1
|
Wang J, Hou J, Wang L, Zhu Z, Han B, Chen L, Liu W. Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: Insights from Imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125394. [PMID: 39586452 DOI: 10.1016/j.envpol.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise. In this study, we systematically reviewed the development history, pollution characteristics, and environmental problems associated with IMI in China, which is imperative to promote its green development. The results show that most IMI products (97.1%) in China are registered for agricultural use. Owing to its extensive use and strong migration ability in different environmental matrices, IMI has been broadly detected in multiple environmental media. The average detection rate (DR) of IMI in soils, ambient water, and sediments were 90.7%, 81.3% and 84.5%, respectively, and the corresponding concentrations were 54.6 ± 83.8 ng/g dry weight (dw), 32.8 ± 103 ng/L, and 1.7 ± 2.9 ng/g dw, respectively, indicating high IMI abundance in multiple environmental media in China. The spatiotemporal distribution of IMI was generally determined by its application modes, transport, and degradation rates. IMI is commonly overused in China, leading to the development of high IMI resistance in many pests, and a high DR of IMI in food, drinking water, and human bodies. To alleviate IMI pollution in China, the joint efforts of the government, farmers, and scientists are necessary, including but not limited to formulating laws and regulations, strengthening governmental supervision, improving farmers' knowledge of IMI use, and promoting technological innovation in IMI and application methods.
Collapse
Affiliation(s)
- JinZe Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie Hou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiXi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - ZiYang Zhu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - BingJun Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - WenXin Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Tang X, Ma J, Liu P, Yu S, Ren X, Zhu W, Chen X, Ge Y, Huang H, Liu J, Lu S. Urinary neonicotinoid exposure and its association with hypertension and dyslipidemia among the elderly: A cross-sectional study in Shenzhen, China. CHEMOSPHERE 2024; 370:143973. [PMID: 39694286 DOI: 10.1016/j.chemosphere.2024.143973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
In recent years, neonicotinoids (NEOs) as a new type of insecticide have been increasingly used worldwide, causing significant impacts on human health. This study collected urine samples from 1147 elderly individuals (including 714 in the control group and 433 in the hypertension group) in Shenzhen, China, and detected the concentrations of six types of NEOs and four metabolites of NEOs (mNEOs). The aim of this study is to investigate the association between NEOs exposure and hypertension and dyslipidemia. After measurement, we find that the lowest detection rate (DR) among NEOs is imidacloprid (IMI), at only 39.3%. The NEO with the highest urine median concentration is dinotefuran (DIN) (1.31 μg/L), while the mNEO with the highest median concentration is DM-ACE (2.74 μg/L). Through univariate analysis, we found that DM-THM may promote the development of hypertension, while logistic regression indicated that IMI-OF could be a risk factor for hypertension. As prototypes of these two metabolites, thiamethoxam (THM) and IMI may also be risk factors for hypertension. Linear regression analysis revealed a negative correlation between the concentration of thiamethoxam (THD) and low-density lipoprotein (LDL) level, while DIN was positively correlated with triglyceride (TG) level and negatively correlated with high-density lipoprotein (HDL) level. Mediation effect analysis showed that THD may influence the risk of hypertension in the elderly by affecting LDL level. Based on this study, we believe that exposure to NEOs may increase the risk of hypertension in the elderly population.
Collapse
Affiliation(s)
- Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Sisi Yu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Wenchao Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China; Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, 518107, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Deng Y, Shen R, Zhang X, Li Y, Chen X, He RR, Tian H, Tang S, Luo X, Li J, Sun WY, Tan H. Invisible hazards: Exploring neonicotinoid contamination and its environmental risks in urban parks across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176715. [PMID: 39368502 DOI: 10.1016/j.scitotenv.2024.176715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Neonicotinoids (NEOs) are commonly used pesticides in agriculture. Urban parks containing numerous green plants and flowers also require NEOs for pest control. However, information on the distribution patterns and environmental risks of NEOs and their metabolites in urban park soils has yet to be discovered, which seriously limits the comprehensive evaluation of the potential hazards of NEOs. Our study explored the occurrence and distribution patterns of ten NEOs and five major metabolites in park soils from Guangzhou, Shijiazhuang, and Urumqi of China. At least three NEOs were detected in 95 % of soil samples, with the sum of all NEOs (∑10NEOs) ranging from 2.21 to 204 ng/g. Guangzhou has the highest levels of ∑10NEOs (median: 52.1 ng/g), followed by Urumqi (49.3 ng/g) and Shijiazhuang (21.7 ng/g). The top three most common NEOs in all three cities are imidacloprid, acetamiprid, and thiacloprid, which together account for 67 % to 70 % of ∑10NEOs. The levels of the metabolites of NEOs show a significant positive correlation with their corresponding parent NEOs. These NEOs pose detrimental effects to non-targeted invertebrates in the soil. Our findings raise concern about the environmental risks posed by NEO exposure to humans and other organisms in urban parks.
Collapse
Affiliation(s)
- Yongfeng Deng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ruqin Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xue Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yang Li
- Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Xingguo Chen
- Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Hao Tian
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Shuqin Tang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Hongli Tan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility, Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Cao Y, Zhang X, Zhang Z, Li Q, Yan Y. Neonicotinoid insecticides in waters of Hongze lake, the largest impounded lake on the South-to-North water diversion project, China: Implications for environmental and public health. ENVIRONMENTAL RESEARCH 2024; 262:119818. [PMID: 39168430 DOI: 10.1016/j.envres.2024.119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Contamination by neonicotinoid (NEO) insecticides in surface waters is a global problem. Nevertheless, the occurrence of NEOs in lakes is not well known. Hongze Lake, the largest impounded lake on the Eastern Route of the South-to-North Water Diversion Project, was selected to investigate the distribution, ecological risks, and health risks of NEOs. Water samples from the lake and nearby rivers were collected and analyzed for 8 widely used NEOs in three seasons. The results indicated the average total NEO concentration in summer, winter, and spring was 222, 211, and 244 ng L-1 for the river water, and 265, 213, and 181 ng L-1 for the lake water, respectively, with no statistical seasonal difference. For the river water, the highest total NEO concentration in the three seasons was observed in the Andong River. For the lake water, the total NEO concentrations in summer were relatively high in sites near the inflow river estuaries due to the high riverine inputs during the flood period. The spatial difference in NEO concentration was relatively low in winter, which may be related to the wind-driven lake current. The seasonal variation in NEO compositions in the lake was generally similar to that in the river, indicating riverine input was the important source for the lake. Huai River was the largest contributor to the NEO inputs to the lake, and Sanhe Gate was the major output pathway. Clothianidin and imidacloprid in the river and lake water would produce moderate acute ecological risks in summer. Thus, the usage of the above two NEOs should be decreased or restricted. For integral NEO risks, 53% and 58% of the river and lake water sites exceeded the acute ecological threshold, respectively. Health risk assessment suggested drinking the water obtained from the lake would not produce a negative impact on public health.
Collapse
Affiliation(s)
- Yuanxin Cao
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China.
| | - Zhijie Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, China.
| |
Collapse
|
5
|
Hou J, Chen L, Wang J, Wang L, Han B, Li Y, Yu L, Liu W. Neonicotinoid metabolites in farmland surface soils in China based on multiple agricultural influencing factors: A national survey. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136633. [PMID: 39591938 DOI: 10.1016/j.jhazmat.2024.136633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Certain neonicotinoid metabolites (mNEOs) are causing widespread concern because they are equally or even more toxic than the parent NEOs. Currently, there is limited information on the distribution of mNEOs in soil. Especially, it is unknown that the effects of agricultural factors, such as plastic filming, plowing, irrigation, and fertilization, on mNEOs. This study is the first to reveal that mNEOs were commonly found in agricultural topsoil in China, with a geometric mean concentration of ΣmNEOs of 0.298 μg/kg. Among 31 provinces in Mainland China, Fujian had the highest mNEO residues, whereas Shanghai had the lowest. Among topsoil of various crop types, that of fruits and vegetables were found the highest mNEO residues. Furthermore, higher levels of film cover were associated with higher mNEO residues. Microplastics (MPs, serving as contaminant carriers) were positively correlated with mNEOs under field conditions, which was related to the adsorption capacity of microplastics and its influence on the soil conditions and the years of film cover. Alternatively, this study shows for the first time that irrigation water and manure might be sources of mNEO input into the soil, and that the plowing frequency might also influence on mNEOs.
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - JinZe Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiXi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
6
|
Zhang Y, Zhu W, Wang Y, Li X, Lv J, Luo J, Yang M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol Res 2024; 209:107415. [PMID: 39306021 DOI: 10.1016/j.phrs.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Neonicotinoid insecticides (NEOs) have garnered global attention due to their selective toxicity to insects and minimal impact on mammals. However, growing concerns about their extensive use and potential adverse effects on the ecological environment and non-target organisms necessitate further investigation. This study utilized bibliometric tools to analyze Web of Science data from 2003 to 2024, elucidating the current research landscape, identifying key research areas, and forecasting future trends related to NEOs. This paper provides an in-depth analysis of NEO exposure in non-target organisms, including risk assessments for various samples and maximum residue limits established by different countries. Additionally, it examines the impacts and mechanisms of NEOs on non-target organisms. Finally, it reviews the current methods for NEO removal and degradation. This comprehensive analysis provides valuable insights for regulating NEO usage and addressing associated exposure challenges.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianxin Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
7
|
Zhang W, Zhou C, Zhou F, Zalán Z, Shi H, Kan J, Cai T, Chen K. Determination of twelve neonicotinoid pesticides in chili using an improved QuEChERS method with UPLC-Q-TOF/MS. Food Chem 2024; 452:139463. [PMID: 38718451 DOI: 10.1016/j.foodchem.2024.139463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
In this study, a QuEChERS method based on citrate was developed and utilized for the analysis of twelve neonicotinoid pesticides in fresh red chilies, fresh green chilies, and dried chilies, coupled with ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS). In the sample preparation, acetonitrile containing 1% formic acid was used as the extraction solvent. Anhydrous sodium sulfate replaced the traditional anhydrous magnesium sulfate for water removal, effectively eliminating the issues of salt caking. Graphitized carbon black, octadecyl silica, and primary secondary amine were used as cleaning agents. The method showed good sensitivity, with the limits of quantification below 0.03 mg/kg for fresh chilies and below 0.15 mg/kg for dried chilies. Values of matrix effects ranged from -19.5% to 8.4%, and the recovery was 86.9% - 105.2%. The analytical method provided an effective tool for the high throughput detection of neonicotinoid pesticide residues in multiple chili matrices.
Collapse
Affiliation(s)
- Wenhua Zhang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Chunjie Zhou
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, No. 1, Chunlan 2(nd) Road, Yubei District, Chongqing 401121, PR China
| | - Fenglan Zhou
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zsolt Zalán
- China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi str. 29-43, Budapest H-1118, Hungary
| | - Hui Shi
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, No. 1, Chunlan 2(nd) Road, Yubei District, Chongqing 401121, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Gan T, Bambrick H, Li Y, Ebi KL, Hu W. Long-Term Effect of Temperature Increase on Liver Cancer in Australia: A Bayesian Spatial Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97007. [PMID: 39269729 PMCID: PMC11398296 DOI: 10.1289/ehp14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND While some evidence has potentially linked climate change to carcinogenic factors, the long-term effect of climate change on liver cancer risk largely remains unclear. OBJECTIVES Our objective is to evaluate the long-term relationship between temperature increase and liver cancer incidence in Australia. METHODS We mapped the spatial distribution of liver cancer incidence from 2001 to 2019 in Australia. A Bayesian spatial conditional autoregressive (CAR) model was used to estimate the relationships between the increase in temperature at different lags and liver cancer incidence in Australia, after controlling for chronic hepatitis B prevalence, chronic hepatitis C prevalence, and the Index of Relative Socio-economic Disadvantage. Spatial random effects obtained from the Bayesian CAR model were also mapped. RESULTS The research showed that the distribution of liver cancer in Australia is spatially clustered, most areas in Northern Territory and Northern Queensland have higher incidence and relative risk. The increase in temperature at the lag of 30 years was found to correlate with the increase in liver cancer incidence in Australia, with a posterior mean of 30.57 [95% Bayesian credible interval (CrI): 0.17, 58.88] for the univariate model and 29.50 (95% CrI: 1.27, 58.95) after controlling for confounders, respectively. The results were not highly credible for other lags. DISCUSSION Our Bayesian spatial analysis suggested a potential relationship between temperature increase and liver cancer. To our knowledge, this research marks the first attempt to assess the long-term effect of global warming on liver cancer. If the relationship is confirmed by other studies, these findings may inform the development of prevention and mitigation strategies based on climate change projections. https://doi.org/10.1289/EHP14574.
Collapse
Affiliation(s)
- Ting Gan
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Hilary Bambrick
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yumin Li
- Key Laboratory of Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, Washington, USA
| | - Wenbiao Hu
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Liu Z, Li N, Xu L, Huang R, Xu Z, Liu G, Liang X, Yang X. Associations between neonicotinoid insecticide levels in follicular fluid and serum and reproductive outcomes among women undergoing assisted reproductive technology: An observational study. Heliyon 2024; 10:e35618. [PMID: 39247291 PMCID: PMC11379559 DOI: 10.1016/j.heliyon.2024.e35618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Neonicotinoid insecticides (NEOs) are a widely used type of insecticide found globally, leading to broad human exposure. However, there is limited research on how internal exposure levels of NEOs and their metabolites impact in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) outcomes. A study was conducted at the Sixth Affiliated Hospital of Sun Yat-sen University between 2017 and 2020 involving 436 women undergoing IVF/ICSI treatment. Data on demographics and clinical history were collected from medical records. The concentrations of 11 NEOs and 4 NEO metabolites in follicular fluid and serum were measured using a salting-out assisted liquid-liquid extraction method and liquid chromatography-tandem mass spectrometry. Our findings indicated that NEOs were prevalent in women with infertility. One NEO metabolite, N-dm-ACE, was detected in all samples with median concentrations of 0.221 ng/mL in follicular fluid and 0.228 ng/mL in serum. The study showed a decrease in the number of retrieved oocytes, mature oocytes, 2 PN zygotes, and high-quality embryos as the number of exposed NEOs in follicular fluid increased. Women in the highest tertile of N-dm-ACE exposure had fewer mature oocytes, 2 PN zygotes, and lower oocyte maturity rates compared to those in the lowest tertile. The findings suggest that exposure to NEOs may negatively impact reproductive outcomes in IVF/ICSI pregnancies, particularly affecting oocyte retrieval and embryo quality. This study highlights the potential adverse effects of environmental NEO exposure on IVF/ICSI outcomes, emphasizing the importance of considering such exposures in preconception care.
Collapse
Affiliation(s)
- Ziyu Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Nijie Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Linan Xu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Rui Huang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Zhenhan Xu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Guihua Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| | - Xing Yang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Engineering Technology Research Center of Fertility Preservation, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, People's Republic of China
| |
Collapse
|
10
|
Hu Y, Ye Z, Wu H, Chen X, Xia H, Cai JP, Hu GX, Xu RA. Functional assessment of CYP3A4 and CYP2C19 genetic polymorphisms on the metabolism of clothianidin invitro. Chem Biol Interact 2024; 399:111154. [PMID: 39025286 DOI: 10.1016/j.cbi.2024.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Clothianidin, classified as a second-generation neonicotinoid, has achieved extensive application due to its high efficacy against insect pests. This broad-spectrum usage has resulted in its frequent detection in environmental surveys. CYP2C19 and CYP3A4 are crucial for converting clothianidin to desmethyl-clothianidin (dm-clothianidin). The expression of these CYP450s can be significantly influenced by genetic polymorphisms. The objective of our research was to examine the catalytic effects of 27 CYP3A4 variants and 31 CYP2C19 variants on the metabolism of clothianidin within recombinant insect microsomes. These variants were assessed through a well-established incubation procedure. In addition, the concentration of its metabolite dm-clothianidin was quantified by employing an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Lastly, the kinetic parameters of these CYP3A4 and CYP2C19 variants were calculated by applying Michaelis-Menten kinetic analysis to fit the data. The observed changes in enzyme activity were related to the metabolic transformation of clothianidin to dm-clothianidin. In the CYP2C19 metabolic pathway, one variant (CYP2C19.23) showed no notable change in intrinsic clearance (CLint), four variants (CYP2C19.29, .30, .31 and L16F) demonstrated a marked increase in CLint (110.86-183.46 %), and the remaining 25 variants exhibited a considerable decrease in CLint (26.38-89.79 %), with a maximum decrease of 73.62 % (CYP2C19.6). In the CYP3A4 metabolic pathway, 26 variants demonstrated significantly reduced CLint (10.54-52.52 %), with a maximum decrease of 89.46 % (CYP3A4.20). Our results suggested that most variants of CYP3A4 and CYP2C19 significantly altered the enzymatic activities associated with clothianidin metabolism to various degrees. This study provides new insights into assessing the metabolic behavior of pesticides and delivers crucial data that can guide clinical detoxification strategies.
Collapse
Affiliation(s)
- Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhize Ye
- Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Hualu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Bernardino-Hernández HU, Gallardo-García Y, Vargas-Valencia G, Zapién-Martínez A, Sánchez-Cruz G, Reyes-Velasco L, Cueva-Villanueva JÁ, Hernández-García E, Vargas-Arzola J, Torres-Aguilar H. Pesticide Exposure in the Cultivation of Carica papaya L. and Capsicum annuum L. in Rural Areas of Oaxaca, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1061. [PMID: 39200670 PMCID: PMC11354008 DOI: 10.3390/ijerph21081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024]
Abstract
This study focuses on describing the diversity of pesticides, the knowledge and behaviors of their use, and the acute poisoning symptoms (APS) derived from their exposure from two agricultural production systems (papaya-Carica papaya L.- and chili-Capsicum annuum L.-) in Oaxaca, Mexico. Through surveys, sociodemographic information, characteristics of the production system, knowledge and behaviors in the handling of pesticides, and APS perceived by users were captured. Papaya producers are younger, have fewer years of activity, and have larger agricultural areas than chili producers. Insect attacks and diseases are an essential factor for the application of pesticides. Thirty-one active ingredients (Ais) were identified in papaya and thirty-seven in chili, predominantly insecticides and fungicides of toxicological category IV. Approximately 50% of users apply mixtures of different Ais, have little knowledge and inappropriate behavior in their handling, and report up to five acute pesticide poisoning symptoms, mainly burning and irritation of the skin, burning eyes, itchy skin, runny nose, headache, and watery eyes. The production of papaya and chili are relevant activities for generating economic income, but they risk the producer's and their family's health. Both systems are a potential scenario for the manifestation of diseases due to exposure to pesticides in the medium and long term.
Collapse
Affiliation(s)
- Héctor Ulises Bernardino-Hernández
- Chemical Sciences Faculty, Benito Juárez Autonomous University of Oaxaca (UABJO), Av. Universidad S/N. Cinco Señores, Oaxaca de Juárez, Oaxaca C.P. 68120, Mexico; (Y.G.-G.); (G.V.-V.); (A.Z.-M.); (G.S.-C.); (L.R.-V.); (J.Á.C.-V.); (E.H.-G.); (J.V.-A.); (H.T.-A.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bouchouireb Z, Olivier-Jimenez D, Jaunet-Lahary T, Thany SH, Le Questel JY. Navigating the complexities of docking tools with nicotinic receptors and acetylcholine binding proteins in the realm of neonicotinoids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116582. [PMID: 38905934 DOI: 10.1016/j.ecoenv.2024.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Molecular docking, pivotal in predicting small-molecule ligand binding modes, struggles with accurately identifying binding conformations and affinities. This is particularly true for neonicotinoids, insecticides whose impacts on ecosystems require precise molecular interaction modeling. This study scrutinizes the effectiveness of prominent docking software (Ledock, ADFR, Autodock Vina, CDOCKER) in simulating interactions of environmental chemicals, especially neonicotinoid-like molecules with nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding proteins (AChBPs). We aimed to assess the accuracy and reliability of these tools in reproducing crystallographic data, focusing on semi-flexible and flexible docking approaches. Our analysis identified Ledock as the most accurate in semi-flexible docking, while Autodock Vina with Vinardo scoring function proved most reliable. However, no software consistently excelled in both accuracy and reliability. Additionally, our evaluation revealed that none of the tools could establish a clear correlation between docking scores and experimental dissociation constants (Kd) for neonicotinoid-like compounds. In contrast, a strong correlation was found with drug-like compounds, bringing to light a bias in considered software towards pharmaceuticals, thus limiting their applicability to environmental chemicals. The comparison between semi-flexible and flexible docking revealed that the increased computational complexity of the latter did not result in enhanced accuracy. In fact, the higher computational cost of flexible docking with its lack of enhanced predictive accuracy, rendered this approach useless for this class of compounds. Conclusively, our findings emphasize the need for continued development of docking methodologies, particularly for environmental chemicals. This study not only illuminates current software capabilities but also underscores the urgency for advancements in computational molecular docking as it is a relevant tool to environmental sciences.
Collapse
Affiliation(s)
| | - Damien Olivier-Jimenez
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, Leiden 2333ZA, Netherlands
| | | | - Steeve H Thany
- Université d'Orléans, Physiology, Ecology and Environment (P2E) laboratory USC INRAE 1328, Orléans 45067, France; Institut universitaire de France (IUF), 1 rue Descartes 75005 Paris, France
| | | |
Collapse
|
13
|
Deng SQ, Li N, Yang XK, Lu HZ, Liu JH, Peng ZY, Wang LM, Zhang M, Zhang C, Chen C. Recombinant Beauveria bassiana expressing Bacillus thuringiensis toxin Cyt1Aa: a promising approach for enhancing Aedes mosquito control. Microbiol Spectr 2024; 12:e0379223. [PMID: 38809029 PMCID: PMC11218515 DOI: 10.1128/spectrum.03792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/20/2024] [Indexed: 05/30/2024] Open
Abstract
The entomopathogenic fungus Beauveria bassiana provides an eco-friendly substitute to chemical insecticides for mosquito control. Nevertheless, its widespread application has been hindered by its comparatively slow efficacy in eliminating mosquitoes. To augment the potency of B. bassiana against Aedes mosquitoes, a novel recombinant strain, Bb-Cyt1Aa, was developed by incorporating the Bacillus thuringiensis toxin gene Cyt1Aa into B. bassiana. The virulence of Bb-Cyt1Aa was evaluated against Aedes aegypti and Aedes albopictus using insect bioassays. Compared to the wild-type (WT) strain, the median lethal time (LT50) for A. aegypti larvae infected with Bb-Cyt1Aa decreased by 33.3% at a concentration of 1 × 108 conidia/mL and by 22.2% at 1 × 107 conidia/mL. The LT50 for A. aegypti adults infected with Bb-Cyt1Aa through conidia ingestion was reduced by 37.5% at 1 × 108 conidia/mL and by 33.3% at 1 × 107 conidia/mL. Likewise, the LT50 for A. aegypti adults infected with Bb-Cyt1Aa through cuticle contact decreased by 33.3% and 30.8% at the same concentrations, respectively. Furthermore, the Bb-Cyt1Aa strain also demonstrated increased toxicity against both larval and adult A. albopictus, when compared to the WT strain. In conclusion, our study demonstrated that the expression of B. thuringiensis toxin Cyt1Aa in B. bassiana enhanced its virulence against Aedes mosquitoes. This suggests that B. bassiana expressing Cyt1Aa has potential value for use in mosquito control. IMPORTANCE Beauveria bassiana is a naturally occurring fungus that can be utilized as a bioinsecticide against mosquitoes. Cyt1Aa is a delta-endotoxin protein produced by Bacillus thuringiensis that exhibits specific and potent insecticidal activity against mosquitoes. In our study, the expression of this toxin Cyt1Aa in B. bassiana enhances the virulence of B. bassiana against Aedes aegypti and Aedes albopictus, thereby increasing their effectiveness in killing mosquitoes. This novel strain can be used alongside chemical insecticides to reduce dependence on harmful chemicals, thereby minimizing negative impacts on the environment and human health. Additionally, the potential resistance of B. bassiana against mosquitoes in the future could be overcome by acquiring novel combinations of exogenous toxin genes. The presence of B. bassiana that expresses Cyt1Aa is of significant importance in mosquito control as it enhances genetic diversity, creates novel virulent strains, and contributes to the development of safer and more sustainable methods of mosquito control.
Collapse
Affiliation(s)
- Sheng-Qun Deng
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Ni Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xu-Ke Yang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Hong-Zheng Lu
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jia-Hua Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhe-Yu Peng
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lin-Min Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mao Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Chao Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Chen Chen
- Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Godbole AM, Chen A, Vuong AM. Associations between neonicotinoids and liver function measures in US adults: National Health and Nutrition Examination Survey 2015-2016. Environ Epidemiol 2024; 8:e310. [PMID: 38799264 PMCID: PMC11115984 DOI: 10.1097/ee9.0000000000000310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Background Toxicological studies indicate that neonicotinoids may be associated with disruptions in liver function due to an increase in oxidative stress. There are scant epidemiological studies investigating the chronic hepatotoxic effects of neonicotinoids. Objective To examine the association between detectable concentrations of parent neonicotinoids and neonicotinoid metabolites with liver function markers among US adults, and whether sex modifies this association. Methods National Health and Nutrition Examination Survey 2015-2016 data were used to estimate associations between detectable neonicotinoids and serum alkaline phosphatase (ALP), alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transaminase (GGT), albumin, total bilirubin, total protein, and Hepatic Steatosis Index (HSI) using multiple linear regression. Results Detectable levels of N-desmethyl-acetamiprid were associated with a decrease in GGT (β = -3.54 unit/l; 95% confidence interval [CI] = -6.48, -0.61) and detectable levels of 5-hydroxy-imidacloprid were associated with a decrease in HSI (β = -1.11; 95% CI = -2.14, -0.07). Sex modified the association between any parent neonicotinoid and ALP (Pint = 0.064) and the association between clothianidin and ALP (Pint = 0.019), with a pattern of positive associations in males and inverse associations in females, though stratified associations did not reach statistical significance. Sex also modified the association between 5-hydroxy-imidacloprid and total protein (Pint = 0.062), with a significant positive association in females (β = 0.14 g/dl; 95% CI = 0.03, 0.25) and a null association in males. Conclusion Detectable concentrations of neonicotinoid metabolites were inversely associated with GGT and HSI in US adults. Evidence suggests neonicotinoids may influence liver function differently depending on sex. Future research is recommended to replicate the findings as the study was limited in its cross-sectional nature and inability to examine continuous neonicotinoid concentrations with liver function.
Collapse
Affiliation(s)
- Amruta M. Godbole
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, Nevada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ann M. Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, Nevada
| |
Collapse
|
15
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
16
|
Zhang J, Wang Y, Wurjihu S, Ruan H, Huang Y, Guo M, Kong D, Luo J, Yang M. Comprehensive analysis of neonicotinoids in Chinese commercial honey and pollen: A corresponding health risk assessment for non-targeted organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170937. [PMID: 38360305 DOI: 10.1016/j.scitotenv.2024.170937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Neonicotinoids are broad-spectrum and highly effective insecticides that work by affecting neural activity in insects. Neonicotinoids are systemic pesticides that are absorbed by plants, transported, and accumulated in plant tissues, including nectar and pollen. Currently, there is a lack of a comprehensive assessment of the level of neonicotinoid contamination and the associated health risks to non-targeted organisms in commercial honey and pollen produced in China. This study collected 160 batches of honey and 26 batches of pollen from different regions and plant sources in China, analyzed the residue patterns of neonicotinoid pesticides, and comprehensively evaluated the exposure risks to non-targeted organisms including bees (adults and larvae) and humans. Furthermore, this study addresses this imperative by establishing a high-throughput, rapid, and ultra-sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on broad-spectrum monoclonal antibodies to detect and quantify neonicotinoids, with validation conducted using the LC-MS/MS method. The findings indicated that 59.4 % of honey samples contained at least one of eight neonicotinoids, and the ic-ELISA rapid detection and calculation method could detect all the samples containing neonicotinoids. Additionally, the dietary risk assessment for humans and honeybees indicates that the consumption of a specific quantity of honey may not pose a health risk to human due to neonicotinoid intake. However, the Risk Quotient values for imidacloprid to adult bees and bee larvae, as well as clothianidin to bee larvae, were determined to be 2.22, 5.03, and 1.01, respectively-each exceeding 1. This highlights the elevated risk of acute toxicity posed by imidacloprid and clothianidin residues to honey bees. The study bears significant implications for the safety evaluation of non-targeted organisms in the natural food chain. Moreover, it provides scientific guidance for protecting the diversity and health of the ecosystem.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanbaga Wurjihu
- Plastic Surgery Hospital and Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Haonan Ruan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
17
|
Flores N, Prado J, Espin R, Rodríguez H, Pais-Chanfrau JM. Laboratory evaluation of a bio-insecticide candidate from tangerine peel extracts against Trialeurodes vaporariorum (Homoptera: Aleyrodidae). PeerJ 2024; 12:e16885. [PMID: 38525279 PMCID: PMC10959105 DOI: 10.7717/peerj.16885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/13/2024] [Indexed: 03/26/2024] Open
Abstract
Background The excessive use of synthetic insecticides in modern agriculture has led to environmental contamination and the development of insect resistance. Also, the prolonged use of chemical insecticides in producing flowers and tomatoes in greenhouses has caused health problems for workers and their offspring. In this study, we analyzed the efficacy of mandarin peel (Citrus reticulata L.) essential oil (EO) as a natural insecticide against greenhouse whitefly (Trieurodes vaporariorum W., Homoptera: Aleyrodidae), a common pest in greenhouse production of different crops. Methods Petroleum ether (PET) and n-hexane (HEX) were used as solvents to extract essential oil (EO) from tangerine peels. Results The yield of EO was 1.59% and 2.00% (m/m) for PET and HEX, respectively. Additionally, the insect-killing power of EO was tested by checking how many greenhouse whiteflies died at different times. The results showed that PET and HEX extracts of tangerine EO effectively controlled greenhouse whiteflies. Furthermore, with both solvents, a 12.5% (v/v) application was as practical as the commercial insecticide imidacloprid. Further characterization tests with the polarimeter, FTIR, HPLC-RP, and GC-MS showed that the essential oil (EO) contained about 41% (v/v) of d-limonene and that this compound may be responsible for the observed insecticidal properties. Conclusion Therefore, tangerine peel essential oil is an excellent botanical insecticide candidate for controlling greenhouse whiteflies.
Collapse
Affiliation(s)
| | - Julia Prado
- FICAYA/Carrera de Agroindustria, Universidad Técnica del Norte (UTN), Ibarra, Imbabura, Ecuador
| | - Rosario Espin
- FICAYA/Carrera de Agroindustria, Universidad Técnica del Norte (UTN), Ibarra, Imbabura, Ecuador
| | - Hortensia Rodríguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Imbabura, Ecuador
| | | |
Collapse
|
18
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
19
|
Zhang S, Yang R, Zhao M, Li S, Yin N, Zhang A, Faiola F. Typical neonicotinoids and organophosphate esters, but not their metabolites, adversely impact early human development by activating BMP4 signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133028. [PMID: 38006857 DOI: 10.1016/j.jhazmat.2023.133028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Recent studies have highlighted the presence of potentially harmful chemicals, such as neonicotinoids (NEOs) and organophosphate esters (OPEs), in everyday items. Despite their potential threats to human health, these dangers are often overlooked. In a previous study, we discovered that NEOs and OPEs can negatively impact development, but liver metabolism can help mitigate their harmful effects. In our current research, our objective was to investigate the toxicity mechanisms associated with NEOs, OPEs, and their liver metabolites using a human embryonic stem cell-based differentiation model that mimics early embryonic development. Our transcriptomics data revealed that NEOs and OPEs significantly influenced the expression of hundreds of genes, disrupted around 100 biological processes, and affected two signaling pathways. Notably, the BMP4 signaling pathway emerged as a key player in the disruption caused by exposure to these pollutants. Both NEOs and OPEs activated BMP4 signaling, potentially impacting early embryonic development. Interestingly, we observed that treatment with a human liver S9 fraction, which mimics liver metabolism, effectively reduced the toxic effects of these pollutants. Most importantly, it reversed the adverse effects dependent on the BMP4 pathway. These findings suggest that normal liver function plays a crucial role in detoxifying environmental pollutants and provides valuable experimental insights for addressing this issue.
Collapse
Affiliation(s)
- Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Azam S, Zhu J, Jiang J, Wang J, Zhao H. Photolysis of dinotefuran in aqueous solution: Kinetics, influencing factors and photodegradation mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123352. [PMID: 38219898 DOI: 10.1016/j.envpol.2024.123352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The environmental behaviour of neonicotinoid insecticides (NNIs) is of momentous concern due to their frequent detection in aquatic environment and their biotoxicity for non-target organisms. Phototransformation is one of the most significant transformation processes, which is directly related to NNIs exposure and environmental risks. In this study, the photodegradation of dinotefuran (DIN, 1-Methyl-2-nitro-3-(tetrahydro-3-furanylmethyl)-guanidine), one of the most promising NNIs, was conducted under irritated light in the presence of Cl-, DOM along with the effect of pH and initial concentration. The findings demonstrated that in ultra-pure (UP) water, the photolysis rate constants (k) of DIN rose with increasing initial concentration. Whereas, in tap water, at varied pH levels, and in the presence of Cl-, the outcomes were reversed. At the same time, lower concentration of DOM promoted DIN photolysis processes due to the production of reactive oxygen species, while higher concentrations of DOM inhibited the photolysis by the predominance of light shielding effects. The singlet oxygen (1O2) was produced in the photolysis processes of DIN with Cl- and DOM, which was confirmed by electron spin resonance (EPR) analysis. Four main photolysis products and three intermediates were identified by UPLC-Q-Exactive Orbitrap MS analysis. The possible photodegradation pathways of DIN were proposed including the oxidation by 1O2, reduction and hydrolysis after the removal of nitro group from parent compounds. This study expanding our understanding of transformation behavior and fate of NNIs in the aquatic environment, which is essential for estimating their environmental risks.
Collapse
Affiliation(s)
- Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Jie Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingqiu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China.
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116023, China
| |
Collapse
|
21
|
Guzman-Vallejos MS, Ramirez-Cando LJ, Aguayo L, Ballaz SJ. Molecular Docking Analysis at the Human α7-nAChR and Proliferative and Evoked-Calcium Changes in SH-SY5Y Cells by Imidacloprid and Acetamiprid Insecticides. Neurotox Res 2024; 42:16. [PMID: 38376791 DOI: 10.1007/s12640-024-00697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Acetamiprid (ACE) and Imidacloprid (IMI) are widely-used neonicotinoid insecticides (NNIs) with functional activity at human acetylcholine nicotinic receptors and, therefore, with putative toxic effects. The objective of this study was the evaluation of the interactions between NNIs and α7-nAChR, as this receptor keeps intracellular Ca2+ ([Ca2+]i) to an optimum for an adequate neuronal functioning. Possible interactions between NNIs and the cryo-EM structure of the human α-7 nAChR were identified by molecular docking. Additionally, NNI effects were analyzed in neuroblastoma SH-SY5Y cells, as they naturally express α-7 nAChRs. Functional studies included proliferative/cytotoxic effects (MTT test) in undifferentiated SH-SY-5Y cells and indirect measurements of [Ca2+]i transients in retinoic acid-differentiated SH-SY-5Y cells loaded with Fluo-4 AM. Docking analysis showed that the binding of IMI and ACE occurred at the same aromatic cage that the specific α-7 nAChR agonist EVP-6124. IMI showed a better docking strength than ACE. According to the MTT assays, low doses (10-50 µM) of IMI better than ACE stimulated neuroblastoma cell proliferation. At higher doses (250-500 µM), IMI also prevailed over ACE and dose-dependently triggered more abrupt fluorescence changes due to [Ca2+]i mobilization in differentiated SH-SY5Y neurons. Indeed, only IMI blunted nicotine-evoked intracellular fluorescence stimulation (i.e., nicotine cross-desensitization). Summarizing, IMI demonstrated a superior docking strength and more robust cellular responses compared to ACE, which were likely associated with a stronger activity at α-7nAChRs. Through the interaction with α-7nAChRs, IMI would demonstrate its high neurotoxic potential for humans. More research is needed for investigating the proliferative effects of IMI in neuroblastoma cells.
Collapse
Affiliation(s)
| | - Lenin J Ramirez-Cando
- School of Biological Sciences & Engineering, Universidad Yachay Tech, Urcuquí, Ecuador
| | - Luis Aguayo
- School of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Santiago J Ballaz
- School of Medicine, Universidad Espíritu Santo, Ave. Samborondón 5, Samborondón, 0901952, Ecuador.
| |
Collapse
|
22
|
Shang N, Yang Y, Xiao Y, Wu Y, Li K, Jiang X, Sanganyado E, Zhang Q, Xia X. Exposure levels and health implications of fungicides, neonicotinoid insecticides, triazine herbicides and their associated metabolites in pregnant women and men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123069. [PMID: 38052341 DOI: 10.1016/j.envpol.2023.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Exposure to pesticides can pose a series of advance effects on human health. However, the exposure levels and health implications of the current use pesticides and their metabolites in both men and pregnant women remain unclear. In this study, an analytical method was developed to quantify fungicides, neonicotinoid insecticides, triazine herbicides, and their metabolites in the human serum. Fifty of the 73 target pesticides and metabolites were detected in the human serum of men and pregnant women from Wuxi, China, which included 11 triazine herbicides and metabolites, 17 neonicotinoid insecticides and metabolites, and 22 fungicides. Fungicides had the highest cumulative concentration (49.5 ng/mL), followed by neonicotinoid insecticides and metabolites (6.38 ng/mL), and triazine herbicides and metabolites (5.10 ng/mL). Moreover, the estimated daily intake (EDI) of fungicides was 10.4 and 12.7 times higher than that of triazine herbicides (included their metabolites) and neonicotinoid insecticides (included their metabolites), respectively. Of the three categories of pesticides, exposure to fungicides contributed to the highest exposure risk within the hazard quotient in the range of 5.1 × 10-3-0.17. Correlation analysis revealed that the pesticide exposure levels in human serum were correlated with their maximum residue levels in vegetables and fruits. Pesticide exposure has also been correlated with the weight and Body Mass Index (BMI) of humans based on structural equation modeling. This study provides new insights into the exposure of men and pregnant women to a cocktail of fungicides, neonicotinoid insecticides, triazine herbicides and their metabolites.
Collapse
Affiliation(s)
- Nanxiu Shang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yukang Wu
- Wuxi Center for Disease Control and Prevention, Jiangsu, 214023, China
| | - Kaixuan Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
23
|
Zahid M, Taiba J, Cox K, Khan AS, Uhing T, Rogan E. Pesticide residues in adults living near a bioenergy plant with 85,000 tons of contaminated wetcake. CHEMOSPHERE 2024; 349:140941. [PMID: 38092163 DOI: 10.1016/j.chemosphere.2023.140941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Neonicotinoid insecticide use is on the rise worldwide due to its broad-spectrum insecticidal action and exclusive approach of neurotoxic action. Besides application during the cultivation of several crops, all seed companies coat their seeds with neonicotinoids to have increased protection against insects during germination. Despite reduced mammalian toxicity, neonicotinoids have harmful effects on non-target non-mammalian organisms such as bees, an essential part of maintaining the ecosystem. In addition, epidemiologic studies have linked human exposure to neonicotinoids with poor developmental and neurological outcomes. Starting in 2015, the AltEn bioenergy plant near Mead, Nebraska, USA, used coated seeds for their ethanol production and failed to properly dispose of byproducts, causing environmental contamination that still exists. This pilot study reports the human urinary levels of neonicotinoids in samples collected during 2022-2023 in the population living in areas close to this now-closed bioenergy plant. Our results show that approximately 30% of the urine samples are contaminated with at least one of the targeted neonicotinoids or their transformed products. The most frequently detected parent neonicotinoid was clothianidin, which accounts for 13% of the samples. However, 5-hydroxy-imidacloprid, the transformed imidacloprid product, is detected in 27% of the samples, ranging from 1.2 to 42 ng/mL. In conclusion, the environmental contamination near Mead, Nebraska, due to improper storage and disposal of highly contaminated byproducts, puts the nearby population at risk from continuous exposure to neonicotinoids through air and dust particles and possible water contamination.
Collapse
Affiliation(s)
- Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 69198-4388, USA
| | - Jabeen Taiba
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 69198-4388, USA
| | - Khiara Cox
- Rockhurst University, 1100 Rockhurst Rd., Kansas City, MO, 64110, USA
| | - Ali S Khan
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198-4355, USA
| | - Terra Uhing
- Three Rivers Public Health Department, 2400 N. Lincoln Ave., Fremont, NE, 68025, USA
| | - Eleanor Rogan
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 69198-4388, USA.
| |
Collapse
|
24
|
Taiba J, Rogan EG, Snow DD, Achutan C, Zahid M. Characterization of Environmental Levels of Pesticide Residues in Household Air and Dust Samples near a Bioenergy Plant Using Treated Seed as Feedstock. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6967. [PMID: 37947525 PMCID: PMC10648468 DOI: 10.3390/ijerph20216967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Exposure to neonicotinoid insecticides is associated with adverse human health outcomes. There is environmental contamination in Saunders County, Nebraska, due to the accumulation of fungicides and insecticides from a now-closed ethanol plant using seed corn as stock. A pilot study quantified environmental contamination in nearby houses from residual pesticides by measuring dust and air (indoor/outdoor) concentrations of neonicotinoids and fungicides at the study site (households within two miles of the plant) and control towns (20-30 miles away). Air (SASS® 2300 Wetted-Wall Air Sampler) and surface dust (GHOST wipes with 4 × 4-inch template) samples were collected from eleven study households and six controls. Targeted analysis quantified 13 neonicotinoids, their transformation products and seven fungicides. Sample extracts were concentrated using solid phase extraction (SPE) cartridges, eluted with methanol and evaporated. Residues were re-dissolved in methanol-water (1:4) prior to analysis, with an Acquity H-Class ultraperformance liquid chromatograph (UPLC) and a Xevo triple quadrupole mass spectrometer. We compared differences across chemicals in air and surface dust samples at the study and control sites by dichotomizing concentrations above or below the detection limit, using Fisher's exact test. A relatively higher detection frequency was observed for clothianidin and thiamethoxam at the study site for the surface dust samples, similarly for thiamethoxam in the air samples. Our results suggest airborne contamination (neonicotinoids and fungicides) from the ethanol facility at houses near the pesticide contamination.
Collapse
Affiliation(s)
- Jabeen Taiba
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4388, USA
| | - Eleanor G. Rogan
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4388, USA
| | - Daniel D. Snow
- Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, USA
| | - Chandran Achutan
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4388, USA
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4388, USA
| |
Collapse
|
25
|
Wei X, Pan Y, Tang Z, Lin Q, Jiang Y, Chen J, Xian W, Yin R, Li AJ, Qiu R. Neonicotinoids residues in cow milk and health risks to the Chinese general population. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131296. [PMID: 37027920 DOI: 10.1016/j.jhazmat.2023.131296] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The application of neonicotinoid insecticides (NEOs) has increased dramatically in the world since being introduced in 1990s, yet the extent of human exposure and potential health risk is not fully unraveled. In this study, the residues were analyzed of 16 NEOs and their metabolites in 205 commercial cow milk samples circulating in Chinese market. All the milk samples contained at least one quantified NEO, and over 90% of samples contained a cocktail of NEOs. Acetamiprid, N-desmethyl acetamiprid, thiamethoxam, clothianidin and imidaclothiz were the most commonly detected analytes with detection frequencies of 50-88% and medians of 0.011-0.038 ng/mL in milk. Geographical origin was an important factor to influence abundances and levels of NEOs contamination in milk. Chinese local milk bore a significant higher risk from NEOs contamination than the imported milk. In China, the northwest presented the greatest concentrations of the insecticides relative to the north or south. Organic farming, ultra heat treatment and skimming could significantly reduce levels of NEOs contamination in milk. A relative potency factor method was used to evaluate estimated daily intake of NEO insecticides, and found the children had 3.5-5 times higher exposed risk via milk ingestion than the adults. The high frequency of NEOs detection in milk offers us a snapshot of the ubiquity of NEOs in milk, with possible health implications especially for children.
Collapse
Affiliation(s)
- Xin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zixiong Tang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanqi Jiang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingyuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weixuan Xian
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Tu H, Wei X, Pan Y, Tang Z, Yin R, Qin J, Li H, Li AJ, Qiu R. Neonicotinoid insecticides and their metabolites: Specimens tested, analytical methods and exposure characteristics in humans. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131728. [PMID: 37302191 DOI: 10.1016/j.jhazmat.2023.131728] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
The use of neonicotinoid insecticides (NEOs) has been rising globally due to their broad-spectrum insecticidal activity, unique mode of neurotoxic action and presumed low mammalian toxicity. Given their growing ubiquity in the environment and neurological toxicity to non-target mammals, human exposure to NEOs is flourishing and now becomes a big issue. In the present work, we demonstrated that 20 NEOs and their metabolites have been reported in different human specimens with urine, blood and hair as the dominance. Sample pretreatment techniques of solid-phase and liquid-liquid extractions coupled with high performance liquid chromatography-tandem mass spectrometry have successfully achieved matrix elimination and accurate analysis. We also discussed and compared exposure characteristics of these compounds among types of specimens and different regions. A number of important knowledge gaps were also identified in order to further facilitate the understanding of health effects of NEO insecticides, which include, but are not limited to, identification and use of neuro-related human biological samples for better elucidating neurotoxic action of NEO insecticides, adoption of advanced non-target screening analysis for a whole picture in human exposure, and expanding investigations to cover non-explored but NEO-used regions and vulnerable populations.
Collapse
Affiliation(s)
- Haixin Tu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zixiong Tang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Wang WG, Li MY, Diao L, Zhang C, Tao LM, Zhou WX, Xu WP, Zhang Y. The health risk of acetochlor metabolite CMEPA is associated with lipid accumulation induced liver injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121857. [PMID: 37245791 DOI: 10.1016/j.envpol.2023.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Liver injury may cause many diseases, such as non-alcoholic fatty liver disease (NAFLD). Acetochlor is one of the representative chloroacetamide herbicides, and its metabolite 2-chloro-N-(2-ethyl-6-methyl phenyl) acetamide (CMEPA) is the main form of exposure in the environment. It has been shown that acetochlor can cause mitochondrial damage of HepG2 cells and induce apoptosis by activating Bcl/Bax pathway (Wang et al., 2021). But there has been less research on CMEPA. we explored the possibility of CMEPA and liver injury through biological experiments. In vivo, CMEPA (0-16 mg/L) induced liver damage in zebrafish larvae, including increased lipid droplets, changes in liver morphology (>1.3-fold) and increased TC/TG content (>2.5-fold). In vitro, we selected L02 (human normal liver cells) as the model, and explored its molecular mechanism. We found that CMEPA (0-160 mg/L) induced apoptosis (similar to 40%), mitochondrial damage and oxidative stress in L02 cells. CMEPA induced intracellular lipid accumulation by inhibiting AMPK/ACC/CPT-1A signaling pathway and activating SREBP-1c/FAS signaling pathway. Our study provides evidence of a link between CMEPA and liver injury. This raises concerns regarding the health risks of pesticide metabolites to liver health.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Mu-Yao Li
- Research Center for Econophysics, School of Business, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Diao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Xing Zhou
- Research Center for Econophysics, School of Business, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
28
|
Li X, Zhang W, Li X, Zhou S, Tu M, Zhu Y, Li H. Purity Assessment of Dinotefuran Using Mass Balance and Quantitative Nuclear Magnetic Resonance. Molecules 2023; 28:3884. [PMID: 37175293 PMCID: PMC10179808 DOI: 10.3390/molecules28093884] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Dinotefuran (DNT) belongs to the third-generation neonicotinoid pesticides, which are among the most common residuals in a variety of food commodities. To guarantee accurate quantification and traceability of results in food samples, certified reference materials (CRMs) are the indispensable benchmark. In this work, a DNT CRM was characterized and its purity was assessed by two independent methods, including mass balance (MB) and quantitative nuclear magnetic resonance spectroscopy (qNMR). The mass fraction of moisture was 0.33 mg/g, the inorganic impurity was 0.01 mg/g, and no detectable organic solvent was detected. Benzoic acid was chosen as the internal standard for qNMR. Its mass fraction was 997.9 mg/g and 992.9 mg/g by MB and qNMR, respectively. Eventually, the DNT CRM was assigned a mass fraction of 995 mg/g, with expanded uncertainty of 5 mg/g (k = 2). This CRM can be used to prepare calibrant solutions and is applicable to national routine monitoring of DNT residuals in agro-products and food.
Collapse
Affiliation(s)
- Xianjiang Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Wei Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Xiao Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Shukun Zhou
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Mengling Tu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Yunxiao Zhu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
29
|
Zhang J, Liu J, Wang Y, Wang Y, Yang R, Zhou X. Simultaneous determination of ten neonicotinoid insecticides and a metabolite in human whole blood by QuEChERS coupled with UPLC-Q Exactive orbitrap high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123689. [PMID: 37059012 DOI: 10.1016/j.jchromb.2023.123689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Since neonicotinoid insecticides are now the most extensively used insecticides worldwide, there are increasing cases of neonicotinoid poisoning. A rapid and sensitive method was developed for the determination of ten neonicotinoid insecticides and a metabolite 6-chloronicotinic acid in human whole blood. The types and amounts of extraction solvent, salting-out agent, and adsorbent in the QuEChERS method were optimized by comparing the absolute recoveries of 11 analytes. The separation was performed on an Agilent EC18 column with the gradient elution with 0.1% formic acid in water and acetonitrile as the mobile phase. The quantification was achieved by Q Exactive orbitrap high-resolution mass spectrometry under parallel reaction monitoring scan mode. The 11 analytes showed good linearity with R2 ≥ 0.9950, LODs ranging from 0.01 μg/L to 0.30 μg/L, and LOQs from 0.05 μg/L to 1.00 μg/L. The recoveries ranged from 78.3% to 119.9% at low, medium, and high spiked concentrations of blank blood, with matrix effects ranging from 80.9% to 117.8%, inter-day RSDs from 0.7% to 6.7%, and intra-day RSDs from 2.7% to 9.8%. The method was furthermore applied to a real case of neonicotinoid insecticide poisoning to demonstrate its feasibility. The proposed method is suitable for the rapid screening of neonicotinoid insecticides in poisoned human blood in the field of forensic science, as well as monitoring of neonicotinoid insecticide residues in humans in the field of environmental safety, compensating for a lack of studies on neonicotinoid insecticide determination in biological samples.
Collapse
|
30
|
Chen Y, Yu W, Zhang L, Cao L, Ling J, Liao K, Shen G, Du W, Chen K, Zhao M, Wu J, Jin H. First evidence of neonicotinoid insecticides in human bile and associated hepatotoxicity risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130715. [PMID: 36603418 DOI: 10.1016/j.jhazmat.2022.130715] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids (NEOs) are widely applied in agricultural lands and are widespread in different environments, accelerating threats to ecosystems and human health. A number of in vitro/in vivo studies have reported adverse effects of NEOs on mammalian health, but the link between NEO exposure and toxic effects on human liver remains unclear. We randomly recruited 201 participants and quantified eight commercialized NEOs in bile. High frequency and concentration of detection indicate low degradation of human liver on NEOs. The main NEOs are nitenpyram and dinotefuran, which contribute to about 86% of the total residual levels of eight NEOs, due to the highest solubility in bile and are not degraded easily in liver. In contrast, imidacloprid and thiacloprid are major compounds in human blood, according to previous studies, suggesting that individual NEOs behave differently in blood and bile distribution. There was no statistical difference in NEO residues between cancer and non-cancer participants and among the different participant demographics (e.g., age, gender, and body mass index). The serum hematological parameters -bile acid, total bilirubin, cholesterol and alkaline phosphatase -were positively correlated with individual NEO concentrations, suggesting that NEO exposure affects liver metabolism and even enterohepatic circulation. The study first examined the NEO residues in human bile and provided new insights into their bioavailability and hepatoxicity risk.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Li Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Jun Ling
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, PR China
| | - Kangjie Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
31
|
Yi L, Zhang S, Chen X, Wang T, Yi X, Yeerkenbieke G, Shi S, Lu X. Evaluation of the risk of human exposure to thiamethoxam by extrapolation from a toxicokinetic experiment in rats and literature data. ENVIRONMENT INTERNATIONAL 2023; 173:107823. [PMID: 36809708 DOI: 10.1016/j.envint.2023.107823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Previous studies suggest that exposure to thiamethoxam (TMX) may cause adverse effects to human. However, the distribution of TMX in various organs of human body and the associated risk are little-known. This study aimed to explore the distribution of TMX in human organs by extrapolation from a toxicokinetic experiment in rats and to assess the associated risk based on literature data. The rat exposure experiment was performed using 6-week female SD rats. Five groups of rats were oral-exposed to 1 mg/kg TMX (water as solvent) and executed at 1 h, 2 h, 4 h, 8 h and 24 h after treatment, respectively. The concentrations of TMX and its metabolites in rat liver, kidney, blood, brain, muscle, uterus and urine were measured in different time points using LC-MS. Data on concentrations of TMX in food, human urine and blood as well as human cell-based in vitro toxicity of TMX were collected from the literature. After oral exposure, TMX and its metabolite clothianidin (CLO) were detected in all organs of the rats. The steady-state tissue-plasma partition coefficients of TMX for liver, kidney, brain, uterus and muscle were 0.96, 1.53, 0.47, 0.60 and 1.10, respectively. Based on literature analysis, the concentration of TMX in human urine and blood for general population were 0.06-0.5 ng/mL and 0.04-0.6 ng/mL, respectively. For some people, the concentration of TMX in human urine reached 222 ng/mL. By extraplation from rat experiment, the estimated concentrations of TMX in human liver, kidney, brain, uterus and muscle for general population were 0.038-0.58, 0.061-0.92, 0.019-0.28, 0.024-0.36 and 0.044-0.66 ng/g, respectively, well below the relevant concentrations for cytotoxic endpoints (HQs ≤ 0.012); however, for some people they could be up to 253.44, 403.92, 124.08, 158.40 and 290.40 ng/g, respectively, with very high developmental toxicity (HQ = 5.4). Therefore, the risk for highly exposed people should not be neglected.
Collapse
Affiliation(s)
- Lijin Yi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shuai Zhang
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xuexia Chen
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tao Wang
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiaolong Yi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Gulijiazi Yeerkenbieke
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shuai Shi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiaoxia Lu
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
32
|
Zhang Q, Hu S, Dai W, Gu S, Ying Z, Wang R, Lu C. The partitioning and distribution of neonicotinoid insecticides in human blood. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121082. [PMID: 36681375 DOI: 10.1016/j.envpol.2023.121082] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The burden of neonicotinoid insecticides (neonics) in humans has attracted widespread attention in recent years due to the potential adverse effects. Nonetheless, information on the partitioning behavior and distribution in human blood is still limited. Herein, we obtained 115 adult whole blood and plasma specimens for analysis of eight neonics to better understand neonics' partitioning and distribution in human blood. At least one neonic was detected in 49.6% of the red blood cells and 55.7% of the plasma. In red blood cells, the highest detection rate and concentration was thiamethoxam (THI) with 19.1% and 3832 ng/L, respectively. Imidacloprid had the highest detection rate with 26.1% in the plasma. The mass fraction (Fp) of neonics detected indicates that thiacloprid, imidacloprid, and dinotefuran are mostly resided in plasma upon entering into human blood, while thiamethoxam is mostly present in red blood cells. The distribution of clothianidin and acetamiprid between plasma and red blood cells is similar. The mass fraction (Fp) values for THI were significantly different compared to other neonics, and the effect of age and gender on THI partitioning concluded that there may not be significant variability in the distribution of THI in the sampled population. Overall, this study was the first to investigate neonics residuals in red blood cells and provided fundamental information on the partitioning and distribution of neonics in human blood.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shitao Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wei Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Zeteng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Rui Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Chensheng Lu
- College of Resources and Environment, Southwest University, Chongqing, 400716, PR China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, WA 98195, USA.
| |
Collapse
|
33
|
Bitencourt de Morais Valentim JM, Fagundes TR, Okamoto Ferreira M, Lonardoni Micheletti P, Broto Oliveira GE, Cremer Souza M, Geovana Leite Vacario B, da Silva JC, Scandolara TB, Gaboardi SC, Zanetti Pessoa Candiotto L, Mara Serpeloni J, Rodrigues Ferreira Seiva F, Panis C. Monitoring residues of pesticides in food in Brazil: A multiscale analysis of the main contaminants, dietary cancer risk estimative and mechanisms associated. Front Public Health 2023; 11:1130893. [PMID: 36908412 PMCID: PMC9992878 DOI: 10.3389/fpubh.2023.1130893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Pesticides pose a risk for cancer development and progression. People are continuously exposed to such substances by several routes, including daily intake of contaminated food and water, especially in countries that are highly pesticide consumers and have very permissive legislation about pesticide contamination as Brazil. This work investigated the relationship among pesticides, food contamination, and dietary cancer risk. Methods Analyzed two social reports from the Brazilian Government: the Program for Analysis of Residues of Pesticides in Food (PARA) and The National Program for Control of Waste and Contaminants (PNCRC). Results and discussion First, we characterized the main pesticide residues detected over the maximum limits allowed by legislation or those prohibited for use in food samples analyzed across the country. Based on this list, we estimated the dietary cancer risks for some of the selected pesticides. Finally, we searched for data about dietary cancer risks and carcinogenic mechanisms of each pesticide. We also provided a critical analysis concerning the pesticide scenario in Brazil, aiming to discuss the food contamination levels observed from a geographical, political, and public health perspective. Exposures to pesticides in Brazil violate a range of human rights when food and water for human consumption are contaminated.
Collapse
Affiliation(s)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Mariane Okamoto Ferreira
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| | | | | | - Milena Cremer Souza
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | | | | | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
- Instituto Federal Catarinense, Blumenau, Brazil
| | | | - Juliana Mara Serpeloni
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| |
Collapse
|
34
|
Zhang H, Bai X, Zhang T, Song S, Zhu H, Lu S, Kannan K, Sun H. Neonicotinoid Insecticides and Their Metabolites Can Pass through the Human Placenta Unimpeded. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17143-17152. [PMID: 36441562 DOI: 10.1021/acs.est.2c06091] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Studies on neonicotinoid (NEO) exposure in pregnant women and fetuses are scarce, and transplacental transfer of these insecticides is unknown. In this study, parent NEOs (p-NEOs) and their metabolites (m-NEOs) were determined in 95 paired maternal (MS) and cord serum (CS) samples collected in southern China. Imidacloprid was the predominant p-NEO in both CS and MS samples, found at median concentrations of 1.84 and 0.79 ng/mL, respectively, whereas N-desmethyl-acetamiprid was the most abundant m-NEO in CS (median: 0.083 ng/mL) and MS (0.13 ng/mL). The median transplacental transfer efficiencies (TTEs) of p-NEOs and m-NEOs were high, ranging from 0.81 (thiamethoxam, THM) to 1.61 (olefin-imidacloprid, of-IMI), indicating efficient placental transfer of these insecticides. Moreover, transplacental transport of NEOs appears to be passive and structure-dependent: cyanoamidine NEOs such as acetamiprid and thiacloprid had higher TTE values than the nitroguanidine NEOs, namely, clothianidin and THM. Multilinear regression analysis revealed that the concentrations of several NEOs in MS were associated significantly with hematological parameters related to hepatotoxicity and renal toxicity. To our knowledge, this is the first analysis of the occurrence and distribution of NEOs in paired maternal-fetal serum samples.
Collapse
Affiliation(s)
- Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xueyuan Bai
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510275, P.R. China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
35
|
Zhang D, Lu S. Human exposure to neonicotinoids and the associated health risks: A review. ENVIRONMENT INTERNATIONAL 2022; 163:107201. [PMID: 35344909 DOI: 10.1016/j.envint.2022.107201] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoids (NEOs) are a class of broad-spectrum insecticides dominant in the global market. They were distributed extensively in the environment and occurred frequently in humans. Potential health effects of NEOs, such as neurological toxicity and diabetes to non-targeted mammals, have raised concerns. This review summarizes analytical methods of NEOs in human samples, their internal exposure levels and composition profiles in urine, blood, hair, breast milk, saliva and tooth samples with global comparisons, and daily NEOs exposure dose and relative health risks.Urinary NEOs levels in Asian populations were substantially higher than those in the U.S. and Europe, which may be due to different dietary patterns and insecticide applications across regions. N-desmethyl acetamiprid, 5-hydroxy-imidacloprid and olefin-imidacloprid were dominant among detected NEOs. NEO metabolites exhibited higher detection frequencies and levels than their parent compounds in humans, while investigations on NEO metabolites remain much limited. Current exposure assessments mainly focused on short-term urine analysis, while biomaterials for long-term monitoring, such as hair, nail and other alternatives, should also be considered. Large-scale epidemiological studies are critically needed to elucidate potential health outcomes associated with NEOs exposure.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|