1
|
Viljoen SJ, Brailsford FL, Murphy DV, Hoyle FC, Jones DL, Henry DJ, Fosu-Nyarko J. Toxicity of additives present in conventional and biodegradable plastics on soil fauna: a case study of the root lesion nematode Pratylenchus neglectus. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136682. [PMID: 39612880 DOI: 10.1016/j.jhazmat.2024.136682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Plastic pollution in terrestrial environments is a growing concern, with an increasing focus on the impact of plastic additives on soil ecosystems. We evaluated the impact of additives from conventional plastics (ACP) and biodegradable plastics (ABP) on the soil nematode, Pratylenchus neglectus. The additives represented five functional classes (antioxidants, colourants, flame retardants, nucleating agents, and plasticisers). P. neglectus exhibited concentration-dependent mortality when exposed to the additives, with Tartrazine, an ABP colourant, inducing higher mortality compared to the conventional counterpart. No significant changes in the locomotory patterns of P. neglectus were observed, whereas oxidative stress significantly increased in response to all assistive treatments. Exposure to most of the additives resulted in a significant decline in nematode reproduction; ACPs generally caused more severe effects than ABPs. Our findings highlight a complexity in how plastic additives impact soil organisms and challenge the assumption that ABPs may be universally safer for ecosystems. The study emphasises the importance of conducting ecotoxicological assessments of specific ABPs on important species to inform the design of environmentally sustainable plastics. The results also suggest that P. neglectus could serve as a valuable sentinel organism for evaluating the ecological impacts of plastic pollution in soil.
Collapse
Affiliation(s)
- Samantha J Viljoen
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, WA 6150, Australia.
| | - Francesca L Brailsford
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Daniel V Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Frances C Hoyle
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Davey L Jones
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David J Henry
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Murdoch, WA 6150, Australia
| | - John Fosu-Nyarko
- Centre for Crop and Food Innovation, Food Futures Institute, School of Agricultural Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
2
|
Lee B, Min EK, Kim G, Hong G, Seo J, Choi JS, Park JW, Kim KT. Biodistribution of synthesized polyethylene terephthalate fibers in adult zebrafish, their sex hormone disruption effect, and mitigation using natural organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117108. [PMID: 39332197 DOI: 10.1016/j.ecoenv.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/30/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Although polyethylene terephthalate (PET) fibers are a representative form of plastic pollutants, studies on their toxicity are currently limited compared to other plastic types. Moreover, the effect of natural organic matter (NOM) on their toxicity has not been investigated. In this study, female and male adult zebrafish were exposed to synthesized PET fibers at concentrations of 0.1, 1, 10, and 100 mg/L in the presence and absence of 10 mg/L of NOM for 10 d. Bioaccumulation of PET fibers in zebrafish intestine, liver, and gills was identified and expression levels of reactive oxygen species (ROS) generation, sex hormones, and oxidative stress and sex hormone-related genes were measured. In addition, the developmental stages of gonadal cells were examined through histological analysis. We found that PET fibers bioaccumulated in the intestine and liver of zebrafish. ROS generation significantly increased at 100 mg/L of PET fibers, the expression of oxidative stress-related genes decreased in female and increased in male zebrafish. Exposure to 100 mg/L of PET fibers did not affect 17-beta estradiol, but significantly decreased the testosterone levels in male zebrafish. Sex hormone-related genes significantly decreased in both female and male zebrafish, except for androgen receptor in female zebrafish. However, these changes were exacerbated by the removal of NOM, suggesting a protective effect of NOM against PET fibers toxicity. We demonstrated that the accumulated PET fibers may lead to oxidative stress and sex hormone alteration, and disrupt the development of gonadal cells. Additionally, the NOM coating did not alter bioaccumulation considerably, but mitigated the adverse effects at the hormone level in PET fiber-exposed zebrafish. Thus, this study provides a basis for further research on the toxicity assessment of PET fibers and interactions between NOM and PET fiber-related toxicity.
Collapse
Affiliation(s)
- Byoungcheun Lee
- Risk Assessment Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Geunbae Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Gilsang Hong
- Risk Assessment Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jungkwan Seo
- Risk Assessment Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jin Soo Choi
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - June-Woo Park
- Gyeongnam Branch Institute, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
3
|
Liu H, Tan X, Li X, Wu Y, Lei S, Wang Z. Amino-modified nanoplastics at predicted environmental concentrations cause transgenerational toxicity through activating germline EGF signal in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174766. [PMID: 39004367 DOI: 10.1016/j.scitotenv.2024.174766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In the real environment, some chemical functional groups are unavoidably combined on the nanoplastic surface. Reportedly, amino-modified polystyrene nanoparticles (PS-A NPs) exposure in parents can induce severe transgenerational toxicity, but the underlying molecular mechanisms remain largely unclear. Using Caenorhabditis elegans as the animal model, this study was performed to investigate the role of germline epidermal growth factor (EGF) signal on modulating PS-A NPs' transgenerational toxicity. As a result, 1-10 μg/L PS-A NPs exposure transgenerationally enhanced germline EGF ligand/LIN-3 and NSH-1 levels. Germline RNAi of lin-3 and nsh-1 was resistant against PS-A NPs' transgenerational toxicity, implying the involvement of EGF ligand activation in inducing PS-A NPs' transgenerational toxicity. Furthermore, LIN-3 overexpression transgenerationally enhanced EGF receptor/LET-23 expression in the progeny, and let-23 RNAi in F1-generation notably suppressed PS-A NPs' transgenerational toxicity in the exposed worms overexpressing germline LIN-3 at P0 generation. Finally, LET-23 functioned in neurons and intestine for regulating PS-A NPs' transgenerational toxicity. LET-23 acted at the upstream DAF-16/FOXO within the intestine in response to PS-A NPs' transgenerational toxicity. In neurons, LET-23 functioned at the upstream of DAF-7/DBL-1, ligands of TGF-β signals, to mediate PS-A NPs' transgenerational toxicity. Briefly, this work revealed the exposure risk of PS-A NPs' transgenerational toxicity, which was regulated through activating germline EGF signal in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaochao Tan
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Wu
- Environment and Health research division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuhan Lei
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Jemec Kokalj A, Nagode A, Drobne D, Dolar A. Effects of agricultural microplastics in multigenerational tests with insects; mealworms Tenebrio molitor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174490. [PMID: 38969109 DOI: 10.1016/j.scitotenv.2024.174490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Mulching films, widely used in agriculture, are a large source of microplastics (MPs) to soil. However, there is little knowledge on the long-term effects of agricultural MPs on soil invertebrates. We investigated the effects of MPs from conventional non-biodegradable, fossil-based, low-density polyethylene (PE) and biodegradable fossil-based poly(butylene adipate-coterephthalate) (starch-PBAT blend) mulching films on two generations of the mealworm Tenebrio molitor. No effects of MPs (0.005 %-5 %, w/w dry food) on mealworm development and survival were observed until the end of the experiments (12 weeks for the first generation, nine weeks for the second generation), but effects on their moulting and growth were observed. These were most evident for PE MPs (5 %, w/w), where a decrease in larval growth and moulting was noted in the first generation. On the contrary, PBAT MPs (5 %, w/w) significantly induced the growth of mealworms in the second generation. In addition, there was a non-significant trend towards increased growth at all other PBAT MP exposure concentrations. Increased growth is most likely due to the biodegradation of starch PBAT MPs by mealworms. Overall, these data suggest that PE and PBAT MPs do not induce significant effects on mealworms at environmentally relevant concentrations, but rather only at very high exposure concentrations (5 %).
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia.
| | - Ana Nagode
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Ljubljana, Slovenia
| |
Collapse
|
5
|
Lins LRDRT, Saldaña-Serrano M, Gomes CHADM, Pilotto MR, Vilas Bôas LODB, Costa DMD, Bastolla CLV, Lima D, Tedesco M, Ferreira TH, Lunelli PS, Novaes de Oliveira AP, Bainy ACD, Nogueira DJ. Ingestion and depuration of polyester microfibers by Crassostrea gasar (Adanson, 1757). MARINE ENVIRONMENTAL RESEARCH 2024; 196:106433. [PMID: 38489918 DOI: 10.1016/j.marenvres.2024.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
The study aimed to obtain environmentally relevant microfibers (MFs) from polyester fabric and assess their impact on the oyster Crassostrea gasar. MFs were obtained by grinding the fabric, and their accumulation in oysters gills and digestive glands was analyzed after exposure to 0.5 mg/L for 2 and 24 h. Additionally, a 48 h depuration was conducted on the oysters exposed for 24 h. Sublethal effects were assessed in oysters exposed for 24 h and depurated for 48 h, using biomarkers like Catalase (CAT), Glutathione S-transferase (GST), and Glutathione Peroxidase (GPx), along with histological analyses. Polyester fabric grinding produced significant MFs (average length: 570 μm) with degraded surface and increased malleability. Oysters showed increased MF accumulation in digestive glands post-exposure, with no impact on antioxidant enzymes. Depuration decreased MFs accumulation. Histological analysis revealed accumulation in the stomach and brown cells, possibly indicating inflammation. This raises concerns about MFs bioaccumulation in marine organisms, impacting the food chain and safety.
Collapse
Affiliation(s)
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil
| | - Carlos Henrique Araújo de Miranda Gomes
- Laboratory of Marine Mollusks-LMM, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88040900, Brazil
| | - Mariana Rangel Pilotto
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil
| | - Luiz Otávio de Barros Vilas Bôas
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil
| | - Deivid Medeiros da Costa
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil
| | - Marilia Tedesco
- Aquatic Organisms Health Laboratory-AQUOS, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil
| | - Tamiris Henrique Ferreira
- Aquatic Organisms Health Laboratory-AQUOS, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88037-000, Brazil
| | - Pietro Sinigaglia Lunelli
- Graduate Program in Materials Science and Engineering-PGMAT, Laboratory of Glass-Ceramic Materials-VITROCER, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88040-900, Brazil
| | - Antonio Pedro Novaes de Oliveira
- Graduate Program in Materials Science and Engineering-PGMAT, Laboratory of Glass-Ceramic Materials-VITROCER, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88040-900, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil
| | - Diego José Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, 88034-257, Brazil.
| |
Collapse
|
6
|
Kwak JI, Kim L, An YJ. Microplastics promote the accumulation of negative fungal groups and cause multigenerational effects in springtails. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133574. [PMID: 38280316 DOI: 10.1016/j.jhazmat.2024.133574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The environmental persistence of microplastics (MPs) is ubiquitous and problematic. Despite an increase in research on the soil ecotoxicity of MPs, the response of springtails to MP pollution remains unexplored. We hypothesized that MPs promote the accumulation of negative soil fungal groups and cause multigenerational effects in springtails. We performed a multigenerational study of high-density polyethylene MPs using springtail Folsomia candida and analyzed the soil fungal community. We found that soil entomopathogenic fungi and negative soil fungal groups accumulated in springtail F. candida due to soil MP pollution; subsequently, MPs negatively affected F. candida in the F2 generation. To the best of our knowledge, this is the first study to investigate the correlations between MP pollution, soil fungi, and fungi-feeding springtails. The study provides evidence of the accumulation of soil entomopathogenic fungi and negative soil fungal groups in F. candida caused by soil MP pollution.
Collapse
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Zhang Y, Jiang Y, Zhu Z, Xu X, Yang H. Polyacrylonitrile microfibers pose a significant threat to the early-stage survival of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106755. [PMID: 37944326 DOI: 10.1016/j.aquatox.2023.106755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Microplastic pollution, especially microfibers (MFs), presents a critical global environmental challenge in natural water bodies. Yet, research on the toxic effects of MFs, particularly during early fish development, is limited. This study aimed to investigate MFs' toxic effects and mechanisms on early-stage zebrafish. Zebrafish embryos were exposed to varying concentrations of polyacrylonitrile microfibers (PanMfs) for 7 days. Results revealed PanMfs adhering to the embryos' surface, with higher concentrations accelerating heart rate and causing pericardial edema in post-hatching larvae. Larvae ingested PanMfs, leading to their accumulation in the intestines and increased levels of reactive oxygen species (ROS) and mitochondrial quantity. Notably, lipid metabolism and calcium ion related signaling pathways underwent significant changes. Low concentration MFs affected glycometabolism pathways, with potential roles for aldob and cacng1a, exhibiting pronounced increases in ROS levels. High concentration of MFs had the most profound impact on signal transduction-related pathways, and possibly triggering micromitophagy and apoptosis in zebrafish intestinal epithelial cells through the Kras/MAPK signaling pathway, with potential roles for kras and mapk9. Although ROS increase was somewhat alleviated, it resulted in decreased survival rates and restricted growth in high concentration of MFs group. These findings highlight the significant threat of MFs to the early survival of fish. MFs pollution prevention and control hold great significance in the conservation of fishery resources.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China.
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Xinrui Xu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
8
|
Liu H, Wu Y, Wang Z. Long-term exposure to polystyrene nanoparticles at environmentally relevant concentration causes suppression in heme homeostasis signal associated with transgenerational toxicity induction in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132124. [PMID: 37499489 DOI: 10.1016/j.jhazmat.2023.132124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Heme homeostasis related signaling participates in inducing a protective response when controlling nanopolystyrene toxic effects in parental generation. However, whether the heme homeostasis signal is involved in regulation of transgenerational toxicity of nanopolystyrene toxicity is still unclear. Herein, with the model organism of Caenorhabditis elegans, 0.1-10 μg/L nanopolystyrene particles (PS-NPs) at 20-nm treatment downregulated glb-18, and the decrease was also discovered in the offspring following PS-NPs exposure. Germline glb-18 RNAi induced susceptive property to transgenerational PS-NPs toxicity, suggesting that a decreased GLB-18 level mediated induction of transgenerational toxicity. Importantly, germline GLB-18 transgenerationally activated the function of intestinal HRG-4 in controlling transgenerational PS-NPs toxicity. In transgenerational toxicity control, HRG-1/ATFS-1/HSP-6 was recognized to be the downstream pathway of HRG-4. Briefly, germline GLB-18 in P0 generation can transgenerationally activate the downstream intestinal HRG-4/HRG-1/ATFS-1/HSP-6 pathway among offspring for controlling the transgenerational toxicity of PS-NPs. Findings in the present work strengthens the possible association of heme homeostasis signal changes with transgenerational nanoplastic toxicity within the organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Wu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Müller L, Josende ME, Soares GC, Monserrat JM, Ventura-Lima J. Multigenerational effects of co-exposure to dimethylarsinic acid and polystyrene microplastics on the nematode Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85359-85372. [PMID: 37382819 DOI: 10.1007/s11356-023-28050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
In the current study, we assessed the impact of DMA (dimethylarsinic acid) and MPs (microplastics) interactions in C. elegans over the course of five generations. We found that the redox state of the organisms changed over generations as a result of exposure to both pollutants. From the third generation onward, exposure to MPs reduced GST activity, indicating reduced detoxifying abilities of these organisms. Additionally, dimethylarsinic exposure decreased the growth of organisms in the second, fourth, and fifth generations. In comparison to isolated pollutants, the cumulative effects of co-exposure to DMA and MPs seem to have been more harmful to the organisms, as demonstrated by correlation analysis. These findings demonstrate that DMA, despite being considered less hazardous than its inorganic equivalents, can still have toxic effects on species at low concentrations and the presence of MPs, can worsen these effects.
Collapse
Affiliation(s)
- Larissa Müller
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Gabriela Corrêa Soares
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Rio Grande - FURG, Av. Itália, Km 08, Rio Grande, RS, 96201-900, Brazil.
- Programa de Pós-Graduação Em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
10
|
Wu Y, Tan X, Shi X, Han P, Liu H. Combined Effects of Micro- and Nanoplastics at the Predicted Environmental Concentration on Functional State of Intestinal Barrier in Caenorhabditis elegans. TOXICS 2023; 11:653. [PMID: 37624159 PMCID: PMC10459583 DOI: 10.3390/toxics11080653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
The possible toxicity caused by nanoplastics or microplastics on organisms has been extensively studied. However, the unavoidably combined effects of nanoplastics and microplastics on organisms, particularly intestinal toxicity, are rarely clear. Here, we employed Caenorhabditis elegans to investigate the combined effects of PS-50 (50 nm nanopolystyrene) and PS-500 (500 nm micropolystyrene) at environmentally relevant concentrations on the functional state of the intestinal barrier. Environmentally, after long-term treatment (4.5 days), coexposure to PS-50 (10 and 15 μg/L) and PS-500 (1 μg/L) resulted in more severe formation of toxicity in decreasing locomotion behavior, in inhibiting brood size, in inducing intestinal ROS production, and in inducting intestinal autofluorescence production, compared with single-exposure to PS-50 (10 and 15 μg/L) or PS-500 (1 μg/L). Additionally, coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L) remarkably caused an enhancement in intestinal permeability, but no detectable abnormality of intestinal morphology was observed in wild-type nematodes. Lastly, the downregulation of acs-22 or erm-1 expression and the upregulation expressions of genes required for controlling oxidative stress (sod-2, sod-3, isp-1, clk-1, gas-1, and ctl-3) served as a molecular basis to strongly explain the formation of intestinal toxicity caused by coexposure to PS-50 (15 μg/L) and PS-500 (1 μg/L). Our results suggested that combined exposure to microplastics and nanoplastics at the predicted environmental concentration causes intestinal toxicity by affecting the functional state of the intestinal barrier in organisms.
Collapse
Affiliation(s)
| | | | | | | | - Huanliang Liu
- Environment and Health Research Division, Public Health Research Center, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Junaid M, Siddiqui JA, Liu S, Lan R, Abbas Z, Chen G, Wang J. Adverse multigeneration combined impacts of micro(nano)plastics and emerging pollutants in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163679. [PMID: 37100140 DOI: 10.1016/j.scitotenv.2023.163679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (1 μm - 5 mm) and nanoplastics (1-100 nm), commonly referred to as micro(nano)plastics (MNPs), are widespread in both freshwater and marine habitats, and they can have significant negative effects on exposed organisms. In recent years, the transgenerational toxicity of MNPs has gained considerable attention owing to its potential to harm both parents and descendants. This review summarizes the available literature on the transgenerational combined effects of MNPs and chemicals, aimed at providing a deeper understanding of the toxicity of MNPs and co-occurring chemicals to both parents and offspring in the aquatic environment. The reviewed studies showed that exposure to MNPs, along with inorganic and organic pollutants, increased bioaccumulation of both MNPs and co-occurring chemicals and significantly impacted survival, growth, and reproduction, as well as induced genetic toxicity, thyroid disruption, and oxidative stress. This study further highlights the factors affecting the transgenerational toxicity of MNPs and chemicals, such as MNP characteristics (polymer type, shape, size, concentration, and aging), type of exposure and duration, and interactions with other chemicals. Finally, future research directions, such as the careful consideration of MNP properties in realistic environmental conditions, the use of a broader range of animal models, and the examination of chronic exposure and MNP-chemical mixture exposure, are also discussed as a means of broadening our understanding of the effects of MNPs that are passed down from generation to generation.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Ruijie Lan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zohaib Abbas
- Department of Environmental Science and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
12
|
Yadav S, Kataria N, Khyalia P, Rose PK, Mukherjee S, Sabherwal H, Chai WS, Rajendran S, Jiang JJ, Khoo KS. Recent analytical techniques, and potential eco-toxicological impacts of textile fibrous microplastics (FMPs) and associated contaminates: A review. CHEMOSPHERE 2023; 326:138495. [PMID: 36963588 DOI: 10.1016/j.chemosphere.2023.138495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Despite of our growing understanding of microplastic's implications, research on the effects of fibrous microplastic (FMPs) on the environment is still in its infancy. Some scientists have hypothesized the possibility of natural textile fibres, which may act as one of the emerging environmental pollutants prevalent among microplastic pollutants in the environment. Therefore, this review aims to critically evaluate the toxic effects of emerging FMPs, the presence, and sources of FMPs in the environment, identification and analytical techniques, and the potential impact or toxicity of the FMPs on the environment and human health. About175 publications (2011-2023) based on FMPs were identified and critically reviewed for transportation, analysis and ecotoxicological behaviours of FMPs in the environment. Textile industries, wastewater treatment plants, and household washing of clothes are significant sources of FMPs. In addition, various characterization techniques (e.g., FTIR, SEM, RAMAN, TGA, microscope, and X-Ray Fluorescence Spectroscopy) commonly used for the identification and analysis of FMPs are also discussed, which justifies the novelty aspects of this review. FMPs are pollutants of emerging concern due to their prevalence and persistence in the environment. FMPs are also found in the food chain, which is an alarming situation for living organisms, including effects on the nervous system, digestive system, circulatory system, and genetic alteration. This review will provide readers with a comparison of different analytical techniques, which will be helpful for researchers to select the appropriate analytical techniques for their study and enhance their knowledge about the harmful effects of FMPs.
Collapse
Affiliation(s)
- Sangita Yadav
- Department of Environmental Science and Engineering, Guru Jambheswar University of Science &Technology, Hisar, 125001, Haryana, India
| | - Navish Kataria
- Department of Environmental Sciences, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Santanu Mukherjee
- Shoolini University of Biotechnology and Management Sciences, Sultanpur, Solan, Himachal Pradesh, 173229, India
| | - Himani Sabherwal
- Department of Environmental Sciences, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Wai Siong Chai
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, Avda. General Velasquez, 1775, Arica, Chile
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Centre for Environment Risk Management (CERM), Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India; Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
13
|
Junaid M, Liu S, Chen G, Liao H, Wang J. Transgenerational impacts of micro(nano)plastics in the aquatic and terrestrial environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130274. [PMID: 36327853 DOI: 10.1016/j.jhazmat.2022.130274] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plastic particles of diameters ranging from 1 to 1000 nm and > 1 µm to 5 mm are respectively known as nanoplastics and microplastics, and are collectively termed micro(nano)plastics (MNPs). They are ubiquitously present in aquatic and terrestrial environments, posing adverse multifaceted ecological impacts. Recent transgenerational studies have demonstrated that MNPs negatively impact both the exposed parents and their unexposed generations. Therefore, this review summarizes the available research on the transgenerational impacts of MNPs in aquatic and terrestrial organisms, induced by exposure to MNPs alone or in combination with other organic and inorganic chemicals. The most commonly reported transgenerational effects of MNPs include tissue bioaccumulation and transfer, affecting organisms' survival, growth, reproduction, and energy metabolism; inducing oxidative stress; enzyme and genetic responses; and causing tissue damage. Similarly, co-exposure to MNPs and chemicals (organic and inorganic pollutants) significantly impacts survival, growth, and reproduction and induces oxidative stress, thyroid disruption, and genetic toxicity in organisms. The characteristics of MNPs (degree of aging, size, shape, polymer type, and concentration), exposure type and duration (parental exposure vs. multigenerational exposure and acute exposure vs. chronic exposure), and MNP-chemical interactions are the main factors affecting transgenerational impacts. Selecting MNP properties based on their realistic environmental behavior, employing more diverse animal models, and considering chronic exposure and MNP-chemical mixture exposure are salient research prospects for an in-depth understanding of the transgenerational impacts of MNPs.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
14
|
Li X, Chen Y, Gao W, Mo A, Zhang Y, Jiang J, He D. Prominent toxicity of isocyanates and maleic anhydrides to Caenorhabditis elegans: Multilevel assay for typical organic additives of biodegradable plastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130051. [PMID: 36179627 DOI: 10.1016/j.jhazmat.2022.130051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable plastics (BDP) are increasingly applied; however, there has been of concerns about their environmental safety, especially from nondegradable additive compositions. Until now, data of ecotoxicity of BDP additives is scarce. Here, nematode C. elegans was used to comparatively evaluate toxicity of an isocyanate additive, i.e., Hexamethylene diisocyanate (HDI), a maleic anhydride, i.e., Diallyl maleate (DIM), and other four BDP organic additives. These additives caused lethality of nematodes at µg L-1 level, of lowest LC50 value of HDI/DIM. Uniform exposure to these additives resulted in various degrees of inhibitions in body volumes and longevity, indicating developmental toxicity. Moreover, BDP additives induced significant elevations of gst-4 expression, especially mean 123.54 %/234.29 % increase in HDI/DIM group, but reduced ges-1 expression, which indicates oxidative damages and mitochondrial dysfunction. BDP additives further caused inhibition in locomotor and food intake/excretion behavior, and related damages of glutamatergic neurons and GABAergic neurons, indicating their neurotoxicity. We found HDI and DIM presented relatively strong effects on susceptible endpoints including lethality, gst-4, mean lifespan, food intake and excretion behavior. Overall, this study suggests prominent ecotoxic risk of isocyanates and maleic anhydrides as BDP additives, which is significant for the selection of environmentally friendly BDP additives.
Collapse
Affiliation(s)
- Xinyu Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yingxin Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Gao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Aoyun Mo
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yalin Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Jiang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Defu He
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, China.
| |
Collapse
|
15
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Kim SA, Kim L, Kim TH, An YJ. Assessing the size-dependent effects of microplastics on zebrafish larvae through fish lateral line system and gut damage. MARINE POLLUTION BULLETIN 2022; 185:114279. [PMID: 36330940 DOI: 10.1016/j.marpolbul.2022.114279] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the size-dependent effects of high-density polyethylene (HDPE) fragments in zebrafish. Larvae were exposed to HDPE microplastic (MP) in three sizes, small (14.12 μm), medium (80.32 μm), and large (120.97 μm), at 20 mg/L. Size-dependent effects in terms of MP intake, subsequent gut damage, and behavioral changes were observed. The results showed that HDPE exposure did not affect the survivability of zebrafish larvae but caused two significant changes. First, exposure to large MPs caused the most serious damage to hair cells and mechanosensory receptors in the fish's lateral line system. Second, exposure to MPs < 100 μm resulted in their ingestion by larvae, thereby causing morphological changes in the gastrointestinal tract. All larvae exposed to MPs showed behavioral pattern changes associated with size differences. This study improves our understanding of the effects of MPs on aquatic organisms and highlights the need to implement efficient strategies for plastic waste management.
Collapse
Affiliation(s)
- Sang A Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae Hee Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 426-171, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
17
|
Li H, Zeng L, Wang C, Shi C, Li Y, Peng Y, Chen H, Zhang J, Cheng B, Chen C, Xiang M, Huang Y. Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119927. [PMID: 35970344 DOI: 10.1016/j.envpol.2022.119927] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yeyong Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yi Peng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Biao Cheng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
18
|
Esterhuizen M, Buchenhorst L, Kim YJ, Pflugmacher S. In vivo oxidative stress responses of the freshwater basket clam Corbicula javanicus to microplastic fibres and particles. CHEMOSPHERE 2022; 296:134037. [PMID: 35183583 DOI: 10.1016/j.chemosphere.2022.134037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 05/15/2023]
Abstract
Microplastics have been detected in several aquatic organisms, especially bivalves such as clams, oysters, and mussels. To understand the ecotoxicological implication of microplastic accumulation in biota, it is crucial to investigate effects at the physiological level to identify knowledge gaps regarding the threat posed to the environment and assist decision-makers to set the necessary priorities. Typically, xenobiotics elicit an overproduction of reactive oxygen species in organisms, resulting in oxidative stress and cellular damage when not combated by the antioxidative system. Therefore, the present study aimed to establish the impacts of microplastic particles and fibres on the freshwater basket clam Corbicula javanicus. We measured the oxidative stress responses following microplastic exposure as the specific activities of the antioxidative enzymes glutathione S-transferase and catalase. When exposed to polyester fibres from the fleece jackets, the enzyme activities increased in the clams, while the enzyme activities decreased with high-density polyethylene microplastic fragments from bottle caps. All the exposures showed that the adverse effects on the antioxidative response system were elicited, indicating the negative ecotoxicological implications of microplastic pollution.
Collapse
Affiliation(s)
- Maranda Esterhuizen
- University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Niemenkatu 73, 15140 Lahti, Finland, And Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014, Helsinki, Finland; Korea Institute of Science and Technology Europe (KIST Europe) Forschungsgesellschaft mbH, Joint Laboratory of Applied Ecotoxicology, Environmental Safety Group, Universität des Saarlandes Campus E7 1, 66123, Saarbrücken, Germany; University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Wallace Building, 125 Dysart Road, Winnipeg, MB R3T 2N2, Canada.
| | - Lucille Buchenhorst
- Technische Universität Berlin, Institute of Ecology, Chair Ecological Impact Research & Ecotoxicology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany; Stockholm University, Department of Ecology, Environment and Plant Sciences, Svante Arrhenius väg 20A, 11418, Stockholm, Sweden
| | - Young Jun Kim
- Korea Institute of Science and Technology Europe (KIST Europe) Forschungsgesellschaft mbH, Joint Laboratory of Applied Ecotoxicology, Environmental Safety Group, Universität des Saarlandes Campus E7 1, 66123, Saarbrücken, Germany
| | - Stephan Pflugmacher
- University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Wallace Building, 125 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
19
|
Jin L, Dou TT, Chen JY, Duan MX, Zhen Q, Wu HZ, Zhao YL. Sublethal toxicity of graphene oxide in Caenorhabditis elegans under multi-generational exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113064. [PMID: 34890989 DOI: 10.1016/j.ecoenv.2021.113064] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have received increasing attentions owing to their potential hazards to the environment and human health; however, the multi-generational toxicity of graphene oxide under consecutive multi-generational exposure scenario still remains unclear. In the present study, Caenorhabditis elegans as an in vivo model organism was employed to explore the multi-generational toxicity effects of graphene oxide and the underlying mechanisms. Endpoints including development and lifespan, locomotion behaviors, defecation cycle, brood sizes, and oxidative response were evaluated in the parental generation and subsequent five filial generations. After continuous exposure for several generations, worms grew smaller and lived shorter. The locomotion behaviors were reduced across the filial generations and these reduced trends were following the impairments of locomotion-related neurons. In addition, the extended defecation cycles from the third filial generation were in consistency with the relative size reduction of the defecation related neuron. Simultaneously, the fertility function of the nematode was impaired under consecutive exposure as reduced brood sizes and oocytes numbers, increased apoptosis of germline, and aberrant expression of reproductive related genes ced-3, ced-4, ced-9, egl-1 and ced-13 were detected in exposed worms. Furthermore, the antioxidant enzyme, SOD-3 was significantly increased in the parent and filial generations. Thus, continuous multi-generational exposure to graphene oxide caused damage to the neuron development and the reproductive system in nematodes. These toxic effects could be reflected by indicators such as growth inhibition, shortened lifespan, and locomotion behavior impairment and induced oxidative response.
Collapse
Affiliation(s)
- Ling Jin
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ting-Ting Dou
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Jing-Ya Chen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ming-Xiu Duan
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Quan Zhen
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China
| | - Hua-Zhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China.
| | - Yun-Li Zhao
- School of Public Health, Bengbu Medical College, Bengbu, People's Republic of China.
| |
Collapse
|
20
|
Yang Y, Wu Q, Wang D. Neuronal Gα subunits required for the control of response to polystyrene nanoparticles in the range of μg/L in C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112732. [PMID: 34478982 DOI: 10.1016/j.ecoenv.2021.112732] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/21/2023]
Abstract
The aim of this study was to identify Gα proteins mediating function of neuronal G protein-coupled receptors (GPCRs) in controlling the response to polystyrene nanoparticles (PS-NPs). Caenorhabditis elegans was used as an animal model, and both gene expression and functional analysis were performed to identify the Gα proteins in controlling PS-NPs toxicity. In nematodes, exposure to PS-NPs (1-100 μg/L) significantly altered transcriptional expressions of some neuronal Gα genes, including gpa-5, gpa-10, gpa-11, gpa-15 gsa-1, egl-30, and goa-1. Among these 7 Gα genes, only neuronal RNAi knockdown of gsa-1, gpa-10, and goa-1 affected toxicity of PS-NPs in inducing ROS production and in decreasing locomotion behavior. Some neuronal GPCRs (such as GTR-1, DCAR-1, DOP-2, NPR-8, NPR-12, NPR-9, and DAF-37) functioned upstream of GOA-1, some neuronal GPCRs (such as DCAR-1, DOP-2, NPR-9, NPR-8, and DAF-37) functioned upstream of GSA-1, and some neuronal GPCRs (such as DOP-2, NPR-8, DAF-37, and DCAR-1) functioned upstream of GPA-10 to regulate the toxicity of PS-NPs. Moreover, GOA-1 acted upstream of MPK-1/ERK MAPK, JNK-1/JNK MAPK, DBL-1/TGF-β, and DAF-7/ TGF-β, GSA-1 functioned upstream of MPK-1/ERK MAPK, JNK-1/JNK MAPK, and DBL-1/TGF-β, and GPA-10 functioned upstream of GLB-1/Globin and DBL-1/TGF-β to control the PS-NPs toxicity. Therefore, neuronal Gα proteins of GOA-1, GSA-1, and GPA-10 functioned to transduce signals of multiple GPCRs to different downstream signaling pathways during the control of PS-NPs toxicity in nematodes. Our results provide clues for understanding the important function of GPCRs-Gα signaling cascade in the neurons in controlling response to nanoplastics in organisms.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.
| |
Collapse
|
21
|
Liu H, Tian L, Wang S, Wang D. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148217. [PMID: 34111783 DOI: 10.1016/j.scitotenv.2021.148217] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 05/21/2023]
Abstract
Nanoplastic exposure can potentially cause the severe transgenerational toxicity in organisms. However, the transgenerational nanoplastic toxicity and the underlying mechanisms are still largely unclear. Using Caenorhabditis elegans as an animal model, we here compared the transgenerational toxicity of two sizes of polystyrene nanoparticles (PS-NPs, 20 and 100 nm). The nematodes were exposed to PS-NPs at the P0 generation, and from the F1 generation the nematodes were grown under the normal condition. Exposure to 20 nm PS-NPs resulted in more severe transgenerational toxicity than exposure to 100 nm PS-NPs. At the concentration of 100 μg/L, the toxicity of 20 nm PS-NPs on locomotion and reproduction was detected at the F1-F6 generations, whereas the toxicity of 100 nm PS-NPs could only be observed at the F1-F3 generations. The difference in transgeneration toxicity between PS-NPs (20 nm) and PS-NPs (100 nm) was associated with the difference in transgenerational activation of oxidative stress. Based on observations on SOD-3::GFP, HSP-6::GFP, and HSP-4::GFP expressions, PS-NPs (20 nm) and PS-NPs (100 nm) further induced different transgenerational responses of anti-oxidation, mt UPR, and ER UPR. Our data suggested that the induction of transgenerational toxicity of PS-NPs was size dependent in nematodes. The results are helpful for our understanding the cellular mechanisms for the induction of transgenerational nanoplastic toxicity in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lijie Tian
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Shuting Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
22
|
Deng Y, Du H, Tang M, Wang Q, Huang Q, He Y, Cheng F, Zhao F, Wang D, Xiao G. Biosafety assessment of Acinetobacter strains isolated from the Three Gorges Reservoir region in nematode Caenorhabditis elegans. Sci Rep 2021; 11:19721. [PMID: 34611259 PMCID: PMC8492797 DOI: 10.1038/s41598-021-99274-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter has been frequently detected in backwater areas of the Three Gorges Reservoir (TGR) region. We here employed Caenorhabditis elegans to perform biosafety assessment of Acinetobacter strains isolated from backwater area in the TGR region. Among 21 isolates and 5 reference strains of Acinetobacter, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii ATCC 19606T, A. junii NH88-14, and A. lwoffii DSM 2403T resulted in significant decrease in locomotion behavior and reduction in lifespan of Caenorhabditis elegans. In nematodes, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii, A. junii and A. lwoffii also resulted in significant reactive oxygen species (ROS) production. Moreover, exposure to Acinetobacter isolates of AC1, AC15, AC18, and AC21 led to significant increase in expressions of both SOD-3::GFP and some antimicrobial genes (lys-1, spp-12, lys-7, dod-6, spp-1, dod-22, lys-8, and/or F55G11.4) in nematodes. The Acinetobacter isolates of AC1, AC15, AC18, and AC21 had different morphological, biochemical, phylogenetical, and virulence gene properties. Our results suggested that exposure risk of some Acinetobacter strains isolated from the TGR region exists for environmental organisms and human health. In addition, C. elegans is useful to assess biosafety of Acinetobacter isolates from the environment.
Collapse
Affiliation(s)
- Yunjia Deng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Mingfeng Tang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qilong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Ying He
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Fei Cheng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Dayong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
| |
Collapse
|
23
|
Liu H, Qiu Y, Wang D. Alteration in expressions of ion channels in Caenorhabditis elegans exposed to polystyrene nanoparticles. CHEMOSPHERE 2021; 273:129686. [PMID: 33486351 DOI: 10.1016/j.chemosphere.2021.129686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Ion channels on cytoplasmic membrane function to sense various environmental stimuli. We here determined the changes of genes encoding ion channels in Caenorhabditis elegans after exposure to polystyrene nanoparticles (PS-NPs). Exposure to 1-1000 μg/L PS-NPs could increase expressions of egl-19, mec-10, trp-4, trp-2, tax-4, cca-1, unc-2, and unc-93, and decrease the expressions of cng-3, mec-6, ocr-2, deg-1, exc-4, kvs-1, and eat-2. Among these 15 ion channel genes, RNAi knockdown of cng-3 or eat-2 caused resistance to PS-NPs toxicity and RNAi knockdown of egl-19, cca-1, tax-4, or unc-93 induced susceptibility to PS-NPs toxicity, suggesting that cng-3, eat-2, egl-19, cca-1, tax-4, and unc-93 were involved in the control of PS-NPs toxicity. EGL-19 and CCA-1 functioned in intestinal cells to control PS-NPs toxicity, and CNG-3, EAT-2, EGL-19, TAX-4, and UNC-93 functioned in neuronal cells to control PS-NPs. Moreover, in intestinal cells of PS-NPs exposed worms, cca-1 RNAi knockdown decreased elt-2 expression, and egl-19 RNAi knockdown decreased daf-16 and elt-2 expressions. In neuronal cells of PS-NPs exposed worms, eat-2 RNAi knockdown increased jnk-1, mpk-1, and dbl-1 expressions, unc-93 RNAi knockdown decreased mpk-1 and daf-7 expressions, and tax-4 RNAi knockdown decreased jnk-1 and daf-7 expressions. Therefore, two molecular networks mediated by ion channels in intestinal cells and neuronal cells were dysregulated by PS-NPs exposure in C. elegans. Our data suggested that the dysregulation in expressions of these ion channels mediated a protective response to PS-NPs in the range of μg/L in worms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
24
|
Zhao Y, Xu R, Chen X, Wang J, Rui Q, Wang D. Induction of protective response to polystyrene nanoparticles associated with dysregulation of intestinal long non-coding RNAs in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111976. [PMID: 33517035 DOI: 10.1016/j.ecoenv.2021.111976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Intestinal barrier plays a crucial function during the response to polystyrene nanoparticles (PS-NPs) in nematode Caenorhabditis elegans. Long non-coding RNAs (lncRNAs) are involved in the control of various biological processes, including stress response. We here used C. elegans to determine intestinal lncRNAs dysregulated by PS-NPs (1-100 μg/L). In intestine of PS-NPs exposed worms, we found four lncRNAs (linc-61, linc-50, linc-9, and linc-2) in response to PS-NPs and with the function in controlling PS-NPs toxicity. The alteration in expressions of these four intestinal lncRNAs reflected a protective response to PS-NPs exposure. During the response to PS-NPs, limited number of transcriptional factors functioned as the downstream targets of these four lncRNAs. linc-2 acted upstream of DAF-16, linc-9 acted upstream of NHR-77, linc-50 functioned upstream of DAF-16, and linc-61 regulated the functions of DAF-16, DVE-1, and FKH-2 to control PS-NPs toxicity. The obtained data demonstrated the important role of lncRNAs in intestinal barrier to mediate a protective response to PS-NPs exposure at low concentrations.
Collapse
Affiliation(s)
- Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoran Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
25
|
Liu H, Zhao Y, Bi K, Rui Q, Wang D. Dysregulated mir-76 mediated a protective response to nanopolystyrene by modulating heme homeostasis related molecular signaling in nematode Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112018. [PMID: 33550076 DOI: 10.1016/j.ecoenv.2021.112018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 05/21/2023]
Abstract
The underlying mechanisms of microRNAs (miRNAs) in regulating nanoplastic toxicity are still largely unclear in organisms. In nanopolystyrene (NPS) exposed Caenorhabditis elegans, the expression of mir-76 (a neuronal miRNA) was significantly decreased, and the mir-76 mutant was resistant to the toxicity of NPS. The aim of this study was to determine the molecular basis of mir-76 in controlling NPS toxicity in nematodes. The mir-76 mutation increased expression of glb-10 encoding a globin protein in NPS (1 μg/L) exposed nematodes. Exposure to NPS (1-100 μg/L) increased the glb-10 expression, and the glb-10(RNAi) worm was susceptible to NPS toxicity in inducing reactive oxygen species (ROS) production and in decreasing locomotion behavior. Using ROS production and locomotion behavior as endpoints, mutation of glb-10 inhibited resistance of mir-76 mutant to NPS toxicity, and neuronal overexpression of mir-76 inhibited the resistance to NPS toxicity in nematodes overexpressing neuronal glb-10 containing 3' untranslated region (3'UTR). Thus, GLB-10 functioned as a target of mir-76 in the neurons to regulate the NPS toxicity. Moreover, a signaling cascade of HRG-7-HRG-5 required for the control of heme homeostasis was identified to function downstream of neuronal GLB-10 to regulate the NPS toxicity. In this signaling cascade, the neuronal HRG-7 regulated the NPS toxicity by antagonizing function of intestinal HRG-5. Furthermore, in the intestine, HRG-5 controlled NPS toxicity by inhibiting functions of hypoxia-inducible transcriptional factor HIF-1 and transcriptional factor ELT-2. Our results highlight the crucial function of heme homeostasis related signaling in regulating the NPS toxicity in organisms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yingyue Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Bi
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
26
|
Yang Y, Dong W, Wu Q, Wang D. Induction of Protective Response Associated with Expressional Alterations in Neuronal G Protein-Coupled Receptors in Polystyrene Nanoparticle Exposed Caenorhabditis elegans. Chem Res Toxicol 2021; 34:1308-1318. [PMID: 33650869 DOI: 10.1021/acs.chemrestox.0c00501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, the association of expressional alterations in neuronal G protein-coupled receptors (GPCRs) with induction of protective response to polystyrene nanoparticles (PS-NPs) was investigated in Caenorhabditis elegans. On the basis of both phenotypic analysis and expression levels, the alterations in expressions of NPR-1, NPR-4, NPR-8, NPR-9, NPR-12, DCAR-1, GTR-1, DOP-2, SER-4, and DAF-37 in neuronal cells mediated the protective response to PS-NPs exposure. In neuronal cells, NPR-9, NPR-12, DCAR-1, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting JNK-1/JNK MAPK signaling. Neuronal NPR-8, NPR-9, DCAR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting MPK-1/ERK MAPK signaling. Neuronal NPR-4, NPR-8, NPR-9, NPR-12, GTR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting DBL-1/TGF-β signaling. Neuronal NPR-1, NPR-4, NPR-12, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting DAF-7/TGF-β signaling. Our data provides an important neuronal basis for induction of protective response to PS-NPs in C. elegans.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Wenting Dong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.,College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China
| |
Collapse
|