However, a 16 d exposure to AgNPs reduced live embryos and plasma antioxidants, changed the levels of ALT, AST, and GGT, altered red blood cell morphology, and caused hemolysis. Toxicity of AgNPs was model-dependent, whereby the chicken embryo was more sensitive to AgNPs than the bacterium.
Collapse
Affiliation(s)
- Sebastian Michalec
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Wiktoria Nieckarz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Wiktoria Klimek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Arkadiusz Matuszewski
- Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Klara Piotrowska
- Department of Animal Breeding and Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (K.P.); (M.K.-S.)
| | - Anna Hotowy
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| | - Małgorzata Kunowska-Slósarz
- Department of Animal Breeding and Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (K.P.); (M.K.-S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (S.M.); (W.N.); (W.K.); (A.L.); (A.H.)
| |
Collapse
|
6
|
Zhang JT, Wang JX, Liu Y, Wang JH, Chi ZY. Effects of stratified microbial extracellular polymeric substances on microalgae dominant biofilm formation and nutrients turnover under batch and semi-continuous operation. BIORESOURCE TECHNOLOGY 2025; 420:132120. [PMID: 39880334 DOI: 10.1016/j.biortech.2025.132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/24/2024] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios. Soluble-EPS favored biofilm establishment and chlorophyll synthesis, while loosely-bound (LB-EPS) and tightly-bound EPS (TB-EPS) improved phosphorus removal, and optimum microalgae:bacteria cell count ratio was 1:0.5. Under semi-continuous operation, stable and efficient nutrients removal was observed at hydraulic retention time (HRT) of 2 days. Both nitrogen and phosphorus enrichment by TB-EPS over LB-EPS (respectively up to 7.9 and 23.8 times) were innovatively discovered, with enhanced nutrients turnover efficiency at higher HRTs. This study provided direct evidences regarding the role of stratified EPS on microalgal biofilm development and nutrients turnover.
Collapse
Affiliation(s)
- Jing-Tian Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024 PR China
| |
Collapse
|
7
|
Sivakumar M, Dhinakarasamy I, Chakraborty S, Clements C, Thirumurugan NK, Chandrasekar A, Vinayagam J, Kumar C, Thirugnanasambandam R, Kumar V R, Chandrasekaran VN. Effects of titanium oxide nanoparticles on growth, biochemical composition, and photosystem mechanism of marine microalgae Isochrysis galbana COR-A3. Nanotoxicology 2025; 19:156-179. [PMID: 39885705 DOI: 10.1080/17435390.2025.2454267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
The widespread utilization of titanium oxide nanoparticles (TiONPs) in various industrial applications has raised concerns about their potential ecological risks in marine environment. Assessing the toxicity of TiONPs on primary producers is essential to understand their impact on marine ecosystem. This study investigates the acute toxicity effect of TiONPs on Isochrysis galbana COR-A3 cells, focusing on structural and physiological changes that can compromise algal viability and ecological function. Cells were exposed to TiONPs concentration of 10-50 mg/L and assessments were conducted over 96 h to evaluate cell viability, biochemical composition, photo-physiology, oxidative stress and morphological deformations. At 50 mg/L concentration, cell viability was significantly reduced by 73.42 ± 3.46% and subsequent decrease of 42.8%, 29.2%, 44.2% in carbohydrate, protein and lipid content were observed. TiONPs exposure elevates the reactive oxygen species production and thereby impairing the photosystem II efficiency and disrupting the cellular metabolism. Morphological analysis revealed significant cell membrane disruption and plasmolysis. These cascading effects reveal TiONPs ability to interfere with algal physiological process, potentially affecting the primary productivity in marine ecosystem. Our findings highlight the ecological risk associated with the TiONPs, emphasizing the need for regulatory measures to mitigate the nanoparticle pollution in aquatic environment. This study provides more insights on the TiONPs induced toxicity in marine microalgae by altering the photosynthetic performance and biochemical integrity.
Collapse
Affiliation(s)
- Manikandan Sivakumar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Inbakandan Dhinakarasamy
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subham Chakraborty
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Clarita Clements
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Naren Kumar Thirumurugan
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anu Chandrasekar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jeevitha Vinayagam
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Chandrasekar Kumar
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajendar Thirugnanasambandam
- Centre for Ocean Research (MoES - Earth Science & Technology Cell), Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- National Facility for Coastal and Marine Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ramesh Kumar V
- Department of Biotechnology, Sathyabama Institute of Science and technology, Chennai, Tamil Nadu, India
| | | |
Collapse
|
8
|
Esteves AF, Gonçalves AL, Vilar VJP, Pires JCM. Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation? Biotechnol Adv 2025; 79:108493. [PMID: 39645210 DOI: 10.1016/j.biotechadv.2024.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microalgae, as photosynthetic microorganisms, offer a sustainable source of proteins, lipids, carbohydrates, pigments, vitamins, and antioxidants. Leveraging their advantages, such as fast growth, CO2 fixation, cultivation without arable land, and wastewater utilisation, microalgae can produce a diverse range of compounds. The extracted products find applications in bioenergy, animal feed, pharmaceuticals, nutraceuticals, cosmetics, and food industries. The selection of microalgal species is crucial, and their biochemical composition varies during growth phases influenced by environmental factors like light, salinity, temperature, and nutrients. Manipulating growth conditions shapes biomass composition, optimising the production of target compounds. This review synthesises research from 2019 onwards, focusing on stress induction and two-stage cultivation in microalgal strategies. This review takes a broader approach, addressing the effects of various operating conditions on a range of biochemical compounds. It explores the impact of operational parameters (light, nutrient availability, salinity, temperature) on biomass composition, elucidating microalgal mechanisms. Challenges include species-specific responses, maintaining stable conditions, and scale-up complexities. A two-stage approach balances biomass productivity and compound yield. Overcoming challenges involves improving upstream and downstream processes, developing sophisticated monitoring systems, and conducting further modelling work. Future efforts should concentrate on strain engineering and refined monitoring, facilitating real-time adjustments for optimal compound accumulation. Moreover, conducting large-scale experiments is essential to evaluate the feasibility and sustainability of the process through techno-economic analysis and life cycle assessments.
Collapse
Affiliation(s)
- Ana F Esteves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; CITEVE - Technological Centre for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Vítor J P Vilar
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LSRE-LCM - Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
9
|
Ganie ZA, Guchhait S, Talib M, Choudhary A, Darbha GK. Investigating the sorption of Zinc-Oxide nanoparticles on Tire-wear particles and their toxic effects on Chlorella vulgaris: Insights from toxicological models and physiological analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136648. [PMID: 39612875 DOI: 10.1016/j.jhazmat.2024.136648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
This study investigated the interaction of Tire-wear particles (TWPs) with Zinc-Oxide nanoparticles (ZNPs) and studied their individual and combined toxic effects on Chlorella vulgaris in the co-presence of Humics. Physiological parameters, including growth, photosynthetic pigments, oxidative stress, and membrane damage, were analysed using Flow cytometry. Adsorption experiments exhibited that ZNPs were significantly absorbed by TWPs (qmax= 312.49 mg/g). A positive dose-response relation concerning inhibition in growth was observed in all treatment groups, and it was associated with reduced chlorophyll levels and damaged cell membranes. A negative impact of increased concentrations of TWPs and ZNPs was observed on anti-oxidant enzymes CAT and SOD; however, the impact was more severe when combined with exposure to both contaminants. Elevated concentrations of ZNPs and TWPs led to increased ROS production, lipid peroxidation and membrane damage, which could be contributing to the observed inhibition in growth. In the combined exposure groups, the Independent Action and the Abbott toxicity models revealed a synergistic effect on growth rates, which agreed with the Integrated Biomarker model results. The current study could enhance our understanding of the interaction between TWPs and metal nanoparticles in aquatic systems and offer novel understandings of the mechanisms underlying their combined toxic effects on microalgae.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumadip Guchhait
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Mohmmed Talib
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
10
|
Wang B, Zhang L, Lian L, Zhang X, Qi Y. Treatment of compound pollution in simulated livestock and poultry wastewater by algae-bacteria symbiosis system. CHEMOSPHERE 2025; 370:143927. [PMID: 39662840 DOI: 10.1016/j.chemosphere.2024.143927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Livestock and poultry breeding wastewater contains a large number of heavy metals and antibiotics; the volume is huge, and it is difficult to treat, which causes serious pollution of the environment. Some studies have shown that symbiotic systems can effectively improve the efficiency of sewage treatment, but there is still a lack of research on the treatment of livestock and poultry wastewater. This experiment not only provides a more in-depth discussion of previous studies, but also demonstrates the feasibility of symbiotic treatment of livestock and poultry wastewater and explores the survival mode and operation mechanism of algal and bacterial symbiosis. The results show that the presence of bacteria greatly promoted the growth of microalgae, with production of 0.50-0.59 g/L biomass and 17.5% lipid content. Lipid levels in the algae from the symbiotic system were 1.3 times higher than for the system of pure algae, which is attributed to the bacteria releasing extracellular substances to promote their own growth and providing small molecules of organic matter and other essential elements which can be used by microalgae. In addition, during the removal of complex pollutants in the symbiotic system we found that the main contributor to the removal of heavy metal ions was the adsorption by Chlorella, while the decomposition of antibiotics mainly originated from bacteria. Furthermore, in the context of this experiment was obtained the highest removal rate of SM2 reached 28.8%, while the removal rate of Cu(II) reached 60.6%-66.7%. The technology of symbiotic treatment of wastewater from livestock and poultry breeding fills a gap and lays a theoretical foundation for the improvement of wastewater treatment.
Collapse
Affiliation(s)
- Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Lu Lian
- Shandong Institute for Product Quality Inspection, Jinan, 250102, China
| | - Xiao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|
11
|
Howard C, Wang H, Brown JB, Rao Y, Hou L. Binding Strength and Transport Kinetics of Organic Dyes into Different Live Diatoms Using Second Harmonic Scattering Spectroscopy. ACS APPLIED BIO MATERIALS 2025; 8:299-309. [PMID: 39656873 DOI: 10.1021/acsabm.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Dye-contaminated wastewater poses serious environmental risks to ecosystems and human health. Diatoms, algae with nanoporous frustules (cell walls), offer promising potential for wastewater remediation due to their high surface area and adsorption properties. While dead diatom biomass is well-studied for biosorption, research on living diatoms' bioaccumulation and biotransformation potential is limited, with gaps in kinetic and equilibrium modeling of dye adsorption. Here, we analyzed the adsorption of crystal violet (CV) dye onto living Phaeodactylum tricornutum (P-cell) and Navicula cryptocephala var. veneta (N-cell) diatoms by characterizing the physiochemical properties of the species' outer surfaces and monitoring the adsorption of CV using surface-specific second harmonic scattering (SHS) spectroscopy. Direct monitoring of dye adsorption, rather than its removal from the solution, enables a more accurate investigation of adsorption kinetics and thermodynamics, revealing strong correlations with the cell surface structure and composition. We found that the N-cell has a greater adsorption capacity for CV than the P-cell, though with slightly less favorable adsorption free energy. Ionic strength could impact uptake capacities, likely due to competition between metal cations and the dye cation as well as surface screening. SHS experiments revealed a simple adsorption process for N-cells, while P-cells exhibited a multistep process involving CV transport through thinner, nonporous cell walls to the plasmic membrane, contributing to favorable adsorption free energy. The thicker, porous walls of N-cells provided more surface sites, increasing the capacity, while P-cells facilitated deeper uptake. Ionic strength had only a significant effect on adsorption capacity, not adsorption free energy, reflecting the intricacies that govern adsorption and uptake by living organisms. The comprehensive analysis presented herein demonstrates great potential for diatoms to be used as biosorbents in dye remediation and provides systematic relationships between the structure and function of diatom cell walls, which will inform the use of tailored species for more efficient remediation.
Collapse
Affiliation(s)
- Ceaira Howard
- Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
- Utah Water Research Laboratory, 1600 Canyon Road, Logan, Utah 84321, United States
| | - Hui Wang
- Department of Chemistry, Utah State University, Logan, Utah 84322, United States
| | - Jesse B Brown
- Department of Chemistry, Utah State University, Logan, Utah 84322, United States
| | - Yi Rao
- Department of Chemistry, Utah State University, Logan, Utah 84322, United States
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, Logan, Utah 84322, United States
- Utah Water Research Laboratory, 1600 Canyon Road, Logan, Utah 84321, United States
| |
Collapse
|
12
|
Kumar P, Perumal PK, Sumathi Y, Singhania RR, Chen CW, Dong CD, Patel AK. Nano-enabled microalgae bioremediation: Advances in sustainable pollutant removal and value-addition. ENVIRONMENTAL RESEARCH 2024; 263:120011. [PMID: 39284486 DOI: 10.1016/j.envres.2024.120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Microalgae-assisted bioremediation, enriched by nanomaterial integration, offers a sustainable approach to environmental pollution mitigation while harnessing microalgae's potential as a biocatalyst and biorefinery resource. This strategy explores the interaction between microalgae, nanomaterials, and bioremediation, advancing sustainability objectives. The potent combination of microalgae and nanomaterials highlights the biorefinery's promise in effective pollutant removal and valuable algal byproduct production. Various nanomaterials, including metallic nanoparticles and semiconductor quantum dots, are reviewed for their roles in inorganic and organic pollutant removal and enhancement of microalgae growth. Limited studies have been conducted to establish nanomaterial's (CeO2, ZnO, Fe3O4, Al2O3, etc.) role on microalgae in pollution remediation; most studies cover inorganic pollutants (heavy metals and nutrients) remediation, exhibited 50-300% bioremediation efficiency improvement; however, some studies cover antibiotics and toxic dyes removal efficiency with 19-95% improvement. These aspects unveil the complex mechanisms underlying nanomaterial-pollutant-microalgae interactions, focusing on adsorption, photocatalysis, and quantum dot properties. Strategies to enhance bioremediation efficiency are discussed, including pollutant uptake improvement, real-time control, tailored nanomaterial design, and nutrient recovery. The review assesses recent advancements, navigates challenges, and envisions a sustainable future for bioremediation, underlining the transformative capacity of nanomaterial-driven microalgae-assisted bioremediation. This work aligns with Sustainable Development Goals 6 (Clean Water and Sanitation) and 12 (Responsible Consumption and Production) by exploring nanomaterial-enhanced microalgae bioremediation for sustainable pollution management and resource utilization.
Collapse
Affiliation(s)
- Prashant Kumar
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Yamini Sumathi
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
13
|
El-Fakharany EM, Saleh AK, El-Maradny YA, El-Sayed MH, Alali I, Alsirhani AM, Alalawy AI, Alhawiti AS, Alatawi IS, Mazi W, El-Gendi H. Comprehensive insight into recent algal enzymes production and purification advances: Toward effective commercial applications: A review. Int J Biol Macromol 2024; 283:137783. [PMID: 39557238 DOI: 10.1016/j.ijbiomac.2024.137783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Algal enzymes are essential catalysts in numerous biological reactions and industrial processes owing to their adaptability and potency. The marketing of algal enzymes has recently risen due to various reasons, including the cost-efficient manner of their cultivation in photobioreactors, the eco-friendly production of high biomass contents, sources of novel enzymes that used in many sectors (biofuel and bioremediation applications), sustainability, and more renewability. Oxidoreductases and hydrolytic enzymes are among the important applied algal enzymes in industrial applications, with annually growing demand. These algal enzymes have opened up new avenues for significant health advantages in reducing and treating oxidative stress, cardiovascular illness, tumors, microbial infections, and viral outbreaks. Despite their promising uses, commercial applications of algal enzymes face many difficulties, such as stability, toxicity, and lower data availability on specific and adequate catalytic mechanisms. Therefore, this review focuses on the algal enzyme types, their uses and advantages over other microbial enzymes, downstream and upstream processing, their commercial and marketing, and their challenges. With the constant development of novel enzymes and their uses, enzyme technology provides exciting options for several industrial sectors.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
14
|
Jain K, Takuli A, Gupta TK, Gupta D. Rethinking Nanoparticle Synthesis: A Sustainable Approach vs. Traditional Methods. Chem Asian J 2024; 19:e202400701. [PMID: 39126206 DOI: 10.1002/asia.202400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This review portrays a comparison between green protocols and conventional nanoparticle (NP) synthesis strategies, highlighting each method's advantages and limitations. Various top-down and bottom-up methods in NP synthesis are described in detail. The green chemistry principles are emphasized for designing safe processes for nanomaterial synthesis. Among the green biogenic sources plant extracts, vitamins, enzymes, polysaccharides, fungi (Molds and mushrooms), bacteria, yeast, algae, and lichens are discussed. Limitations in the reproducibility of green protocols in terms of availability of raw material, variation in synthetic protocol, and selection of material due to geographical differences are elaborated. Finally, a conclusion is drawn utilizing green chemical principles, & a circular economy strategy to minimize waste generation, offering a promising framework for the synthesis of NPs emphasizing sustainability.
Collapse
Affiliation(s)
- Kavya Jain
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Anshika Takuli
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Tejendra K Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| |
Collapse
|
15
|
Romero N, Brito A, Troiani HE, Nantes IL, Castro GR, Gagneten AM. Assessment of endogenous and exogenous silver nanoparticles effects on the microalgae Chlorella vulgaris. World J Microbiol Biotechnol 2024; 40:343. [PMID: 39375274 DOI: 10.1007/s11274-024-04152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Microalgae are susceptible to most pollutants in aquatic ecosystems and can be potentially damaged by silver nanoparticles (AgNPs). This study aims to clarify the potential consequences of Chlorella vulgaris internalizing AgNPs. The exposure of C. vulgaris to AgNPs stabilized with citrate led to the accumulation of NPs in the cell wall, increasing permeability, which allowed the entry of AgNPs and Ag + ions resulting from the dissolution of AgNPs. Ag + accumulated inside the cell could be converted into AgNPs (endogenous) due to the reducing potential of the cytoplasm. Both exogenous and endogenous AgNPs caused damage to all biological structures of the algae, as demonstrated by TEM images. This damage included the disorganization of chloroplasts, deposition of AgNPs on starch granules, and increased amounts of lipids, starch granules, exopolysaccharides, plastoglobuli, and cell diameters. These changes caused cell death by altering cell viability and interfering with organelle functions, possibly due to reactive oxygen species generated by nanoparticles, as shown in a lipid bilayer model. These findings highlight the importance of considering the exposure risks of AgNPs in a worldwide distributed chlorophyte.
Collapse
Affiliation(s)
- Natalí Romero
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo s/n, Santa Fe, (CP 3000), Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Predio CONICET "Dr. Alberto Cassano", Colectora Ruta Nac. Nº 168, Km 0, Paraje El Pozo, Santa Fe, (CP 3000), Argentina
| | - Adrianne Brito
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Av. dos Estados, Santo André, SP, 5001, CEP 09210-580, Brazil
| | - Horacio E Troiani
- Departamento de Caracterización de Materiales, Centro Atómico Bariloche, CNEA-CONICET, y Universidad Nacional de Río Negro, Av. Bustillo 9500, San Carlos de Bariloche, CP8400, Argentina
| | - Iseli L Nantes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Av. dos Estados, Santo André, SP, 5001, CEP 09210-580, Brazil
| | - Guillermo R Castro
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Av. dos Estados, Santo André, SP, 5001, CEP 09210-580, Brazil
| | - Ana M Gagneten
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje El Pozo s/n, Santa Fe, (CP 3000), Argentina.
| |
Collapse
|
16
|
Zhang ZH, Zheng JW, Liu SF, Hao TB, Yang WD, Li HY, Wang X. Impact of butylparaben on growth dynamics and microcystin-LR production in Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2024; 257:119291. [PMID: 38823607 DOI: 10.1016/j.envres.2024.119291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The presence of butylparaben (BP), a prevalent pharmaceutical and personal care product, in surface waters has raised concerns regarding its impact on aquatic ecosystems. Despite its frequent detection, the toxicity of BP to the cyanobacterium Microcystis aeruginosa remains poorly understood. This study investigates the influence of BP on the growth and physiological responses of M. aeruginosa. Results indicate that low concentrations of BP (below 2.5 mg/L) have negligible effects on M. aeruginosa growth, whereas higher concentrations (5 mg/L and 10 mg/L) lead to significant growth inhibition. This inhibition is attributed to the severe disruption of photosynthesis, evidenced by decreased Fv/Fm values and chlorophyll a content. BP exposure also triggers the production of reactive oxygen species (ROS), resulting in elevated activity of antioxidant enzymes. Excessive ROS generation stimulates the production of microcystin-LR (MC-LR). Furthermore, lipid peroxidation and cell membrane damage indicate that high BP concentrations cause cell membrane rupture, facilitating the release of MC-LR into the environment. Transcriptome analysis reveals that BP disrupts energy metabolic processes, particularly affecting genes associated with photosynthesis, carbon fixation, electron transport, glycolysis, and the tricarboxylic acid cycle. These findings underscore the profound physiological impact of BP on M. aeruginosa and highlight its role in stimulating the production and release of MC-LR, thereby amplifying environmental risks in aquatic systems.
Collapse
Affiliation(s)
- Zhong-Hong Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- College of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ting-Bin Hao
- College of Synthetic Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Bakir M, Jiménez MS, Laborda F, Slaveykova VI. Exploring the impact of silver-based nanomaterial feed additives on green algae through single-cell techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173564. [PMID: 38806122 DOI: 10.1016/j.scitotenv.2024.173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Silver in its various forms, including dissolved silver ions (Ag+) and silver nanoparticles (AgNPs), is a promising alternative to traditional antibiotics, largely used in livestock as feed additives and could contribute to the decrease and avoidance of the development of antibiotic resistance. The present study aims to assess the potential ecotoxicity of a silver-based nanomaterial (Ag-kaolin), the feed supplemented with the nanomaterial and the faeces since the latter are the ones that finally reach the environment. To this end, green alga Raphidocellis subcapitata was exposed to the extracts of Ag-kaolin, supplemented feed, and pig faeces for 72 h, along with Ag+ and AgNPs as controls for comparison purposes. Given the complexity of the studied materials, single-cell techniques were used to follow the changes in the cell numbers and chlorophyll fluorescence by flow cytometry, and the accumulation of silver in the exposed cells by single cell inductively coupled plasma mass spectrometry (SC-ICP-MS). Changes in cell morphology were observed by cell imaging multimode reader. The results revealed a decrease in chlorophyll fluorescence, even at low concentrations of Ag-kaolin (10 μg L-1) after 48 h of exposure. Additionally, complete growth inhibition was found with this material like the results obtained by exposure to Ag+. For the supplemented feed, a concentration of 50 μg L-1 was necessary to achieve complete growth inhibition. However, the behaviour differed for the leachate of faeces, which released Ag2S and AgCl alongside Ag+ and AgNPs. At 50 μg L-1, inhibition was minimal, primarily due to the predominance of less toxic Ag2S in the leachate. The uptake of silver by the cells was confirmed with all the samples through SC-ICP-MS analysis. These findings demonstrate that the use of Ag-kaolin as a feed supplement will lead to a low environmental impact.
Collapse
Affiliation(s)
- Mariam Bakir
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland; Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA) University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| | - María S Jiménez
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA) University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA) University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| |
Collapse
|
18
|
Devi L, Kushwaha P, Ansari TM, Kumar A, Rao A. Recent Trends in Biologically Synthesized Metal Nanoparticles and their Biomedical Applications: a Review. Biol Trace Elem Res 2024; 202:3383-3399. [PMID: 37878232 DOI: 10.1007/s12011-023-03920-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
In recent years, biologically synthesized metal nanoparticles have emerged as a dynamic field of research with significant implications for biomedical applications. This review explores the latest trends in the synthesis of metal nanoparticles using biological methods, encompassing plant extracts and microorganisms such as bacteria, yeasts, and fungi. These innovative approaches offer a sustainable, cost-effective, and environmentally friendly alternative to conventional chemical synthesis methods. Moreover, this review delves into the multifaceted biomedical applications of biologically synthesized metal nanoparticles. These applications include drug delivery systems, diagnostics, therapeutics, and imaging technologies, showcasing the versatility and promise of these nanomaterials in addressing contemporary biomedical challenges. In addition, the review addresses the critical issue of cytotoxicity, offering insights into the safety and viability of these biologically derived NPs for medical use. The exploration of recent trends and advancements in this field underscores the transformative potential of biologically synthesized metal nanoparticles in revolutionizing biomedical research and healthcare.
Collapse
Affiliation(s)
- Laxmi Devi
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
- Rameshwaram Institute of Technology and Management, Lucknow, 222620, India
- Dr. Ashvil Pharmaceuticals Private Limited, Bangra, Mauranipur, Jhansi, Uttar Pradesh, 284205, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | | | - Ashish Kumar
- Dr. Ashvil Pharmaceuticals Private Limited, Bangra, Mauranipur, Jhansi, Uttar Pradesh, 284205, India
- Government Medical College, Jalaun, Orai, Uttar Pradesh, 285001, India
| | - Amit Rao
- Maharani Laxmi Bai Medical College, Jhansi, Uttar Pradesh, 284001, India
| |
Collapse
|
19
|
Gao M, Ling N, Tian H, Guo C, Wang Q. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium. Front Microbiol 2024; 15:1374275. [PMID: 38605709 PMCID: PMC11007151 DOI: 10.3389/fmicb.2024.1374275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Heavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment. Methods The effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals. Results The growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions. Discussion Attributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals.
Collapse
Affiliation(s)
- Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Qiyao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
20
|
Mosleminejad N, Ghasemi Z, Johari SA. Ionic and nanoparticulate silver alleviate the toxicity of inorganic mercury in marine microalga Chaetoceros muelleri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19206-19225. [PMID: 38355858 DOI: 10.1007/s11356-024-32120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Toxicological effects of silver nanoparticles (SNPs) in different organisms have been studied; however, interactions of SNPs with other environmental pollutants such as mercury are poorly understood. Herein, bioassay tests were performed according to ΟECD 201 guideline to assess the toxic effects induced by mercury ions (mercury chloride, MCl) on the marine microalga Chaetoceros muelleri in the presence of SNPs or silver ions (silver nitrate, SN). Acute toxicity tests displayed that the presence of SNPs or SN (0.01 mg L-1) significantly reduced the toxicity of MCl (0.001, 0.01, 0.1, 1, 10, and 100 mg L-1) and increased the IC50 of MCl from 0.072 ± 0.014 to 0.381 ± 0.029 and 0.676 ± 0.034 mg L-1, respectively. In the presence of SN or SNPs, the mercury-reducing effect on algal population growth significantly decreased. Considering the increase of IC50, the mercury toxicity decreased approximately 5.44 and 9.66 times in the presence of SNPs or SN, respectively. The chlorophyll a and c contents decreased at all exposures; however, the decrease by MCl-SNPs and MCl-SN was significantly less than MCl except at 1 mg L-1. The lowering effect of MCl-SN on chlorophyll contents was less than MCl and MCl-SNPs. MCl exposure induced significant raises in total protein content (TPC) at concentrations < 0.01mg L-1, with a maximum of ~ 70.83% attained at 100 mg L-1. The effects of MCl-SNPs and MCl-SN on TPC were significantly less than MCl. Total lipid content (TLC) at all MCl concentrations was higher than the control, while at coexposure to MCl-SN, TLC did not change until 0.01 mg L-1 compared with the control. The effects of MCl-SN and MCL-SNPs on TPC and TLC were in line with toxicity results, and were significantly less than those of MCl individually, confirming their antagonistic effects on MCl. The morphological changes of algal cells and mercury content of the cell wall at MCl-SN and MCl-SNPs were mitigated compared with MCl exposure. These findings highlight the mitigatory impacts of silver species on mercury toxicity, emphasizing the need for better realizing the mixture toxicity effects of pollutants in the water ecosystem.
Collapse
Affiliation(s)
- Nasim Mosleminejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Zahra Ghasemi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
- Nanoscience, Nanotechnology, and Advanced Materials Research Centre, University of Hormozgan, Bandar Abbas, Iran.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| |
Collapse
|
21
|
Zhang Y, Wang JX, Liu Y, Zhang JT, Wang JH, Chi ZY. Effects of environmental microplastic exposure on Chlorella sp. biofilm characteristics and its interaction with nitric oxide signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169659. [PMID: 38159749 DOI: 10.1016/j.scitotenv.2023.169659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 μg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 μg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Tian Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
22
|
Dehghanipour A, Zamani H. Interaction of Fe 2O 3 nanoparticles with marine microalga Chlorella sorokiniana: Analysis of growth, morphological changes and biochemical composition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108385. [PMID: 38280256 DOI: 10.1016/j.plaphy.2024.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 01/29/2024]
Abstract
The wide utilization of iron-based nanoparticles (NPs) based on their preferential properties has led to the discharge and accumulation of these materials into the aquatic environment. In this regard, a comparative study of different concentrations of α-Fe2O3 NPs and their micro form was conducted using microalga Chlorella sorokiniana up to the stationary growth phase. This study revealed that high concentrations of NPs (100 and 200 mg L-1) imposed a stressful condition on algal cells documented by a reduction in microalga growth, including cell number and specific growth rate. The physical contact between the algal cells and NPs resulted in a shading effect as well as morphological changes validated by scanning electron microscope results. The biochemical composition of C. sorokiniana exposed to high levels of Fe2O3 NPs was also evaluated. The increase in total carbohydrate content of algal cells along with a significant reduction in unsaturated fatty acids was found. Moreover, Fe2O3 NPs exposure induced oxidative stress evidenced by an increase in lipid peroxidation. To cope with oxidative stress, superoxide dismutase activity and antioxidant potential of microalga as defensive mechanisms increased in the culture with high concentrations of NPs. Besides, due to the interactions, microalga tended to form a protective layer from further cell-NP interactions through the secretion of extracellular polymeric substances. Nonetheless, the nano form of Fe2O3 was more toxic than its micro form due to its small size. Overall, this trial may provide additional insight into the toxicological mechanism and safety assessments of Fe2O3 NPs in the aquatic environment.
Collapse
Affiliation(s)
- Ali Dehghanipour
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| | - Hajar Zamani
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| |
Collapse
|
23
|
Yuan X, Gao X, Liu C, Liang W, Xue H, Li Z, Jin H. Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review. Mar Drugs 2023; 21:594. [PMID: 37999418 PMCID: PMC10672109 DOI: 10.3390/md21110594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Nanomaterials (NMs) are becoming more commonly used in microalgal biotechnology to empower the production of algal biomass and valuable metabolites, such as lipids, proteins, and exopolysaccharides. It provides an effective and promising supplement to the existing algal biotechnology. In this review, the potential for NMs to enhance microalgal growth by improving photosynthetic utilization efficiency and removing reactive oxygen species is first summarized. Then, their positive roles in accumulation, bioactivity modification, and extraction of valuable microalgal metabolites are presented. After the application of NMs in microalgae cultivation, the extracted metabolites, particularly exopolysaccharides, contain trace amounts of NM residues, and thus, the impact of these residues on the functional properties of the metabolites is also evaluated. Finally, the methods for removing NM residues from the extracted metabolites are summarized. This review provides insights into the application of nanotechnology for sustainable production of valuable metabolites in microalgae and will contribute useful information for ongoing and future practice.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Chang Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Wensheng Liang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Haojie Jin
- The College of Forestry, Beijing Forestry University, Beijing 100083, China;
| |
Collapse
|
24
|
Li F, Li R, Lu F, Xu L, Gan L, Chu W, Yan M, Gong H. Adverse effects of silver nanoparticles on aquatic plants and zooplankton: A review. CHEMOSPHERE 2023; 338:139459. [PMID: 37437614 DOI: 10.1016/j.chemosphere.2023.139459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
With the rapid development of nanotechnology in the past decades, AgNPs are widely used in various fields and have become one of the most widely used nanomaterials, which leads to the inevitable release of AgNPs to the aquatic environment through various pathways. It is important to understand the effects of AgNPs on aquatic plants and zooplankton, which are widely distributed and diverse, and are important components of the aquatic biota. This paper reviews the effects of AgNPs on aquatic plants and zooplankton at the individual, cellular and molecular levels. In addition, the internal and external factors affecting the toxicity of AgNPs to aquatic plants and zooplankton are discussed. In general, AgNPs can inhibit growth and development, cause tissue damage, induce oxidative stress, and produce genotoxicity and reproductive toxicity. Moreover, the toxicity of AgNPs is influenced by the size, concentration, and surface coating of AgNPs, environmental factors including pH, salinity, temperature, light and co-contaminants such as NaOCl, glyphosate, As(V), Cu and Cd, sensitivity of test organisms, experimental conditions and so on. In order to investigate the toxicity of AgNPs in the natural environment, it is recommended to conduct toxicity evaluation studies of AgNPs under the coexistence of multiple environmental factors and pollutants, especially at natural environmental concentrations.
Collapse
Affiliation(s)
- Feng Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fengru Lu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Han Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
25
|
Wei L, Lin S, Yue Z, Zhang L, Ding T. The combined toxicity of silver nanoparticles and typical personal care products in diatom Navicula sp. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106120. [PMID: 37531678 DOI: 10.1016/j.marenvres.2023.106120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Toxicity of silver nanoparticles (AgNPs) at environmentally relevant concentrations has been received an increasing attention, and their influence on the bioavailability of personal care products has been seldom studied. Here, the toxicity of AgNPs in typical diatom Navicula sp. was explored, and their influence on the bioavailability of typical personal care products such as triclosan (TCS) and galaxolide (HHCB) was also investigated. The underlying toxicity mechanisms were explored using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Low concentrations of AgNPs (10 and 50 μg L-1) induced no observable responses of Navicula sp., in terms of growth rate, chlorophyll contents, and malondialdehyde accumulation. Furthermore, low doses of AgNPs could attenuate TCS or HHCB toxicity to Navicula sp., which was mainly attributed to the reduced oxidative stress. Metabolomics revealed that the disruption of DNA or RNA synthesis and instability of cytokinin-like substances may be also the reasons for the toxicity of AgNPs and TCS to Navicula sp. The damaged algal photosynthesis exposed to HHCB may be recovered by AgNPs, and the presence of signal chemicals (dehydrophytosphingosine and cardamonin) also showed a recovered algal growth. These results emphasize the potential of metabolomics to reveal toxicity mechanism, providing a new perspective on the aquatic risk assessment of nanoparticles and emerging organic pollutants.
Collapse
Affiliation(s)
- Liyan Wei
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Lin
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiman Yue
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
26
|
Bisht B, Jaiswal KK, Parveen A, Kumar S, Verma M, Kim H, Vlaskin MS, Singh N, Kumar V. A phyco-nanobionics biohybrid system for increased carotenoid accumulation in C. sorokiniana UUIND6. J Mater Chem B 2023; 11:7466-7477. [PMID: 37449368 DOI: 10.1039/d3tb00960b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Recent advancements in "phyco-nanobionics" have sparked considerable interest in the ability of microalgae to synthesize high-value natural bioactive compounds such as carotenoid pigments, which have been highlighted as an emergent and vital bioactive compound from both industrial and scientific perspectives. Such bioactive compounds are often synthesized by either altering the biogenetic processes existing in living microorganisms or using synthetic techniques derived from petroleum-based chemical sources. A bio-hybrid light-driven cell factory system was established herein by using harmful macroalgal bloom extract (HMBE) and efficient light-harvesting silver nanoparticles (AgNPs) to synthesize HMBE-AgNPs and integrating the synthesized HMBE-AgNPs in various concentrations (1, 2.5, 5 and 10 ppm) into the microalgae C. sorokiniana UUIND6 to improve the overall solar-to-chemical conversion efficiency in carotenoid pigment synthesis in microalgae. The current study findings found high biocompatibility of 5 ppm HMBE-AgNP concentration that can serve as a built-in photo-sensitizer and significantly improve ROS levels in microalgae (6.75 ± 0.25 μmol H2O2 g-1), thus elevating total photosynthesis resulting in a two-fold increase in carotenoids (457.5 ± 2.5 μg mL-1) over the native microalgae without compromising biomass yield. NMR spectroscopy was additionally applied to acquire a better understanding of pure carotenoids derived from microalgae, which indicated similar peaks in both spectra when compared to β-carotene. Thus, this well-planned bio-hybrid system offers a potential option for the cost-effective and long-term supply of these natural carotenoid bio-products.
Collapse
Affiliation(s)
- Bhawna Bisht
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Afreen Parveen
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Sanjay Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyunook Kim
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, 117198, Russian Federation
| | - Narpinder Singh
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation.
| |
Collapse
|
27
|
Tan KY, Low SS, Manickam S, Ma Z, Banat F, Munawaroh HSH, Show PL. Prospects of microalgae in nutraceuticals production with nanotechnology applications. Food Res Int 2023; 169:112870. [PMID: 37254319 DOI: 10.1016/j.foodres.2023.112870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Nutraceutical supplements provide health benefits, such as fulfilling the lack of nutrients in the human body or being utilized to treat or cure certain diseases. As the world population is growing, certain countries are experiencing food crisis challenges, causing natural foods are not sustainable to be used for nutraceutical production because it will require large-scale of food supply to produce enriched nutraceutics. The high demand for abundant nutritional compounds has made microalgae a reliable source as they can synthesize high-value molecules through photosynthetic activities. However, some microalgae species are limited in growth and unable to accumulate a significant amount of biomass due to several factors related to environmental conditions. Therefore, adding nanoparticles (NPs) as a photocatalyst is considered to enhance the yield rate of microalgae in an energy-saving and economical way. This review focuses on the composition of microalgal biomass for nutraceutical production, the health perspectives of nutritional compounds on humans, and the application of nanotechnology on microalgae for improved production and harvesting. The results obtained show that microalgal-based compounds indeed have better nutrients content than natural foods. However, nanotechnology must be further comprehended to make them non-hazardous and sustainable.
Collapse
Affiliation(s)
- Kai Yao Tan
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100 China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou 325035, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program, Department of Chemistry Education, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi, 229, Bandung 40154, Indonesia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
28
|
Lin JY, Ng IS. Enhanced carbon capture, lipid and lutein production in Chlamydomonas reinhardtii under meso-thermophilic conditions using chaperone and CRISPRi system. BIORESOURCE TECHNOLOGY 2023:129340. [PMID: 37343802 DOI: 10.1016/j.biortech.2023.129340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Microalgae are widely recognized as a promising bioresource for producing renewable fuels and chemicals. Microalgal biorefinery has tremendous potential for incorporation into circular bioeconomy, including sustainability, cascading use, and waste reduction. In this study, genetic engineering was used to enhance the growth, lipid and lutein productivity of Chlamydomonas reinhardtii including strains of CC400, PY9, pCHS, and PG. Notably, CRISPRi mediated on phosphoenolpyruvate carboxylase (PEPC1) gene to down-regulate the branch pathway from glycolysis to partitioning more carbon flux to lipid was explored under meso-thermophilic condition. The best chassis PGi, which has overexpressed chaperone GroELS and applied CRISPRi resulting in the highest biomass of 2.56 g/L and also boosted the lipids and lutein with 893 and 23.5 mg/L, respectively at 35 °C. Finally, all strains with CRISPRi exhibited higher transcriptional levels of the crucial genes from photosynthesis, starch, lipid and lutein metabolism, thus reaching a CO2 assimilation of 1.087 g-CO2/g-DCW in mixotrophic condition.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
29
|
Xie Z, Wu Z, Wang O, Liu F. Unexpected growth promotion of Chlorella sacchrarophila triggered by herbicides DCMU. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131216. [PMID: 36934629 DOI: 10.1016/j.jhazmat.2023.131216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The ecotoxicological effects of herbicide contamination on the autotrophic growth of microalgae in aquatic environments have been major concerns. However, little is known about the influence of herbicides on the mixotrophic growth of microalgae. This study investigated the ecotoxicological effect of 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (DCMU) on the mixotrophic growth of Chlorella sacchrarophila FACHB 4. Results showed that C. sacchrarophila in mixotrophy was more resistant to DCMU than in photoautotrophy. Moreover, a low content of DCMU (20-80 μg·L-1) promoted the mixotrophic growth of C. sacchrarophila, and the promotion effect was obviously enhanced with the increase in light intensity. The chlorophyll content and glucose absorption rate of C. sacchrarophila were found to increase after incubation with DCMU for 24 h. Transcriptome analyses revealed that the mechanism of DCMU to promote the mixotrophic growth of C. sacchrarophila was probably through accelerating glucose uptake and utilization, which was accomplished by reducing photodamage and increasing the chlorophyll content of C. sacchrarophila. This study not only revealed an unexpected bloom of mixotrophic microalgae triggered by herbicides, but it also shed new light on an effective and low-cost strategy to improve the microalgae productivity for utilization.
Collapse
Affiliation(s)
- Zhangzhang Xie
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Zhiyu Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Oumei Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Fanghua Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, PR China.
| |
Collapse
|
30
|
Zhao Z, Zheng X, Han Z, Yang S, Zhang H, Lin T, Zhou C. Response mechanisms of Chlorella sorokiniana to microplastics and PFOA stress: Photosynthesis, oxidative stress, extracellular polymeric substances and antioxidant system. CHEMOSPHERE 2023; 323:138256. [PMID: 36858114 DOI: 10.1016/j.chemosphere.2023.138256] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Co-pollution of microplastics and per- and polyfluoroalkyl substances (PFAS) is prevailing in the aquatic environment. However, the risks of coexisting microplastics and PFAS on organisms remain unknown. This study investigated the response mechanisms of Chlorella sorokiniana (C. sorokiniana) under polystyrene microplastics (PS-MPs) and perfluorooctanoic acid (PFOA) stress, including toxicity and defense mechanisms. C. sorokiniana was exposed to PS-MPs (10 mg/L) and PFOA (0.05, 0.5, and 5 mg/L) and their mixtures for 96 h, respectively. We found that the dominant toxicity mechanism of PFOA and PS-MPs to C. sorokiniana was dissimilar. PS-MPs mainly inhibited photosynthesis through shading effect, while PFOA mainly induced oxidative stress by reactive oxygen species. The co-exposure of PFOA and PS-MPs aggravated biotoxicity (maximum inhibition rate: 27.27 ± 2.44%), such as photosynthesis inhibition, physical damage, and oxidative stress, compared with individuals. To alleviate toxicity, C. sorokiniana activated defense mechanisms. Extracellular polymeric substances were the first barrier to protect cells, the effect on its secretion was ordered PS-MPs+5PFOA > PS-MPs > 5PFOA, and IBRv2 values were 2.37, 1.35, 1.11, respectively. Antioxidant system was thought of second defense pathway, the influence order of treatment groups was PS-MPs+5PFOA > 5PFOA > PS-MPs, and its IBRv2 values were 2.89, 1.69, 0.25, respectively. Our findings provide valuable information on the complex impacts of PFOA and PS-MPs, which facilitate the ecological risk assessment of multiple pollutants.
Collapse
Affiliation(s)
- Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shanshan Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Huijie Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Chao Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
31
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
32
|
Wang Z, Yu L, Wang DG. Dissolved Organic Matter and Lignin Modulate Aquatic Toxicity and Oxidative Stress Response Activated by Layered Double Hydroxides Nanomaterials. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:413-425. [PMID: 36790502 DOI: 10.1007/s00244-023-00985-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Advanced nanomaterials can be released into the environment and can coexist with natural organic matter (NOM). However, evidence on the impacts of NOM on the environmental behavior and toxicity of advanced nanomaterials is still scarce. Here, we investigated the behavior and toxic effects of two layered double hydroxides (LDHs) nanomaterials with different metallic constituents (Mg-Al-LDH and Zn-Al-LDH) at relatively low exposure concentrations on a freshwater green alga (Chlorella pyrenoidosa) in the absence and presence of two types of NOM, namely dissolved organic matter (DOM) and dealkaline lignin (DL). The DOM or DL interaction with the LDHs at different mixture levels was shown to be an antagonistic effect on the growth inhibition toxicity to C. pyrenoidosa mainly. The estimation of the index of Integrated Biological Responses version 2 indicated that the joint interaction of the LDHs with DOM or DL occurred in the following order of frequency synergism > antagonism > additivity. Furthermore, the physicochemical characteristics of LDHs were crucial for illuminating the mechanism by which the DOM or DL modified the LDH-induced oxidative stress response. These findings highlighted the important role of NOM in the behavior and effect of LDHs as a representative of a new class of multifunctional nanomaterials in the freshwater environment.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - Le Yu
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - De-Gao Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| |
Collapse
|
33
|
Tiwari H, Prajapati SK. Allelopathic effect of benzoic acid (hydroponics root exudate) on microalgae growth. ENVIRONMENTAL RESEARCH 2023; 219:115020. [PMID: 36521539 DOI: 10.1016/j.envres.2022.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Hydroponic effluent (HE) contains a reasonable amount of residual nutrients. Therefore, HE could be used as a low-cost growth media for microalgae mediated resource recovery and water recycling. However, the presence of root exudates (particularly, benzoic acid) may lead to toxicity in microalgae.In the present study, the allelopathic effects of benzoic acid on microalgal growth was tested. During 96 h batch growth, Chlorella pyrenoidosa showed the highest biomass concentration (0.064-0.037 g.L-1) compared to Chlorella sorokiniana (0.09-0.26 g.L-1) at the tested benzoic acid doses. Moreover, both the species showed growth stimulation and growth inhibition up to certain benzoic acid doses. Hence, both the microalgal species showed allelopathic behaviour at different doses of benzoic acid. Further, the observed half effective concentration (96 h EC50) were 65.10 mg.L-1 and 105.27 mg.L-1, respectively, for Chlorella pyrenoidosa and C. sorokiniana with 95% confidence limits. Further, Haldane's model best fitted with experimental data of both the microalgae (r ∼ 0.99). Overall, the study reveals that the HE with low benzoic acid dose may serve as a suitable growth media for microalgae. However, further in-depth research interventions using real HE are desirable to determine its real-world applicability.
Collapse
Affiliation(s)
- Harshit Tiwari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
34
|
Chen J, Ren Z, Li Z, Wang B, Qi Y, Yan W, Liu Q, Song H, Han Q, Zhang L. Interaction of Scenedesmus quadricauda and native bacteria in marine biopharmaceutical wastewater for desirable lipid production and wastewater treatment. CHEMOSPHERE 2023; 313:137473. [PMID: 36481174 DOI: 10.1016/j.chemosphere.2022.137473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Improving knowledge of the alga-bacterium interaction can promote the wastewater treatment. The untreated marine biopharmaceutical wastewater (containing native bacteria) was used directly for culturing microalgae. Unlike previous studies on specific bacteria in algal-bacterial co-culture systems, the effect of native bacteria in wastewater on microalgae growth was investigated in this study. The results showed that the coexistence of native bacteria greatly promoted the microalgae growth, ultimately producing biomass of 0.64 g/L and biomass productivity of 56.18 mg/L·d. Moreover, the lipid accumulation in the algae + bacteria group was 1.31 and 1.13 times higher than those of BG11 and pure algae, respectively, mainly attributed to the fact that bacteria provided a good environment for microalgae growth by using extracellular substances released from microalgae for their own growth, and providing micromolecules of organic matter and other required elements to microalgae. This study would lay the theoretical foundation for improving biopharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Junren Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zian Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zheng Li
- Shandong Institute of Eco-environmental Planning, Jinan, 250101, China
| | - Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, 539 Jiaodingshan Road, Rizhao, 276800, China
| | - Qingqing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Hengyu Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Qingxiang Han
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
35
|
Zhang Y, Li M, Chang F, Yi M, Ge H, Fu J, Dang C. The distinct resistance mechanisms of cyanobacteria and green algae to sulfamethoxazole and its implications for environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158723. [PMID: 36108830 DOI: 10.1016/j.scitotenv.2022.158723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria and green algae are the OECD recommended test organisms for environmental toxicity assessments of chemicals. Whether the differences in these two species' responses to the identical chemical affect the assessment outcomes is a question worth investigating. Firstly, we investigated the distinct resistance mechanisms of Synechococcus sp. (cyanobacteria) and R. subcapitata (green algae) to sulfamethoxazole (SMX). The antioxidant system analysis demonstrated that R. subcapitata mainly relies on enhancing the activity of first line defense antioxidants, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which is the most powerful and efficient response to get rid of ROS, whereas Synechococcus sp. depends upon increasing the activity of glutathione-S-transferase (GST) and GPx to resist oxidative stress. Besides, a total 7 transformation products (TPs) of SMX were identified in R. subcapitata culture medium. The analysis of conjectural transformation pathways and the predicted toxicity indicates that R. subcapitata could relieve SMX toxicity by degrading it to low eco-toxic TPs. Additionally, we summarized numerous exposure data and assessed the environmental risk of various antibiotics, revealing an inconsistent result for the same type of antibiotic by using cyanobacteria and green algae, which is most likely due to the different resistance mechanisms. In the future, modified indicators or comprehensive assessment methods should be considered to improve the rationality of environmental toxicity assessments.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ming Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Malan Yi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Hongmei Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
36
|
You X, Chen C, Yang L, Xia X, Zhang Y, Zhou X. Physiological and morphological responses of Chlorella pyrenoidosa to different exposure methods of graphene oxide quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158722. [PMID: 36108851 DOI: 10.1016/j.scitotenv.2022.158722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide quantum dots (GOQDs) can convert the ultraviolet (200- 380 nm) into available wavelength (400- 700 nm) for microalgae cultivation. However, it has not been applied in large-scale microalgae culture due to its high cost and difficulties in recovery. This study proposed a new strategy for the sustainable use of GOQDs, namely, GOQDs solution was added to the outer sandwich of the reactor. Herein, the effects of direct and indirect exposure of different GOQDs concentrations (0, 100, and 1000 mg/L) on the microalgae culture were compared. When microalgae were directly exposed to the GOQDs, 100 mg/L of GOQDs increased the biomass production of microalgae by 24.0 %, while 1000 mg/L of GOQDs decreased biomass production by 31 %. High concentration of GOQDs (direct exposure) could cause extra oxidative stress in the microalgae cells and result in a significant reduction of pigment content. When microalgae were indirectly exposed to the GOQDs, the increased concentration of GOQDs enhanced the growth of microalgae. Compared to the blank group, 1000 mg/L of GOQDs increased the microalgae biomass production and bioenergy by 14.1 % and 40.17 %, respectively. The indirect exposure of GOQDs can effectively avoid photo-oxidation and organelle damage to the microalgae cells. Overall, the indirect exposure of GOQDs is a sustainable way for effectively promoting microalgae growth and reducing the application cost.
Collapse
Affiliation(s)
- Xiaogang You
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Can Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Libin Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China.
| | - Xuefen Xia
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| |
Collapse
|
37
|
Assis da Silva C, Ribeiro BM, Trotta CDV, Perina FC, Martins R, Moledo de Souza Abessa D, Barbieri E, Simões MF, Ottoni CA. Effects of mycogenic silver nanoparticles on organisms of different trophic levels. CHEMOSPHERE 2022; 308:136540. [PMID: 36150482 DOI: 10.1016/j.chemosphere.2022.136540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Biogenic silver nanoparticles (AgNPs) are considered a promising alternative to their synthetic versions. However, the environmental impact of such nanomaterials is still scarcely understood. Thus, the present study aims at assessing the antimicrobial action and ecotoxicity of AgNPs biosynthesized by the fungus Aspergillus niger IBCLP20 towards three freshwater organisms: Chlorella vulgaris, Daphnia similis, and Danio rerio (zebrafish). AgNPs IBCLP20 showed antibacterial action against Klebsiella pneumoniae between 5 and 100 μg mL-1, and antifungal action against Trichophyton mentagrophytes in concentrations ranging from 20 to 100 μg mL-1. The cell density of the microalgae Chlorella vulgaris decreased 40% after 96 h of exposure to AgNPs IBCLP20, at the highest concentration analysed (100 μg L-1). The 48 h median lethal concentration for Daphnia similis was estimated as 4.06 μg L-1 (2.29-6.42 μg L-1). AgNPs IBCLP20 and silver nitrate (AgNO3) caused no acute toxicity on adult zebrafish, although they did induce several physiological changes. Mycosynthetized AgNPs caused a significant increase (p < 0.05) in oxygen consumption at the highest concentration studied (75 μg L-1) and an increase in the excretion of ammonia at the lower concentrations, followed by a reduction at the higher concentrations. Such findings are comparable with AgNO3, which increased the oxygen consumption on low exposure concentrations, followed by a decrease at the high tested concentrations, while impairing the excretion of ammonia in all tested concentrations. The present results show that AgNPs IBCLP20 have biocidal properties. Mycogenic AgNPs induce adverse effects on organisms of different trophic levels and understanding their impact is detrimental to developing countermeasures aimed at preventing any negative environmental effects of such novel materials.
Collapse
Affiliation(s)
- Carolina Assis da Silva
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Institute of Advanced Sea Studies (IEAMar), São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - Bruna Marques Ribeiro
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Institute of Advanced Sea Studies (IEAMar), São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - Caterina do Valle Trotta
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Institute of Advanced Sea Studies (IEAMar), São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - Fernando Cesar Perina
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Roberto Martins
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| | | | - Edison Barbieri
- Instituto de Pesca, Agência Paulista de Tecnologia dos Agronegócios (APTA), Secretaria de Agricultura e Abastecimento, de São Paulo, (SAASP) - Governo do Estado de São Paulo, Brazil
| | - Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences (SKLPlanets), Macau University of Science and Technology (MUST), Avenida Wai Long, Taipa, Macau SAR, China; China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Avenida Wai Long, Taipa, Macau SAR, China
| | - Cristiane Angélica Ottoni
- Biosciences Institute, São Paulo State University (UNESP), São Vicente/SP, Brazil; Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
38
|
Comparative study on the toxicity of biosynthesized and chemically synthesized gold nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
39
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
40
|
Li C, Wang JH, Yu C, Zhang JT, Chi ZY, Zhang Q. Growth-promoting effects of phytohormones on capillary-driven attached Chlorella sp. biofilm. BIORESOURCE TECHNOLOGY 2022; 364:128117. [PMID: 36244605 DOI: 10.1016/j.biortech.2022.128117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Using low strength wastewater for microalgae cultivation is challenged by slow growth and biomass harvesting issue in suspended systems, and growth-promoting effects of phytohormones at currently recommended dosages could neither obtain high enough biomass concentrations nor economic feasibility. This study aims to solve the issues of slow growth, biomass harvest, and phytohormone costs altogether by supplementing low dosage phytohormones in an improved capillary-driven attached cultivation device. The device displayed nutrients-condensing properties, and dosages of indole acetic acid (IAA), 6-benzylaminopurine (6-BA), and salicylic acid (SA) for highest microalgal growth were respectively 10-6 M, 10-6 M, and 10-7 M, being at least one order of magnitude lower than in suspended cultures. SA was most effective in growth-promoting (up to 7.0 g/m2 biomass density) and nutrients uptake (up to 98.6 % from the bulk environment), while IAA was most effective in antioxidative defenses. These results provided new insights in cost-effective and harvesting-convenient microalgae production.
Collapse
Affiliation(s)
- Chi Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
41
|
Vargas-Estrada L, Hoyos EG, Sebastian P, Muñoz R. Elucidating the role of nanoparticles on photosynthetic biogas upgrading: Influence of biogas type, nanoparticle concentration and light source. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Iannelli MA, Bellini A, Venditti I, Casentini B, Battocchio C, Scalici M, Ceschin S. Differential phytotoxic effect of silver nitrate (AgNO 3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106260. [PMID: 35933908 DOI: 10.1016/j.aquatox.2022.106260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Duckweeds are aquatic plants often used in phytotoxic studies for their small size, simple structure, rapid growth, high sensitivity to pollutants and facility of maintaining under laboratory conditions. In this paper, induced phytotoxic effects were investigated in Lemna minor and Lemna minuta after exposition to silver nitrate (AgNO3) and silver nanoparticles stabilized with sodium citrate and L-Cysteine (AgNPs-Cit-L-Cys) at different concentrations (0, 20 and 50 mg/L) and times (7 and 14 days). Lemna species responses were evaluated analyzing plant growth (mat thickness, fresh and dry biomass, relative growth rate - RGR) and physiological parameters (chlorophyll - Chl, malondialdehyde - MDA, ascorbate peroxidase - APX and catalase - CAT). Ag content was measured in the fronds of the two Lemna species by inductively coupled plasma optical emission spectrometry. AgNO3 and AgNPs-Cit-L-CYs produced phytotoxic effects on both duckweed species (plant growth and Chl reduction, MDA increase) that enhanced in response to increasing concentrations and exposure times. AgNPs-Cit-L-Cys caused much less alteration in the plants compared to AgNO3 suggesting that the presence of bifunctionalized AgNPs-Cit-L-Cys have a reduced phytotoxic effect as compared to Ag+ released in water. Based on the physiological performance, L. minuta plants showed a large growth reduction and higher levels of chlorosis and stress in respect to L. minor plants, probably due to greater Ag+ ions accumulation in the fronds. Albeit with some differences, both Lemna species were able to uptake Ag+ ions from the aqueous medium, especially over a period of 14 days, and could be considered adapt as phytoremediation agents for decontaminating silver ion-polluted water.
Collapse
Affiliation(s)
- M A Iannelli
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - A Bellini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - I Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - B Casentini
- Water Research Institute - National Research Council (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| | - C Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - M Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - S Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
43
|
Li X, Yan Y, Li X, Mu L, Zhao J, Yao M, Hu X. Humic acids alleviate the toxicity of reduced graphene oxide modified by nanosized palladium in microalgae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113794. [PMID: 35738107 DOI: 10.1016/j.ecoenv.2022.113794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The use of graphene-family materials modified by nanosized palladium (Pd/GFMs) has intensified rapidly in various fields; however, the effects of environmental factors (e.g., natural organic matter (NOM)) on the transformation and ecotoxicity of Pd/GFMs remain largely unknown. In this study, reduced graphene oxide modified by nanosized Pd (Pd/rGO) was incubated with humic acid (HA) under light irradiation for 56 d to explore the effects of NOM on the physicochemical transformations (e.g., defects, surface charges and dispersity) and biological toxicity (e.g., growth inhibition, oxidative stress and ultrastructural damage on algae cells) of Pd/GFMs. The results revealed that HA increased the defects and dispersity of Pd/rGO. Growth inhibition, damage to cellular ultrastructures, and oxidative stress in microalgae cells were induced by Pd/rGO, and corresponding defense responses (e.g., superoxide dismutase, peroxidase and glutathione) were activated. HA diminished the above defense responses in microalgae triggered by Pd/rGO by regulating GSH metabolism and the alanine biosynthesis pathway. In the presence of HA, cell wall damage (i.e., hole formation) caused by exposure to Pd/rGO was restored, and the plasmolysis area was reduced by 28.6 %. In addition, growth inhibition, lipid peroxidation, loss of mitochondrial membrane potential and ROS formation induced by 1.0 mg/L MoS2NPs were decreased by 1.4-65.6 %, 13.9-26.1 %, 21.8-58.3 % and 9.6-16.1 %, respectively. These findings highlight the need to consider the effects of HA on the environmental transformation and biological toxicity of Pd/GFMs, which presents significant implications for the management of Pd/GFMs.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yan Yan
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Agro-product Safety, Key Laboratory for Environmental Factor Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jingqi Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingqi Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
44
|
Wang C, Jiang L, Huang W, Wang C, He M. Light availability modulates the responses of the microalgae Desmodesmus sp. to micron-sized polyvinyl chloride microplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106234. [PMID: 35797850 DOI: 10.1016/j.aquatox.2022.106234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The vertical movement of large-size and high-density MPs in the water column is usually along with dynamic changes in light intensity. However, whether the change in light availability affects the bioeffects of MPs on surrounding microalgae is currently unknown. This study investigated the effects of micron-sized polyvinyl chloride (mPVC, 143.5 μm) microplastics, alone and in combination with light intensity (from 7.5 to 162.5 μmol·m-2·s-1) on the growth and physiology of Desmodesmus sp. Although mPVC did not impact microalgal growth under optimal light (40 and 93.8 μmol·m-2·s-1), it could induce a no-contact shading effect, thereby significantly affecting the physiology of Desmodesmus sp. The growth of Desmodesmus sp. exposed to mPVC was enhanced under a high light intensity of 162.5 μmol·m-2·s-1 which can induce growth inhibition but was retarded when under a light inadequacy condition (20 μmol·m-2·s-1), along with a dose-dependent effect. Significantly, the photosynthesis of Desmodesmus sp. was a highly sensitive metabolic pathway to mPVC stress and largely influenced by the plastic particles under different light conditions. Additionally, mPVC modulated the energy metabolism strategy of Desmodesmus sp., depending on exposure dose and external light availability. Our findings provided a critical basis for the risk assessment of MPs in fluctuating light conditions.
Collapse
Affiliation(s)
- Chun Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijuan Jiang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenxi Huang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China
| | - Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Khalifeh F, Salari H, Zamani H. Mechanism of MnO 2 nanorods toxicity in marine microalgae Chlorella sorokiniana during long-term exposure. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105669. [PMID: 35667325 DOI: 10.1016/j.marenvres.2022.105669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Due to the increasing production and use of nanomaterials (NMs), their potential toxic impacts on the environment should be considered for a safe application of NMs. In this regard, the potential hazards of MnO2 nanorods (NRs) on the green microalgae Chlorella sorokiniana during long-term exposure were investigated. Exposure to the high concentration of MnO2 NRs (100 and 200 mg L-1) significantly reduced the cell number of C. sorokiniana over 20 days of the experiment. The different concentrations of MnO2 NRs (25-200 mg L-1) induced the remarkable increase in the chlorophyll (a+b) content of algal cells due to the shading effect of NRs. For more than 72 h, the chlorophyll content of microalgae decreased due to the aggregation of NRs and the possible effects of oxidative stress. Long-term exposure to high concentrations of NRs caused a significant decrease in the primary and secondary metabolites of microalgae, including carotenoids, phenolic compounds, proteins, lipids, and carbohydrates. Oxidative stress was one of the possible toxic mechanisms of MnO2 NRs to microalgae validated by an increase in lipid peroxidation induced by exposure to NRs. The algal cells increased the catalase activity and the amount of extracellular polymeric substances in response to NRs toxicity. The low level of Mn ions in the culture media indicated that MnO2 NRs dissolution was not the cause of the observed reduction in the microalgae growth. Moreover, the bulk form of MnO2 was not involved in the toxic impact of MnO2, which was documented by an insignificant decrease in the growth, pigment, and lipid peroxidation of C. sorokiniana. These results may provide an additional insight into the potential hazards of MnO2 NRs on the aquatic ecosystem.
Collapse
Affiliation(s)
- Fatemeh Khalifeh
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| | - Hadi Salari
- Department of Chemistry, School of Science, Shiraz University, Shiraz, Iran
| | - Hajar Zamani
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| |
Collapse
|
46
|
Li X, Wang Z, Bai M, Chen Z, Gu G, Li X, Hu C, Zhang X. Effects of polystyrene microplastics on copper toxicity to the protozoan Euglena gracilis: emphasis on different evaluation methods, photosynthesis, and metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23461-23473. [PMID: 34806148 DOI: 10.1007/s11356-021-17545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) released into aquatic environment interact with other pollutants that already exist in water, potentially altering their toxicity, which poses a new problem for aquatic ecosystems. In the present study, we first evaluated the effects of polystyrene MPs (mPS) on copper (Cu) toxicity to the protozoan Euglena gracilis using three methods based on 96-h acute toxicity, orthogonal test and 12-d sub-acute toxicity data. Thereafter, the 12-d sub-acute exposure was employed to investigate protozoan growth, photosynthetic parameters and pigments, soluble protein, total antioxidant capacity and trace metal accumulation in E. gracilis after exposure to either 1.5 mg/L of Cu, 75-nm mPS (1 and 5 mg/L) or a combination therein, with the objective to understand the underlined mechanisms. The results show that the concentration and exposure time are key factors influencing the effects of the mPS on Cu toxicity. A mPS concentration of 5 mg/L caused significantly more dissipation energy, which is used for photosynthesis and thus decreased photosynthetic efficiency, but this effect weakened after 12 d of exposure. Exposure to Cu alone resulted in significantly high Cu accumulation in the cells and inhibited uptake of manganese and zinc. The presence of mPS did not influence the effects of Cu on trace metal accumulation. Our result suggests that application of multiple methods and indices could provide more information for a comprehensive understanding of the effects of mPS on toxicity of other pollutants. In addition, long-term exposure seems necessary for evaluating mPS toxicity.
Collapse
Affiliation(s)
- Xiuling Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- College of Life Science, Linyi University, Linyi, 276000, People's Republic of China
| | - Zhengjun Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Ming Bai
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Zhehua Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Gan Gu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
47
|
Konar N, Durmaz Y, Genc Polat D, Mert B. Optimization of Spray Drying for
Chlorella vulgaris
by Using
RSM
Methodology and Maltodextrin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nevzat Konar
- Eskisehir Osmangazi University Agriculture Faculty Food Engineering Department, Eskisehir Turkey
| | - Yaşar Durmaz
- Ege University Faculty of Fisheries, Aquaculture Department Izmir Turkey
| | | | - Behic Mert
- Middle East Technical University Engineering Faculty, Food Engineering Department Ankara Turkey
| |
Collapse
|
48
|
Corsi I, Desimone MF, Cazenave J. Building the Bridge From Aquatic Nanotoxicology to Safety by Design Silver Nanoparticles. Front Bioeng Biotechnol 2022; 10:836742. [PMID: 35350188 PMCID: PMC8957934 DOI: 10.3389/fbioe.2022.836742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Nanotechnologies have rapidly grown, and they are considered the new industrial revolution. However, the augmented production and wide applications of engineered nanomaterials (ENMs) and nanoparticles (NPs) inevitably lead to environmental exposure with consequences on human and environmental health. Engineered nanomaterial and nanoparticle (ENM/P) effects on humans and the environment are complex and largely depend on the interplay between their peculiar properties such as size, shape, coating, surface charge, and degree of agglomeration or aggregation and those of the receiving media/body. These rebounds on ENM/P safety and newly developed concepts such as the safety by design are gaining importance in the field of sustainable nanotechnologies. This article aims to review the critical characteristics of the ENM/Ps that need to be addressed in the safe by design process to develop ENM/Ps with the ablility to reduce/minimize any potential toxicological risks for living beings associated with their exposure. Specifically, we focused on silver nanoparticles (AgNPs) due to an increasing number of nanoproducts containing AgNPs, as well as an increasing knowledge about these nanomaterials (NMs) and their effects. We review the ecotoxicological effects documented on freshwater and marine species that demonstrate the importance of the relationship between the ENM/P design and their biological outcomes in terms of environmental safety.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI), CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
- *Correspondence: Jimena Cazenave,
| |
Collapse
|
49
|
Applicability Evaluation of Soil Algae Pipe Assay in Silver Nanoparticle-Contaminated Soils. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to pervasive and resilient soil contaminants, heterogeneously contaminated soil poses unpredictable potential threats to ecosystems. In this study, the extension of a previously developed soil algae pipe assay for evaluating heterogeneously contaminated soil under an open system is described. The assay can be used in soil that is heterogeneously contaminated with silver nanoparticles in combination with the examination of morphological changes (e.g., in vivo chlorophyll a, cell granularity, cell size, and mucilaginous sheath) and lipid contents. In addition, we attempted to extend the exposure duration under an open system. We evaluated the applicability of this soil algae pipe assay using green alga Chlamydomonas reinhardtii exposed to heterogeneous and homogeneous polyvinylpyrrolidone capping silver nanoparticles in contaminated soils. The results demonstrated that this method is an applicable bioassay that can be employed to better evaluate soil algal toxicity under an open system, with significant changes in the measured endpoints. The developed assay showed decent predictivity, which can be a useful tool when evaluating heterogeneous soil algae contamination.
Collapse
|
50
|
Li D, Zhou Q, Hu X, Mu L, Zeng H, Luo J. Environmental decomposition and remodeled phytotoxicity of framework-based nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126846. [PMID: 34416702 DOI: 10.1016/j.jhazmat.2021.126846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 05/10/2023]
Abstract
Zeolitic imidazole frameworks (ZIFs) have attracted a considerable amount of attention for use in environmental applications (e.g., pollutant adsorption and photocatalysis in water treatments). The environmental stability and toxicity of ZIFs are key prerequisites for their practical applications, but information about these factors is largely lacking. The present work finds that pristine ZIFs (ZIF-8 and ZIF-67) photodegrade from frame structures into two-dimensional nanosheets and are oxidized to zinc carbonate (ZIF-8) and Co3O4 (ZIF-67) under visible-light irradiation. The photoinduced electrons, holes and free radicals promote dissolution of the metal cores and organic ligands, leading to collapse of the frame structure. The photodegradation of ZIF-8 alleviates developmental inhibition, oxidative stress, plasmolysis, and photosynthetic toxicity, while the photodegradation of ZIF-67 aggravates nanotoxicity. The integration of metabolomics and transcriptomics analysis reveals that unsaturated fatty acid biosynthesis and metal ion-binding transcription contribute to the altered toxicity of ZIF photodegradation. These findings highlight the roles of photodegradation in structural transformation and alteration of the toxicity of ZIFs, alarming the study of pristine metal-organic frameworks (MOFs).
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 30080 Tianjin, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 30080 Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 30080 Tianjin, China.
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 30080 Tianjin, China
| | - Jiwei Luo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 30080 Tianjin, China
| |
Collapse
|