1
|
Liu J, Zhao B, Wang L, Zhang W, Zan T, Chen Z, Li Y. Occurrence, fate, and transport of N-nitrosamines and precursors in sewage treatment plants and receiving rivers in a highly urbanized basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125808. [PMID: 39914564 DOI: 10.1016/j.envpol.2025.125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
N-nitrosamines (NAs), highly carcinogenic disinfection by-products, were frequently detected in raw sewage, sewage treatment plants (STPs), and receiving rivers. This study investigated five NAs, including N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosodi-n-butylamine (NDBA), and N-nitrosopiperidine (NPIP), and their formation potentials (FPs) in a highly urbanized basin. The results showed that total NAs and their FPs ranged from 101 to 141 ng/L and 72.6-203 ng/L in the influent, implying that NAs and their FPs in the raw sewage might be affected by the sewage type, especially for NDMA (up to 103 ng/L) influenced by industrial wastewater. NDMA FP was positively correlated with NH4+, TN, and TOC, while NDMA, NDEA, and NDEA FP were strongly associated with heavy metals, especially Hg, implying factories using Hg as potential sources. The biological treatment effectively removed NAs in STPs, but NMOR showed the weakest biological removal. In addition, the removal efficiency of NDMA was related to the type of biological treatment in the following order: Modified anaerobic-anoxic-oxic-membrane-bioreactor (Modified AAO-MBR) (81.2%) > AAO (60.1%) > Oxidation ditch (53.3%) > UNITANK (46.5%) > Modified AAO (25.8%). After treatment, total NAs (mainly NDMA and NMOR) in the effluent still ranged from 7.09 to 31.8 ng/L. In the receiving rivers, although NMOR was mainly photodegraded, Patescibacteria discharged from STPs was the first time to be identified as a potential contributor for NMOR. NDMA was primarily degraded through photodegradation and biodegradation, NDMA FP was probably biodegraded, with Proteobacteria probably contributing to the biodegradation of NDMA and NDMA FP.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tingchao Zan
- Nanjing Jiangning Water Business Group, Nanjing, 210000, PR China
| | - Zhenguo Chen
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
2
|
Wang J, Zhang W, Zhang R, Yang H, Li Y, Wang J, Li C. MiR-101-3p Promotes Tumor Cell Proliferation and Migration via the Wnt Signal Pathway in MNNG-Induced Esophageal Squamous Cell Carcinoma. TOXICS 2024; 12:824. [PMID: 39591002 PMCID: PMC11598764 DOI: 10.3390/toxics12110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
N-methyl-n'-nitroso-n'-nitroso guanidine (MNNG) can induce esophageal squamous cell carcinoma (ESCC), and microRNAs are associated with the development of ESCC and may serve as potential tumor prognostic markers. Thus, the aim of this study was to evaluate the potential function of miR-101-3p in MNNG-induced ESCC. An investigation of risk factors in patients with ESCC was carried out and the concentration of nine nitrosamines in urine samples was detected by the SPE-GC-MS technique. Then, we performed cancer tissue gene sequencing analysis, and RT-qPCR verified the expression level of miR-101-3p. Subsequently, the relationship between miR-101-3p potential target genes and the ESCC patients' prognosis was predicted. Finally, we investigated the function of miR-101-3p in MNNG-induced ESCC pathogenesis and the regulatory mechanism of the signaling pathway by in vivo and in vitro experiments. The results revealed that high dietary nitrosamine levels are high-risk factors for ESCC. MiR-101-3p is down-regulated in ESCC tissues and cells, and its potential target genes are enriched in cell migration and cancer-related pathways. MiR-101-3p target genes include AXIN1, CK1, and GSK3, which are involved in the regulation of the Wnt signaling pathway. MiR-101-3p overexpression promotes apoptosis and inhibits the proliferation and migration of Eca109 cells. The Wnt pathway is activated after subchronic exposure to MNNG, and the Wnt pathway is inhibited by the overexpression of miR-101-3p in Eca109 cells. Down-regulated miR-101-3p may exert tumor suppressive effects by regulating the Wnt pathway and may be a useful biomarker for predicting ESCC progression.
Collapse
Affiliation(s)
- Jianding Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.W.); (W.Z.); (Y.L.); (J.W.)
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.W.); (W.Z.); (Y.L.); (J.W.)
| | - Rui Zhang
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Special Hospital of the Lanzhou University First Affiliated Hospital, Lanzhou 730000, China;
| | - Hanteng Yang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Yitong Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.W.); (W.Z.); (Y.L.); (J.W.)
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.W.); (W.Z.); (Y.L.); (J.W.)
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.W.); (W.Z.); (Y.L.); (J.W.)
| |
Collapse
|
3
|
Manchuri KM, Shaik MA, Gopireddy VSR, Naziya Sultana, Gogineni S. Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices. Chem Res Toxicol 2024; 37:1456-1483. [PMID: 39158368 DOI: 10.1021/acs.chemrestox.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer's and Parkinson's diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.
Collapse
Affiliation(s)
- Krishna Moorthy Manchuri
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Mahammad Ali Shaik
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Venkata Subba Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Naziya Sultana
- Analytical Research and Development, IPDO, Dr. Reddy's Laboratories Limited, Hyderabad 500090, India
| | - Sreenivasarao Gogineni
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| |
Collapse
|
4
|
Yan X, Huang H, Chen W, Li H, Chen Y, Liang Y, Zeng H. Industrial effluents and N-nitrosamines in karst aquatic systems: a study on distribution and ecological implications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:255. [PMID: 38884657 DOI: 10.1007/s10653-024-02034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024]
Abstract
The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution ControlSouth China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
5
|
Yin X, Gu HW, Ning D, Li YS, Tang HB. Testosterone Exacerbates the Formation of Liver Cancer Induced by Environmental N-Nitrosamines Exposure: Potential Mechanisms and Implications for Human Health. Onco Targets Ther 2024; 17:395-409. [PMID: 38774818 PMCID: PMC11107913 DOI: 10.2147/ott.s456746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/11/2024] [Indexed: 05/24/2024] Open
Abstract
Background Humans are frequently exposed to N-nitrosamines through various sources, including diet, cigarette smoking, contaminated water, the atmosphere, and endogenous nitrosation. Exposure to these carcinogens may also contribute to the gender-specific incidence of liver cancer, which is significantly higher in males than in females, possibly due to the influence of endogenous hormones such as testosterone. However, the effect of testosterone on N-nitrosamine-induced liver cancer and its underlying mechanism remains unclear. Purpose To investigate the effect of testosterone on the development of liver cancer induced by N-nitrosamines exposure. Patients and Methods Histopathological and immunohistochemical staining techniques were employed to analyze the expression levels and nuclear localizations of key signaling molecules, including androgen receptor (AR), β-catenin, and HMGB1, in both tumor and non-tumor regions of liver samples obtained from human patients and mice. Results The findings demonstrated a strong correlation between AR and β-catenin in the nuclear region of tumor areas. AR also showed a significant correlation with HMGB1 in the cytoplasmic region of non-tumor areas in both human and mice samples. The study further analyzed the expression levels and patterns of these three proteins during the progression of liver tumors. Conclusion This study confirms that AR has the ability to modulate the expression levels and patterns of β-catenin and HMGB1 in vivo, thereby exacerbating the progression of liver cancer induced by environmental N-nitrosamines exposure. Importantly, the effect of testosterone on the formation of liver cancer induced by environmental N-nitrosamine exposure intensifies this progression. These findings have important implications for drug safety in clinical practice and emphasize the significance of reducing N-nitrosamines exposure through conscious choices regarding diet and lifestyle to ensure environmental safety.
Collapse
Affiliation(s)
- Xin Yin
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People’s Republic of China
| | - Hong-Wei Gu
- Pharmacy Department, Mental Health Center of Wuhan, Wuhan, Hubei, People’s Republic of China
| | - Dan Ning
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People’s Republic of China
| | - Yu-Sang Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People’s Republic of China
| | - He-Bin Tang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
6
|
Huang H, Chen Z, Su Y, Zeng H, Li H, Chen Y, Qi S, Chen W, Chen W, Zhang G. N-nitrosamines in electroplating and printing/dyeing industrial wastewater treatment plants: Removal efficiency, environmental emission, and the influence on drinking water. WATER RESEARCH 2024; 255:121537. [PMID: 38555784 DOI: 10.1016/j.watres.2024.121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The discharge of industrial wastewater containing high concentrations of N-nitrosamines to the aquatic environment can impair downstream source waters and pose potential risks to human health. However, the transport and fate of N-nitrosamines in typical industrial wastewater treatment plants (IWWTPs) and the influence of these effluents on source water and drinking water are still unclear. This study investigated nine N-nitrosamines in four full-scale electroplating (E-) and printing/dyeing (PD-) IWWTPs, two drinking water treatment plants (DWTPs) in the lower reaches of these IWWTPs, and the corresponding tap water in South China. The total concentrations of N-nitrosamines (∑NAs) were 382-10,600, 480-1920, 494-789, and 27.9-427 ng/L in influents, effluents, source water, and tap water, respectively. The compositions of N-nitrosamine species in different influents varied a lot, while N-nitrosodi-n-butylamine (NDBA) and N-nitrosodimethylamine (NDMA) dominated in most of the effluents, source water, and tap water. More than 70 % N-nitrosamines were removed by wastewater treatment processes used in E-IWWTPs such as ferric-carbon micro-electrolysis (Fe/C-ME), while only about 50 % of N-nitrosamines were removed in PD-IWWTPs due to the use of chlorine reagent or other inefficient conventional processes such as flocculation by cationic amine-based polymers or bio-contact oxidation. Therefore, the mass fluxes of N-nitrosamines discharged from these industrial wastewaters to the environment in the selected two industrial towns were up to 14,700 mg/day. The results based on correlation and principal component analysis significantly demonstrated correlations between E-and PD-effluents and source water and tap water, suggesting that these effluents can serve as sources of N-nitrosamines to local drinking water systems. This study suggests that N-nitrosamines are prevalent in typical IWWTPs, which may infect drinking water systems. The findings of this study provide a basis data for the scientific evaluation of environmental processes of N-nitrosamines.
Collapse
Affiliation(s)
- Huanfang Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, PR China
| | - Zifeng Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Yuru Su
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Yingjie Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Shihua Qi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
7
|
Chen Y, Huang H, Chen W, Huang X, Zhang Y, Liang Y, Zeng H, Zhang H, Qi S. Impact of agricultural activities on the occurrence of N-nitrosamines in an aquatic environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:470-482. [PMID: 38282562 DOI: 10.1039/d3em00441d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
N-Nitrosamines, nitroso compounds with strong carcinogenic effects on humans, have been frequently detected in natural waters. In agricultural areas, there is typically a lack of drinking water treatment processes and distribution systems. As a result, residents often consume groundwater as drinking water which may contain N-nitrosamines, necessitating the investigation of the occurrence, sources, and carcinogenic risk of N-nitrosamines within the groundwater of agricultural areas. This study identified eight N-nitrosamines in groundwater and river water in the Jianghan Plain, a famous agricultural region in central China. N-Nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosopyrrolidine (NPYR), and N-nitrosodi-n-butylamine (NDBA) were detected in groundwater, with NDMA being the main compound detected (up to 52 ng L-1). Comparable concentrations of these N-nitrosamines were also found in river water. From laboratory experiments, we found a tremendous potential for the formation of N-nitrosamines in groundwater. Principal component analysis and multiple linear regression analysis results showed that the primary sources of N-nitrosamines in groundwater were the uses of nitrogen fertilizers and pesticides carrying specific N-nitrosamines such as NPYR. The average total carcinogenic risk values of detected N-nitrosamines were higher than the acceptable risk level (10-5), suggesting a potential carcinogenic risk of groundwater. Further research is urgently needed to minimize N-nitrosamine levels in the groundwater of agricultural areas, particularly in those where pesticides and fertilizers are heavily used.
Collapse
Affiliation(s)
- Yingjie Chen
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Hongshan District, Wuhan 430074, China.
- Lancaster Environment Centre, Lancaster University, Lancashire LA1 4YW, UK
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Xuelian Huang
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Hongshan District, Wuhan 430074, China.
| | - Yuan Zhang
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Hongshan District, Wuhan 430074, China.
| | - Yanpeng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancashire LA1 4YW, UK
| | - Shihua Qi
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Hongshan District, Wuhan 430074, China.
| |
Collapse
|
8
|
Yan X, Zhu B, Huang H, Chen W, Li H, Chen Y, Liang Y, Zeng H. Analysing N-nitrosamine occurrence and sources in karst reservoirs, Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:112. [PMID: 38472659 DOI: 10.1007/s10653-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
N-nitrosamines in reservoir water have drawn significant attention because of their carcinogenic properties. Karst reservoirs containing dissolved organic matter (DOM) are important drinking water sources and are susceptible to contamination because of the fast flow of various contaminants. However, it remains unclear whether N-nitrosamines and their precursor, DOM, spread in karst reservoirs. Therefore, this study quantitatively investigated the occurrence and sources of N-nitrosamines based on DOM properties in three typical karst reservoirs and their corresponding tap water. The results showed that N-nitrosamines were widely spread, with detection frequencies > 85%. Similar dominant compounds, including N-nitrosodimethylamine, N-nitrosomethylethylamine, N-nitrosopyrrolidine, and N-nitrosodibutylamine, were observed in reservoirs and tap water, with average concentrations of 4.7-8.9 and 2.8-6.7 ng/L, respectively. The average carcinogenic risks caused by these N-nitrosamines were higher than the risk level of 10-6. Three-dimensional fluorescence excitation-emission matrix modeling revealed that DOM was composed of humus-like component 1 (C1) and protein-like component 2 (C2). Fluorescence indicators showed that DOM in reservoir water was mainly affected by exogenous pollution and algal growth, whereas in tap water, DOM was mainly affected by microbial growth with strong autopoietic properties. In the reservoir water, N-nitrosodiethylamine and N-nitrosopiperidine were significantly correlated with C2 and biological indicators, indicating their endogenously generated sources. Based on the principal component analysis and multiple linear regression methods, five sources of N-nitrosamines were identified: agricultural pollution, microbial sources, humus sources, degradation processes, and other factors, accounting for 46.8%, 36.1%, 7.82%, 8.26%, and 0.96%, respectively. For tap water, two sources, biological reaction processes, and water distribution systems, were identified, accounting for 75.7% and 24.3%, respectively. Overall, this study presents quantitative information on N-nitrosamines' sources based on DOM properties in typical karst reservoirs and tap water, providing a basis for the safety of drinking water for consumers.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Bingquan Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
9
|
He L, Zhou X, Liu J, Yao Y, Lin J, Chen J, Qiu S, Liu Z, He Y, Yi Y, Zhou X, Zou F. RAE1 promotes nitrosamine-induced malignant transformation of human esophageal epithelial cells through PPARα-mediated lipid metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115513. [PMID: 37774541 DOI: 10.1016/j.ecoenv.2023.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Esophageal cancer (EC) is the sixth cause of cancer-related deaths and still is a significant public health problem globally. Nitrosamines exposure represents a major health concern increasing EC risks. Exploring the mechanisms induced by nitrosamines may contribute to the prevention and early detection of EC. However, the mechanism of nitrosamine carcinogenesis remains unclear. Ribonucleic acid export 1 (RAE1), has an important role in mediating diverse cancer types, but, to date, there has been no study for any functional role of RAE1 in esophageal carcinogenesis. Here, we successfully verified the nitrosamine-induced malignant transformation cell (MNNG-M) by xenograft tumor model, based on which it was found that RAE1 was upregulation in the early stage of nitrosamine-induced esophageal carcinogenesis and EC tissues. RAE1 knockdown led to severe blockade in G2/M phase and significant inhibition of proliferation of MNNG-M cells, whereas RAE1 overexpression had the opposite effect. In addition, peroxisome proliferator-activated receptor-alpha (PPARα), was demonstrated as a downstream target gene of RAE1, and its down-regulation reduced lipid accumulation, resulting in causing cells accumulation in the G2/M phase. Mechanistically, we found that RAE1 regulates the lipid metabolism by maintaining the stability of PPARα mRNA. Taken together, our study reveals that RAE1 promotes malignant transformation of human esophageal epithelial cells (Het-1A) by regulating PPARα-mediated lipid metabolism to affect cell cycle progression, and offers a new explanation of the mechanisms underlying esophageal carcinogenesis.
Collapse
Affiliation(s)
- Ling He
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Xiangjun Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yina Yao
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Junyuan Lin
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jialong Chen
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Qiu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Zeyu Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yingzheng He
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yujie Yi
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| |
Collapse
|
10
|
Xia J, Chen Y, Huang H, Li H, Huang D, Liang Y, Zeng H, Chen W. Occurrence and mass loads of N-nitrosamines discharged from different anthropogenic activities in Desheng River, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57975-57988. [PMID: 36973615 DOI: 10.1007/s11356-023-26458-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
N-nitrosamines are widespread in various bodies of water, which is of great concern due to their carcinogenic risks and harmful mutagenic effects. Livestock rearing, domestic, agricultural, and industrial wastewaters are the main sources of N-nitrosamines in environmental water. However, information on the amount of N-nitrosamines these different wastewaters contribute to environmental water is scarce. Here, we investigated eight N-nitrosamines and assessed their mass loadings in the Desheng River to quantify the contributions discharged from different anthropogenic activities. N-nitrosodimethylamine (NDMA) (< 1.6-18 ng/L), N-nitrosomethylethylamine (NMEA) (< 2.2 ng/L), N-nitrosodiethylamine (NDEA) (< 1.7-2.4 ng/L), N-nitrosopyrrolidine (NPYR) (< 1.8-18 ng/L), N-nitrosomorpholine (NMOR) (< 2.0-3.5 ng/L), N-nitrosopiperidine (NPIP) (< 2.2-2.5 ng/L), and N-nitrosodi-n-butylamine (NDBA) (< 3.3-16 ng/L) were detected. NDMA and NDBA were the dominant compounds contributing 89% and 92% to the total N-nitrosamine concentrations. The mean cumulative concentrations of N-nitrosamines in the livestock rearing area (26 ± 11 ng/L) and industrial area (24 ± 4.8 ng/L) were higher than those in the residential area (16 ± 6.3 ng/L) and farmland area (15 ± 5.1 ng/L). The mean concentration of N-nitrosamines in the tributaries (22 ng/L) was slightly higher than that in the mainstem (17 ng/L), probably due to the dilution effect of the mainstem. However, the mass loading assessment based on the river's flow and water concentrations suggested the negligible mass emission of N-nitrosamines into the mainstem from tributaries, which could be due to the small water flow of tributaries. The average mass loads of N-nitrosamines discharged into the mainstem were ranked as the livestock rearing area (742.7 g/d), industrial area (558.6 g/d), farmland area (93.9 g/d), and residential areas (83.2 g/d). In the livestock rearing, residential, and industrial area, NDMA (60.9%, 53.6%, and 46.7%) and NDBA (34.6%, 33.3%, and 44.9%) contributed the most mass loads; NDMA (23.4%), NDEA (15.8%), NPYR (10.1%), NPIP (12.8%), and NDBA (37.8%) contributed almost all the mass loads in the farmland area. Photodegradation amounts of NDMA (0.65 ~ 5.25 µg/(m3·day)), NDBA (0.37 ~ 0.91 µg/(m3·day)), and NDEA (0 ~ 0.66 µg/(m3·day)) were also calculated according to the mass loading. Quantifying the contribution of different anthropogenic activities to the river will provide important information for regional river water quality protection. Risk quotient (RQ) values showed the negligible ecological risks for fish, daphnid, and green algae.
Collapse
Affiliation(s)
- Jingxuan Xia
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Huanfang Huang
- Ministry of Ecology and Environment, South China Institute of Environmental Science, Guangzhou, 510530, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China
| | - Dabao Huang
- Guangxi Shangshanruoshui Development Co., Ltd, Nanning, 530012, China
| | - Yanpeng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China.
| |
Collapse
|
11
|
Cai H, Shen C, Xu H, Qian H, Pei S, Cai P, Song J, Zhang Y. Seasonal variability, predictive modeling and health risks of N-nitrosamines in drinking water of Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159530. [PMID: 36270378 DOI: 10.1016/j.scitotenv.2022.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of carcinogenic N-nitrosamines in drinking water is of significant concern. In the present study, eight N-nitrosamines from three representative drinking water treatment plants (DWTPs) in Shanghai, China were monitored for an entire year to evaluate their seasonal variability, probabilistic cancer risk and the resulting disease burden. The possibility of employing routinely monitored water quality parameters as predictors of N-nitrosamines was also examined. The results showed that the Taipu River-fed reservoir suffered more serious N-nitrosamine contamination than the Yangtze River-fed reservoirs. Winter witnessed higher levels of N-nitrosamines in both source and finished water. N-nitrosamine concentrations increased from source water to finished water in autumn or winter, but no spatial variations were observed in summer. The total lifetime cancer risk (LCR) posed by N-nitrosamines in finished water was within the acceptable range (1.00 × 10-6 to 1.00 × 10-4), with N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) being the main contributors. Winter and autumn were found to have higher total LCR values. The average individual disability-adjusted life years (DALYs) lost was 4.43 × 10-6 per person-year (ppy), exceeding the reference risk level (1.00 × 10-6 ppy). Liver cancer accounted for 97.1 % of the total disease burden, while bladder and esophagus cancers made a little contribution (2.9 %). A multiple regression model was developed to estimate the total N-nitrosamines in finished water as a function of water quality parameters, and the R2 value was 0.735. This study not only provides fundamental data for public health policy development, but also reveals the necessity to incorporate a seasonal control strategy in DWTPs to minimize the associated health risks induced by N-nitrosamines.
Collapse
Affiliation(s)
- Hongquan Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Chaoye Shen
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Huihui Xu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Hailei Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Saifeng Pei
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Ping Cai
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Jun Song
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yun Zhang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Key Laboratory of Risk Monitoring Project for Emerging Contaminants in Drinking Water, 1380 West Zhongshan Road, Shanghai 200336, China.
| |
Collapse
|
12
|
Chen S, Zhang Y, Zhao Q, Liu Y, Wang Y. Simultaneous Determination for Nine Kinds of N-Nitrosamines Compounds in Groundwater by Ultra-High-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16680. [PMID: 36554561 PMCID: PMC9779805 DOI: 10.3390/ijerph192416680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The ability to effectively detect N-nitrosamine compounds by liquid chromatography-tandem mass spectrometry presents a challenge due to the problems of high detection limits and difficulty in simultaneous N-nitrosamine compound detection. In order to overcome these limitations, this study reduced the detection limit of N-nitrosamine compounds by applying n-hexane pre-treatment to remove non-polar impurities before the conventional process of column extraction. In addition, ammonium acetate was used as the mobile phase to enhance the retention of nitrosamine target substances on the chromatographic column, with formic acid added to the mobile phase to improve the ionization level of N-nitrosodiphenylamine, to achieve the simultaneous detection of multiple N-nitrosamine compounds. Applying these modifications to the established detection method allowed the rapid and accurate detection of N-nitrosamine in water within 12 min. The linear relationship, detection limit, quantification limit and sample spiked recovery rate of nine types of nitrosamine compound were investigated, showing that the correlation coefficient ranged from 0.9985-0.9999, while the detection limits of the instrument and the method were 0.280-0.928 µg·L-1 and 1.12-3.71 ng·L-1, respectively. The spiked sample recovery rate ranged from 64.2-83.0%, with a standard deviation of 2.07-8.52%, meeting the requirements for trace analysis. The method was applied to the detection of N-nitrosamine compounds in nine groundwater samples in Wuhan, China, and showed that the concentrations of N-nitrosodimethylamine and NDEA were relatively high, highlighting the need to monitor water bodies with very low levels of pollutants and identify those requiring treatment.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Environment, Tsinghua University, No. 30 Shuangqing Road, Hai Dian District, Beijing 100084, China
| | - Yi Zhang
- SHANGHAI Soong Ching Ling School, Shanghai 200000, China
| | - Qinghua Zhao
- Physics, Tibet University, No. 10 Zangda East Road, Lhasa 850000, China
| | - Yaodi Liu
- Physics, Tibet University, No. 10 Zangda East Road, Lhasa 850000, China
| | - Yun Wang
- School of Water Resources and Environmental Engineering, Nanyang Normal University, No. 1398 Wolong Road, Nanyang 473061, China
| |
Collapse
|
13
|
Zhang H, Liu Q, Zhao C, Zhang Y, Wang S, Liu R, Pu Y, Yin L. The dysregulation of unsaturated fatty acid-based metabolomics in the MNNG-induced malignant transformation of Het-1A cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30159-30168. [PMID: 34997498 DOI: 10.1007/s11356-021-17622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Studies have shown that environmental carcinogens exerted an important function in the high incidence of esophageal cancer (EC). Nitrosamines have been identified as important environmental carcinogens for EC. This study aimed to investigate the metabolic disturbances and new key toxicological markers in the malignant transformation process of normal esophageal epithelial cells (Het-1A) induced by MNNG (N-methyl-N'-nitro-N-nitrosoguanidine). Untargeted metabolomic and lipidomic profiling analysis by using ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) were applied to explore the metabolic network alterations of Het-1A cells. The metabolomic results showed that significant alterations were observed in metabolic signatures between different generations (P5, P15, P25, P35) and the control cell group (P0). A total of 48 differential endogenous metabolites were screened and identified, mainly containing fatty acids, amino acids, and nucleotides. The differential metabolites were predominantly linked to the pathway of biosynthesis of unsaturated fatty acids metabolism. The cell lipidomic profiling revealed that the most differential lipids contained fatty acids (FAs), phosphatidylcholines (PC), phosphatidylethanolamines (PE), and phosphatidylserines (PS). The enrichment of the lipidomic pathway also confirmed that the lipid metabolism of biosynthesis of unsaturated fatty acids was the significant variation during the cell malignant transformation. Furthermore, we detected the expression of the upstream regulatory enzymes related to the unsaturated fatty acids to explore the regulation mechanism. The expression of stearoyl-CoA desaturase (SCD), ELOVL fatty acid elongase 1 (ELOVL1) promoted, and fatty acid desaturase 1 (FADS1) inhibited the key fatty acids of unsaturated fatty acids metabolism compared to the control cell group. Overall, our results revealed that lipid fatty acid metabolism was involved in the malignant transformation of Het-1A cells induced by MNNG and deepened the awareness of the carcinogenic mechanism of environmental exposure pollutants.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Qiwei Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
14
|
Zhang H, Zhao C, Liu Q, Zhang Y, Luo K, Pu Y, Yin L. Dysregulation of fatty acid metabolism associated with esophageal inflammation of ICR mice induced by nitrosamines exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118680. [PMID: 34915095 DOI: 10.1016/j.envpol.2021.118680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Nitrosamines, as ubiquitous environmental carcinogens with adverse impact on human health, were crucial inducers of esophageal cancer (EC). Esophageal inflammation (EI) was an important biological process and considered to be associated with the progression of EC. However, the underlying regulatory mechanism of EI process caused by nitrosamines exposure remained largely unclear. In this study, a metabolomics approach based on mass spectrometry was utilized to explore the effect of nitrosamines exposure to ICR mice. Also, the changes of pivotal metabolic enzyme levels, urinary nitrosamines and histopathological analysis were evaluated. The results showed that nitrosamines exposure was intimately interrelated with EI process in mice. Metabolomics profiling analysis indicated that nitrosamines caused significant alterations of metabolic pathway predominantly enriched in fatty acid metabolism. Targeted metabolomics analysis revealed that nitrosamines promoted decomposition of fatty acids and facilitated fatty acid β-oxidation (FAO) of mice. The significant increase of carnitine palmitoyltransferase 1 (CPT1) and downregulation of acetyl-CoA acyltransferase 2 (ACAA2) would promote FAO in EI process induced by nitrosamines. Additionally, the exposure levels of more than half of nitrosamines in urine were correlated with inflammatory fatty acid biomarkers. Overall, this study found that EI triggered by nitrosamines may be associated with the promotion of FAO, and provided novel insights for evaluating the underlying mechanism of environmental pollutant-caused toxicity based on metabolomics.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Qiwei Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Kai Luo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|