1
|
Faburé J, Hedde M, Le Perchec S, Pesce S, Sucré E, Fritsch C. Role of trophic interactions in transfer and cascading impacts of plant protection products on biodiversity: a literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2993-3031. [PMID: 39422865 DOI: 10.1007/s11356-024-35190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Plant protection products (PPPs) have historically been one of the classes of chemical compounds at the frontline of raising scientific and public awareness of the global nature of environmental pollution and the role of trophic interactions in shaping the impacts of chemicals on ecosystems. Despite increasingly strong regulatory measures since the 1970s designed to avoid unintentional effects of PPPs, their use is now recognised as a driver of biodiversity erosion. The French Ministries for the Environment, Agriculture and Research commissioned a collective scientific assessment to synthesise the current science and knowledge on the impacts of PPPs on biodiversity and ecosystem services. Here we report a literature review of the state of knowledge on the propagation of PPP residues and the effects of PPPs in food webs, including biopesticides, with a focus on current-use PPPs. Currently used PPPs may be stronger drivers of the current biodiversity loss than the banned compounds no longer in use, and there have been far fewer reviews on current-use PPPs than legacy PPPs. We first provide a detailed overview of the transfer and propagation of effects of PPPs through trophic interactions in both terrestrial and aquatic ecosystems. We then review cross-ecosystem trophic paths of PPP propagation, and provide insight on the role of trophic interactions in the impacts of PPPs on ecological functions. We conclude with a summary of the available knowledge and the perspectives for tackling the main gaps, and address areas that warrant further research and pathways to advancing environmental risk assessment.
Collapse
Affiliation(s)
- Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Campus AgroParis Saclay, 22 Place de L'Agronomie, CS 80022, 91120, Palaiseau, France.
| | - Mickael Hedde
- Université de Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, Eco&Sols, 34060, Montpellier, France
| | | | | | - Elliott Sucré
- MARBEC (Marine Biodiversity, Exploitation and Conservation), Université de Montpellier, CNRS, Ifremer, IRD, 34000, Montpellier, France
- Université de Mayotte, Dembeni, 97660, Mayotte, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS / Université de Franche-Comté, 25000, Besançon, France
| |
Collapse
|
2
|
Mamy L, Pesce S, Sanchez W, Aviron S, Bedos C, Berny P, Bertrand C, Betoulle S, Charles S, Chaumot A, Coeurdassier M, Coutellec MA, Crouzet O, Faburé J, Fritsch C, Gonzalez P, Hedde M, Leboulanger C, Margoum C, Mougin C, Munaron D, Nélieu S, Pelosi C, Rault M, Sucré E, Thomas M, Tournebize J, Leenhardt S. Impacts of neonicotinoids on biodiversity: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2794-2829. [PMID: 38036909 DOI: 10.1007/s11356-023-31032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.
Collapse
Affiliation(s)
- Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| | | | | | | | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire, 69280, Marcy‑L'Etoile, France
| | - Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, 51100, Reims, France
| | | | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, Ifremer, 35042, Rennes, France
| | - Olivier Crouzet
- OFB, Direction de la Recherche et Appui Scientifique (DRAS), 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Patrice Gonzalez
- CNRS, Bordeaux INP, EPOC, UMR 5805, Univ. Bordeaux, 33600, Pessac, France
| | - Mickael Hedde
- Eco&Sols, Univ. Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, 34060, Montpellier, France
| | | | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Magali Rault
- Université d'Avignon, Université Aix-Marseille, CNRS, IRD, IMBE, Pôle Agrosciences, 84916, Avignon, France
| | - Elliott Sucré
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34200, Sète, France
- Centre Universitaire de Formation Et de Recherche de Mayotte (CUFR), 97660, Dembeni, Mayotte, France
| | - Marielle Thomas
- Université de Lorraine, INRAE, UR AFPA, 54000, Nancy, France
| | | | | |
Collapse
|
3
|
Fritsch C, Berny P, Crouzet O, Le Perchec S, Coeurdassier M. Wildlife ecotoxicology of plant protection products: knowns and unknowns about the impacts of currently used pesticides on terrestrial vertebrate biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2893-2955. [PMID: 38639904 DOI: 10.1007/s11356-024-33026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/17/2024] [Indexed: 04/20/2024]
Abstract
Agricultural practices are a major cause of the current loss of biodiversity. Among postwar agricultural intensification practices, the use of plant protection products (PPPs) might be one of the prominent drivers of the loss of wildlife diversity in agroecosystems. A collective scientific assessment was performed upon the request of the French Ministries responsible for the Environment, for Agriculture and for Research to review the impacts of PPPs on biodiversity and ecosystem services based on the scientific literature. While the effects of legacy banned PPPs on ecosystems and the underlying mechanisms are well documented, the impacts of current use pesticides (CUPs) on biodiversity have rarely been reviewed. Here, we provide an overview of the available knowledge related to the impacts of PPPs, including biopesticides, on terrestrial vertebrates (i.e. herptiles, birds including raptors, bats and small and large mammals). We focused essentially on CUPs and on endpoints at the subindividual, individual, population and community levels, which ultimately linked with effects on biodiversity. We address both direct toxic effects and indirect effects related to ecological processes and review the existing knowledge about wildlife exposure to PPPs. The effects of PPPs on ecological functions and ecosystem services are discussed, as are the aggravating or mitigating factors. Finally, a synthesis of knowns and unknowns is provided, and we identify priorities to fill gaps in knowledge and perspectives for research and wildlife conservation.
Collapse
Affiliation(s)
- Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France
| | - Philippe Berny
- UR-ICE, Vetagro Sup, Campus Vétérinaire, 69280, Marcy L'étoile, France
| | - Olivier Crouzet
- Direction de La Recherche Et de L'Appui Scientifique, Office Français de La Biodiversité, Site de St-Benoist, 78610, Auffargis, France
| | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université de Franche-Comté, 16 Route de Gray, F-25000, Besançon, France.
| |
Collapse
|
4
|
Humann-Guilleminot S, Binkowski ŁJ, Helfenstein F. Sex-specific effects of low-dose of acetamiprid on corticosterone levels but not on oxidative stress in House sparrows. ENVIRONMENTAL RESEARCH 2024; 262:119894. [PMID: 39218340 DOI: 10.1016/j.envres.2024.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Neonicotinoid insecticides are widely used in agriculture and have been linked to various detrimental physiological effects on wild birds. Despite this, the impact of acetamiprid - a less studied member of the neonicotinoid family - on the hypothalamic-pituitary-adrenal axis responsible for the hormonal regulation of the response to stress has rarely been examined in birds. In our study, we explored the effects of acetamiprid on feather levels of corticosterone, the major end product of the HPA, and blood oxidative status of House sparrows (Passer domesticus), following the ingestion of a low, field-realistic dose during two consecutive experiments in 2015 and 2016. We involved 112 birds in each experiment - 56 males and 56 females - that were administered a placebo or a dose of acetamiprid equivalent to 0.5% of the LD50 of the Zebra finch over the entire duration of the experiments, which lasted approximately three weeks. We measured corticosterone concentrations in feathers grown during an acclimation phase before ingestion and in newly grown feather after the experiment and assessed three oxidative stress markers in the blood. We found no impact of acetamiprid on oxidative stress markers. However, in 2015, male sparrows that ingested acetamiprid exhibited higher corticosterone levels in their feathers compared to those that received a placebo. No such difference was found in females. Interestingly, this effect was not observed in year 2016, which was characterised by less stressful conditions for the birds. These findings offer the first evidence of a potential effect of acetamiprid on corticosterone levels in a songbird, suggesting that ingesting this compound at very low dose may alter the endocrine physiology of the response to stress.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Faculty of Science, Radboud University, Nijmegen, the Netherlands; Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Łukasz J Binkowski
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Poland
| | - Fabrice Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ask AV, Gómez-Ramírez P, Jaspers VLB, Fenoll J, Cava J, Vakili FS, Lemesle P, Eeva T, Davranche A, Koivisto S, Hansen M, Arzel C. Pilot study on neonicotinoids in Finnish waterbirds: no detectable concentrations in common goldeneye (Bucephala clangula) plasma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61950-61958. [PMID: 39361203 PMCID: PMC11541392 DOI: 10.1007/s11356-024-35197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/26/2024] [Indexed: 11/07/2024]
Abstract
Neonicotinoids have been detected in farmland-associated birds and exposure to these insecticides has been linked to adverse effects. Even though neonicotinoids are mobile and persistent and have been detected in surface waters and aquatic invertebrates, there is a considerable lack of knowledge on their occurrence in waterbirds. Here we investigated the occurrence of seven neonicotinoids and some of their transformation products (imidacloprid, thiacloprid, thiamethoxam, acetamiprid, clothianidin, dinotefuran, nitenpyram, 6-chloronicotinic acid, hydroxy-imidacloprid, imidacloprid-urea, imidacloprid-olefin, thiamethoxam-urea, thiacloprid-amide, acetamiprid-acetate, and acetamiprid-desmethyl) in blood plasma of 51 incubating female common goldeneyes (Bucephala clangula). We collected samples from five different regions from southern to northern Finland encompassing rural and urban settings in coastal and inland areas. Surprisingly, none of the targeted neonicotinoids was found above the limit of detection in any of the samples. As neonicotinoid concentrations in wild birds can be very low, a likely reason for the nil results is that the LODs were too high; this and other possible reasons for the lack of detection of neonicotinoids in the goldeneyes are discussed. Our results suggest that neonicotinoid exposure in their breeding areas is currently not of major concern to female goldeneyes in Finland. Even though this study did not find any immediate danger of neonicotinoids to goldeneyes, further studies including surface water, aquatic invertebrates, and other bird species could elucidate potential indirect food chain effects.
Collapse
Affiliation(s)
- Amalie V Ask
- Department of Biology, University of Turku, Vesilinnantie 5, 20014, Turku, Finland.
| | - Pilar Gómez-Ramírez
- Area of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - José Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - Juana Cava
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, IMIDA, 30150, Murcia, Spain
| | - Farshad S Vakili
- Department of Biology, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| | - Prescillia Lemesle
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Tapio Eeva
- Department of Biology, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| | - Aurélie Davranche
- Lammi Biological Station, University of Helsinki, 16900, Lammi, Finland
- Department of Biology, University of Angers, 49045, Angers, France
| | - Sanna Koivisto
- Finnish Safety and Chemicals Agency, P.O. Box 66, 00521, Helsinki, Finland
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Céline Arzel
- Department of Biology, University of Turku, Vesilinnantie 5, 20014, Turku, Finland
| |
Collapse
|
6
|
Vyas NB, Henry PFP, Binkowski ŁJ, Hladik ML, Gross MS, Schroeder MA, Davis DM. Persistence of pesticide residues in weathered avian droppings. ENVIRONMENTAL RESEARCH 2024; 259:119475. [PMID: 38945513 DOI: 10.1016/j.envres.2024.119475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Avian droppings (combination of fecal matter and urates) provide a non-lethal and non-invasive matrix for measuring pesticide exposures. In the field, droppings may be collected days or weeks after excretion and the persistence of pesticide residues in weathered droppings is not known. Thus, we studied the effects of weathering on pesticide residues in droppings. Domestic chicken (Gallus gallus domesticus) hens were used as a representative species for Order Galliformes. We collected droppings from hens before they were exposed to the pesticides (reference or pre-dose droppings ). Thereafter, the hens were orally administered encapsulated wheat seeds coated with Raxil® PRO Shield (containing the active ingredients imidacloprid, prothioconazole, metalaxyl, and tebuconazole) for consecutive 7 days. During this time, their droppings were collected on days 3, 5, and 8 from the start of the exposure period (post-dose droppings ). The pre-dose and post-dose droppings were weathered for up to 30 days in autumn and spring in shrubsteppe habitat. Droppings were analyzed using HPLC coupled to triple quad LC/MS for parent compound and metabolite residues. No pesticide or its metabolite residues were detected in the weathered reference droppings. No parent pesticide compounds were detected in weathered post-dose droppings but imidacloprid metabolites, imidacloprid-5-hydroxy and imidacloprid-olefin, and the prothioconazole metabolite, desthio-prothioconazole, were detected in all post-dose weathered samples from both seasons. The active ingredients metalaxyl and tebuconazole and their metabolites were not detected in any of the samples. Our results suggest that, depending on the pesticide, its concentration, and the environmental conditions, residues of some pesticides can be detected in droppings weathered for at least 30 days. Knowledge of pesticide persistence in weathered droppings can help refine the quality and quantity of fecal samples that are collected for monitoring pesticide exposures to birds.
Collapse
Affiliation(s)
- Nimish B Vyas
- U.S. Geological Survey Eastern Ecological Science Center, 12100 Beech Forest Road, Laurel, MD, 20708, United States.
| | - Paula F P Henry
- U.S. Geological Survey Eastern Ecological Science Center, 12100 Beech Forest Road, Laurel, MD, 20708, United States.
| | - Łukasz J Binkowski
- University of the National Education Commission and Earth Sciences, Podchorążych 2 St., 30-084, Krakow, Poland.
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, 6000 J St. Placer Hall, Sacramento, CA, 95819, United States.
| | - Michael S Gross
- U.S. Geological Survey, California Water Science Center, 6000 J St. Placer Hall, Sacramento, CA, 95819, United States.
| | - Michael A Schroeder
- Washington Department of Fish and Wildlife, P.O. Box 1077, Bridgeport, WA, 98813, United States.
| | - Dawn M Davis
- U.S. Fish and Wildlife Service, Wyoming Field Office, 334 Parsley Boulevard, Cheyenne, WY, 82007, United States.
| |
Collapse
|
7
|
Molenaar E, Viechtbauer W, van de Crommenacker J, Kingma SA. Neonicotinoids Impact All Aspects of Bird Life: A Meta-Analysis. Ecol Lett 2024; 27:e14534. [PMID: 39385588 DOI: 10.1111/ele.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
Worldwide, bird populations are declining dramatically. This is especially the case in intensely used agricultural areas where the application of neonicotinoid insecticides is thought to-unintendedly-cause a cascade of negative impacts throughout food webs. Additionally, there could be direct (sub-) lethal impacts of neonicotinoids on birds, but to date there is no comprehensive quantitative assessment to confirm or rule out this possibility. Therefore, we use a meta-analytical approach synthesising 1612 effect sizes from 49 studies and show that neonicotinoids consistently harm bird health, behaviour, reproduction, and survival. Thus, in addition to reduced food availability, the negative direct effects of exposure to neonicotinoids likely contribute to bird population declines globally. Our outcomes are pivotal to consider in future risk assessments and pesticide policy: despite localised bans, the metabolites and residues of neonicotinoids remain present in the environment and in birds and will thus have long-lasting direct effects on both the individual and the population levels.
Collapse
Affiliation(s)
- Elke Molenaar
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Sjouke A Kingma
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Klaas-Fábregas M, Gómez-Ramírez P, Fernández-Gómez L, Alfonso I Prieto J, Garrido I, Cava J, Martínez-Escudero CM, Fenoll J, Pérez-García JM. First Detection of Thiamethoxam in a Free-Ranging Insectivorous Bird After its Agricultural Use Ban in Spain. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1836-1843. [PMID: 38771171 DOI: 10.1002/etc.5899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Neonicotinoids are insecticides used worldwide in phytosanitary and biocidal products and veterinary pharmaceuticals. Recently, some restrictions and bans have been imposed due to their adverse effects on nontarget invertebrates, including pollinators. Although they may have direct and indirect effects on wild vertebrates, few studies have assessed exposure to these compounds in wild birds, so our knowledge remains limited. In the present pilot study we have assessed the prevalence of seven neonicotinoid insecticides and some of their metabolites in whole blood samples from 19 European roller (Coracias garrulus) nestlings and five adult common kestrels (Falco tinnunculus) in an area treated with neonicotinoids to control the palm weevil (Rynchophorus ferrugineus) in southeastern Spain. One European roller nestling born in a palm tree was positive for thiamethoxam, with a concentration of 2.26 ng mL-1, but no residues of neonicotinoids or their metabolites were found in adult common kestrels. Future studies are needed to elucidate potential exposure to neonicotinoids at different times of the year. To our knowledge, this is the first report of the presence of thiamethoxam residues in whole blood of a wild bird species after its ban in Spain. Environ Toxicol Chem 2024;43:1836-1843. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Marina Klaas-Fábregas
- Area of Toxicology, Department of Social Health Sciences, University of Murcia, Murcia, Spain
| | - Pilar Gómez-Ramírez
- Area of Toxicology, Department of Social Health Sciences, University of Murcia, Murcia, Spain
| | - Lola Fernández-Gómez
- Department of Applied Biology, Centro de Investigación e Innovación Alimentaria (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Elche, Spain
| | | | - Isabel Garrido
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Murcia, Spain
| | - Juana Cava
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Murcia, Spain
| | | | - Jose Fenoll
- Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Murcia, Spain
| | - Juan M Pérez-García
- Department of Applied Biology, Centro de Investigación e Innovación Alimentaria (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Elche, Spain
| |
Collapse
|
9
|
Liu X, Li M, Wang H, Yang L. Enhanced detection of acetamiprid via a gold nanoparticle-based colorimetric aptasensor integrated with a hybridization chain reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4301-4309. [PMID: 38887921 DOI: 10.1039/d4ay00685b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study presents a novel colorimetric aptasensor, which seamlessly integrates gold nanoparticles (AuNPs) with the amplification potential of the hybridization chain reaction (HCR) for enhanced detection of acetamiprid. The aptamer, hybridized with a partially complementary strand that is covalently linked to AuNPs, serves as the recognition element for acetamiprid. The free end sequence of the aptamer, distal from the AuNP surface, functions as the initiating strand for the HCR, triggering the amplification process. In the absence of acetamiprid, the HCR efficiently occurs, conferring robust salt tolerance to the AuNPs and maintaining their characteristic red coloration. However, in the presence of acetamiprid, the aptamer preferentially binds to its target, disrupting the double-stranded structure and leading to the dissociation of the aptamer from the AuNPs. This dissociation results in a decrease in the HCR product, subsequently diminishing the salt tolerance of AuNPs and triggering a colorimetric transition from red to gray. This integration enhances sensitivity to 3.14 nM. Additionally, carbon quantum dots (CQDs) transduce colorimetric signals to fluorescent ones, further boosting the sensitivity to 0.24 nM. The aptasensor exhibits excellent selectivity and robustness. Real-world testing on tomato, peach, and lettuce shows recoveries of 98.50% to 100.36% with low standard deviations, validating its utility for pesticide residue analysis and food safety. This study provides a powerful tool for rapid and accurate pesticide detection, crucial for food safety.
Collapse
Affiliation(s)
- Xingyi Liu
- Center for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Mingming Li
- Center for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Hao Wang
- Center for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Limin Yang
- Center for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
10
|
Abd Elkader HTAE, Hussein MM, Mohammed NA, Abdou HM. The protective role of L-carnitine on oxidative stress, neurotransmitter perturbations, astrogliosis, and apoptosis induced by thiamethoxam in the brains of male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4365-4379. [PMID: 38099937 PMCID: PMC11111572 DOI: 10.1007/s00210-023-02887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/04/2023] [Indexed: 05/23/2024]
Abstract
Synthetic organic insecticides such as pyrethroids, organophosphates, neonicotinoids, and others have the potential to disrupt ecosystems and are often toxic to humans. Thiamethoxam (TMX), a neonicotinoid insecticide , is a widely used insecticide with neurotoxic potential. L-Carnitine (LC) is regarded as the "gatekeeper" in charge of allowing long-chain fatty acids into cell mitochondria. LC is an endogenous chemical that is renowned for its prospective biological activity in addition to its role in energy metabolism. This study investigated the protective effects of LC against TMX-induced neurotoxicity in male Wistar rats. For 28 days, animals were divided into four groups and treated daily with either LC (300 mg/kg), TMX (100 mg/kg), or both at the aforementioned doses. Our results revealed marked serum lipid profile and electrolyte changes, declines in brain antioxidants and neurotransmitters (acetylcholine, dopamine, and serotonin levels) with elevations in thiobarbituric acid reactive substances and proinflammatory cytokine levels, as well as acetylcholinesterase and monoamine oxidase brain activity in TMX-treated rats. TMX also increased the expression of caspase-3 and glial fibrillary acidic protein. In contrast, pretreatment with LC attenuated TMX-induced brain injury by suppressing oxidative stress and proinflammatory cytokines and modulating neurotransmitter levels. It also ameliorated the expression of apoptotic and astrogliosis markers. It could be concluded that LC has antioxidant, anti-inflammatory, anti-astrogliosis, and anti-apoptotic potential against TMX neurotoxicity.
Collapse
Affiliation(s)
| | | | - Nema A Mohammed
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba M Abdou
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Zhang X, Cao Y, Cao J, Feng X, Zhang Z, Li Q, Yan Y. Neonicotinoid insecticides in waters of the northern Jiangsu segment of the Beijing-Hangzhou Grand Canal: Environmental and health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171455. [PMID: 38438029 DOI: 10.1016/j.scitotenv.2024.171455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Neonicotinoid (NEO) insecticides have been frequently detected in natural aquatic environments. Nevertheless, the distribution of NEOs in artificial environments is not clear. The Beijing-Hangzhou Grand Canal is the longest canal in the world. The northern Jiangsu segment of the Grand Canal was selected to study the spatiotemporal variation and source of eight NEOs in the canal water and assess their ecological and health risks. The total NEO concentration in the canal water was 12-289 ng L-1 in the dry season and 18-373 ng L-1 in the wet season, which were within the concentration range in other 11 natural rivers worldwide. The average total NEO concentrations were not statistically different between the seasons; only the concentrations of imidaclothiz, thiacloprid (THI), acetamiprid, and dinotefuran were different. At city scale, the total NEO concentration in the dry season showed a decreasing trend along the water flow from Xuzhou City to Yangzhou City. The total NEO concentrations were found to be positively correlated with the sown area of farm crops and the rural labour force, indicating the agricultural influence on the spatial distribution of NEO concentrations. In the wet season, relatively high NEO concentrations were distributed in downstream sites under the influence of artificial regulation. The primary contributor to the NEO inputs into the canal was the nonpoint source in the dry and wet seasons, with a relative contribution of 68 %. THI, imidacloprid, clothianidin and thiamethoxan would produce chronic ecological risks in both seasons. Further consideration needs to be given to the above four NEOs and NEO mixtures. The human health risks that NEOs posed by drinking water were assessed based on the chronic daily intake (CDI). The maximum CDI for adults and children was lower than the reference doses. This suggested public health would not be at risk from canal water consumption.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yuanxin Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China.
| | - Jiachen Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Xiao Feng
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Zhijie Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| |
Collapse
|
12
|
Abdallah OI, Abd El-Hamid RM, Ahmed NS, Alhewairini SS, Abdel Ghani SB. Development of Green and Facile Sample Preparation Method for Determination of Seven Neonicotinoids in Fresh Vegetables, and Dissipation and Risk Assessment of Imidacloprid and Dinotefuran. Foods 2024; 13:1106. [PMID: 38611410 PMCID: PMC11011385 DOI: 10.3390/foods13071106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
A facile procedure for extracting and determining seven neonicotinoids was developed. Water was the only extraction solvent without phase separation and cleanup steps. The method was validated according to European Union standards, and the values obtained were compared with the criteria. The accuracy values were between 99.8% (thiamethoxam) and 106.8% (clothianidin) at the spiking levels of 0.01, 0.1, and 1 mg/kg in the tested matrices. The precision as pooled RSD values was ≤6.1% (intra-day) and ≤6.9% (inter-day). The limit of quantification was set and tested at 0.01 mg/kg. The matrix effect was evaluated, and all matrices had a suppressive effect. The matrix of the cucumber was the most effective, with -20.9% for dinotefuran and an average of -9.8% for all compounds, while the tomato matrix had the slightest effect. Real marketed samples were analyzed using the developed and QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) methods; the results were not significantly different. A supervised field trial was conducted in the open field to study the dissipation patterns of imidacloprid and dinotefuran in tomatoes. The dissipation of both compounds followed first-order kinetics. The half-life (T½) values were 3.4 and 2.5 days, with dissipation rates k of 0.2013 and 0.2781 days, respectively. Following the EU-MRL database, the calculated pre-harvest interval (PHI) values were 7 and 14 days for imidacloprid and dinotefuran, respectively, and 3 days for both compounds following Codex Alimentarius regulations. The risk of imidacloprid and dinotefuran residues was estimated from chronic and acute perspectives. The risk factors of dinotefuran were lower than those of imidacloprid. Nonetheless, the highest expected residues of both compounds were below the tolerance limits.
Collapse
Affiliation(s)
- Osama I Abdallah
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt
| | - Rania M Abd El-Hamid
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt
| | - Nevein S Ahmed
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza 12618, Egypt
| | - Saleh S Alhewairini
- Department of Plant Protection, College of Agriculture and Food, Qassim University, P.O. Box 6622, Buraydah 51452, Saudi Arabia
| | - Sherif B Abdel Ghani
- Department of Plant Protection, College of Agriculture and Food, Qassim University, P.O. Box 6622, Buraydah 51452, Saudi Arabia
- Department of Plant Protection, Faculty of Agriculture, Ain Shams University, P.O. Box 68 Hadayek Shoubra, Cairo 11241, Egypt
| |
Collapse
|
13
|
Xiao Q, Li X, Xu S, Chen X, Xu Y, Lu Y, Liu L, Lin L, Ma H, Lu S. Neonicotinoids in tea leaves and infusions from China: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166114. [PMID: 37567284 DOI: 10.1016/j.scitotenv.2023.166114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The ingestion of contaminated tea involves the risk of human exposure to residues of neonicotinoids (NEOs). Nevertheless, there is little empirical research about this topic; to bridge the current knowledge gap, we collected 220 samples of various tea products from four geographical areas in China, including unfermented green tea, semi-fermented white tea and oolong tea, completely fermented black tea, and post-fermented dark tea. A total of six NEOs were detected from the tea leaves and infusions, namely, dinotefuran (DIN), thiamethoxam (THM), clothianidin (CLO), imidacloprid (IMI), acetamiprid (ACE), and thiacloprid (THI). The detection frequencies (DFs) and concentrations of all target NEOs were relatively high across the investigated tea samples, and the DIN, IMI and ACE residues measured in some samples exceeded the maximum residue level (MRL) standards for the European Union. Samples representing the Jiangnan area exhibited greater levels of total target NEOs (∑6NEOs) than samples representing the Jiangbei area (p < 0.001). Moreover, dark tea samples were found to have far higher levels of NEO residues than green (p < 0.001), white (p < 0.05), or oolong (p < 0.001) samples. The health risks associated with exposure to NEO residues via tea were small for both children and adults in terms of acute, chronic, and cumulative dietary exposure risk assessments. The transfer rates (TRs) of NEOs observed in white, black, and dark tea infusions gradually decreased after the third brewing time. As such, it is recommended to only consume tea that has been brewed at least three times. The presented results not only describe the extent of NEO contamination in Chinese tea leaves and infusions, but also provide tea drinking guidelines for consumers.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shuyang Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Lu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR 999077, China
| | - Langyan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Liyun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521000, China.
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
14
|
Eriksson I, Ward LJ, Vainikka L, Sultana N, Leanderson P, Flodin U, Li W, Yuan XM. Imidacloprid Induces Lysosomal Dysfunction and Cell Death in Human Astrocytes and Fibroblasts-Environmental Implication of a Clinical Case Report. Cells 2023; 12:2772. [PMID: 38132092 PMCID: PMC10742227 DOI: 10.3390/cells12242772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Imidacloprid (IMI), a neonicotinoid insecticide, has potential cytotoxic and genotoxic effects on human and experimental models, respectively. While being an emerging environmental contaminant, occupational exposure and related cellular mechanisms are unknown. Herein, we were motivated by a specific patient case where occupational exposure to an IMI-containing plant protection product was associated with the diagnosis of Bell's palsy. The aim was to investigate the toxic effects and cellular mechanisms of IMI exposure on glial cells (D384 human astrocytes) and on human fibroblasts (AG01518). IMI-treated astrocytes showed a reduction in cell number and dose-dependent cytotoxicity at 24 h. Lower doses of IMI induced reactive oxygen species (ROS) and lysosomal membrane permeabilisation (LMP), causing apoptosis and autophagic dysfunction, while high doses caused significant necrotic cell death. Using normal fibroblasts, we found that IMI-induced autophagic dysfunction and lysosomal damage, activated lysophagy, and resulted in a compensatory increase in lysosomes. In conclusion, the observed IMI-induced effects on human glial cells and fibroblasts provide a possible link between IMI cytotoxicity and neurological complications observed clinically in the patient exposed to this neonicotinoid insecticide.
Collapse
Affiliation(s)
- Ida Eriksson
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (I.E.); (L.V.)
| | - Liam J. Ward
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 587 85 Linköping, Sweden; (L.J.W.)
| | - Linda Vainikka
- Experimental Pathology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (I.E.); (L.V.)
| | - Nargis Sultana
- Laboratory Medicine, Linköping University Hospital, 581 85 Linköping, Sweden; (N.S.)
| | - Per Leanderson
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (P.L.); (U.F.); (X.-M.Y.)
| | - Ulf Flodin
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (P.L.); (U.F.); (X.-M.Y.)
| | - Wei Li
- Obstetrics and Gynaecology, Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden; (W.L.)
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85 Linköping, Sweden; (P.L.); (U.F.); (X.-M.Y.)
| |
Collapse
|
15
|
Poliserpi MB, Noya Abad T, De Gerónimo E, Aparicio V, Brodeur JC. Behavioral and physiological response of the passerine bird Agelaioides badius to seeds coated with imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80293-80310. [PMID: 37294486 DOI: 10.1007/s11356-023-28074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Neonicotinoids are globally used insecticides, and there are increasing evidence on their negative effects on birds. This study is aimed at characterizing the behavioral and physiological effects of the neonicotinoid imidacloprid (IMI) in a songbird. Adults of Agelaioides badius were exposed for 7 days to non-treated peeled millet and to peeled millet treated with nominal concentrations of 75 (IMI1) and 450 (IMI2) mg IMI/kg seed. On days 2 and 6 of the trial, the behavior of each bird was evaluated for 9 min by measuring the time spent on the floor, the perch, or the feeder. Daily millet consumption, initial and final body weight, and physiological, hematological, genotoxic, and biochemical parameters at the end of exposure were also measured. Activity was greatest on the floor, followed by the perch and the feeder. On the second day, birds exposed to IMI1and IMI2 remained mostly on the perch and the feeder, respectively. On the sixth day, a transition occurred to sectors of greater activity, consistent with the disappearance of the intoxication signs: birds from IMI1 and IMI2 increased their time on the floor and the perch, respectively. Control birds always remained most of the time on the floor. IMI2 birds significantly decreased their feed intake by 31% the first 3 days, compared to the other groups, and significantly decreased their body weight at the end of the exposure. From the set of hematological, genotoxic, and biochemical parameters, treated birds exhibited an alteration of glutathione-S-transferase activity (GST) in breast muscle; the minimal effects observed are probably related to the IMI administration regime. These results highlight that the consumption of less than 10% of the bird daily diet as IMI-treated seeds trigger effects at multiple levels that can impair bird survival.
Collapse
Affiliation(s)
- Maria Belen Poliserpi
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Tatiana Noya Abad
- Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Centro de Ciencias Naturales, Ambientales y Antropológicas (CCNAA), Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo De Gerónimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria Balcarce (EEA Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 226, Km. 73,5, Balcarce, Buenos Aires, Argentina
| | - Virginia Aparicio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria Balcarce (EEA Balcarce), Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 226, Km. 73,5, Balcarce, Buenos Aires, Argentina
| | - Julie Celine Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Picone M, Distefano GG, Zangrando R, Gambaro A, Volpi Ghirardini A. Neonicotinoids and pharmaceuticals in hair of the Red fox (Vulpes vulpes) from the Cavallino-Treporti peninsula, Italy. ENVIRONMENTAL RESEARCH 2023; 228:115837. [PMID: 37028535 DOI: 10.1016/j.envres.2023.115837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/16/2023]
Abstract
Neonicotinoids (NEOs) and active pharmaceuticals ingredients (API) are contaminants widely diffused worldwide, causing increasing concern for potential adverse effects on wildlife. However, research on these contaminants have focused on target and non-target invertebrates, while information on potential effects in terrestrial mammals is lacking. We performed preliminary non-invasive monitoring of NEOs and API in a suburban and agricultural area using hair of the Red fox. The Red fox is a widely diffused mesopredator in Europe, and its plasticity in feeding habits makes it an excellent indicator for assessing exposure to environmental contamination. We observed the presence of NEOs in many Red fox hair samples (n = 11), including imidacloprid (IMI), acetamiprid (ACE), and clothianidin (CLO). The highest quantified concentrations were 6.4 ng g-1 dry weight (dw), 6.7 ng g-1 dw, and 0.9 ng g-1 dw for IMI, ACE, and CLO, respectively. The targeted APIs included non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants. APIs were less frequently detected than NEOs, and the compounds with the highest prevalence were the NSAID ketoprofen (36%), the antidepressant sertraline (36%), and its active metabolite norsertraline (27%). The presence of human pharmaceuticals such as the NSAID ibuprofen and the antidepressants sertraline, fluoxetine, and their active metabolites norsertraline and norfluoxetine suggest environmental contamination due to untreated and partially treated wastewater discharged in surface waters and soils of the study area. The detection and quantification of ketoprofen and flunixin also suggest the possible use of contaminated manure on farmland. Findings indicate that hair may be used for monitoring environmental exposure to NEOs and provide evidence that hair is a good marker of exposure for antidepressants and certain NSAIDs, including ibuprofen, ketoprofen, and flunixin.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy.
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Roberta Zangrando
- National Council for the Research - Institute of Polar Sciences, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy; National Council for the Research - Institute of Polar Sciences, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| |
Collapse
|
17
|
Graves EE, Meese RJ, Holyoak M. Neonicotinoid exposure in Tricolored Blackbirds (Agelaius tricolor). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15392-15399. [PMID: 36169821 PMCID: PMC9516497 DOI: 10.1007/s11356-022-23290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
There is increasing awareness of the negative ecological and environmental effects of widespread use of pesticides on the landscape. Spillover or drift of pesticides from agricultural areas has been shown to impact species health, reproduction, and trophic dynamics through both direct and indirect mechanisms. Neonicotinoid insecticides are associated with observed declines of insectivorous and grassland birds, and these environmental pollutants are a significant conservation concern for many species that have experienced past or current population declines. Due to the high efficacy of these modern insecticides in depressing local insect populations, insectivorous birds can be negatively impacted by a pesticide-mediated reduction in food supply. Neonicotinoids may act synergistically with other stressors, such as habitat loss, to exacerbate threats to species or population viability. The Tricolored Blackbird is an insectivorous grassland bird of conservation concern in California, USA. Due to the high association of this species with agricultural habitats, we sought to quantify the amount of neonicotinoid residues in Tricolored Blackbird carcasses as a first step in assessing how this species may be impacted by pesticides. Out of 85 salvaged carcasses sampled (N = 24 adults, N = 3 fledglings, and N = 58 nestlings), only two contained detectable levels of target compounds. These were an adult and one nestling that contained clothianidin residue (40 ppb and 7 ppb, respectively); both of these birds were salvaged from breeding colonies associated with dairy farms in Kern County, California. We suggest that further work is needed to assess neonicotinoid exposure of Tricolored Blackbirds in dairy-associated breeding colonies.
Collapse
Affiliation(s)
- Emily E Graves
- Environmental Science & Policy Department, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Robert J Meese
- Environmental Science & Policy Department, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Marcel Holyoak
- Environmental Science & Policy Department, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Humann-Guilleminot S, Andreo L, Blatti E, Glauser G, Helfenstein F, Desprat J. Experimental evidence for clothianidin deposition in feathers of house sparrows after ingestion of sublethal doses treated seeds. CHEMOSPHERE 2023; 315:137724. [PMID: 36592842 DOI: 10.1016/j.chemosphere.2022.137724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Bird feathers are commonly used to assess environmental contamination by chemical pollutants. However, although neonicotinoid insecticides are widely applied worldwide, feathers have rarely been used to survey the contamination by neonicotinoids in birds. To investigate whether clothianidin, one compound of the neonicotinoid class, is deposited into birds' feathers, we conducted an experiment with 56 wild male and female house sparrows dispatched in 7 aviaries. During this experiment, house sparrows were fed with certified organic seeds treated with clothianidin at an estimated concentration of 0.25 μg/g BW per day and per individual. We collected blood samples and plucked four tail feathers at the onset of the experiment to confirm that no birds were previously exposed to clothianidin. 35 days later, we collected blood samples and the newly grown feathers. Before exposure, a small number of birds showed very low clothianidin concentrations in plasma and feathers. After exposure, the plasma and the newly grown feathers of all birds contained clothianidin. Clothianidin concentrations in feathers were similar in both sexes, but the plasma of males contained clothianidin at higher concentrations than that of females. Our results confirm that ingested clothianidin transits in the plasma and is deposited in feathers during their growth. They also suggest substantial individual variation in the amounts of clothianidin transiting in the plasma and being deposited in feathers that may reflect variation in metabolism and/or access to food in relation to sex, social hierarchy and group dynamics. Whether increasing levels of exposure translate linearly or non-linearly (e.g. saturation process) into increasing clothianidin concentrations in bird plasma and feathers remains to be investigated. To conclude, these results confirm the relevance of using feathers to biomonitor the presence of neonicotinoids, but the relationship between the level of exposure and the concentrations found in feathers remains to be established.
Collapse
Affiliation(s)
- S Humann-Guilleminot
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum D'Histoire Naturelle, CNRS, SU, EPHE, UA, 45 Rue Buffon, CP50, 75005, Paris, France.
| | - L Andreo
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - E Blatti
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Swiss Ornithological Institute, Sempach, Switzerland
| | - G Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - F Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; CTU-Insel Hospital, University of Bern, Bern, Switzerland
| | - J Desprat
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
19
|
Roy CL, Chen D. High population prevalence of neonicotinoids in sharp-tailed grouse and greater prairie-chickens across an agricultural gradient during spring and fall. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159120. [PMID: 36183773 DOI: 10.1016/j.scitotenv.2022.159120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoids have been detected in many species of wild birds; however, few studies have quantified population-level exposure. We examined population-level exposure to 7 neonicotinoids in 2 species that use agricultural areas, sharp-tailed grouse (Tympanuchus phasianellus) and greater prairie-chickens (T. cupido). We sampled fecal pellets at leks in spring and collected livers from hunter-harvested birds in fall along an agricultural gradient throughout their respective ranges in Minnesota, USA. Most sharp-tailed grouse (93 %) and prairie-chicken (80 %) fecal pellets and livers (90 % and 76 %, respectively) had detectable concentrations of ≥1 neonicotinoid, with imidacloprid (IMI) and clothianidin (CLO) most commonly detected. Spring detections of IMI in both species increased with the proportion of a 2-km buffer in cultivation surrounding sampling locations and varied by year. A similar relationship with cultivation was not supported for CLO, which may reflect differences in the availability of seed types treated with IMI and CLO on the soil surface after planting. However, we also detected IMI and CLO from birds sampled in areas of low cultivation. Sharp-tailed grouse and prairie-chickens may select crop fields preferentially to forage, and thus have a higher risk of exposure than would be expected based only on the amount of cultivation. Year was important in models of IMI and CLO in both species and seasons, which likely reflects differences in planting and in the availability of natural foods among years. In contrast, the proportion of surrounding area in cultivation was not supported in models of fall neonicotinoid detections. Fewer crops are planted in the fall in Minnesota and grouse may be exposed through routes other than treated seeds. High detections, even in areas with little cultivation and during seasons with little planting, likely reflect prairie grouse selection of cultivated fields for food, but may also indicate that exposure risk extends beyond sites of application.
Collapse
Affiliation(s)
- Charlotte L Roy
- Minnesota Department of Natural Resources, 1201 East Highway 2, Grand Rapids, MN 55744, USA.
| | - Da Chen
- Cooperative Wildlife Research Laboratory, 251 Life Science II, Mail Code 6504, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
20
|
Cheng H, Tang G, Wang S, Rinklebe J, Zhu T, Cheng L, Feng S. Combined remediation effects of biochar and organic fertilizer on immobilization and dissipation of neonicotinoids in soils. ENVIRONMENT INTERNATIONAL 2022; 169:107500. [PMID: 36088871 DOI: 10.1016/j.envint.2022.107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Neonicotinoid (NEO) pesticides have become a potential risk to ecological safety and human health after application. The combined use of biochar and organic fertilizer (OF) is a promising approach to reduce pesticide adverse effects and improve soil fertility in agricultural soils. However, the combined remediation effects of biochar and OF on immobilization and dissipation of NEOs in soils have not previously been systematically investigated. In this study, biochars derived from peanut shell prepared at low/high pyrolysis temperatures (PS400 and PS900) were combined with composted chicken manure (CCM) as an example for OF to remediate contaminated soils toward six typical NEOs, nitenpyram (NIT), thiamethoxam (THIA), clothianidin (CLO), imidacloprid (IMI), acetamiprid (ACE), thiacloprid (THI). Results shown that both biochars and CCM were effective in improving soil sorption capacity and immobilization efficiency. The Freundlich affinity parameters (Kf) of NEOs in soils increased 7.2-12.0 times after the combined remediation of biochar and CCM, and the Kf of six NEOs had negative correlation with their lipophilicity (p < 0.05), which followed by THI > ACE ≈ IMI > CLO > THIA > NIT. Meanwhile, NEOs-abiotic degradation was accelerated by biochar, CCM and their combined addition by adjusting soil pH and stimulating hydrolysis action. Biotic degradation was dominant in NEOs dissipation processes in amended soils, and the contribution ratios of biotic degradation (CRbio) were in the range of 25.4-99.0%. The combined use of biochar and CCM selectively stimulated the relative abundance of NEOs-degraders, which simplified abiotic degradation of -NO2-containing NEOs (viz., NIT, THIA, CLO, and IMI), but inhibited -C≡N-containing NEOs (viz., ACE and THI). The combined remediation provided a strategy for immobilizing NEOs and facilitating dissipation of -NO2-containing NEOs in soils. The results in this study provide valuable information for policymakers and decision-makers to choose appropriate soil remediation approaches with respect to the NEO types.
Collapse
Affiliation(s)
- Haomiao Cheng
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guanlong Tang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shengsen Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ling Cheng
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shaoyuan Feng
- School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
21
|
Li L, Liang H, Zhao T, Liu Y, Yan S, Zhu W. Differential effects of thiamethoxam and clothianidin exposure on their tissue distribution and chronic toxicity in mice. Chem Biol Interact 2022; 366:110149. [PMID: 36084723 DOI: 10.1016/j.cbi.2022.110149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022]
Abstract
The frequent application of second-generation neonicotinoids thiamethoxam (TMX) and clothianidin (CLO) has led to a high detectable rate in environment samples and poses threats to nontarget organisms and human beings, however, the information on the influences of long-term exposure at low doses was limited. In this study, the tissue distribution of TMX and CLO in mice at acceptable daily intake (ADI) level and 5 × ADI was determined and the health effects were assessed. TMX and CLO were detected in the liver, serum, lung, heart and kidney in the TMX exposure groups, which indicated that TMX degraded to CLO in mice. Residue levels of TMX in tissues increased with the increasing of doses. The concentrations of CLO in different tissues in the CLO exposure groups were in the order Ckidney > Clung > Cheart > Cliver. Measurement of biochemical indicators, combined with metabolomic analysis of liver, kidney, and cecal contents, examination of changes in the gut microbiota, and histopathological assessment indicated that both TMX and CLO affected energy absorption and lipid metabolism in mice and destroyed tissue structures. Furthermore, we found that CLO had a stronger effect on metabolism in mice, despite its lower acute toxicity. These results have prompted us to consider the chronic toxicity and potential hazards of chemicals in future risk assessments.
Collapse
Affiliation(s)
- Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, PR China.
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, PR China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|