1
|
Gu J, Luo Y, Liang M, Fan Y, Zhang X, Ji G, Jin X. A novel framework for industrial pesticide effluent assessment: Integrating chemical screening, multi-endpoint responses and literature-based validation. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137830. [PMID: 40058200 DOI: 10.1016/j.jhazmat.2025.137830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Industrial pesticide effluents pose substantial risks to aquatic ecosystems, yet comprehensive understanding of their toxicological impacts remains limited. This study presents an integrated approach to evaluate the ecological risks of pesticide manufacturing effluents through chemical screening and multi-endpoints biological responses. Using zebrafish embryos as a model organism, we demonstrated that effluent discharge point (EDP) sample induced 100 % mortality, while diluted samples exhibited significant developmental toxicity, cardiovascular injury, immunosuppression, and behavioral alterations. Non-targeted metabolomics analysis revealed the molecular mechanisms underlying these toxic responses. Through chemical screening and targeted quantification, we identified three predominant azole fungicides - propiconazole (2.11 μg/L), hexaconazole (13.3 μg/L), and tebuconazole (18.66 μg/L) - that exhibited synergistic toxicity. Notably, our innovative meta-analysis framework based on literature data validated the toxicological profiles of detected compounds, providing an efficient alternative to conventional bioassays. This study establishes a comprehensive framework for assessing industrial effluent toxicity and demonstrates the value of integrating chemical analysis with biological responses for environmental risk assessment.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yiwen Luo
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengyuan Liang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yue Fan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Guixiang Ji
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental science, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| |
Collapse
|
2
|
Song P, Lei D, Li L, Long N, Xu Q, Li Y, Zhou L, Pan R, Kong W. AuNCs@ZIF-8 with enhanced AIE effect to develop a lateral flow immunosensor for POC dual-modal detection of acetochlor. Talanta 2025; 287:127649. [PMID: 39889677 DOI: 10.1016/j.talanta.2025.127649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/05/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Regarding the high incidence of residue and serious toxicity of acetochlor (ATC) pesticide, it is urgent to explore simple and low-cost methods for their sensitive detection in food. In this study, with zeolite-like imidazole frameworks (ZIFs) as the carriers for embedding glutathione-modified luminescent gold nanoclusters (GSH-AuNCs) exhibiting aggregation-induced emission (AIE) effect, a GSH-AuNCs@ZIF-8 probe driven strip-based lateral flow immunosensor (LFIS) was developed for visual qualitative and fluorescent quantitative dual-modal detection of ATC. The encapsulation of GSH-AuNCs into ZIF-8 with restriction effect not only significantly improved the stability and anti-interference ability of AuNCs, but also remarkably enhanced the fluorescence efficiency for signal amplification due to the enhanced AIE effect of GSH-AuNCs, endowing the LFIS platform with unique performance. Under optimal conditions, the LFIS platform could realize the point-of-care visualization and quantitation of ATC within 20 min with a detection limit of 8.3 pg/mL and a broad linear range of 0.01-10.0 ng/mL. High recoveries of 96.44%-106.8 % in the spiked ginger samples confirmed the outstanding accuracy and dependability of the new platform for ATC analysis of real samples. Compared with other immunoassays, the AuNCs@ZIF-8-based dual-modal LFIS exhibited the advantages of simple preparation, simple operation, short analytical time, and low cost, which could be expanded to monitor more pesticides and more trace contaminants in diverse food and agricultural products, and medicinal material matrices.
Collapse
Affiliation(s)
- Pengyue Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China
| | - Doudou Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lingling Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China
| | - Qingbin Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China.
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 00193, China.
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Salama MS, Osman KA, Elbanna R. The Sub-Acute Potential Risk of Oxamyl in Male Albino Rats. ENVIRONMENTAL TOXICOLOGY 2025; 40:774-786. [PMID: 39731506 DOI: 10.1002/tox.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024]
Abstract
The current study aimed to investigate the sub-acute effects of oxamyl on male Albino rats following oral administration of either 0.031 or 0.31 mg/kg/day for 14 consecutive days. The findings demonstrated that oxamyl produced a significant impact on most of the examined blood profile and biomarkers, along with a significant progressive and discernible alterations in the histology of organs. According to the results obtained, the potential mechanisms by which oxamyl causes its toxic effects on rats are identified as the inflammation indices, the inhibition of transaminases, alkaline phosphatase, and antioxidant enzymes, as well as the production of thiobarbituric acid reactive substances (TBARs) in organs following oxamyl treatment based on histopathological examinations. Due to the substantial genetic similarities between rats and humans, it is therefore anticipated that oxamyl will have comparable detrimental effects on humans.
Collapse
Affiliation(s)
- Maher S Salama
- Pesticide Chemistry & Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Khaled A Osman
- Pesticide Chemistry & Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Rania Elbanna
- Pesticide Chemistry & Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Bougault V, Carlsten C, Adami PE, Sewry N, Schobersberger W, Soligard T, Engebretsen L, Budgett R, Schwellnus M, Fitch K. Air quality, respiratory health and performance in athletes: a summary of the IOC consensus subgroup narrative review on 'Acute Respiratory Illness in Athletes'. Br J Sports Med 2025; 59:480-490. [PMID: 39919804 DOI: 10.1136/bjsports-2024-109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 02/09/2025]
Abstract
With the WHO stating that nearly 99% of the global population is exposed to air pollution levels that increase the risk of chronic diseases, the question of exercising in polluted environments is relevant to the health of athletes. Major sporting events held under conditions of poor air quality (AQ) have highlighted the lack of answers to concerns raised by organisers and athletes about the associated health risks. This evidence-based narrative review compiles current knowledge and identifies gaps regarding the relationship between AQ and sport. It is a summary of a more comprehensive report prepared for the International Olympic Committee (IOC) Medical and Scientific Commission. This article discusses the various sources of air pollutants encountered during exercise, summarises current AQ guidelines and provides insights into AQ conditions during the Paris 2024 Olympic and Paralympic Games (OPG) as well as in Los Angeles over the past four summers, in preparation for the 2028 OPG. It also summarises the effects of air pollution on the respiratory health and performance of athletes, while proposing mitigation strategies, with a particular emphasis on AQ education.
Collapse
Affiliation(s)
- Valerie Bougault
- LAMHESS, Université Côte d'Azur, Nice, France
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria Faculty of Health Sciences, Pretoria, South Africa
- International Olympic Committee Research Centre, Pretoria, South Africa
| | - Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine and Health Tourism, University Hospital - Tirol Kliniken, Innsbruck, Austria
- Sport, Exercise Medicine and Lifestyle Institute, UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Torbjørn Soligard
- Medical and Scientific Department, International Olympic Committee, Lausanne, Vaud, Switzerland
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Vaud, Switzerland
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Vaud, Switzerland
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria Faculty of Health Sciences, Pretoria, South Africa
- International Olympic Committee Research Centre, Pretoria, South Africa
| | - Ken Fitch
- School of Human Science, Sports, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Li J, Zhang H, Zhao K, Han C, Li C, Fang L, Jia H, Wang Y, Tang H, Zhai Q, Xue P. An occupational health assessment of dinotefuran exposure in greenhouse vegetable workers: Metabolomic profiling and toxicokinetic analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137989. [PMID: 40117779 DOI: 10.1016/j.jhazmat.2025.137989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
This study aimed to explore the metabolite profiles of populations engaged in intensive vegetable cultivation and their exposure to pesticides. As urbanization progresses and eating habits evolve, intensive vegetable farming has rapidly expanded; however, this cultivation method poses potential health risks to farmers, particularly due to long-term exposure to "greenhouse gases" in enclosed environments. The study investigated the demographic characteristics of individuals in vegetable-growing areas, collected relevant biological samples, and assessed exposure levels by analyzing pesticide metabolites in urine. The results indicated that the types and concentrations of pesticide metabolites detected in the urine of the exposed group were significantly higher than those in the control group, with notable increases in neonicotinoid metabolites such as dinotefuran (DIN) and thiacloprid. Furthermore, the impact of these pesticides on mammalian organisms was examined through animal experiments, which revealed dynamic changes in the concentration of DIN in mouse serum and urine, providing valuable data on its biological metabolic characteristics. These findings underscore the importance of ongoing disease prevention, pollution control, and the need for enhanced health monitoring and protective measures for agricultural workers.
Collapse
Affiliation(s)
- Jiamin Li
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Hao Zhang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Ke Zhao
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Chengcheng Han
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Changjian Li
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Lei Fang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Haiyong Jia
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Yong Wang
- Shimadzu (China) Co., Ltd., Beijing Branch, Beijing 100020, PR China.
| | - Hanqiu Tang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Qingfeng Zhai
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| | - Peng Xue
- School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, PR China; Center of Nutrition, The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Weifang, Shandong 261000, PR China.
| |
Collapse
|
6
|
de Almeida Roque A, Zablocki da Luz J, Filipak Neto F, Barjhoux I, Rioult D, de Oliveira Ribeiro CA. Low concentrations of complex mixtures of pesticides and metabolites are toxic to common Carp brain cells ( Cyprinus carpio carpio). Drug Chem Toxicol 2025; 48:314-324. [PMID: 39210515 DOI: 10.1080/01480545.2024.2397432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pesticide use increases annually, and Brazil is the world's largest consumer. However, unlike the European Union (EU), there is no established limit value for pesticide mixtures in drinking water, and therefore the concentration of pesticides can reach 3354 times the EU limit. Thus, determining the risk of exposure to pesticide mixtures and their main metabolites is challenging and requires the use of alternative methods. In the present study, the Common Carp Brain (CCB) cell line was used to evaluate the in vitro toxicity of relevant pesticide mixtures (glyphosate, 2,4-D, atrazine, and mancozeb) and their main metabolites after 72 h of exposure. The tested concentrations were based on the Acceptable Daily Intake (ADI) defined by Brazilian legislation. The results showed that cells exposed to lower concentrations of the pesticide mixtures and the pesticide + metabolite mixtures were affected by a decrease in cell confluence, resazurin metabolism, and wound healing capacity. The IBR index showed that lower concentrations had more severe effects, suggesting the absence of safe concentrations of these pesticide and metabolite mixtures for the CCB cell line within the tested concentration range. These findings raise concerns about the effects of exposure to these substances on animal and human health.
Collapse
Affiliation(s)
- Aliciane de Almeida Roque
- Department of Cell Biology, Laboratory of Cell Toxicology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Jessica Zablocki da Luz
- Department of Cell Biology, Laboratory of Cell Toxicology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Department of Cell Biology, Laboratory of Cell Toxicology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Iris Barjhoux
- UMR-I 02 INERIS-URCA-ULH SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université de Reims Champagne-Ardenne, Reims, France
| | - Damien Rioult
- UMR-I 02 INERIS-URCA-ULH SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université de Reims Champagne-Ardenne, Reims, France
- URCATech Plateau Technique Mobile de Cytométrie Environnementale URCATech- MOBICYTE, Université de Reims Champagne-Ardenne, Reims, France
| | | |
Collapse
|
7
|
Silva JDS, Arruda S, Nunes TS, Dias WDP, Awoniyi AM, Meyer A, Cremonese C. Proportional mortality and years of potential life lost due to liver diseases among agricultural workers, Brazil, 2017 to 2022. CAD SAUDE PUBLICA 2025; 41:e00101424. [PMID: 39879395 PMCID: PMC11774336 DOI: 10.1590/0102-311xen101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 01/31/2025] Open
Abstract
This study aimed to describe the profile and calculate the years of potential life lost (YPLL) due to liver diseases in Brazilian agricultural workers from 2017 to 2022. For this, we analyzed microdata available in the Brazilian Mortality Information System considering the underlying cause of death with codes K70-K77 (International Classsification of Disease, 10th revision - ICD-10) as the outcome of interest. Workers' profile was characterized according to sociodemographic variables and Brazilian regions, forming a comparison group with all other Brazilian workers aged from 18-69 years who died in the same period and from the same underlying cause. Calculations of proportional mortality, YPLL rates, and YPLL rate ratios were applied. In the studied period, 15,362 deaths due to liver diseases occurred in Brazilian agricultural workers, with an average age at death of 51.3 years (±10.7), concentrated in K70 - alcoholic liver disease (53.8%). A higher proportional mortality occurred in men (86.2%), Mixed individuals (61.1%), up to age 49 years (40.9%), with ≤ 7 years of education level (52.4%), and residence in the Northeast (56.9%). The sum of YPLL totaled 382,869 years among agricultural workers, with YPLL rate of 4,527 years per 100,000 workers and a YPLL rate ratio 1.45 times higher than the national average. The concentration of deaths due to K70 raises concern due to the potential chronic exposure to alcoholic beverages. These results highlight the early causes of deaths from liver diseases among agricultural workers, especially those in Northeast Brazil and mixed.
Collapse
Affiliation(s)
| | - Soraia Arruda
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil
| | - Thayane Silva Nunes
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brasil
| | - Wiler de Paula Dias
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brasil
| | | | - Armando Meyer
- Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Cleber Cremonese
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brasil
| |
Collapse
|
8
|
Gachowska M, Dąbrowska A, Wilczyński B, Kuźnicki J, Sauer N, Szlasa W, Kobierzycki C, Łapińska Z, Kulbacka J. The Influence of Environmental Exposure to Xenoestrogens on the Risk of Cancer Development. Int J Mol Sci 2024; 25:12363. [PMID: 39596429 PMCID: PMC11594813 DOI: 10.3390/ijms252212363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Xenoestrogens (XEs) are a group of exogenous substances that may interfere with the functioning of the endocrine system. They may mimic the function of estrogens, and their sources are plants, water or dust, plastic, chemical agents, and some drugs. Thus, people are highly exposed to their actions. Together with the development of industry, the number of XEs in our environment increases. They interact directly with estrogen receptors, disrupting the transmission of cellular signals. It is proven that XEs exhibit clinical application in e.g., menopause hormone therapy, but some studies observed that intense exposure to XEs leads to the progression of various cancers. Moreover, these substances exhibit the ability to cross the placental barrier, therefore, prenatal exposure may disturb fetus development. Due to the wide range of effects resulting from the biological activity of these substances, there is a need for this knowledge to be systematized. This review aims to comprehensively assess the environmental sources of XEs and their role in increasing cancer risk, focusing on current evidence of their biological and pathological impacts.
Collapse
Affiliation(s)
- Martyna Gachowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (M.G.); (A.D.); (B.W.); (J.K.)
| | - Natalia Sauer
- Department of Clinical Pharmacology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
9
|
Lee YS, Gu H, Lee YH, Yang M, Kim H, Kwon O, Kim YH, Kang MY. Occupational Risk Factors for Skin Cancer: A Comprehensive Review. J Korean Med Sci 2024; 39:e316. [PMID: 39497567 PMCID: PMC11538571 DOI: 10.3346/jkms.2024.39.e316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Public health and clinical medicine should identify and characterize modifiable risk factors for skin cancer in order to facilitate primary prevention. In existing literature, the impact of occupational exposure on skin cancer, including malignant melanoma and non-melanoma skin cancers, has been extensively studied. This review summarizes the available epidemiological evidence on the significance of occupational risk factors and occupations associated with a higher risk in skin cancer. The results of this review suggest that there is sufficient epidemiological evidence to support the relationship between the increased risk of non-melanoma skin cancers and occupational exposure to solar radiation, ultraviolet radiation, ionizing radiation, arsenic and its compounds, and mineral oils. Occupational exposure to pesticides and polychlorinated biphenyls appears to provide sufficient epidemiological evidence for melanoma, and a higher risk of melanoma has been reported among workers in petroleum refining and firefighters. This comprehensive analysis will establish a foundation for subsequent investigations and developing targeted interventions of focused preventive measures against skin cancer among the working population.
Collapse
Affiliation(s)
- Ye-Seo Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyejin Gu
- Department of Public Health, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Yun-Hee Lee
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Munyoung Yang
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyojeong Kim
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ohwi Kwon
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mo-Yeol Kang
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
10
|
Chidiamassamba SB, Gomes SIL, Amorim MJB, Scott-Fordsmand JJ. Considering safe and sustainable by design alternatives-Environmental hazards of an agriculture nano-enabled pesticide to non-target species. CHEMOSPHERE 2024; 367:143582. [PMID: 39454771 DOI: 10.1016/j.chemosphere.2024.143582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Nanopesticides (Npes) offer improved efficacy compared to their conventional forms while reducing the usage/application rates, hence being more sustainable options. However, there is still a knowledge gap on the Npes environmental impacts. To support the safety of nano-enabled pesticides, the present study aimed at assessing the toxicity of the commercial Npe NUCOP-M and the active substance copper oxychloride, using the ecotoxicological soil model Enchytraeus crypticus and LUFA 2.2 soil. Bioassays were performed to assess various endpoints within short-to longer-term exposures: avoidance behaviour (2 d), hatching (13 d), survival, reproduction and organisms' size (based on the standard OECD test (28 d), the OECD extension (56 d), and the Full Life Cycle test - FLCt (46 d)). Based on the standard OECD test and its extension, NUCOP-M had a similar level of toxicity as copper oxychloride without indications of increase in toxicity over time (28 versus 56 d). The shorter-term exposures (2 and 13 d) showed higher toxicity for copper oxychloride. The exposure from cocoon stage (FLCt) seemed to provide an adaptative advantage (reduced toxicity) to NUCOP-M. The differences might be related to a slower release of Cu2+ ions from NUCOP-M, which seems to account for the toxicity at longer-term. Based on the recommended application doses (ca. 1.72 mg NUCOP-M kg-1, i.e. 0.62 mg Cu kg-1 in the topsoil) there is no unacceptable risk of NUCOP-M on the enchytraeid population.
Collapse
Affiliation(s)
| | - Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-19, Aveiro, Portugal.
| | | |
Collapse
|
11
|
Maffini MV, Vandenberg LN. Science evolves but outdated testing and static risk management in the US delay protection to human health. FRONTIERS IN TOXICOLOGY 2024; 6:1444024. [PMID: 39193481 PMCID: PMC11347445 DOI: 10.3389/ftox.2024.1444024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
| | - Laura N. Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts – Amherst, Amherst, MA, United States
| |
Collapse
|
12
|
Deng F, He J, Dai Y, Peng R, Pan X, Yuan J, Tan L. Biomonitoring urinary pesticide metabolites in preschool children by supported liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry and their association with oxidative stress. J Chromatogr A 2024; 1725:464944. [PMID: 38703459 DOI: 10.1016/j.chroma.2024.464944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert‑butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 μg/L to 0.04 μg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 μg/L for boys and 4.90 μg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.
Collapse
Affiliation(s)
- Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
14
|
de Graaf L, Bresson M, Boulanger M, Bureau M, Lecluse Y, Lebailly P, Baldi I. Pesticide exposure in greenspaces: Comparing field measurement of dermal contamination with values predicted by registration models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170816. [PMID: 38346656 DOI: 10.1016/j.scitotenv.2024.170816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Since 2014, the Agricultural Operator Exposure Model (AOEM) has been the harmonised European model used for estimating non-dietary operator exposure to pesticide. It is based on studies conducted by the pesticide companies and it features 13 different crops including non-agricultural areas such as amenity grasslands. The objective of this study was to compare the dermal exposure measured during a field study conducted in a non-agricultural area with the corresponding values estimated by the model AOEM. The non-controlled field study was conducted in France in 2011 and included 24 private and public gardeners who apply glyphosate with knapsack sprayers. Dermal exposure was measured using the whole-body method and cotton gloves. Each measured value had an estimated value given by AOEM and we tested their correlation using linear regression. The model overestimated body exposure for all observations and there was no correlation between values. However, it underestimated hand exposure by 42 times and it systematically underestimated the exposure when the operators were wearing gloves, especially during the application. The model failed at being conservative regarding hand exposure and highly overestimated the protection afforded by the gloves. At a time of glyphosate renewed approval in Europe, non-controlled field studies conducted by academics are needed to improve AOEM model, especially in the non-agricultural sector. Indeed, among the 34 studies included in the model, none were conducted on a non-agricultural area and only four assessed the exposure when using a knapsack sprayer. Moreover, knapsack sprayers being the main equipment used worldwide in both agricultural and non-agricultural settings, it is also crucial to integrate new data specific to this equipment in the model. Operator exposure should be estimated with accuracy in the registration process of pesticides to ensure proper safety as well as in epidemiological studies to improve exposure assessment.
Collapse
Affiliation(s)
- L de Graaf
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France.
| | - M Bresson
- INSERM, UMR1086-Cancers et Préventions, Centre François Baclesse, Caen, France; University Caen Normandie, Caen, France
| | - M Boulanger
- INSERM, UMR1086-Cancers et Préventions, Centre François Baclesse, Caen, France; University Caen Normandie, Caen, France
| | - M Bureau
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Y Lecluse
- INSERM, UMR1086-Cancers et Préventions, Centre François Baclesse, Caen, France
| | - P Lebailly
- INSERM, UMR1086-Cancers et Préventions, Centre François Baclesse, Caen, France; University Caen Normandie, Caen, France
| | - I Baldi
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France; Service Santé Travail Environnement, CHU de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
15
|
Patwary MM, Bardhan M, Browning MHEM, Astell-Burt T, van den Bosch M, Dong J, Dzhambov AM, Dadvand P, Fasolino T, Markevych I, McAnirlin O, Nieuwenhuijsen MJ, White MP, Van Den Eeden SK. The economics of nature's healing touch: A systematic review and conceptual framework of green space, pharmaceutical prescriptions, and healthcare expenditure associations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169635. [PMID: 38159779 DOI: 10.1016/j.scitotenv.2023.169635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Green spaces play a crucial role in promoting sustainable and healthy lives. Recent evidence shows that green space also may reduce the need for healthcare, prescription medications, and associated costs. This systematic review provides the first comprehensive assessment of the available literature examining green space exposure and its associations with healthcare prescriptions and expenditures. We applied Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines to search MEDLINE, Scopus, and Web of Science for observational studies published in English through May 6, 2023. A quality assessment of the included studies was conducted using the Office of Health Assessment and Translation (OHAT) tool, and the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) assessment was used to evaluate the overall quality of evidence. Our search retrieved 26 studies that met the inclusion criteria and were included in our review. Among these, 20 studies (77 % of the total) showed beneficial associations of green space exposure with healthcare prescriptions or expenditures. However, most studies had risks of bias, and the overall strength of evidence for both outcomes was limited. Based on our findings and related bodies of literature, we present a conceptual framework to explain the possible associations and complex mechanisms underlying green space and healthcare outcomes. The framework differs from existing green space and health models by including upstream factors related to healthcare access (i.e., rurality and socioeconomic status), which may flip the direction of associations. Additional research with lower risks of bias is necessary to validate this framework and better understand the potential for green space to reduce healthcare prescriptions and expenditures.
Collapse
Affiliation(s)
- Muhammad Mainuddin Patwary
- Environment and Sustainability Research Initiative, Khulna, Bangladesh; Environmental Science Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Mondira Bardhan
- Environment and Sustainability Research Initiative, Khulna, Bangladesh; Department of Park, Recreation and Tourism Management, Clemson University, Clemson, SC, USA
| | - Matthew H E M Browning
- Department of Park, Recreation and Tourism Management, Clemson University, Clemson, SC, USA.
| | - Thomas Astell-Burt
- School of Architecture, Design, and Planning, University of Sydney, Australia
| | - Matilda van den Bosch
- ISGlobal, Barcelona, Spain; European Forest Institute, Biocities Facility, Rome, Italy; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jiaying Dong
- Department of Park, Recreation and Tourism Management, Clemson University, Clemson, SC, USA; School of Architecture, Clemson University, Clemson, SC, USA
| | - Angel M Dzhambov
- Research Group "Health and Quality of Life in a Green and Sustainable Environment", Strategic Research and Innovation Program for the Development of MU - Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria; Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute of Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Iana Markevych
- Research Group "Health and Quality of Life in a Green and Sustainable Environment", Strategic Research and Innovation Program for the Development of MU - Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Olivia McAnirlin
- Department of Park, Recreation and Tourism Management, Clemson University, Clemson, SC, USA
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mathew P White
- Cognitive Science Hub, University of Vienna, Vienna, Austria
| | | |
Collapse
|
16
|
Åkesson A, Donat-Vargas C, Hallström E, Sonesson U, Widenfalk A, Wolk A. Associations between dietary pesticide residue mixture exposure and mortality in a population-based prospective cohort of men and women. ENVIRONMENT INTERNATIONAL 2023; 182:108346. [PMID: 38008011 DOI: 10.1016/j.envint.2023.108346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND There is a concern that pesticide residues, regularly detected in foods, might pose a health risk to the consumer, but epidemiological evidence is limited. We assessed the associations between dietary exposure to a mixture of pesticide residues and mortality. METHODS Food consumption was assessed in 68,844 participants from the Swedish Mammography Cohort and the Cohort of Swedish Men, 45-83 years at baseline (1997). Concentrations of pesticide residues detected in foods on the Swedish market (1996-1998), mainly fruits and vegetables, were obtained via monitoring programs. To assess mixture effects, we summed per food item the ratios of each single pesticide mean residue concentration divided by its acceptable daily intake to create for each participant a Dietary Pesticide Hazard Index (adjusted for energy intake and expressed per kilogram of body weight). Multivariable-adjusted Cox proportional hazards models were used to estimate hazard ratios (HR) and 95 % confidence intervals (95 %CI). RESULTS During 15 years of follow-up (1998-2014), a total of 16,527 deaths occurred, of which 6,238 were caused by cardiovascular disease (CVD) and 5,364 by cancer. Comparing extreme quintiles of Dietary Pesticide Hazard Index, the highest category was inversely associated with CVD mortality HR, 0.82 (95 % CI, 0.75-0.90) and with cancer mortality HR 0.82 (95 % CI 0.75-0.91). In analyses stratified by high/low Dietary Pesticide Hazard Index, similar inverse associations were observed by increasing fruit and vegetable consumption. CONCLUSIONS We observed no indications that dietary exposure to pesticide residue mixtures was associated with increased mortality, nor any clear indications that the benefits of fruit and vegetable consumption on mortality was compromised. Yet, our results need to be interpreted with caution.
Collapse
Affiliation(s)
- Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden; ISGlobal, Campus Mar, Barcelona, Spain; Center for Networked Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Elinor Hallström
- RISE - Research Institutes of Sweden, Dep of Agriculture and Food, Box 5401, SE-402 29 Gothenburg, Sweden
| | - Ulf Sonesson
- RISE - Research Institutes of Sweden, Dep of Agriculture and Food, Box 5401, SE-402 29 Gothenburg, Sweden
| | | | - Alicja Wolk
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
17
|
Singh NK, Sanghvi G, Yadav M, Padhiyar H, Christian J, Singh V. Fate of pesticides in agricultural runoff treatment systems: Occurrence, impacts and technological progress. ENVIRONMENTAL RESEARCH 2023; 237:117100. [PMID: 37689336 DOI: 10.1016/j.envres.2023.117100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The levels of pesticides in air, water, and soil are gradually increasing due to its inappropriate management. In particular, agricultural runoff inflicts the damages on the ecosystem and human health at massive scale. Present study summarizes 70 studies in which investigations on removal or treatment of pesticides/insecticides/herbicides are reported. A bibliometric analysis was also done to understand the recent research trends through the analysis of 2218 publications. The specific objectives of this study are as follows: i) to inventorize the characteristics details of agriculture runoff and analyzing the occurrence and impacts of pesticides, ii) analyzing the role and interaction of pesticides in different environmental segments, iii) investigating the fate of pesticides in agriculture runoff treatment systems, iv) summarizing the experiences and findings of most commonly technology deployed for pesticides remediation in agriculture runoff including target pesticide(s), specifications, configuration of technological intervention. Among the reported technologies for pesticide treatment in agriculture runoff, constructed wetland was at the top followed by algal or photobioreactor. Among various advanced oxidation processes, photo Fenton method is mainly used for pesticides remediation such as triazine, methyl parathion, fenuron and diuron. Algal bioreactors are extensively used for a wide range of pesticides treatment including 2,4-Dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, alachlor, diuron, chlorpyrifos, endosulfan, and imidacloprid; especially at lower hydraulic retention time of 2-6 h. This study highlights that hybrid approaches can offers potential opportunities for effective removal of pesticides in a more viable manner.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Manish Yadav
- Central Mine Planning Design and Institute, Bhubaneswar, 751013, Odisha, India
| | | | - Johnson Christian
- Environmental Audit Cell, Dr. R. D. Gardi Education Campus Rajkot, 360110, Gujarat India
| | - Vijai Singh
- Department of Biosciences, School of School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| |
Collapse
|
18
|
Guzman-Torres H, Sandoval-Pinto E, Cremades R, Ramírez-de-Arellano A, García-Gutiérrez M, Lozano-Kasten F, Sierra-Díaz E. Frequency of urinary pesticides in children: a scoping review. Front Public Health 2023; 11:1227337. [PMID: 37711246 PMCID: PMC10497881 DOI: 10.3389/fpubh.2023.1227337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023] Open
Abstract
Pesticides are any mix of ingredients and substances used to eliminate or control unwanted vegetable or animal species recognized as plagues. Its use has been discussed in research due to the scarcity of strong scientific evidence about its health effects. International literature is still insufficient to establish a global recommendation through public policy. This study aims to explore international evidence of the presence of pesticides in urine samples from children and their effects on health through a scoping review based on the methodology described by Arksey and O'Malley. The number of articles resulting from the keyword combination was 454, and a total of 93 manuscripts were included in the results and 22 were complementary. Keywords included in the search were: urinary, pesticide, children, and childhood. Children are exposed to pesticide residues through a fruit and vegetable intake environment and household insecticide use. Behavioral effects of neural damage, diabetes, obesity, and pulmonary function are health outcomes for children that are commonly studied. Gas and liquid chromatography-tandem mass spectrometry methods are used predominantly for metabolite-pesticide detection in urine samples. Dialkylphosphates (DAP) are common in organophosphate (OP) metabolite studies. First-morning spot samples are recommended to most accurately characterize OP dose in children. International evidence in PubMed supports that organic diets in children are successful interventions that decrease the urinary levels of pesticides. Several urinary pesticide studies were found throughout the world's population. However, there is a knowledge gap that is important to address (public policy), due to farming activities that are predominant in these territories.
Collapse
Affiliation(s)
- Horacio Guzman-Torres
- Departamento de Salud Pública, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Elena Sandoval-Pinto
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológico Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rosa Cremades
- Departamento de Microbiología y Parasitología, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mariana García-Gutiérrez
- Centro Metropolitano de Atención de la Diabetes Tipo 1, OPD Servicios de Salud, Secretaría de Salud Jalisco, Guadalajara, Jalisco, Mexico
| | - Felipe Lozano-Kasten
- Departamento de Salud Pública, Centro Universitario en Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Erick Sierra-Díaz
- Departamentos de Clínicas Quirúrgicas y Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- División de Epidemiología, UMAE Hospital de Especialidades Centro Médico Nacional de Occidente del IMSS, Guadalajara, Mexico
| |
Collapse
|
19
|
Bossou YM, Côté J, Morin É, Dumais É, Bianchi C, Bouchard M. Assessing the impact of coexposure on the measurement of biomarkers of exposure to the pyrethroid lambda-cyhalothrin in agricultural workers. Int J Hyg Environ Health 2023; 251:114194. [PMID: 37290330 DOI: 10.1016/j.ijheh.2023.114194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
There are few published data on the impact of combined exposure to multiple pesticides (coexposure) on levels of biomarkers of exposure in workers, which may alter their toxicokinetics and thus the interpretation of biomonitoring data. This study aimed to assess the impact of coexposure to two pesticides with shared metabolism pathways on levels of biomarkers of exposure to pyrethroid pesticides in agricultural workers. The pyrethroid lambda-cyhalothrin (LCT) and the fungicide captan were used as sentinel pesticides, since they are widely sprayed concomitantly in agricultural crops. Eighty-seven (87) workers assigned to different tasks (application, weeding, picking) were recruited. The recruited workers provided two-consecutive 24-h urine collections following an episode of lambda-cyhalothrin application alone or in combination with captan or following tasks in the treated fields, as well as a control collection. Concentrations of lambda-cyhalothrin metabolites - 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP) and 3-phenoxybenzoic acid (3-PBA) - were measured in the samples. Potential determinants of exposure established in a previous study, including the task performed and personal factors were documented by questionnaire. Multivariate analyses showed that coexposure did not have a statistically significant effect on the observed urinary levels of 3-PBA (Exp(β) (95% confidence interval (95% CI)): 0.94 (0.78-1.13)) and CFMP (1.10 (0.93-1.30). The repeated biological measurements ("time variable") - defined as the within-subjects variable - was a significant predictor of observed biological levels of 3-PBA and CFMP; the within-subjects variance (Exp(β) (95% (95% CI)) for 3-PBA and CFMP was 1.11 (1.09-3.49) and 1.25 (1.20-1.31). Only the main occupational task was associated with urinary levels of 3-PBA and CFMP. Compared to the weeding or picking task, the pesticide application task was associated with higher urinary 3-PBA and CFMP concentrations. In sum, coexposure to agricultural pesticides in the strawberry fields did not increase pyrethroid biomarker concentrations at the exposure levels observed in the studied workers. The study also confirmed previous data suggesting that applicators were more exposed than workers assigned to field tasks such as weeding and picking.
Collapse
Affiliation(s)
- Yélian Marc Bossou
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Éloïse Morin
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Étienne Dumais
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Clara Bianchi
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, and Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U436, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
20
|
Mekircha F, Fedeli D, Nasuti C, Kecies H, Gabbianelli R, Bordoni L. Early-Life Exposure to Commercial Formulation Containing Deltamethrin and Cypermethrin Insecticides Impacts Redox System and Induces Unexpected Regional Effects in Rat Offspring Brain. Antioxidants (Basel) 2023; 12:antiox12051047. [PMID: 37237913 DOI: 10.3390/antiox12051047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Several studies have shown that the oxidative impact of pesticides is most prevalent in rural environments where they are intensively used. At different levels, pyrethroids are reported to promote neurodegeneration; they share the ability to promote oxidative stress, and to induce mitochondrial impairments, α-synuclein overexpression and neuronal cell loss. The present study evaluates the impact of early-life exposure to a commercial formulation containing deltamethrin (DM) and cypermethrin (CYP) at a dose of 1/100 LD50 (1.28 and 2.5 mg/kg, respectively). Rats aged 30 days old, treated from the 6th to the 21st day of life, were tested for brain antioxidant activity and α-synuclein levels. Four regions of the brain were analyzed: the striatum, cerebellum, cortex and hippocampus. Our data demonstrated a significant increase in catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) antioxidant levels in the brain regions compared to the controls. Pups exhibited no significant changes in protein carbonyl levels and lipid peroxidation. Striatal α-synuclein expression was significantly reduced in the rats exposed to DM + CYP, while the treatment resulted in a non-significant increase in the other brain areas. These findings indicate unexpected effects of postnatal treatment with the commercial formulation containing DM and CYP on brain redox state and α-synuclein expression, suggesting an adaptive response.
Collapse
Affiliation(s)
- Fatiha Mekircha
- Laboratory of Biotechnology, Environment and Health, Faculty of Natural and Life Sciences, University Mohammed Seddik Ben Yahia, Jijel 18000, Algeria
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Donatella Fedeli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Cinzia Nasuti
- Unit of Pharmacology, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Hadjer Kecies
- Laboratory of Natural Science and Materials (LSNM), Institute of Science and Technology, Abdelhafid Boussouf, University Center Mila, Mila 43000, Algeria
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| |
Collapse
|
21
|
Lee Y, Choi S, Kim KW. Dithianon exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114752. [PMID: 36924561 DOI: 10.1016/j.ecoenv.2023.114752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Dithianon is a conventional broad-spectrum protectant fungicide widely used in agriculture, but its potential neurotoxic risk to animals remains largely unknown. In this study, neurotoxic effects of Dithianon and its underlying cellular and molecular mechanisms were investigated using the nematode, Caenorhabditis elegans, as a model system. Upon chronic exposure of C. elegans to Dithianon, dopaminergic neurons were found to be vulnerable, with significant degeneration in terms of structure and function in a concentration-dependent manner. In examining toxicity mechanisms, we observed significant Dithianon-induced increases in oxidative stress and mitochondrial fragmentation, both of which are often associated with cellular stress. The present study suggests that Dithianon exposure causes dopaminergic neurotoxicity in C. elegans, by inducing oxidative stress and mitochondrial dysfunction. These findings contribute to a better understanding of Dithianon's neurotoxic potential.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea
| | - Sooji Choi
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea
| | - Kyung Won Kim
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea; Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
22
|
Almeida EMF, De Souza D. Current electroanalytical approaches in the carbamates and dithiocarbamates determination. Food Chem 2023; 417:135900. [PMID: 36944296 DOI: 10.1016/j.foodchem.2023.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Pesticides are a suitable tool for controlling plagues and disease vectors. However, their inappropriate use allows for contamination of the environment, soil, water, and foods. Carbamates and dithiocarbamates pesticides present accumulative effects in the human body resulting in hormonal, neurological and reproductive disorders, and some are still suspected or proven to give carcinogenic or mutagenic effects. This review provides a current electroanalytical approach in the carbamates and dithiocarbamates determination, showing the use of voltammetric techniques such as amperometry, cyclic and linear scan, differential pulse, and square wave voltammetry, indicating their advantages, disadvantages, and perspectives in electroanalytical detection of carbamates and dithiocarbamates in natural water and foods. Also are reported the different materials used in the preparation of working electrodes since their choice has an important impact on the success of the analytical applications, resulting in suitable sensitivity, selectivity, stability, and robustness.
Collapse
Affiliation(s)
- Elis Marina Fonseca Almeida
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo Street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
23
|
Cavalier H, Trasande L, Porta M. Exposures to pesticides and risk of cancer: Evaluation of recent epidemiological evidence in humans and paths forward. Int J Cancer 2023; 152:879-912. [PMID: 36134639 PMCID: PMC9880902 DOI: 10.1002/ijc.34300] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/02/2023]
Abstract
Knowledge of the role in cancer etiology of environmental exposures as pesticides is a prerequisite for primary prevention. We review 63 epidemiological studies on exposure to pesticides and cancer risk in humans published from 2017 to 2021, with emphasis on new findings, methodological approaches, and gaps in the existing literature. While much of the recent evidence suggests causal relationships between pesticide exposure and cancer, the strongest evidence exists for acute myeloid leukemia (AML) and colorectal cancer (CRC), diseases in which the observed associations were consistent across several studies, including high-quality prospective studies and those using biomarkers for exposure assessment, with some observing dose-response relationships. Though high-quality studies have been published since the IARC monograph on organophosphate insecticides in 2017, there are still gaps in the literature on carcinogenic evidence in humans for a large number of pesticides. To further knowledge, we suggest leveraging new techniques and methods to increase sensitivity and precision of exposure assessment, incorporate multi-omics data, and investigate more thoroughly exposure to chemical mixtures. There is also a strong need for better and larger population-based cohort studies that include younger and nonoccupationally exposed individuals, particularly during developmental periods of susceptibility. Though the existing evidence has limitations, as always in science, there is sufficient evidence to implement policies and regulatory action that limit pesticide exposure in humans and, hence, further prevent a significant burden of cancers.
Collapse
Affiliation(s)
- Haleigh Cavalier
- Department of PediatricsNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- Department of Environmental MedicineNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- Department of Population HealthNew York University (NYU) School of MedicineNew YorkNew YorkUSA
| | - Leonardo Trasande
- Department of PediatricsNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- Department of Environmental MedicineNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- Department of Population HealthNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- NYU School of Global Public HealthNew YorkNew YorkUSA
| | - Miquel Porta
- Department of PediatricsNew York University (NYU) School of MedicineNew YorkNew YorkUSA
- School of MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM PSMar PRBB)BarcelonaCataloniaSpain
- Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP)MadridSpain
| |
Collapse
|
24
|
Sapbamrer R, Chittrakul J. Determinants of Consumers' Behavior in Reducing Pesticide Residues in Vegetables and Fruits, Northern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13033. [PMID: 36293605 PMCID: PMC9602482 DOI: 10.3390/ijerph192013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues in vegetables in northern Thailand exceed the maximum residue limits established by the European Union. Therefore, improved knowledge and behavior in reducing pesticide residues in vegetables and fruits (VF) would reduce the risk of exposure to pesticides. This study aims to investigate the contributing factors of consumers' behavior in reducing pesticide residues in VF. The differences in knowledge, attitude, and behavior in reducing pesticide residues in VF between consumers living in rural and urban communities of Chiang Mai, Thailand were also investigated. The cross-sectional study was carried out during August and October 2021 with 456 participants. Data was collected from participants using a Google form questionnaire. The results indicated that pesticide-free was the top-ranked consideration for VF purchasing. Linear regression analysis found that factors associated with consumers' behavior in reducing pesticide residues in VF were total knowledge scores (Beta (β) ± standard error (SE.) = 1.15 ± 0.18, 95%CI = 0.79, 1.51), total attitude scores (β ± SE. = 1.30 ± 0.49, 95%CI = 3.87, 10.40), having co-morbidity (β ± SE. = 3.2 ± 1.37, 95%CI = 0.52, 5.90), type of VF purchasing (β ± SE. = 1.98 ± 0.57, 95%CI = 0.85, 3.11), frequency of VF purchasing (β ± SE. = 3.81 ± 1.18, 95%CI = 1.49, 6.13), price of VF products (β ± SE. = -2.23 ± 1.13, 95%CI = -4.45, -0.02), and getting information from the broadcasting tower in the village (β ± SE. = 7.13 ± 1.66, 95%CI = 0.32, 2.27).
Collapse
|
25
|
de Graaf L, Talibov M, Boulanger M, Bureau M, Robelot E, Lebailly P, Baldi I. Health of greenspace workers: Morbidity and mortality data from the AGRICAN cohort. ENVIRONMENTAL RESEARCH 2022; 212:113375. [PMID: 35533714 DOI: 10.1016/j.envres.2022.113375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Knowledge on the health of greenspace workers is scarce, even though they are exposed to many occupational hazards. The aim of this study was to analyze mortality by cause, prevalence of some non-cancer diseases, and incidence of the main cancers among greenspace workers. METHODS A sub-cohort of greenspace workers was formed within the AGRICAN cohort. Demographic information, health characteristics and self-reported diseases at enrollment were described separately in terms of frequencies (%), median and Interquartile Range (IQR) for greenspace workers, farmers, and other non-agricultural workers. Causes of death and cancer incidence were identified through linkage with cancer registries from enrollment (2005-2007) to 2015. Hazard ratio (HR) and 95% Confidence Intervals [95% CI] were estimated using Cox proportional hazard regression with age as the underlying timescale. RESULTS The sub-cohort included 6247 greenspace workers who were higher proportion men, younger and more frequently smokers than farmers and non-agricultural workers. Male and female greenspace workers reported more history of allergic diseases; and males, more history of depression. Compared to other workers male greenspace workers showed a non-significant higher mortality from ischemic cardiological diseases (HR = 1.14 [0.81-1.60]). Incidence was higher in male greenspace workers than farmers for overall cancer (HR = 1.15 [1.04-1.27]), cancer of the prostate (HR = 1.21 [1.02-1.44]), thyroid (HR = 2.84 [1.26-6.41]), testis (HR = 3.98 [1.50-10.58]) and skin melanoma (HR = 2.15 [1.33-3.47]). Non-significant increased risks were also found for sarcomas, larynx and breast. In women, risk of breast cancer was higher in greenspace workers than in farmers (HR = 1.71 [1.17-2.50]). CONCLUSIONS Whereas greenspace workers have often been included with other pesticide applicators in epidemiological studies, our analyses highlighted the differences between these two populations. They demonstrate the need to study them separately and to investigate more thoroughly the role of specific occupational exposures such as pesticides as well as the effect on women.
Collapse
Affiliation(s)
- L de Graaf
- ISPED, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France; INSERM U1219 Epicene, 146 rue Léo Saignat, 33076, Bordeaux, France.
| | - M Talibov
- INSERM U1086 Anticipe, 3 avenue Général Harris, 14000, Caen, France; Centre de Lutte contre le Cancer François Baclesse, 3 avenue Général Harris, 14000, Caen, France; Université de Caen Normandie, Esplanade de la Paix, 14000, Caen, France
| | - M Boulanger
- INSERM U1086 Anticipe, 3 avenue Général Harris, 14000, Caen, France; Centre de Lutte contre le Cancer François Baclesse, 3 avenue Général Harris, 14000, Caen, France; Université de Caen Normandie, Esplanade de la Paix, 14000, Caen, France
| | - M Bureau
- ISPED, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France; INSERM U1219 Epicene, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - E Robelot
- ISPED, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France; INSERM U1219 Epicene, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - P Lebailly
- INSERM U1086 Anticipe, 3 avenue Général Harris, 14000, Caen, France; Centre de Lutte contre le Cancer François Baclesse, 3 avenue Général Harris, 14000, Caen, France; Université de Caen Normandie, Esplanade de la Paix, 14000, Caen, France
| | - I Baldi
- ISPED, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France; INSERM U1219 Epicene, 146 rue Léo Saignat, 33076, Bordeaux, France; Service Santé Travail Environnement - CHU de Bordeaux, Place Amélie Raba Léon, 33076, Bordeaux, France
| |
Collapse
|
26
|
Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127018. [PMID: 35742265 PMCID: PMC9222590 DOI: 10.3390/ijerph19127018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The increasing use of pesticides in intensive agriculture has had a negative impact on human health. It was widely demonstrated how pesticides can induce different genetic and epigenetic alterations associated with the development of different diseases, including tumors and neurological disorders. Therefore, the identification of effective indicators for the prediction of harmful pesticide exposure is mandatory. In this context, the aim of the study was to evaluate the modification of hsa-miR-199a-5p expression levels in liquid biopsy samples obtained from healthy donors and farm workers with chronic exposure to pesticides. For this purpose, the high-sensitive droplet digital PCR assay (ddPCR) was used to detect variation in the expression levels of the selected microRNA (miRNA). The ddPCR analyses revealed a significant down-regulation of hsa-miR-199a-5p observed in individuals exposed to pesticides compared to control samples highlighting the good predictive value of this miRNA as demonstrated by statistical analyses. Overall, the obtained results encourage the analysis of miRNAs as predictive biomarkers of chronic pesticide exposure thus improving the current strategies for the monitoring of harmful pesticide exposure.
Collapse
|
27
|
Swartz SJ, Morimoto LM, Whitehead TP, DeRouen MC, Ma X, Wang R, Wiemels JL, McGlynn KA, Gunier R, Metayer C. Proximity to endocrine-disrupting pesticides and risk of testicular germ cell tumors (TGCT) among adolescents: A population-based case-control study in California. Int J Hyg Environ Health 2021; 239:113881. [PMID: 34839102 DOI: 10.1016/j.ijheh.2021.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The incidence of testicular germ cell tumors (TGCT) is increasing steadily in the United States, particularly among Latinos. TGCT is thought to be initiated in utero and exposure to endocrine-disrupting chemicals, suspected contributors to TGCT pathogenesis, during this critical developmental period may contribute to the rise. OBJECTIVES To assess the relationship between fetal exposure to agricultural endocrine-disrupting pesticides (EDPs) and TGCT risk among adolescents in a diverse population in California. METHODS We conducted a registry-based case-control study of TGCT. Cases, diagnosed between 1997 and 2011, were 15-19 years of age (n = 381). Controls were matched on birth year and race/ethnicity (n = 762). Quantities (kilograms) of 33 pesticides applied within 3 km and 1 km radii of each individual's address before birth were estimated using the Pesticide Use Reporting database. Odds ratios (OR), 95% confidence intervals (CI), and population attributable risk (PAR) were calculated for each EDP (using log-2 transformed values). Risk models considered race/ethnicity, birth year, and neighborhood socioeconomic status. RESULTS A doubling of nearby acephate applications (3 km and 1 km radii) and malathion applications (1 km radius) was associated with increased risks of TGCT among Latinos only (OR = 1.09; 95% CI:1.01-1.17; 1.30; 95% CI:1.08-1.57, and 1.19; 95% CI:1.01-1.39, respectively), whereas application of carbaryl within a 3 km radius increased TGCT risk in non-Latinos only (OR = 1.14, 95% CI:1.01-1.28). We estimate that acephate was associated with approximately 10% of the TGCT PAR, malathion with 3% and carbaryl with 1%. CONCLUSIONS TGCT among adolescents in California was associated with prenatal residential proximity to acephate and malathion among Latinos, and with carbaryl among non-Latinos. These results suggest that the rise in TGCT risk among Latinos may be associated with exposure to these pesticides.
Collapse
Affiliation(s)
- Scott J Swartz
- Joint Medical Program, University of California, Berkeley/San Francisco, Berkeley, CA, USA; School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Libby M Morimoto
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Todd P Whitehead
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Mindy C DeRouen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Gunier
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Catherine Metayer
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|