1
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
2
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
3
|
Trigo-Tasende N, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Vaamonde M, López-Oriona Á, Barbeito I, Nasser-Ali M, Reif R, Rodiño-Janeiro BK, Fernández-Álvarez E, Iglesias-Corrás I, Freire B, Tarrío-Saavedra J, Tomás L, Gallego-García P, Posada D, Bou G, López-de-Ullibarri I, Cao R, Ladra S, Poza M. Wastewater early warning system for SARS-CoV-2 outbreaks and variants in a Coruña, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27877-3. [PMID: 37286834 DOI: 10.1007/s11356-023-27877-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Wastewater-based epidemiology has been widely used as a cost-effective method for tracking the COVID-19 pandemic at the community level. Here we describe COVIDBENS, a wastewater surveillance program running from June 2020 to March 2022 in the wastewater treatment plant of Bens in A Coruña (Spain). The main goal of this work was to provide an effective early warning tool based in wastewater epidemiology to help in decision-making at both the social and public health levels. RT-qPCR procedures and Illumina sequencing were used to weekly monitor the viral load and to detect SARS-CoV-2 mutations in wastewater, respectively. In addition, own statistical models were applied to estimate the real number of infected people and the frequency of each emerging variant circulating in the community, which considerable improved the surveillance strategy. Our analysis detected 6 viral load waves in A Coruña with concentrations between 103 and 106 SARS-CoV-2 RNA copies/L. Our system was able to anticipate community outbreaks during the pandemic with 8-36 days in advance with respect to clinical reports and, to detect the emergence of new SARS-CoV-2 variants in A Coruña such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529 and BA.2) in wastewater with 42, 30, and 27 days, respectively, before the health system did. Data generated here helped local authorities and health managers to give a faster and more efficient response to the pandemic situation, and also allowed important industrial companies to adapt their production to each situation. The wastewater-based epidemiology program developed in our metropolitan area of A Coruña (Spain) during the SARS-CoV-2 pandemic served as a powerful early warning system combining statistical models with mutations and viral load monitoring in wastewater over time.
Collapse
Affiliation(s)
- Noelia Trigo-Tasende
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Juan A Vallejo
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Soraya Rumbo-Feal
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Kelly Conde-Pérez
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Manuel Vaamonde
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ángel López-Oriona
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Inés Barbeito
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Mohammed Nasser-Ali
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Rubén Reif
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Bruno K Rodiño-Janeiro
- BFlow, University of Santiago de Compostela (USC) and Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15706, Santiago de Compostela, A Coruña, Spain
| | - Elisa Fernández-Álvarez
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Iago Iglesias-Corrás
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Borja Freire
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Javier Tarrío-Saavedra
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Germán Bou
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Ignacio López-de-Ullibarri
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ricardo Cao
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Susana Ladra
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Margarita Poza
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain.
| |
Collapse
|
4
|
Kumar M. Spectrum of environmental surveillance of SARS-CoV-2 fragments: Questions, quests, and conquest. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 30:100401. [PMID: 36339883 PMCID: PMC9617644 DOI: 10.1016/j.coesh.2022.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This works examines the entire spectrum of 'Environmental Surveillance (EnvSurv)' of SARS-CoV-2 fragments i.e. the questions, quests, and conquests of the technology since early year 2020. The prime focus of the present work to document the journey with achieved objectives and remaining ambitions associated with the technology. Despite the EnvSurv may be regarded as the techniques, which rather achieved more than expected, will it win the struggle for its existence or lose its way once the pandemic and fear associated with it completely fades. Pertaining to this discussions, major researched topics were investigated, followed by enlisting of ten bullets of the past experiences along with corresponding challenges, and finally key targets for the techniques are enlisted. The article targets to be a simple guide of the journey of EnvSur in terms of its effectiveness for treatment, infectivity, monitoring & estimation (TIME) till date.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, Enery Agcres, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
5
|
Rocha AY, Verbyla ME, Sant KE, Mladenov N. Detection, Quantification, and Simplified Wastewater Surveillance Model of SARS-CoV-2 RNA in the Tijuana River. ACS ES&T WATER 2022; 2:2134-2143. [PMID: 36398132 PMCID: PMC9063987 DOI: 10.1021/acsestwater.2c00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The COVID-19 pandemic and the detection of SARS-CoV-2 RNA in sewage has expanded global interest in wastewater surveillance. However, many underserved communities throughout the world lack improved sanitation and use informal combined sanitary and storm sewer systems. Sewage is transported via open channels, ditches, and rivers, where it mixes with surface water and/or stormwater. There is a need to develop better methods for the surveillance of pathogens such as SARS-CoV-2 RNA in this context. We developed a simplified surveillance system and monitored flow rates and concentrations of SARS-CoV-2 RNA in the Tijuana River at two locations downstream of the United States-Mexico border in California, United States. SARS-CoV-2 RNA was detected in the upstream location on six out of eight occasions, two of which were at concentrations as high as those reported in untreated wastewater from California sanitary sewer systems. The virus was not detected in any of the eight samples collected at the downstream (estuarine) sampling location, despite the consistent detection of PMMoV RNA. Synchrony was observed between the number of cases reported in Tijuana and the SARS-CoV-2 RNA concentrations measured with the CDC N1 assay when the latter were normalized by the reported flow rates in the river.
Collapse
Affiliation(s)
- Alma Y. Rocha
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Matthew E. Verbyla
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Karilyn E. Sant
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Natalie Mladenov
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
6
|
Wartell BA, Ballare S, Ghandehari SS, Arcellana PD, Proano C, Kaya D, Niemeier D, Kjellerup BV. Relationship between SARS-CoV-2 in wastewater and clinical data from five wastewater sheds. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100159. [PMID: 36619827 PMCID: PMC9448702 DOI: 10.1016/j.hazadv.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic starting in 2019 with nearly 500 million confirmed cases as of April 2022. Infection with SARS-CoV-2 is accompanied by shedding of virus in stool, and its presence in wastewater samples has been documented globally. Therefore, monitoring of SARS-CoV-2 in wastewater offers a promising approach to assess the pandemic situation covering pre-symptomatic and asymptomatic cases in areas with limited clinical testing. In this study, the presence of SARS-CoV-2 RNA in wastewater from five wastewater resource recovery facilities (WRRFs), located in two adjacent counties, was investigated and compared with the number of clinical COVID-19 cases during a 2020-2021 outbreak in United States. Statistical correlation analyses of SARS-CoV-2 viral abundance in wastewater and COVID-19 daily vs weekly clinical cases was performed. While a weak correlation on a daily basis was observed, this correlation improved when weekly clinical case data were applied. The viral fecal indicator Pepper Mild Mottle Virus (PMMoV) was furthermore used to assess the effects of normalization and the impact of dilution due to infiltration in the wastewater sheds. Normalization did not improve the correlations with clinical data. However, PMMoV provided important information about infiltration and presence of industrial wastewater discharge in the wastewater sheds. This study showed the utility of WBE to assist in public health responses to COVID-19, emphasizing that routine monitoring of large WRRFs could provide sufficient information for large-scale dynamics.
Collapse
Affiliation(s)
- Brian A Wartell
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Sudheer Ballare
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Shahrzad Saffari Ghandehari
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Patricia Dotingco Arcellana
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Camila Proano
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Devrim Kaya
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Oregon State University, Department of Chemical, Biological, and Environmental Engineering, 116 Johnson Hall, Corvallis, OR 97331, United States
| | - Debra Niemeier
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Birthe V Kjellerup
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| |
Collapse
|
7
|
Islam A, Hossen F, Rahman A, Sultana KF, Hasan MN, Haque A, Sosa-Hernández JE, Oyervides-Muñoz MA, Parra-Saldívar R, Ahmed T, Islam T, Dhama K, Sangkham S, Bahadur NM, Reza HM, Jakariya, Al Marzan A, Bhattacharya P, Sonne C, Ahmed F. An opinion on Wastewater-Based Epidemiological Monitoring (WBEM) with Clinical Diagnostic Test (CDT) for detecting high-prevalence areas of community COVID-19 Infections. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 31:100396. [PMID: 36320818 PMCID: PMC9612100 DOI: 10.1016/j.coesh.2022.100396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2024]
Abstract
Wastewater-Based Epidemiological Monitoring (WBEM) is an efficient surveillance tool during the COVID-19 pandemic as it meets all requirements of a complete monitoring system including early warning, tracking the current trend, prevalence of the disease, detection of genetic diversity as well asthe up-surging SARS-CoV-2 new variants with mutations from the wastewater samples. Subsequently, Clinical Diagnostic Test is widely acknowledged as the global gold standard method for disease monitoring, despite several drawbacks such as high diagnosis cost, reporting bias, and the difficulty of tracking asymptomatic patients (silent spreaders of the COVID-19 infection who manifest nosymptoms of the disease). In this current reviewand opinion-based study, we first propose a combined approach) for detecting COVID-19 infection in communities using wastewater and clinical sample testing, which may be feasible and effective as an emerging public health tool for the long-term nationwide surveillance system. The viral concentrations in wastewater samples can be used as indicatorsto monitor ongoing SARS-CoV-2 trends, predict asymptomatic carriers, and detect COVID-19 hotspot areas, while clinical sampleshelp in detecting mostlysymptomaticindividuals for isolating positive cases in communities and validate WBEM protocol for mass vaccination including booster doses for COVID-19.
Collapse
Affiliation(s)
- Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Foysal Hossen
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Arifur Rahman
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Khandokar Fahmida Sultana
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
- Joint Rohingya Response Program, Food for the Hungry, Cox's Bazar, Bangladesh
| | - Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
| | | | | | | | - Tanvir Ahmed
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | | | - Kuldeep Dhama
- Indian Veterinary Research Institute, Izzatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, 56000, Phayao, Thailand
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and TechnologyUniversity, Noakhali-3814, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Firoz Ahmed
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| |
Collapse
|
8
|
Mahlknecht J. Presence and persistence of SARS-CoV-2 in aquatic environments: A mini-review. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100385. [PMID: 35992049 PMCID: PMC9382236 DOI: 10.1016/j.coesh.2022.100385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The introduction of SARS-CoV-2 into water bodies via sewage raises public health concerns. For the assessment of public health risks, it is necessary to know the presence and persistence of infectious SARS-CoV-2 in water and wastewater. The present mini-review documents the occurrence and decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA in different water matrices including wastewater, river water, groundwater, tap water, and seawater. Persistence of viable SARS-CoV-2 is mainly temperature dependent. A rapid inactivation of infectious SARS-CoV-2 is found in river water, sea water, and wastewater compared to tap water. SARS-CoV-2 RNA was found to be considerably more stable than infectious SARS-CoV-2, indicating that the environmental detection of RNA alone does not prove risk of infection. Persistence assays need to consider physicochemical and biological water composition as well as the effect of detergents, enzymes, and filtering particulate matter.
Collapse
Affiliation(s)
- Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64849, Nuevo Leon, Mexico
| |
Collapse
|
9
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022; 14:1075. [PMID: 35632816 PMCID: PMC9147922 DOI: 10.3390/v14051075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Patrick Frank Ottensmeyer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| |
Collapse
|
10
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022. [PMID: 35632816 DOI: 10.1101/2020.05.28.20114041] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|