1
|
Li Y, Wu Y, Guo K, Wu W, Yao M. Effect of chlorination and ultraviolet on the adsorption of pefloxacin on polystyrene and polyvinyl chloride. J Environ Sci (China) 2025; 149:21-34. [PMID: 39181636 DOI: 10.1016/j.jes.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 08/27/2024]
Abstract
During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.
Collapse
Affiliation(s)
- Yanan Li
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China.
| | - Yaning Wu
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China
| | - Kai Guo
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China
| | - Weiqin Wu
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China
| | - Meijing Yao
- School of Environmental Science and Engineering, Taiyuan University of Technology, Shanxi 030600, China
| |
Collapse
|
2
|
Thomas GM, Quirk S, Lieberman RL. Structure and stability of an apo thermophilic esterase that hydrolyzes polyhydroxybutyrate. Acta Crystallogr D Struct Biol 2024; 80:791-799. [PMID: 39441250 PMCID: PMC11544428 DOI: 10.1107/s2059798324009707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Pollution from plastics is a global problem that threatens the biosphere for a host of reasons, including the time scale that it takes for most plastics to degrade. Biodegradation is an ideal solution for remediating bioplastic waste as it does not require the high temperatures necessary for thermal degradation and does not introduce additional pollutants into the environment. Numerous organisms can scavenge for bioplastics, such as polylactic acid (PLA) or poly-(R)-hydroxybutyrate (PHB), which they can use as an energy source. Recently, a promiscuous PHBase from the thermophilic soil bacterium Lihuaxuella thermophila (LtPHBase) was identified. LtPHBase can accommodate many substrates, including PHB granules and films and PHB block copolymers, as well as the unrelated polymers polylactic acid (PLA) and polycaprolactone (PCL). LtPHBase uses the expected Ser-His-Asp catalytic triad for hydrolysis at an optimal enzyme activity near 70°C. Here, the 1.75 Å resolution crystal structure of apo LtPHBase is presented and its chemical stability is profiled. Knowledge of its substrate preferences was extended to different-sized PHB granules. It is shown that LtPHBase is highly resistant to unfolding, with barriers typical for thermophilic enzymes, and shows a preference for low-molecular-mass PHB granules. These insights have implications for the long-term potential of LtPHBase as an industrial PHB hydrolase and shed light on the evolutionary role that this enzyme plays in bacterial metabolism.
Collapse
Affiliation(s)
- Gwendell M. Thomas
- School of Chemistry and BiochemistryGeorgia Institute of Technology901 Atlantic Drive NWAtlantaGA30332USA
| | - Stephen Quirk
- Kimberly-Clark Corporation, 1400 Holcomb Bridge Road, Roswell, GA30076, USA
| | - Raquel L. Lieberman
- School of Chemistry and BiochemistryGeorgia Institute of Technology901 Atlantic Drive NWAtlantaGA30332USA
| |
Collapse
|
3
|
Zhang S, Xing Z, Li Y, Jiang L, Shi W, Zhao Y, Fang L. Plastic film from the source of anaerobic digestion: Surface degradation, biofilm and UV response characteristics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135793. [PMID: 39276739 DOI: 10.1016/j.jhazmat.2024.135793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
This study simulates a major environmental scenario involving "organic fertilizer source" plastics, by exploring the key factors influencing the changes in plastic-films during anaerobic digestion (AD), as well as the responses of the anaerobically digested plastics to ultraviolet (UV) radiation exposure. The results demonstrate that the degradation effect of AD on plastics is reflected by their yellowish and ruptured appearance, slightly worn surfaces, hardening and opacity, and fragmentation. AD significantly increases the content of oxygen-containing functional groups and the degree of unsaturation in plastic films, with thermophilic temperature processes proving more effective than those conducted at mesophilic temperatures. Exposure to UV light has been found to amplify the degradative effects, suggesting the potential cumulative impact of AD and UV. Both AD and UV irradiation reduced the hydrophilicity of plastics. In particular, the hydrophobicity of polylactic acid films was completely disrupted under overlay-exposure. Furthermore, microbial populations on plastic surfaces were mainly bacterial. These bacterial populations were primarily influenced by temperature, and moderately by the plastic types. In contrast, archaea were predominantly affected by both temperature and digested substrate. This study offers a theoretical foundation for strategies aimed at preventing and controlling plastic pollution derived from organic fertilizers.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, PR China.
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Luoyun Fang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
4
|
Ali SS, Elsamahy T, Al-Tohamy R, Sun J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100427. [PMID: 38765892 PMCID: PMC11099331 DOI: 10.1016/j.ese.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Plastic waste discarded into aquatic environments gradually degrades into smaller fragments, known as microplastics (MPs), which range in size from 0.05 to 5 mm. The ubiquity of MPs poses a significant threat to aquatic ecosystems and, by extension, human health, as these particles are ingested by various marine organisms including zooplankton, crustaceans, and fish, eventually entering the human food chain. This contamination threatens the entire ecological balance, encompassing food safety and the health of aquatic systems. Consequently, developing effective MP removal technologies has emerged as a critical area of research. Here, we summarize the mechanisms and recently reported strategies for removing MPs from aquatic ecosystems. Strategies combining physical and chemical pretreatments with microbial degradation have shown promise in decomposing MPs. Microorganisms such as bacteria, fungi, algae, and specific enzymes are being leveraged in MP remediation efforts. Recent advancements have focused on innovative methods such as membrane bioreactors, synthetic biology, organosilane-based techniques, biofilm-mediated remediation, and nanomaterial-enabled strategies, with nano-enabled technologies demonstrating substantial potential to enhance MP removal efficiency. This review aims to stimulate further innovation in effective MP removal methods, promoting environmental and social well-being.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
5
|
Kumar Sachan RS, Devgon I, Mohammad Said Al-Tawaha AR, Karnwal A. Optimizing Polyhydroxyalkanoate production using a novel Bacillus paranthracis isolate: A response surface methodology approach. Heliyon 2024; 10:e35398. [PMID: 39170281 PMCID: PMC11336651 DOI: 10.1016/j.heliyon.2024.e35398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Microorganisms have emerged as promising resources for producing economical and sustainable bioproducts like Polyhydroxyalkanoate (PHA), a biodegradable polymer that can replace synthetic plastics. In this study, we screened a novel isolate, Bacillus paranthracis RSKS-3 strain, to produce PHA from sewage water, identifying it using Whole Genome Sequence. This study represents the first report on optimizing PHA production using B. paranthracis RSKS-3, employing Design Expert 12.0 software. Our findings reveal that four factors (temperature, inoculum size, potassium dihydrogen phosphate, and magnesium sulfate) significantly affect PHA production in the Plackett-Burman design experiment. Through Response Surface Methodology, we optimized PHA production to 0.647 g/L with specific values for potassium dihydrogen phosphate (0.55 %), inoculum size (3 %), magnesium sulfate (0.055 %), and a temperature of 35 °C, in agreement with the predicted value of 0.630 g/L. This optimization resulted in a substantial 13.29-fold increase in PHA production from 0.34 g/L to 4.52 g/L, underscoring the promising role of B. paranthracis RSKS-3 in eco-friendly PHA production and advancing sustainable bioproduct development.
Collapse
Affiliation(s)
- Rohan Samir Kumar Sachan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | | | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
6
|
Cao X, Zhou Y, Huang J, Yu B, Zhao W, Wu W. Self-assembled lignin-based flame retardant hybrids carrying Cu 2+ for poly(lactic acid) composites with improved fire safety and mechanical properties. Int J Biol Macromol 2024; 269:132141. [PMID: 38723809 DOI: 10.1016/j.ijbiomac.2024.132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
To enhance the flame retardancy and mechanical performance of PLA, a polyelectrolyte complex predicated on lignin was obtained by electrostatic mutual adsorption of ammonium polyphosphate (APP), polyethyleneimine (PEI), and copper ions as raw materials. The FT-IR spectra and EDX analysis confirmed the successful synthesis of a lignin-based flame retardant hybrid (APL-Cu2+) containing copper, phosphorus, and nitrogen elements. The combustion test results showed that the peak heat release rate and total heat release of the PLA composite containing 12 wt% APL-Cu2+ were decreased by 15.1 % and 18.2 %, respectively, as compared to those of pure PLA. The char residue morphology observation revealed that the addition of APL-Cu2+ could promote the formation of a highly dense and stable graphitized char layer, while TG-MS detected the emission of refractory gases such as ammonia gas, carbon dioxide, and water during combustion. The strong hydrogen bonding between APL-Cu2+ and the PLA matrix kept the composite maintaining good strength and toughness. The tensile strength and impact strength of PLA/6APL-Cu2+ increased by 4.73 % and 65.71 %, respectively, due to its high crystallinity and good interfacial compatibility. This work provides a feasible method to develop biobased flame retardant hybrids for PLA composites with better fire safety and improved mechanical properties.
Collapse
Affiliation(s)
- Xianwu Cao
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yangsheng Zhou
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jingshu Huang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Wanjing Zhao
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Wu
- Engineering Center for Superlubricity, Jihua Laboratory, Foshan 528200, China.
| |
Collapse
|
7
|
Chen J, Chen X, Zhang B, He L, Li X, Li Y, Zhang Z, Zhou Y, Jin W, He X, Liu H. Natural lignocellulosic biomass structure inspired CNF/Lignin/PBAT composite film with thermoplastic, antibacterial and UV-blocking abilities. Int J Biol Macromol 2024; 271:132498. [PMID: 38763232 DOI: 10.1016/j.ijbiomac.2024.132498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The development of a thermoplastic, biodegradable composite material to replace conventional polymers derived from petroleum was the main area of concentration. Herein, a method for preparing antibacterial, UV-blocking and degradable CNF/Lignin/PBAT composite films (CLP) using cellulose nanofibrils (CNF), lignin, and Poly (butylene adipate-terephthalate) (PBAT) as raw materials by solution casting method was described. With the adding of PBAT, the thermal stability, thermoplastic, mechanical properties were enhanced by improving the compatibility between components. The maximum tensile strength of CLP could reach 189.72 MPa, which increased 25.5 % compared to CNF/Lignin film. The average initial decomposition temperature could reach 321 °C, which was much higher than that of CNF and lignin. At the same time, its good heat-sealing performance made it suitable for practical use. Meanwhile, the composite films had excellent UV resistance and could block over 95 % of UV light. The antibacterial results indicated that the films had a good inhibitory effect on E. coli and S. aureus, with a maximum inhibitory ring diameter of 5.56 and 6.36 mm. In addition, the composite film also had excellent barrier capability to liquid and gas. The prepared film had potential to produce flexible packing, industrial compositing and biomedical fields.
Collapse
Affiliation(s)
- Jiahua Chen
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyi Chen
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Baoquan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China
| | - Li He
- Hubei Province Fiber Inspection Bureau, Wuhan 430000, China
| | - Xinjian Li
- Zhejiang Fubang Automotive Interior Technology Co., Ltd, Haining 314414, China
| | - Yingzhan Li
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 135 Ya Guan Road, Jinnan District, Tianjin 300350, China; Zhejiang Fubang Automotive Interior Technology Co., Ltd, Haining 314414, China.
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Ying Zhou
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wanhui Jin
- Hubei Province Fiber Inspection Bureau, Wuhan 430000, China
| | - Xia He
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongchen Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
8
|
Jing L, Wang Y, Li J, Lin X, Liu L, Chen Y, Liu H, Ying Z. Innovative plasticization technique for talc-powder reinforced wheat-starch biomass composite plastics with enhanced mechanical strength. Int J Biol Macromol 2024; 269:131894. [PMID: 38677674 DOI: 10.1016/j.ijbiomac.2024.131894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
N-methyl-morpholine-N-oxide (NMMO) was initially created as a plasticizer for starch to produce thermoplastic wheat starch. Subsequently, talc powder was used as a reinforcing filler to enhance the mechanical strength of thermoplastic biomass-based composite plastics. The chemical structure, crystal structure, and microscopic morphology were analyzed using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Additionally, the thermal properties were explored through thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. The hydrated NMMO plasticizer demonstrated an outstanding plasticizing effect on starch, resulting in a composite with remarkable mechanical properties. In fact, the pure thermoplastic wheat starch plasticized with hydrated NMMO exhibited the highest mechanical strength recorded so far, with a tensile strength of up to 9.4 MPa. In addition, talcum powder displayed a noticeable reinforcing effect. When the talcum powder content reached 30 wt%, the targeted composite achieved a tensile strength of 20.5 MPa and a Young's modulus of 177.9 MPa. These values were 118 % and 48 % higher, respectively, than those of the pure thermoplastic starch sample. This innovative plasticizing method opens up a new avenue for the development of high-mechanical-strength thermoplastic biomass-based composite plastics with promising potential applications.
Collapse
Affiliation(s)
- Le Jing
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Department of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuxuan Wang
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Department of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Juan Li
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Department of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuemei Lin
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Department of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lei Liu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Department of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Chen
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Department of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huangyan Liu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Department of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Zongrong Ying
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Department of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
González-Pérez MM, Lomelí-Ramírez MG, Robledo-Ortiz JR, Silva-Guzmán JA, Manríquez-González R. Biodegradable Biocomposite of Starch Films Cross-Linked with Polyethylene Glycol Diglycidyl Ether and Reinforced by Microfibrillated Cellulose. Polymers (Basel) 2024; 16:1290. [PMID: 38732758 PMCID: PMC11085437 DOI: 10.3390/polym16091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Biopolymers are biodegradable and renewable and can significantly reduce environmental impacts. For this reason, biocomposites based on a plasticized starch and cross-linker matrix and with a microfibrillated OCC cardboard cellulose reinforcement were developed. Biocomposites were prepared by suspension casting with varied amounts of microfibrillated cellulose: 0, 4, 8, and 12 wt%. Polyethylene glycol diglycidyl ether (PEGDE) was used as a cross-linking, water-soluble, and non-toxic agent. Microfibrillated cellulose (MFC) from OCC cardboard showed appropriate properties and potential for good performance as a reinforcement. In general, microfiber incorporation and matrix cross-linking increased crystallization, reduced water adsorption, and improved the physical and tensile properties of the plasticized starch. Biocomposites cross-linked with PEGDE and reinforced with 12 wt% MFC showed the best properties. The chemical and structural changes induced by the cross-linking of starch chains and MFC reinforcement were confirmed by FTIR, NMR, and XRD. Biodegradation higher than 80% was achieved for most biocomposites in 15 days of laboratory compost.
Collapse
Affiliation(s)
| | - María G. Lomelí-Ramírez
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.M.G.-P.); (J.R.R.-O.); (J.A.S.-G.)
| | | | | | - Ricardo Manríquez-González
- Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico; (M.M.G.-P.); (J.R.R.-O.); (J.A.S.-G.)
| |
Collapse
|
10
|
Rahmati F, Sethi D, Shu W, Asgari Lajayer B, Mosaferi M, Thomson A, Price GW. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. CHEMOSPHERE 2024; 355:141749. [PMID: 38521099 DOI: 10.1016/j.chemosphere.2024.141749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.
Collapse
Affiliation(s)
- Farzad Rahmati
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University (IAU), Qom 37185364, Iran
| | - Debadatta Sethi
- Sugarcane Research Station, Odisha University of Agriculture and Technology, Nayagarh, India
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | | | - Mohammad Mosaferi
- Health and Environment Research Center, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Allan Thomson
- Perennia Food and Agriculture Corporation., 173 Dr. Bernie MacDonald Dr., Bible Hill, Truro, NS, B6L 2H5, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
11
|
Gómez-Bachar L, Vilcovsky M, González-Seligra P, Famá L. Effects of PVA and yerba mate extract on extruded films of carboxymethyl cassava starch/PVA blends for antioxidant and mechanically resistant food packaging. Int J Biol Macromol 2024; 268:131464. [PMID: 38702248 DOI: 10.1016/j.ijbiomac.2024.131464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 05/06/2024]
Abstract
Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.
Collapse
Affiliation(s)
- Luca Gómez-Bachar
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Maia Vilcovsky
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Paula González-Seligra
- Instituto de Ingenierías y Nuevas Tecnologías, Universidad Nacional del Oeste, San Antonio de Padua, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lucía Famá
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Lackner M, Mukherjee A, Koller M. What Are "Bioplastics"? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility. Polymers (Basel) 2023; 15:4695. [PMID: 38139947 PMCID: PMC10747977 DOI: 10.3390/polym15244695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Today, plastic materials are mostly made from fossil resources, and they are characterized by their long lifetime and pronounced persistence in the open environment. These attributes of plastics are one cause of the ubiquitous pollution we see in our environment. When plastics end up in the environment, most of this pollution can be attributed to a lack of infrastructure for appropriately collecting and recycling plastic waste, mainly due to mismanagement. Because of the huge production volumes of plastics, their merits of being cheap to produce and process and their recalcitrance have turned into a huge disadvantage, since plastic waste has become the end point of our linear economic usage model, and massive amounts have started to accumulate in the environment, leading to microplastics pollution and other detrimental effects. A possible solution to this is offered by "bioplastics", which are materials that are either (partly) biobased and/or degradable under defined conditions. With the rise of bioplastics in the marketplace, several standards and test protocols have been developed to assess, certify, and advertise their properties in this respect. This article summarizes and critically discusses different views on bioplastics, mainly related to the properties of biodegradability and biobased carbon content; this shall allow us to find a common ground for clearly addressing and categorizing bioplastic materials, which could become an essential building block in a circular economy. Today, bioplastics account for only 1-2% of all plastics, while technically, they could replace up to 90% of all fossil-based plastics, particularly in short-lived goods and packaging, the single most important area of use for conventional plastics. Their replacement potential not only applies to thermoplastics but also to thermosets and elastomers. Bioplastics can be recycled through different means, and they can be made from renewable sources, with (bio)degradability being an option for the mismanaged fraction and special applications with an intended end of life in nature (such as in seed coatings and bite protection for trees). Bioplastics can be used in composites and differ in their properties, similarly to conventional plastics. Clear definitions for "biobased" and "biodegradable" are needed to allow stakeholders of (bio)plastics to make fact-based decisions regarding material selection, application, and end-of-life options; the same level of clarity is needed for terms like "renewable carbon" and "bio-attributed" carbon, definitions of which are summarized and discussed in this paper.
Collapse
Affiliation(s)
- Maximilian Lackner
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- Go!PHA, 12324 Hampton Way, Wake Forest, NC 27587, USA
- CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Anindya Mukherjee
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- Go!PHA, 12324 Hampton Way, Wake Forest, NC 27587, USA
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria;
| |
Collapse
|