1
|
Koehle MS. Physiological impacts of atmospheric pollution: Effects of environmental air pollution on exercise. Physiol Rep 2024; 12:e16005. [PMID: 38605426 PMCID: PMC11009369 DOI: 10.14814/phy2.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
In this review, we discuss some of the recent advances in our understanding of the physiology of the air pollution and exercise. The key areas covered include the effect of exercise intensity, the effects of pre-exposure to air pollution, acclimation to air pollution, and the utility of masks during exercise. Although higher intensity exercise leads to an increase in the inhaled dose of pollutants for a given distance traveled, the acute effects of (diesel exhaust) air pollution do not appear to be more pronounced. Second, exposure to air pollution outside of exercise bouts seems to have an effect on exercise response, although little research has examined this relationship. Third, humans appear to have an ability to acclimate to ground level ozone, but not other pollutants. And finally, masks may have beneficial effects on certain outcomes at low intensity exercise in pollution with significant levels of particles, but more study is required in realistic conditions.
Collapse
Affiliation(s)
- Michael Stephen Koehle
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Division of Sport & Exercise MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Canadian Sport Institute – PacificVictoriaBritish ColumbiaCanada
- Athletics CanadaOttawaOntarioCanada
| |
Collapse
|
2
|
Park J, Jang J, So B, Lee K, Yeom D, Zhang Z, Shin WS, Kang C. Effects of Particulate Matter Inhalation during Exercise on Oxidative Stress and Mitochondrial Function in Mouse Skeletal Muscle. Antioxidants (Basel) 2024; 13:113. [PMID: 38247536 PMCID: PMC10812725 DOI: 10.3390/antiox13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Particulate matter (PM) has deleterious consequences not only on the respiratory system but also on essential human organs, such as the heart, blood vessels, kidneys, and liver. However, the effects of PM inhalation on skeletal muscles have yet to be sufficiently elucidated. Female C57BL/6 or mt-Keima transgenic mice were randomly assigned to one of the following four groups: control (CON), PM exposure alone (PM), treadmill exercise (EX), or PM exposure and exercise (PME). Mice in the three-treatment group were subjected to treadmill running (20 m/min, 90 min/day for 1 week) and/or exposure to PM (100 μg/m3). The PM was found to exacerbate oxidative stress and inflammation, both at rest and during exercise, as assessed by the levels of proinflammatory cytokines, manganese-superoxide dismutase activity, and the glutathione/oxidized glutathione ratio. Furthermore, we detected significant increases in the levels of in vivo mitophagy, particularly in the PM group. Compared with the EX group, a significant reduction in the level of mitochondrial DNA was recorded in the PME group. Moreover, PM resulted in a reduction in cytochrome c oxidase activity and an increase in hydrogen peroxide generation. However, exposure to PM had no significant effect on mitochondrial respiration. Collectively, our findings in this study indicate that PM has adverse effects concerning both oxidative stress and inflammatory responses in skeletal muscle and mitochondria, both at rest and during exercise.
Collapse
Affiliation(s)
- Jinhan Park
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Junho Jang
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Byunghun So
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Kanggyu Lee
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Dongjin Yeom
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 300381, China;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Chounghun Kang
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Bortoluzzi MG, Neckel A, Bodah BW, Cardoso GT, Oliveira MLS, Toscan PC, Maculan LS, Lozano LP, Bodah ET, Silva LFO. Detection of atmospheric aerosols and terrestrial nanoparticles collected in a populous city in southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3526-3544. [PMID: 38085483 DOI: 10.1007/s11356-023-31414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024]
Abstract
The main objective of this study is to analyze hazardous elements in nanoparticles (NPs) (smaller than 100 nm) and ultrafine particles (smaller than 1 µm) in Porto Alegre City, southern Brazil using a self-made passive sampler and Sentinel-3B SYN satellite images in 32 collection points. The Aerosol Optical Thickness proportion (T550) identification was conducted using images of the Sentinel-3B SYN satellite at 634 points sampled in 2019, 2020, 2021, and 2022. Focused ion beam scanning electron microscopy analyses were performed to identify chemical elements present in NPs and ultrafine particles, followed by single-stage cascade impactor to be processed by high-resolution transmission electron microscopy. This process was coupled with energy-dispersive X-ray spectroscopy and later analysis via secondary ion mass spectrometry. Data was acquired from Sentinel-3B SYN images, normalized to a standard mean of 0.83 µg/mg, at moderate spatial resolution (260 m), and modeled in the Sentinel Application Platform (SNAP) software v.8.0. Statistical matrix data was generated in the JASP software (Jeffreys's Amazing Statistics Program) v.0.14.1.0 followed by a K-means cluster analysis. The results demonstrate the presence of between 1 and 100 nm particles of the following chemical elements: Si, Al, K, Mg, P, and Ti. Many people go through these areas daily and may inhale or absorb these elements that can harm human health. In the Sentinel-3B SYN satellite images, the sum of squares in cluster 6 is 168,265 and in cluster 7 a total of 21,583. The use of images from the Sentinel-3B SYN satellite to obtain T550 levels is of great importance as it reveals that atmospheric pollution can move through air currents contaminating large areas on a global scale.
Collapse
Affiliation(s)
| | - Alcindo Neckel
- Atitus Educação, 304 - Villa Rodrigues, Passo Fundo, RS, 99070-220, Brazil.
- University of Minho, UMINHO, 4710-057, Porto, Portugal.
| | - Brian William Bodah
- Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA, 99344, USA
- Workforce Education & Applied Baccalaureate Programs, Yakima Valley College, South 16th Avenue & Nob Hill Boulevard, Yakima, WA, 98902, USA
| | | | - Marcos L S Oliveira
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- Santa Catarina Research and Innovation Support Foundation (Fapesc), Florianópolis, SC, 88030-902, Brazil
| | | | | | - Liliana P Lozano
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- Postgraduate Doctoral Program in Society, Nature and Development, Universidade Federal Do Oeste Do Pará, UFOPA, Paraná, 68040-255, Brazil
| | - Eliane Thaines Bodah
- Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA, 99344, USA
- State University of New York, Onondaga Community College, 4585West Seneca Turnpike, Syracuse, NY, 13215, USA
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
- Postgraduate Doctoral Program in Society, Nature and Development, Universidade Federal Do Oeste Do Pará, UFOPA, Paraná, 68040-255, Brazil
- CDLAC - Data Collection Laboratory and Scientific Analysis LTDA, Nova Santa Rita, 92480-000, Brazil
| |
Collapse
|
4
|
Zhu C, Xue Y, Li Y, Yao Z, Li Y. Assessment of particulate matter inhalation during the trip process with the considerations of exercise load. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161277. [PMID: 36587677 DOI: 10.1016/j.scitotenv.2022.161277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
A Particulate Matter (PM) inhalation model considering exercise load is established to evaluate the impact of PM on residents' travel health. The study chooses PM detectors to collect PM concentrations at the various transportation space, including walking, bicycle, bus, taxi, and subway. A multiple linear regression model revised by road greening is utilized to study the influence factors that have a potential impact on the PM concentration. The air inhalation model with the consideration of exercise load can be acquired by connecting the heart rate (HR) and individual characteristics. The PM2.5 and PM10 inhalation for a complete trip of traveler can be estimated using the proposed model based on air inhalation per time unit, travel time, and PM concentration. The analysis results using the experimental data in Xi'an indicate that PM concentrations in taxi carriage, bus carriage, and subway carriage are significantly different from those obtained from environmental monitoring stations. However, the difference is not significant in the locations of sidewalk, non-motorized lane, taxi station, bus station, subway concourse, and subway platform. PM concentration and humidity in background environment have a positive influence on the increase of PM concentration in transportation environment, while temperature and wind speed are negative. The mean values of air inhalation per time unit for male and female using each mode are in the range of 9.6-26.8 L/min and 9.8-27.8 L/min, respectively. Exposure time in non-motorized transportation has a large effect on PM inhalation of travelers, walking connections and waiting in motorized transportation are the main contributing states to PM inhalation of travelers. The results of the study can be used to predict travelers' PM inhalation in completed trips, and provide recommendations for travelers to choose a healthier mode.
Collapse
Affiliation(s)
- Caihua Zhu
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China.
| | - Yubing Xue
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China
| | - Yuran Li
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China
| | - Zhenxing Yao
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China.
| | - Yan Li
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China.
| |
Collapse
|
5
|
Mao N, Zhang D, Li Y, Li Y, Li J, Zhao L, Wang Q, Cheng Z, Zhang Y, Long E. How do temperature, humidity, and air saturation state affect the COVID-19 transmission risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3644-3658. [PMID: 35951241 PMCID: PMC9366825 DOI: 10.1007/s11356-022-21766-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 05/10/2023]
Abstract
Environmental parameters have a significant impact on the spread of respiratory viral diseases (temperature (T), relative humidity (RH), and air saturation state). T and RH are strongly correlated with viral inactivation in the air, whereas supersaturated air can promote droplet deposition in the respiratory tract. This study introduces a new concept, the dynamic virus deposition ratio (α), that reflects the dynamic changes in viral inactivation and droplet deposition under varying ambient environments. A non-steady-state-modified Wells-Riley model is established to predict the infection risk of shared air space and highlight the high-risk environmental conditions. Findings reveal that a rise in T would significantly reduce the transmission of COVID-19 in the cold season, while the effect is not significant in the hot season. The infection risk under low-T and high-RH conditions, such as the frozen seafood market, is substantially underestimated, which should be taken seriously. The study encourages selected containment measures against high-risk environmental conditions and cross-discipline management in the public health crisis based on meteorology, government, and medical research.
Collapse
Affiliation(s)
- Ning Mao
- MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Yupei Li
- MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Ying Li
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Jin Li
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Li Zhao
- China Academy of Building Research, Beijing, China
| | - Qingqin Wang
- China Academy of Building Research, Beijing, China
| | - Zhu Cheng
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yin Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Enshen Long
- MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China
- College of Architecture and Environment, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Marmett B, Carvalho RB, Nunes RB, Rhoden CR. Exposure to O 3 and NO 2 in physically active adults: an evaluation of physiological parameters and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4269-4284. [PMID: 34988724 DOI: 10.1007/s10653-021-01194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The gaseous air pollutants ozone (O3) and nitrogen dioxide (NO2) have a large public health relevance and trigger environmental health risk. On the other hand, despite the health benefits, exercise practices might increase the susceptibility to air pollutants exposure. However, there are innumerous lifestyle factors besides physical activity habits that must be considered in the daily air pollution exposure and are still not fully comprehended. This study aimed to evaluate the effects of O3 and NO2 exposure on cardiorespiratory fitness, lipid accumulation product (LAP), and environmental health risk during the entire daily routine of physically active adults that exercise in outdoor and indoor environments. One hundred and twenty healthy young men were assigned to untrained (n = 52), indoor exercise (n = 36), and outdoor exercise (n = 32) groups, following their lifestyle exercise habits, and O3 and NO2 were assessed by personal monitoring. Exercised groups demonstrated higher healthy eating index (HEI) (p < 0.001), physical activity (PA) (p < 0.001), metabolic equivalent of task (MET) (p < 0.001), and peak oxygen uptake VO2peak (p < 0.001), while outdoor group had lower LAP index (p < 0.001) and higher O3 concentration (p = 0.0442). Environmental health risk demonstrated no difference (p > 0.05). The higher O3 concentration was positively correlated with the risk quotient (p = 0.003) and MET (p = 0.020), and a negative correlation between LAP and VO2peak was observed (p < 0.001). In conclusion, physically active individuals might have a lower risk of developing cardiovascular and metabolic diseases despite the higher O3 concentration exposure, and the exposure during exercise did not represent an additional health risk.
Collapse
Affiliation(s)
- Bruna Marmett
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, 90050-170, Brazil.
| | - Roseana Boek Carvalho
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, 90050-170, Brazil
| | - Ramiro Barcos Nunes
- Research Department-Instituto Federal de Educação, Ciência E Tecnologia Sul-Rio-Grandense, Gravataí, Brazil
| | - Cláudia Ramos Rhoden
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
7
|
Marmett B, Dorneles GP, Nunes RB, Peres A, Romão PRT, Rhoden CR. Exposure to fine particulate matter partially counteract adaptations on glucose metabolism, oxidative stress, and inflammation of endurance exercise in rats. Inhal Toxicol 2022; 34:287-296. [PMID: 35820034 DOI: 10.1080/08958378.2022.2098425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Long-term exposure to air pollution triggers metabolic alterations along with oxidative stress and inflammation, while exercise interventions are widely used to improve those parameters. OBJECTIVE Our study aimed to determine the effects of subchronic exposure to particulate matter 2.5 (PM2.5) and endurance exercise training on glucose metabolism, oxidative stress, and inflammation of the heart and gastrocnemius muscle of rats. MATERIAL AND METHODS Thirty-two male Wistar rats were assigned to 4 experimental groups: Untrained; Endurance training (ET); Untrained + PM2.5; Endurance training + PM2.5. Rats exposed to air pollution received 50 µg of PM2.5 via intranasal instillation daily for 12 weeks. Exercised groups underwent endurance training, consisting in running on an electronic treadmill (70% of maximal capacity, 5 days/week, 5 times/week) for 12 weeks. Glucose metabolism markers, redox state, and inflammatory variables were evaluated in the heart and gastrocnemius muscle. RESULTS ET and ET + PM2.5 group had lower body mass gain and higher exercise capacity, and higher glycogen concentration in the heart and gastrocnemius muscle. In the heart, ET and ET + PM2.5 groups had higher levels of GSH, and lower TBARS and TNF-α concentrations. In the gastrocnemius muscle, the ET group showed higher leptin and lower TBARS and IL-1β concentrations, ET and ET + PM2.5 showed higher superoxide dismutase activity and ROS content. CONCLUSION PM2.5 exposure partially blunts metabolic and inflammatory adaptations in heart and gastrocnemius muscle tissues induced by exercise training.
Collapse
Affiliation(s)
- Bruna Marmett
- Atmospheric Pollution Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Gilson Pires Dorneles
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Alessandra Peres
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Pedro Roosevelt Torres Romão
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Cláudia Ramos Rhoden
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
8
|
Wang W, Wang Z, Wang G, Yu B, Xu Y, Yu K. Impacts of Regional Speed Control Strategy Based on Macroscopic Fundamental Diagram on Energy Consumption and Traffic Emissions: A Case Study of Beijing. Front Public Health 2022; 10:883359. [PMID: 35812476 PMCID: PMC9267360 DOI: 10.3389/fpubh.2022.883359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous studies shown that particulate matter in the ambient environment has a significant impact on the health of the respiratory system. To understand the interrelationships between urban built environment, transportation operations and health, this study proposes an innovative approach that uses real-world GPS datasets to calculate energy consumption and emissions from transportation. The experiment used the traffic operation state in the Fourth Ring Road of Beijing as the research object and tested the impact of using the Regional speed optimization (RSO) strategy based on Macroscopic Fundamental Diagram (MFD) on energy consumption and emissions during peak hours. The impact of traffic emission on the health of roadside pedestrians is also considered. Changes in PM2.5 concentrations around four different built-up areas were calculated and compared. The computational experiments indicate that the PM2.5 pollutants exhausted by the traffic on the Ring Road during peak hours can reach up to 250 μg/m3, while the traffic emission on general roads near residential areas is only 50 μg/m3. Adopting Regional speed optimization can reduce the energy consumption of the road network by up to 18.8%. For roadside runners, the PM2.5 inhalation caused by night running in commercial and recreational areas is about 1.3-2.6 times that of night running in residential areas. Compared with morning or night running, the risk of respiratory disease caused by PM2.5 inhalation was about 10.3% higher than commuter running behavior. The research results provide a useful reference for energy conservation and emission reduction control strategies for different road types in cities and help existing cities to establish a traveler health evaluation system caused by traffic operation.
Collapse
Affiliation(s)
- Wensi Wang
- Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
| | - Zirui Wang
- Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
- CIECC Overseas Consulting Co., Ltd., Beijing, China
- *Correspondence: Zirui Wang
| | - Guangjun Wang
- Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
| | - Bin Yu
- Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China
| | - Yuhe Xu
- China Railway Construction Investment Group Co., Ltd., Beijing, China
| | - Kun Yu
- Chongqing Communications Planning Surverying & Designing Institute, Chongqin, China
| |
Collapse
|
9
|
You Y, Wang D, Liu J, Chen Y, Ma X, Li W. Physical Exercise in the Context of Air Pollution: An Emerging Research Topic. Front Physiol 2022; 13:784705. [PMID: 35295574 PMCID: PMC8918627 DOI: 10.3389/fphys.2022.784705] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Physical exercise (PE) brings physiological benefits to human health; paradoxically, exposure to air pollution (AP) is harmful. Hence, the combined effects of AP and PE are interesting issues worth exploring. The objective of this study is to review literature involved in AP-PE fields to perform a knowledge-map analysis and explore the collaborations, current hotspots, physiological applications, and future perspectives. Herein, cluster, co-citation, and co-occurrence analysis were applied using CiteSpace and VOSviewer software. The results demonstrated that AP-PE domains have been springing up and in rapid growth since the 21st century. Subsequently, active countries and institutions were identified, and the productive institutions were mainly located in USA, China, UK, Spain, and Canada. Developed countries seemed to be the major promoters. Additionally, subject analysis found that environmental science, public health, and sports medicine were the core subjects, and multidimensional communications were forming. Thereafter, a holistic presentation of reference co-citation clusters was conducted to discover the research topics and trace the development focuses. Youth, elite athletes, and rural population were regarded as the noteworthy subjects. Commuter exposure and moderate aerobic exercise represented the common research context and exercise strategy, respectively. Simultaneously, the research hotspots and application fields were elaborated by keyword co-occurrence distribution. It was noted that physiological adaptations including respiratory, cardiovascular, metabolic, and mental health were the major themes; oxidative stress and inflammatory response were the mostly referred mechanisms. Finally, several challenges were proposed, which are beneficial to promote the development of the research field. Molecular mechanisms and specific pathways are still unknown and the equilibrium points and dose-effect relationships remain to be further explored. We are highly confident that this study provides a unique perspective to systematically and comprehensively review the pieces of AP-PE research and its related physiological mechanisms for future investigations.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Dizhi Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jianxiu Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
- *Correspondence: Xindong Ma
| | - Wenkai Li
- China Table Tennis College, Shanghai University of Sport, Shanghai, China
- Wenkai Li
| |
Collapse
|
10
|
Cruz R, Lima-Silva AE, Bertuzzi R, Hoinaski L. Exercising under particulate matter exposure: Providing theoretical support for lung deposition and its relationship with COVID-19. ENVIRONMENTAL RESEARCH 2021; 202:111755. [PMID: 34302823 PMCID: PMC8295105 DOI: 10.1016/j.envres.2021.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The aim of the present study was to investigate lung particulate matter (PM) deposition during endurance exercise and provide a new insight concerning how SARS-CoV-2 could be carried into the respiratory tract. The anatomical and physiological characteristics of the Human Respiratory Tract model were considered for modeling the lung PM deposition during exercise. The Monte Carlo method was performed to randomly generate different values of PM concentrations (1.0, 2.5, and 10.0 μm), minute ventilation, and duration of exercise at moderate, heavy, and severe exercise intensity domains. Compared to moderate and severe intensities, during heavy exercise (75-115 L‧min-1, duration of 10.0-60.0 min) there is greater lung deposition in the bronchiolar region (p < 0.01). In turn, there is greater deposition per minute of exercise at the severe intensity domain (115.0-145.0 L‧min-1, duration of 10.0-20.0 min, p < 0.01). Considering that SARs-CoV-2 could be adsorbed on the particles, exercising under PM exposure, mainly at the severe domain, could be harmful concerning the virus. In conclusion, beyond the traditional minute ventilation assumption, there is a time vs intensity dependence for PM deposition, whereby the severe domain presents greater deposition per minute of exercise. The results observed for PM deposition are alarming since SARs-CoV-2 could be adsorbed by particles and carried into the deeper respiratory tract.
Collapse
Affiliation(s)
- Ramon Cruz
- Sports Center, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Adriano E Lima-Silva
- Human Performance Research Group, Academic Department of Physical Education (DAEFI), Federal University of Technology Parana, Curitiba, PR, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Leonardo Hoinaski
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|