1
|
de Souza WM, Weaver SC. Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbiol 2024; 22:476-491. [PMID: 38486116 DOI: 10.1038/s41579-024-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Vector-borne diseases are transmitted by haematophagous arthropods (for example, mosquitoes, ticks and sandflies) to humans and wild and domestic animals, with the largest burden on global public health disproportionately affecting people in tropical and subtropical areas. Because vectors are ectothermic, climate and weather alterations (for example, temperature, rainfall and humidity) can affect their reproduction, survival, geographic distribution and, consequently, ability to transmit pathogens. However, the effects of climate change on vector-borne diseases can be multifaceted and complex, sometimes with ambiguous consequences. In this Review, we discuss the potential effects of climate change, weather and other anthropogenic factors, including land use, human mobility and behaviour, as possible contributors to the redistribution of vectors and spread of vector-borne diseases worldwide.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Global Virus Network, Baltimore, MD, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Global Virus Network, Baltimore, MD, USA.
| |
Collapse
|
2
|
Pelletier J, Bouchard C, Aenishaenslin C, Beaudry F, Ogden NH, Leighton PA, Rocheleau JP. Pharmacological studies and pharmacokinetic modelling to support the development of interventions targeting ecological reservoirs of Lyme disease. Sci Rep 2024; 14:13537. [PMID: 38866918 PMCID: PMC11169648 DOI: 10.1038/s41598-024-63799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
The development of interventions targeting reservoirs of Borrelia burgdorferi sensu stricto with acaricide to reduce the density of infected ticks faces numerous challenges imposed by ecological and operational limits. In this study, the pharmacokinetics, efficacy and toxicology of fluralaner were investigated in Mus musculus and Peromyscus leucopus mice, the main reservoir of B. burgdorferi in North America. Fluralaner showed rapid distribution and elimination, leading to fast plasma concentration (Cp) depletion in the first hours after administration followed by a slow elimination rate for several weeks, resulting in a long terminal half-life. Efficacy fell below 100% while Cp (± standard deviation) decreased from 196 ± 54 to 119 ± 62 ng/mL. These experimental results were then used in simulations of fluralaner treatment for a duration equivalent to the active period of Ixodes scapularis larvae and nymphs. Simulations showed that doses as low as 10 mg/kg have the potential to protect P. leucopus against infestation for a full I. scapularis active season if administered at least once every 7 days. This study shows that investigating the pharmacology of candidate acaricides in combination with pharmacokinetic simulations can provide important information to support the development of effective interventions targeting ecological reservoirs of Lyme disease. It therefore represents a critical step that may help surpass limits inherent to the development of these interventions.
Collapse
Affiliation(s)
- Jérôme Pelletier
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada.
| | - Catherine Bouchard
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Cécile Aenishaenslin
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Nicholas H Ogden
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Patrick A Leighton
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Centre de recherche en santé publique de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Jean-Philippe Rocheleau
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de santé animale, CÉGEP de Saint-Hyacinthe, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
3
|
Boulanger N, Aran D, Maul A, Camara BI, Barthel C, Zaffino M, Lett MC, Schnitzler A, Bauda P. Multiple factors affecting Ixodes ricinus ticks and associated pathogens in European temperate ecosystems (northeastern France). Sci Rep 2024; 14:9391. [PMID: 38658696 DOI: 10.1038/s41598-024-59867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
In Europe, the main vector of tick-borne zoonoses is Ixodes ricinus, which has three life stages. During their development cycle, ticks take three separate blood meals from a wide variety of vertebrate hosts, during which they can acquire and transmit human pathogens such as Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. In this study conducted in Northeastern France, we studied the importance of soil type, land use, forest stand type, and temporal dynamics on the abundance of ticks and their associated pathogens. Negative binomial regression modeling of the results indicated that limestone-based soils were more favorable to ticks than sandstone-based soils. The highest tick abundance was observed in forests, particularly among coniferous and mixed stands. We identified an effect of habitat time dynamics in forests and in wetlands: recent forests and current wetlands supported more ticks than stable forests and former wetlands, respectively. We observed a close association between tick abundance and the abundance of Cervidae, Leporidae, and birds. The tick-borne pathogens responsible for Lyme borreliosis, anaplasmosis, and hard tick relapsing fever showed specific habitat preferences and associations with specific animal families. Machine learning algorithms identified soil related variables as the best predictors of tick and pathogen abundance.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France.
- Centre National de Référence Borrelia, Centre Hospitalier Régional Universitaire, Strasbourg, France.
| | - Delphine Aran
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Baba Issa Camara
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Université de Lorraine, LCOMS EA 7306, 57073, Metz, France
| | - Cathy Barthel
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France
| | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | | | - Annick Schnitzler
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Museum National d'Histoire Naturelle, UMR 7194 HNHP CNRS/MNHN/UPVD, 75000, Paris, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France.
| |
Collapse
|
4
|
Stokowski M, Allen D. IxPopDyMod: an R package to write, run, and analyze tick population and infection dynamics models. Parasit Vectors 2024; 17:90. [PMID: 38409067 PMCID: PMC10898031 DOI: 10.1186/s13071-024-06171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Given the increasing prevalence of tick-borne diseases, such as Lyme disease, modeling the population and infection dynamics of tick vectors is an important public health tool. These models have applications for testing the effects of control methods or climate change on tick populations. There is an established history of tick population models, but code for them is rarely shared, especially not in a convenient format for others to modify and use. We present an R package, called IxPopDyMod, intended to function as a flexible and consistent framework for reproducible Ixodidae (hard-bodied ticks) population dynamics models. Here we focus on two key parts of the package: a function to create valid model configurations and a function to run a configured model and return the daily population over time. We provide three examples in appendices: one reproducing an existing Ixodes scapularis population model, one providing a novel Dermacentor albipictus model, and one showing Borrelia burgdorferi infection in ticks. Together these examples show the flexibility of the package to model scenarios of interest to tick researches.
Collapse
Affiliation(s)
- Myles Stokowski
- Department of Biology, Middlebury College, Middlebury, 05753, VT, USA
| | - David Allen
- Department of Biology, Middlebury College, Middlebury, 05753, VT, USA.
| |
Collapse
|
5
|
Crandall KE, Millien V, Kerr JT. High-resolution environmental and host-related factors impacting questing Ixodes scapularis at their northern range edge. Ecol Evol 2024; 14:e10855. [PMID: 38384829 PMCID: PMC10879908 DOI: 10.1002/ece3.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
The geographic range of tick populations has expanded in Canada due to climate warming and the associated poleward range shifts of their vertebrate hosts. Abiotic factors, such as temperature, precipitation, and snow, are known to directly affect tick abundance. Yet, biotic factors, such as the abundance and diversity of mammal hosts, may also alter tick abundance and consequent tick-borne disease risk. Here, we incorporated host surveillance data with high-resolution environmental data to evaluate the combined impact of abiotic and biotic factors on questing Ixodes scapularis abundance in Ontario and Quebec, Canada. High-resolution abiotic factors were derived from remote sensing satellites and meteorological towers, while biotic factors related to mammal hosts were derived from active surveillance data that we collected in the field. Generalized additive models were used to determine the relative importance of abiotic and biotic factors on questing I. scapularis abundance. Combinations of abiotic and biotic factors were identified as important drivers of abundances of questing I. scapularis. Positive and negative linear relationships were found for questing I. scapularis abundance with monthly mean precipitation and accumulated snow, but no effect was found for the relative abundance of white-footed mice. Positive relationships were also identified between questing I. scapularis abundance with monthly mean precipitation and mammal species richness. Therefore, future studies that assess I. scapularis should incorporate host surveillance data with high-resolution environmental factors to determine the key drivers impacting the abundance and geographic spread of tick populations and tick-borne pathogens.
Collapse
Affiliation(s)
- Kirsten E. Crandall
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Department of BiologyMcGill UniversityMontréalQuébecCanada
- Redpath MuseumMcGill UniversityMontréalQuébecCanada
| | - Virginie Millien
- Department of BiologyMcGill UniversityMontréalQuébecCanada
- Redpath MuseumMcGill UniversityMontréalQuébecCanada
| | - Jeremy T. Kerr
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
6
|
Fabri ND, Heesterbeek H, Cromsigt JPGM, Ecke F, Sprong H, Nijhuis L, Hofmeester TR, Hartemink N. Exploring the influence of host community composition on the outbreak potential of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. Ticks Tick Borne Dis 2024; 15:102275. [PMID: 37922668 DOI: 10.1016/j.ttbdis.2023.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
In large parts of the northern hemisphere, multiple deer species coexist, and management actions can strongly influence wild deer communities. Such changes may also indirectly influence other species in the community, such as small mammals and birds, because deer can have strong effects on their habitats and resources. Deer, small mammals and birds play an important role in the dynamics of tick-borne zoonotic diseases. It is, however, relatively underexplored how the abundance and composition of vertebrate communities may affect the outbreak potential, maintenance and circulation of tick-borne pathogens. In this study we focus on the outbreak potential by exploring how the basic reproduction number R0 for different tick-borne pathogens depends on host community composition. We used published data on co-varying roe deer (Capreolus capreolus) and fallow deer (Dama dama) densities following a hunting ban, and different small mammal and bird densities, to investigate how the change in host community influences the R0 of four tick-borne pathogens: one non-zoonotic, namely Anaplasma phagocytophilum ecotype 2, and three zoonotic, namely A. phagocytophilum ecotype 1, Borrelia afzelii and Borrelia garinii. We calculated R0 using a next generation matrix approach, and used elasticities to quantify the contributions to R0 of the different groups of host species. The value of R0 for A. phagocytophilum ecotype 1 was higher with high fallow deer density and low roe deer density, while it was the other way round for A. phagocytophilum ecotype 2. For B. afzelii, R0 was mostly related to the density of small mammals and for B. garinii it was mostly determined by bird density. Our results show that the effect of species composition is substantial in the outbreak potential of tick-borne pathogens. This implies that also management actions that change this composition, can (indirectly and unintentionally) affect the outbreak potential of tick-borne diseases.
Collapse
Affiliation(s)
- Nannet D Fabri
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Joris P G M Cromsigt
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Lonneke Nijhuis
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Tim R Hofmeester
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Nienke Hartemink
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
7
|
Brown JE, Tiffin HS, Pagac A, Poh KC, Evans JR, Miller TM, Herrin BH, Tomlinson T, Sutherland C, Machtinger ET. Differential burdens of blacklegged ticks ( Ixodes scapularis) on sympatric rodent hosts. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 49:44-52. [PMID: 38147300 DOI: 10.52707/1081-1710-49.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 12/27/2023]
Abstract
In the United States, there has been a steady increase in diagnosed cases of tick-borne diseases in people, most notably Lyme disease. The pathogen that causes Lyme disease, Borrelia burgdorferi, is transmitted by the blacklegged tick (Ixodes scapularis). Several small mammals are considered key reservoirs of this pathogen and are frequently-used hosts by blacklegged ticks. However, limited studies have evaluated between-species host use by ticks. This study compared I. scapularis burdens and tick-associated pathogen presence in wild-caught Clethrionomys gapperi (southern red-backed voles) and Peromyscus spp. (white-footed mice) in forested areas where the habitat of both species overlapped. Rodent trapping data collected over two summers showed a significant difference in the average tick burden between species. Adult Peromyscus spp. had an overall mean of 4.03 ticks per capture, while adult C. gapperi had a mean of 0.47 ticks per capture. There was a significant association between B. burgdorferi infection and host species with more Peromyscus spp. positive samples than C. gapperi (65.8% and 10.2%, respectively). This work confirms significant differences in tick-host use and pathogen presence between sympatric rodent species. It is critical to understand tick-host interactions and tick distributions to develop effective and efficient tick control methods.
Collapse
Affiliation(s)
- Jessica E Brown
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A.,
| | - Hannah S Tiffin
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Alexandra Pagac
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Karen C Poh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Jesse R Evans
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Taylor M Miller
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Brian H Herrin
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Trey Tomlinson
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Cameron Sutherland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Erika T Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
8
|
Millien V, Leo SST, Turney S, Gonzalez A. It's about time: small mammal communities and Lyme disease emergence. Sci Rep 2023; 13:14513. [PMID: 37667029 PMCID: PMC10477272 DOI: 10.1038/s41598-023-41901-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Theory predicts that biodiversity changes due to climate warming can mediate the rate of disease emergence. The mechanisms linking biodiversity-disease relationships have been described both theoretically and empirically but remain poorly understood. We investigated the relations between host diversity and abundance and Lyme disease risk in southern Quebec, a region where Lyme disease is rapidly emerging. We found that both the abundance of small mammal hosts and the relative abundance of the tick's natural host, the white-footed mouse (Peromyscus leucopus), influenced measures of disease risk in tick vectors (Borrelia burgdorferi infection abundance and prevalence in tick vectors). Our results suggest that the increase in Lyme disease risk is modulated by regional processes involving the abundance and composition of small mammal assemblages. However, the nature and strength of these relationships was dependent both on time and geographic area. The strong effect of P. leucopus abundance on disease risk we report here is of significant concern, as this competent host is predicted to increase in abundance and occurrence in the region, with the northern shift in the range of North American species under climate warming.
Collapse
Affiliation(s)
- V Millien
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada.
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada.
| | - S S T Leo
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - S Turney
- Redpath Museum, McGill University, Montréal, QC, H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| | - A Gonzalez
- Department of Biology, McGill University, Montréal, QC, H3A 1B1, Canada
| |
Collapse
|
9
|
Meena P, Jha V. Environmental Change, Changing Biodiversity, and Infections-Lessons for Kidney Health Community. Kidney Int Rep 2023; 8:1714-1729. [PMID: 37705916 PMCID: PMC10496083 DOI: 10.1016/j.ekir.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
There is a direct and accelerating connection between ongoing environmental change, the unprecedented decline in biodiversity, and the increase in infectious disease epidemiology worldwide. Rising global temperatures are threatening the biodiversity that underpins the richness and diversity of flora and fauna species in our ecosystem. Anthropogenic activities such as burning fossil fuels, deforestation, rapid urbanization, and expanding population are the primary drivers of environmental change resulting in biodiversity collapse. Climate change is influencing the emergence, prevalence, and transmission of infectious diseases both directly and through its impact on biodiversity. The environment is gradually becoming more suitable for infectious diseases by affecting a variety of pathogens, hosts, and vectors and by favoring transmission rates in many parts of the world that were until recently free of these infections. The acute effects of these zoonotic, vector and waterborne diseases are well known; however, evidence is emerging about their role in the development of chronic kidney disease. The pathways linking environmental change and biodiversity loss to infections impacting kidney health are diverse and complex. Climate change and biodiversity loss disproportionately affect the vulnerable and limit their ability to access healthcare. The kidney health community needs to contribute to the issue of environmental change and biodiversity loss through multisectoral action alongside government, policymakers, advocates, businesses, and the general population. We describe various aspects of the environmental change effects on the transmission and emergence of infectious diseases particularly focusing on its potential impact on kidney health. We also discuss the adaptive and mitigation measures and the gaps in research and policy action.
Collapse
Affiliation(s)
- Priti Meena
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
- School of Public Health, Imperial College, London, UK
| |
Collapse
|
10
|
Pascoe EL, Vaughn CE, Jones MI, Barrett RH, Foley JE, Lane RS. Recovery of western black-legged tick and vertebrate populations after a destructive wildfire in an intensively-studied woodland in northern California. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 48:19-36. [PMID: 37255356 DOI: 10.52707/1081-1710-48.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Despite increasing severity and frequency of wildfires, knowledge about how fire impacts the ecology of tick-borne pathogens is limited. In 2018, the River Fire burned a forest in the far-western U.S.A. where the ecology of tick-borne pathogens had been studied for decades. Forest structure, avifauna, large and small mammals, lizards, ticks, and tick-borne pathogens (Anaplasma phagocytophilum, Borrelia burgdorferi, Borrelia miyamotoi) were assessed after the wildfire in 2019 and 2020. Burning reduced canopy cover and eliminated the layer of thick leaf litter that hosted free-living ticks, which over time was replaced by forbs and grasses. Tick abundance and the vertebrate host community changed dramatically. Avian species adapted to cavity nesting became most prevalent, while the number of foliage-foraging species increased by 83% as vegetation regenerated. Nine mammalian species were observed on camera traps, including sentinel (black-tailed jackrabbits) and reservoir hosts (western gray squirrels) of B. burgdorferi. One Peromyscus sp. mouse was captured in 2019 but by 2020, numbers were rebounding (n=37), although tick infestations on rodents remained sparse (0.2/rodent). However, western fence lizards (n=19) hosted 8.6 ticks on average in 2020. Assays for pathogens found no B. miyamotoi in either questing or host-feeding ticks, A. phagocytophilum DNA in 4% (1/23) in 2019, and 17% (29/173) in 2020 for questing and host-feeding ticks combined, and B. burgdorferi DNA in just 1% of all ticks collected in 2020 (2/173). We conclude that a moderately severe wildfire can have dramatic impacts on the ecology of tick-borne pathogens, with changes posited to continue for multiple years.
Collapse
Affiliation(s)
- Emily L Pascoe
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A.,
| | - Charles E Vaughn
- University of California Hopland Research and Extension Center, Hopland, CA 95449, U.S.A
| | - Michael I Jones
- University of California Cooperative Extension-Mendocino County, Ukiah, CA 95482, U.S.A
| | - Reginald H Barrett
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, U.S.A
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
11
|
Ma Y, Kalantari Z, Destouni G. Infectious Disease Sensitivity to Climate and Other Driver-Pressure Changes: Research Effort and Gaps for Lyme Disease and Cryptosporidiosis. GEOHEALTH 2023; 7:e2022GH000760. [PMID: 37303696 PMCID: PMC10251199 DOI: 10.1029/2022gh000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Climate sensitivity of infectious diseases is discussed in many studies. A quantitative basis for distinguishing and predicting the disease impacts of climate and other environmental and anthropogenic driver-pressure changes, however, is often lacking. To assess research effort and identify possible key gaps that can guide further research, we here apply a scoping review approach to two widespread infectious diseases: Lyme disease (LD) as a vector-borne and cryptosporidiosis as a water-borne disease. Based on the emerging publication data, we further structure and quantitatively assess the driver-pressure foci and interlinkages considered in the published research so far. This shows important research gaps for the roles of rarely investigated water-related and socioeconomic factors for LD, and land-related factors for cryptosporidiosis. For both diseases, the interactions of host and parasite communities with climate and other driver-pressure factors are understudied, as are also important world regions relative to the disease geographies; in particular, Asia and Africa emerge as main geographic gaps for LD and cryptosporidiosis research, respectively. The scoping approach developed and gaps identified in this study should be useful for further assessment and guidance of research on infectious disease sensitivity to climate and other environmental and anthropogenic changes around the world.
Collapse
Affiliation(s)
- Y. Ma
- Department of Physical GeographyStockholm UniversityStockholmSweden
| | - Z. Kalantari
- Department of Physical GeographyStockholm UniversityStockholmSweden
- Department of Sustainable DevelopmentEnvironmental Science and Engineering (SEED)KTH Royal Institute of TechnologyStockholmSweden
| | - G. Destouni
- Department of Physical GeographyStockholm UniversityStockholmSweden
| |
Collapse
|
12
|
Sokolow SH, Nova N, Jones IJ, Wood CL, Lafferty KD, Garchitorena A, Hopkins SR, Lund AJ, MacDonald AJ, LeBoa C, Peel AJ, Mordecai EA, Howard ME, Buck JC, Lopez-Carr D, Barry M, Bonds MH, De Leo GA. Ecological and socioeconomic factors associated with the human burden of environmentally mediated pathogens: a global analysis. Lancet Planet Health 2022; 6:e870-e879. [PMID: 36370725 PMCID: PMC9669458 DOI: 10.1016/s2542-5196(22)00248-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/22/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone. METHODS We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries. FINDINGS We found that around 80% (455 of 560) of WHO-tracked pathogen species known to infect humans are environmentally mediated, causing about 40% (129 488 of 359 341 disability-adjusted life years) of contemporary infectious disease burden (global loss of 130 million years of healthy life annually). The majority of this environmentally mediated disease burden occurs in tropical countries, and the poorest countries carry the highest burdens across all latitudes. We found weak associations between disease burden and biodiversity or agricultural land use at the global scale. In contrast, the proportion of people with rural poor livelihoods in a country was a strong proximate indicator of environmentally mediated infectious disease burden. Political stability and wealth were associated with improved sanitation, better health care, and lower proportions of rural poverty, indirectly resulting in lower burdens of environmentally mediated infections. Rarely, environmentally mediated pathogens can evolve into global pandemics (eg, HIV, COVID-19) affecting even the wealthiest communities. INTERPRETATION The high and uneven burden of environmentally mediated infections highlights the need for innovative social and ecological interventions to complement biomedical advances in the pursuit of global health and sustainability goals. FUNDING Bill & Melinda Gates Foundation, National Institutes of Health, National Science Foundation, Alfred P. Sloan Foundation, National Institute for Mathematical and Biological Synthesis, Stanford University, and the US Defense Advanced Research Projects Agency.
Collapse
Affiliation(s)
- Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
| | - Isabel J Jones
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Kevin D Lafferty
- US Geological Survey, Western Ecological Research Center, c/o Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Andres Garchitorena
- MIVEGEC, Université Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Montpellier, France; PIVOT, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Andrea J Lund
- Emmett Interdisciplinary Program in Environment and Resources (E-IPER), Stanford University, Stanford, CA, USA
| | - Andrew J MacDonald
- Department of Biology, Stanford University, Stanford, CA, USA; Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Meghan E Howard
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Julia C Buck
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - David Lopez-Carr
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Michele Barry
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA; Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
| | - Matthew H Bonds
- PIVOT, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA; Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA
| | - Giulio A De Leo
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
13
|
Tran T, Prusinski MA, White JL, Falco RC, Kokas J, Vinci V, Gall WK, Tober KJ, Haight J, Oliver J, Sporn LA, Meehan L, Banker E, Backenson PB, Jensen ST, Brisson D. Predicting spatio-temporal population patterns of Borrelia burgdorferi, the Lyme disease pathogen. J Appl Ecol 2022; 59:2779-2789. [PMID: 36632519 PMCID: PMC9826398 DOI: 10.1111/1365-2664.14274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 07/23/2022] [Indexed: 01/14/2023]
Abstract
The causative bacterium of Lyme disease, Borrelia burgdorferi, expanded from an undetected human pathogen into the etiologic agent of the most common vector-borne disease in the United States over the last several decades. Systematic field collections of the tick vector reveal increases in the geographic range and prevalence of B. burgdorferi-infected ticks that coincided with increases in human Lyme disease incidence across New York State.We investigate the impact of environmental features on the population dynamics of B. burgdorferi. Analytical models developed using field collections of nearly 19,000 nymphal Ixodes scapularis and spatially and temporally explicit environmental features accurately explained the variation in the nymphal infection prevalence of B. burgdorferi across space and time.Importantly, the model identified environmental features reflecting landscape ecology, vertebrate hosts, climatic metrics, climate anomalies and surveillance efforts that can be used to predict the biogeographical patterns of B. burgdorferi-infected ticks into future years and in previously unsampled areas.Forecasting the distribution and prevalence of a pathogen at fine geographic scales offers a powerful strategy to mitigate a serious public health threat. Synthesis and applications. A decade of environmental and tick data was collected to create a model that accurately predicts the infection prevalence of Borrelia burgdorferi over space and time. This predictive model can be extrapolated to create a high-resolution risk map of the Lyme disease pathogen for future years that offers an inexpensive approach to improve both ecological management and public health strategies to mitigate disease risk.
Collapse
Affiliation(s)
- Tam Tran
- Biology DepartmentUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Melissa A. Prusinski
- New York State Department of Health (NYSDOH)Bureau of Communicable Disease ControlAlbanyNYUSA
| | - Jennifer L. White
- New York State Department of Health (NYSDOH)Bureau of Communicable Disease ControlAlbanyNYUSA
| | | | - John Kokas
- NYSDOHFordham University Louis Calder CenterArmonkNYUSA
| | - Vanessa Vinci
- NYSDOHFordham University Louis Calder CenterArmonkNYUSA
| | - Wayne K. Gall
- US Department of AgricultureAnimal & Plant Health Inspection ServiceBuffaloNYUSA
| | - Keith J. Tober
- US Department of AgricultureAnimal & Plant Health Inspection ServiceBuffaloNYUSA
| | - Jamie Haight
- NYSDOHBureau of Communicable Disease ControlFalconerNYUSA
| | | | - Lee Ann Sporn
- Paul Smith's CollegeNatural Sciences DivisionPaul SmithsNYUSA
| | - Lisa Meehan
- NYSDOHDivision of Environmental Health SciencesAlbanyNYUSA
| | - Elyse Banker
- NYSDOHDivision of Infectious DiseaseGuilderlandNYUSA
| | - P. Bryon Backenson
- New York State Department of Health (NYSDOH)Bureau of Communicable Disease ControlAlbanyNYUSA
| | - Shane T. Jensen
- Wharton Business SchoolUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dustin Brisson
- Biology DepartmentUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
14
|
Cunze S, Glock G, Kochmann J, Klimpel S. Ticks on the move-climate change-induced range shifts of three tick species in Europe: current and future habitat suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and Dermacentor marginatus. Parasitol Res 2022; 121:2241-2252. [PMID: 35641833 PMCID: PMC9279273 DOI: 10.1007/s00436-022-07556-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/17/2022] [Indexed: 12/30/2022]
Abstract
Tick-borne diseases are a major health problem worldwide and could become even more important in Europe in the future. Due to changing climatic conditions, ticks are assumed to be able to expand their ranges in Europe towards higher latitudes and altitudes, which could result in an increased occurrence of tick-borne diseases. There is a great interest to identify potential (new) areas of distribution of vector species in order to assess the future infection risk with vector-borne diseases, improve surveillance, to develop more targeted monitoring program, and, if required, control measures. Based on an ecological niche modelling approach we project the climatic suitability for the three tick species Ixodes ricinus, Dermacentor reticulatus and Dermacentor marginatus under current and future climatic conditions in Europe. These common tick species also feed on humans and livestock and are vector competent for a number of pathogens. For niche modelling, we used a comprehensive occurrence data set based on several databases and publications and six bioclimatic variables in a maximum entropy approach. For projections, we used the most recent IPCC data on current and future climatic conditions including four different scenarios of socio-economic developments. Our models clearly support the assumption that the three tick species will benefit from climate change with projected range expansions towards north-eastern Europe and wide areas in central Europe with projected potential co-occurrence. A higher tick biodiversity and locally higher abundances might increase the risk of tick-borne diseases, although other factors such as pathogen prevalence and host abundances are also important.
Collapse
Affiliation(s)
- Sarah Cunze
- Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| | - Gustav Glock
- Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Judith Kochmann
- Senckenberg Gesellschaft Für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.,Senckenberg Gesellschaft Für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt/Main, Germany
| |
Collapse
|
15
|
Combs MA, Kache PA, VanAcker MC, Gregory N, Plimpton LD, Tufts DM, Fernandez MP, Diuk-Wasser MA. Socio-ecological drivers of multiple zoonotic hazards in highly urbanized cities. GLOBAL CHANGE BIOLOGY 2022; 28:1705-1724. [PMID: 34889003 DOI: 10.1111/gcb.16033] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements. Effectively identifying and managing zoonotic hazards requires understanding the socio-ecological processes driving hazard distribution and pathogen prevalence in dynamic and heterogeneous urban landscapes. Despite increasing awareness of the human health impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into public health management plans remains limited. Here we discuss how landscape patterns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly urbanized cities (HUCs) in temperate climates to promote their efficient and effective management by a multi-sectoral coalition of public health stakeholders. We describe how to interpret both direct and indirect ecological processes, incorporate spatial scale, and evaluate networks of connectivity specific to different zoonotic hazards to promote biologically-informed and targeted decision-making. Using New York City, USA as a case study, we identify major zoonotic threats, apply knowledge of relevant ecological factors, and highlight opportunities and challenges for research and intervention. We aim to broaden the toolbox of urban public health stakeholders by providing ecologically-informed, practical guidance for the evaluation and management of zoonotic hazards.
Collapse
Affiliation(s)
- Matthew A Combs
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Pallavi A Kache
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Meredith C VanAcker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Nichar Gregory
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Laura D Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Danielle M Tufts
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Infectious Diseases and Microbiology Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria P Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
16
|
Limited capacity of deer to serve as zooprophylactic hosts for Borrelia burgdorferi in northeastern United States. Appl Environ Microbiol 2022; 88:e0004222. [PMID: 35108091 DOI: 10.1128/aem.00042-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because deer are considered to be incompetent reservoirs of the agent of Lyme disease (Borrelia burgdorferi sensu stricto) in the northeastern U.S., they may serve as zooprophylactic or "dilution" hosts if larvae of the deer tick vector (Ixodes dammini, "northern" clade of Ixodes scapularis) frequently feed on them. To determine whether host-seeking nymphal deer ticks commonly feed on deer as larvae, we used a real time PCR host bloodmeal remnant identification assay to identify the host on which these ticks had fed. Nymphal Lone star ticks (Amblyomma americanum) were collected simultaneously in our sites and provided an index of the availability of deer in these sites. At 3 of the 4 sites, Ixodes nymphs had fed as larvae on a variety of hosts, including mice, birds and shrews, but rarely on deer (<6% for all sites); in contrast, Lone star tick nymphs had commonly fed on deer (31-78%). Deer were common larval hosts for Ixodes ticks (39% of bloodmeals) in only one site. The prevalence of B. burgdorferi in host seeking nymphal deer ticks was associated with mouse-fed ticks (p=0.007) but there was no association with deer-fed ticks (p=0.5). The diversity and prevalence of hosts that were identified differed between deer ticks and Lone star ticks that were collected simultaneously, demonstrating that there is no confounding of host bloodmeal identification by contaminating environmental DNA (eDNA). We conclude that deer were not common hosts for larval deer ticks, thus limiting their zooprophylactic role in our sites. Importance: Because deer are incompetent reservoirs for B. burgdorferi, their presence may modulate the force of enzootic transmission by serving as zoophrophylatic or "dilution" hosts. Such an effect would depend on the extent to which subadult deer ticks feed on other hosts. We used bloodmeal analysis on nymphal deer ticks to identify the host upon which larvae had fed. We found that Lone star ticks collected at the same time as deer ticks commonly fed on deer, but deer ticks did not. We conclude that deer are not a preferred host for larval deer ticks and thus are not necessarily zooprophylactic.
Collapse
|
17
|
Kocher A, Cornuault J, Gantier JC, Manzi S, Chavy A, Girod R, Dusfour I, Forget PM, Ginouves M, Prévot G, Guégan JF, Bañuls AL, de Thoisy B, Murienne J. Biodiversity and vector-borne diseases: host dilution and vector amplification occur simultaneously for Amazonian leishmaniases. Mol Ecol 2022; 32:1817-1831. [PMID: 35000240 DOI: 10.1111/mec.16341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Changes in biodiversity may impact infectious disease transmission through multiple mechanisms. We explored the impact of biodiversity changes on the transmission of Amazonian leishmaniases, a group of wild zoonoses transmitted by phlebotomine sand flies (Psychodidae), which represent an important health burden in a region where biodiversity is both rich and threatened. Using molecular analyses of sand fly pools and blood-fed dipterans, we characterized the disease system in forest sites in French Guiana undergoing different levels of human-induced disturbance. We show that the prevalence of Leishmania parasites in sand flies correlates positively with the relative abundance of mammal species known as Leishmania reservoirs. In addition, Leishmania reservoirs tend to dominate in less diverse mammal communities, in accordance with the dilution effect hypothesis. This results in a negative relationship between Leishmania prevalence and mammal diversity. On the other hand, higher mammal diversity is associated with higher sand fly density, possibly because more diverse mammal communities harbor higher biomass and more abundant feeding resources for sand flies, although more research is needed to identify the factors that shape sand fly communities. As a consequence of these antagonistic effects, decreased mammal diversity comes with an increase of parasite prevalence in sand flies, but has no detectable impact on the density of infected sand flies. These results represent additional evidence that biodiversity changes may simultaneously dilute and amplify vector-borne disease transmission through different mechanisms that need to be better understood before drawing generalities on the biodiversity-disease relationship.
Collapse
Affiliation(s)
- Arthur Kocher
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,Institut Pasteur de la Guyane, Cayenne, France.,Transmission, Infection, Diversification & Evolution Group, Max-Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Josselin Cornuault
- Real Jardín Botánico CSIC, Plaza Murillo 2, 28014, Madrid, Spain.,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jean-Charles Gantier
- Laboratoire des Identifications Fongiques et Entomo-parasitologiques, Mennecy, France
| | - Sophie Manzi
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France
| | - Agathe Chavy
- Institut Pasteur de la Guyane, Cayenne, France.,TBIP, Université de Guyane, 97300, Cayenne, France
| | | | | | - Pierre-Michel Forget
- Muséum National d'Histoire Naturelle, UMR-7179 MECADEV (Mécanismes Adaptatifs et Evolution), MNHN-CNRS, Brunoy, France
| | - Marine Ginouves
- TBIP, Université de Guyane, 97300, Cayenne, France.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, 97300, Cayenne, France.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Jean-François Guégan
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,INRAE, Cirad, Université de Montpellier, UMR ASTRE, Montpellier, France
| | | | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, France.,Association Kwata, Cayenne, French Guiana
| | - Jérôme Murienne
- Laboratoire Évolution et Diversité Biologique (UMR5174 EDB) - CNRS, IRD, Université Toulouse III Paul Sabatier - Toulouse, France
| |
Collapse
|
18
|
Host contributions to the force of Borrelia burgdorferi and Babesia microti transmission differ at edges of and within a small habitat patch. Appl Environ Microbiol 2022; 88:e0239121. [PMID: 34985986 DOI: 10.1128/aem.02391-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the northeastern United States, the emergence of Lyme disease has been associated, in part, with the increase of small forest patches. Such disturbed habitat is exploited by generalist species, such as white-footed mice, which are considered the host with the greatest reservoir capacity for the agents of Lyme disease (Borrelia burgdorferi sensu stricto) and human babesiosis (Babesia microti). Spatial risk analyses have identified edge habitat as particularly risky. Using a retrotransposon-based quantitative PCR assay for host bloodmeal remnant identification, we directly measured whether the hosts upon which vector ticks fed differed at the edge or within the contiguous small habitat patch. Questing nymphal deer ticks, Ixodes dammini, the northern clade of Ixodes scapularis, were collected from either the edge or within a thicket on Nantucket Island over 3 transmission seasons and tested for evidence of infection as well as bloodmeal hosts. Tick bloodmeal hosts significantly differed by site as well as by year. Mice and deer were identified most often (49.9%), but shrews, rabbits and birds were also common. Ticks from the edge fed on a greater diversity of hosts than those from the thicket. Surprisingly, mice were not strongly associated with either infection at either sampling site (OR<2 for all). Although shrews were not the most common host utilized by ticks, they were highly associated with both infections at both sites (OR= 4.5 and 7.9 B. burgdorferi and 7.9 and 19.0 B. microti, edge and thicket). We conclude that reservoir hosts may differ in their contributions to infecting ticks between edge and contiguous vegetated patches. Importance Habitat fragmentation is thought to be a main factor in the emergence of Lyme disease and other of the deer tick-transmitted infections. The patchwork of forest and edges promotes altered biodiversity, favoring the abundance of generalist rodents such as white footed mice, heretofore considered a key tick and reservoir host in the northeastern U.S. We used tick bloodmeal analyses to directly identify the hosts from which nymphal deer ticks became infected. We demonstrate that there is considerable microfocality in host contributions to the cohort of infected ticks and that shrews, although they fed fewer ticks than mice, disproportionately influenced the force of pathogen transmission in our site. The venue of transmission of certain deer tick-transmitted agents may comprise a habitat scale of 10 meters or fewer and depend on alternative small mammal hosts such as shrews.
Collapse
|
19
|
Bregnard C, Rais O, Herrmann C, Kahl O, Brugger K, Voordouw MJ. Beech tree masting explains the inter-annual variation in the fall and spring peaks of Ixodes ricinus ticks with different time lags. Parasit Vectors 2021; 14:570. [PMID: 34749794 PMCID: PMC8577035 DOI: 10.1186/s13071-021-05076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tick Ixodes ricinus is an important vector of tick-borne diseases including Lyme borreliosis. In continental Europe, the nymphal stage of I. ricinus often has a bimodal phenology with a large spring peak and a smaller fall peak. There is consensus about the origin of the spring nymphal peak, but there are two alternative hypotheses for the fall nymphal peak. In the direct development hypothesis, larvae quest as nymphs in the fall of the same year that they obtained their larval blood meal. In the developmental diapause hypothesis, larvae overwinter in the engorged state and quest as nymphs one year after they obtained their larval blood meal. These two hypotheses make different predictions about the time lags that separate the larval blood meal and the density of questing nymphs (DON) in the spring and fall. METHODS Inter-annual variation in seed production (masting) by deciduous trees is a time-lagged index for the density of vertebrate hosts (e.g., rodents) which provide blood meals for larval ticks. We used a long-term data set on the masting of the European beech tree and a 15-year study on the DON at 4 different elevation sites in western Switzerland to differentiate between the two alternative hypotheses for the origin of the fall nymphal peak. RESULTS Questing I. ricinus nymphs had a bimodal phenology at the three lower elevation sites, but a unimodal phenology at the top elevation site. At the lower elevation sites, the DON in the fall was strongly correlated with the DON in the spring of the following year. The inter-annual variation in the densities of I. ricinus nymphs in the fall and spring was best explained by a 1-year versus a 2-year time lag with the beech tree masting index. Fall nymphs had higher fat content than spring nymphs indicating that they were younger. All these observations are consistent with the direct development hypothesis for the fall peak of I. ricinus nymphs at our study site. Our study provides new insight into the complex bimodal phenology of this important disease vector. CONCLUSIONS Public health officials in Europe should be aware that following a strong mast year, the DON will increase 1 year later in the fall and 2 years later in the spring. Studies of I. ricinus populations with a bimodal phenology should consider that the spring and fall peak in the same calendar year represent different generations of ticks.
Collapse
Affiliation(s)
- Cindy Bregnard
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Coralie Herrmann
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olaf Kahl
- tick-radar GmbH, 10555 Berlin, Germany
| | - Katharina Brugger
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
20
|
Tardy O, Bouchard C, Chamberland E, Fortin A, Lamirande P, Ogden NH, Leighton PA. Mechanistic movement models reveal ecological drivers of tick-borne pathogen spread. J R Soc Interface 2021; 18:20210134. [PMID: 34376091 PMCID: PMC8355688 DOI: 10.1098/rsif.2021.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Identifying ecological drivers of tick-borne pathogen spread has great value for tick-borne disease management. However, theoretical investigations into the consequences of host movement behaviour on pathogen spread dynamics in heterogeneous landscapes remain limited because spatially explicit epidemiological models that incorporate more realistic mechanisms governing host movement are rare. We built a mechanistic movement model to investigate how the interplay between multiple ecological drivers affects the risk of tick-borne pathogen spread across heterogeneous landscapes. We used the model to generate simulations of tick dispersal by migratory birds and terrestrial hosts across theoretical landscapes varying in resource aggregation, and we performed a sensitivity analysis to explore the impacts of different parameters on the infected tick spread rate, tick infection prevalence and infected tick density. Our findings highlight the importance of host movement and tick population dynamics in explaining the infected tick spread rate into new regions. Tick infection prevalence and infected tick density were driven by predictors related to the infection process and tick population dynamics, respectively. Our results suggest that control strategies aiming to reduce tick burden on tick reproduction hosts and encounter rate between immature ticks and pathogen amplification hosts will be most effective at reducing tick-borne disease risk.
Collapse
Affiliation(s)
- Olivia Tardy
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
- Centre for Public Health Research (CReSP), Université de Montréal and the CIUSSS du Centre-Sud-de-l’Île-de-Montréal, 7101 avenue du Parc, Montréal, Québec, Canada H3N 1X9
| | - Catherine Bouchard
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
| | - Eric Chamberland
- Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF), Department of Mathematics and Statistics, Faculty of Science and Engineering, Université Laval, 1045 avenue de la Médecine, Québec, Québec, Canada G1V 0A6
| | - André Fortin
- Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF), Department of Mathematics and Statistics, Faculty of Science and Engineering, Université Laval, 1045 avenue de la Médecine, Québec, Québec, Canada G1V 0A6
| | - Patricia Lamirande
- Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF), Department of Mathematics and Statistics, Faculty of Science and Engineering, Université Laval, 1045 avenue de la Médecine, Québec, Québec, Canada G1V 0A6
| | - Nicholas H. Ogden
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 rue Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
- Centre for Public Health Research (CReSP), Université de Montréal and the CIUSSS du Centre-Sud-de-l’Île-de-Montréal, 7101 avenue du Parc, Montréal, Québec, Canada H3N 1X9
| | - Patrick A. Leighton
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec, Canada J2S 2M2
- Centre for Public Health Research (CReSP), Université de Montréal and the CIUSSS du Centre-Sud-de-l’Île-de-Montréal, 7101 avenue du Parc, Montréal, Québec, Canada H3N 1X9
| |
Collapse
|
21
|
Ogden NH, Beard CB, Ginsberg HS, Tsao JI. Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1536-1545. [PMID: 33112403 PMCID: PMC9620468 DOI: 10.1093/jme/tjaa220] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 05/09/2023]
Abstract
The global climate has been changing over the last century due to greenhouse gas emissions and will continue to change over this century, accelerating without effective global efforts to reduce emissions. Ticks and tick-borne diseases (TTBDs) are inherently climate-sensitive due to the sensitivity of tick lifecycles to climate. Key direct climate and weather sensitivities include survival of individual ticks, and the duration of development and host-seeking activity of ticks. These sensitivities mean that in some regions a warming climate may increase tick survival, shorten life-cycles and lengthen the duration of tick activity seasons. Indirect effects of climate change on host communities may, with changes in tick abundance, facilitate enhanced transmission of tick-borne pathogens. High temperatures, and extreme weather events (heat, cold, and flooding) are anticipated with climate change, and these may reduce tick survival and pathogen transmission in some locations. Studies of the possible effects of climate change on TTBDs to date generally project poleward range expansion of geographical ranges (with possible contraction of ranges away from the increasingly hot tropics), upslope elevational range spread in mountainous regions, and increased abundance of ticks in many current endemic regions. However, relatively few studies, using long-term (multi-decade) observations, provide evidence of recent range changes of tick populations that could be attributed to recent climate change. Further integrated 'One Health' observational and modeling studies are needed to detect changes in TTBD occurrence, attribute them to climate change, and to develop predictive models of public- and animal-health needs to plan for TTBD emergence.
Collapse
Affiliation(s)
- Nicholas H. Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC, Canada J2S 2M2
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada J2S 2M2
- Corresponding author,
| | - C. Ben Beard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Howard S. Ginsberg
- U.S. Geological Survey, Patuxent Wildlife Research Center, Rhode Island Field Station, University of Rhode Island, Kingston, RI 02881
| | - Jean I. Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
22
|
Diuk-Wasser MA, VanAcker MC, Fernandez MP. Impact of Land Use Changes and Habitat Fragmentation on the Eco-epidemiology of Tick-Borne Diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1546-1564. [PMID: 33095859 DOI: 10.1093/jme/tjaa209] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people's behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States. We use this as a model system, addressing other tick-borne disease systems as needed to illustrate patterns or processes. We first examine how land use interacts with abiotic conditions (microclimate) and biotic factors (e.g., host community composition) to influence the enzootic hazard, measured as the density of host-seeking I. scapularis nymphs infected with B. burgdorferi s.s. We then review the evidence of how specific landscape configuration, in particular forest fragmentation, influences the enzootic hazard and disease risk across spatial scales and urbanization levels. We emphasize the need for a dynamic understanding of landscapes based on tick and pathogen host movement and habitat use in relation to human resource provisioning. We propose a coupled natural-human systems framework for tick-borne diseases that accounts for the multiple interactions, nonlinearities and feedbacks in the system and conclude with a call for standardization of methodology and terminology to help integrate studies conducted at multiple scales.
Collapse
Affiliation(s)
- Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| | - Meredith C VanAcker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| | - Maria P Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| |
Collapse
|
23
|
Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. The Contribution of Wildlife Hosts to the Rise of Ticks and Tick-Borne Diseases in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1565-1587. [PMID: 33885784 DOI: 10.1093/jme/tjab047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/09/2023]
Abstract
Wildlife vertebrate hosts are integral to enzootic cycles of tick-borne pathogens, and in some cases have played key roles in the recent rise of ticks and tick-borne diseases in North America. In this forum article, we highlight roles that wildlife hosts play in the maintenance and transmission of zoonotic, companion animal, livestock, and wildlife tick-borne pathogens. We begin by illustrating how wildlife contribute directly and indirectly to the increase and geographic expansion of ticks and their associated pathogens. Wildlife provide blood meals for tick growth and reproduction; serve as pathogen reservoirs; and can disperse ticks and pathogens-either through natural movement (e.g., avian migration) or through human-facilitated movement (e.g., wildlife translocations and trade). We then discuss opportunities to manage tick-borne disease through actions directed at wildlife hosts. To conclude, we highlight key gaps in our understanding of the ecology of tick-host interactions, emphasizing that wildlife host communities are themselves a very dynamic component of tick-pathogen-host systems and therefore complicate management of tick-borne diseases, and should be taken into account when considering host-targeted approaches. Effective management of wildlife to reduce tick-borne disease risk further requires consideration of the 'human dimensions' of wildlife management. This includes understanding the public's diverse views and values about wildlife and wildlife impacts-including the perceived role of wildlife in fostering tick-borne diseases. Public health agencies should capitalize on the expertise of wildlife agencies when developing strategies to reduce tick-borne disease risks.
Collapse
Affiliation(s)
- Jean I Tsao
- Department of Fisheries and Wildlife, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, and Schubot Center for Avian Health, Department of Veterinary Pathology, Texas A&M University, College Station, TX, USA
| | - Seungeun Han
- Department of Disease Control and Epidemiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Jennifer L Sidge
- Michigan Department of Agriculture and Rural Development, Lansing, MI, USA
| | - Graham J Hickling
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
24
|
Takhampunya R, Thaloengsok S, Tippayachai B, Promsathaporn S, Leepitakrat S, Gross K, Davidson SA. Retrospective Survey of Borrelia spp. From Rodents and Ticks in Thailand. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1331-1344. [PMID: 33367702 DOI: 10.1093/jme/tjaa279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/12/2023]
Abstract
Borrelia is a genus of spirochetal bacteria with several species known to cause disease in humans. The distribution of Borrelia has rarely been studied in Thailand. In this study, a retrospective survey of Borrelia was conducted in ticks and wild rodents to better characterize the prevalence, diversity, and distribution of Borrelia across Thailand. Several pools of DNA from tick samples were positive for Borrelia spp. (36/258, 13.9%). Borrelia theileri/B. lonestari was found in 17 tick samples (16 pools of Haemaphysalis bandicota and 1 pool of Rhipicephalus sp.), and Borrelia yangtzensis was found in 8 tick samples (2 pools of H. bandicota and 6 pools of Ixodes granulatus). Borrelia spp. were detected at low prevalence levels in rodent tissue samples (24/2001, 1.2%), with 19 identified as B. theileri or B. lonestari and 5 identified as B. miyamotoi. Several geographic and species-specific infection trends were apparent, with Ixodes ticks infected with B. yangtzensis and Haemaphysalis and Rhipicephalus ticks infected with both B. yangtzensis and B. theileri/B. lonestari. Notably, B. yangtzensis showed a similar geographic distribution to B. miyamotoi, which was identified in new areas of Thailand in this study. The flagellin gene sequence from B. miyamotoi was more similar to European (99.3-99.9%) than Japanese (96.9-97.6%) genotypes. This study greatly expands the knowledge of Borrelia in Thailand and identified several Borrelia species for the first time. It also found several ticks and rodents infected with the pathogen that were not previously known to carry Borrelia.
Collapse
Affiliation(s)
- Ratree Takhampunya
- Department of Entomology, United States Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, APO AP, Bangkok, Thailand
| | - Sasikanya Thaloengsok
- Department of Entomology, United States Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, APO AP, Bangkok, Thailand
| | - Bousaraporn Tippayachai
- Department of Entomology, United States Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, APO AP, Bangkok, Thailand
| | - Sommai Promsathaporn
- Department of Entomology, United States Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, APO AP, Bangkok, Thailand
| | - Surachai Leepitakrat
- Department of Entomology, United States Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, APO AP, Bangkok, Thailand
| | - Katelynn Gross
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY
| | - Silas A Davidson
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY
| |
Collapse
|
25
|
Ratti V, Winter JM, Wallace DI. Dilution and amplification effects in Lyme disease: Modeling the effects of reservoir-incompetent hosts on Borrelia burgdorferi sensu stricto transmission. Ticks Tick Borne Dis 2021; 12:101724. [PMID: 33878571 DOI: 10.1016/j.ttbdis.2021.101724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022]
Abstract
The literature on Lyme disease includes a lively debate about the paradoxical role of changing deer populations. A decrease in the number of deer will both (1) reduce the incidence of Lyme disease by decreasing the host populations for ticks and therefore tick populations, and (2) enhance the incidence of Lyme disease by offering fewer reservoir-incompetent hosts for ticks, forcing the vector to choose reservoir-competent, and therefore possibly diseased, hosts to feed on. A review of field studies exploring the net impact of changing deer populations shows mixed results. In this manuscript, we investigate the hypothesis that the balance of these two responses to changing deer populations depends on the relative population sizes of reservoir-competent vs. reservoir-incompetent hosts and the presence of host preference in larval and adult stages. A temperature driven seasonal model of Borrelia burgdorferi sensu stricto (cause of Lyme disease) transmission among three host types (reservoir-competent infected and uninfected hosts, and reservoir-incompetent hosts) is constructed as a system of nonlinear ordinary differential equations. The model, which produces biologically reasonable results for both the tick vector Ixodes scapularis Say 1921 and the hosts, is used to investigate the effects of reservoir-incompetent host removal on both tick populations and disease prevalence for various relative population sizes of reservoir-competent hosts vs. reservoir-incompetent hosts. In summary, the simulation results show that the model with host preference appears to be more accurate than the one with no host preference. Given these results, we found that removal of adult I. scapularis(Say) hosts is likely to reduce questing nymph populations. At very low levels questing adult abundance may rise with lack of adult hosts. There is a dilution effect at low reservoir-competent host populations and there is an amplification effect at high reservoir-competent host populations.
Collapse
Affiliation(s)
- Vardayani Ratti
- Department of Mathematics and Statistics, California State University Chico, CA, United States.
| | - Jonathan M Winter
- Department of Geography, Dartmouth College, Hanover, NH, United States
| | - Dorothy I Wallace
- Department of Mathematics, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
26
|
Bregnard C, Rais O, Voordouw MJ. Masting by beech trees predicts the risk of Lyme disease. Parasit Vectors 2021; 14:168. [PMID: 33743800 PMCID: PMC7980658 DOI: 10.1186/s13071-021-04646-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The incidence of Lyme borreliosis and other tick-borne diseases is increasing in Europe and North America. There is currently much interest in identifying the ecological factors that determine the density of infected ticks as this variable determines the risk of Lyme borreliosis to vertebrate hosts, including humans. Lyme borreliosis is caused by the bacterium Borrelia burgdorferi sensu lato (s.l.) and in western Europe, the hard tick Ixodes ricinus is the most important vector. METHODS Over a 15-year period (2004-2018), we monitored the monthly abundance of I. ricinus ticks (nymphs and adults) and their B. burgdorferi s.l. infection status at four different elevations on a mountain in western Switzerland. We collected climate variables in the field and from nearby weather stations. We obtained data on beech tree seed production (masting) from the literature, as the abundance of Ixodes nymphs can increase dramatically 2 years after a masting event. We used generalized linear mixed effects models and AIC-based model selection to identify the ecological factors that influence inter-annual variation in the nymphal infection prevalence (NIP) and the density of infected nymphs (DIN). RESULTS We found that the NIP decreased by 78% over the study period. Inter-annual variation in the NIP was explained by the mean precipitation in the present year, and the duration that the DNA extraction was stored in the freezer prior to pathogen detection. The DIN decreased over the study period at all four elevation sites, and the decrease was significant at the top elevation. Inter-annual variation in the DIN was best explained by elevation site, year, beech tree masting index 2 years prior and the mean relative humidity in the present year. This is the first study in Europe to demonstrate that seed production by deciduous trees influences the density of nymphs infected with B. burgdorferi s.l. and hence the risk of Lyme borreliosis. CONCLUSIONS Public health officials in Europe should be aware that masting by deciduous trees is an important predictor of the risk of Lyme borreliosis.
Collapse
Affiliation(s)
- Cindy Bregnard
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten Jeroen Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
27
|
Burrows H, Talbot B, McKay R, Slatculescu A, Logan J, Thickstun C, Lindsay LR, Dibernardo A, Koffi JK, Ogden NH, Kulkarni MA. A multi-year assessment of blacklegged tick (Ixodes scapularis) population establishment and Lyme disease risk areas in Ottawa, Canada, 2017-2019. PLoS One 2021; 16:e0246484. [PMID: 33539458 PMCID: PMC7861446 DOI: 10.1371/journal.pone.0246484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022] Open
Abstract
Canadians face an emerging threat of Lyme disease due to the northward expansion of the tick vector, Ixodes scapularis. We evaluated the degree of I. scapularis population establishment and Borrelia burgdorferi occurrence in the city of Ottawa, Ontario, Canada from 2017–2019 using active surveillance at 28 sites. We used a field indicator tool developed by Clow et al. to determine the risk of I. scapularis establishment for each tick cohort at each site using the results of drag sampling. Based on results obtained with the field indicator tool, we assigned each site an ecological classification describing the pattern of tick colonization over two successive cohorts (cohort 1 was comprised of ticks collected in fall 2017 and spring 2018, and cohort 2 was collected in fall 2018 and spring 2019). Total annual site-specific I. scapularis density ranged from 0 to 16.3 ticks per person-hour. Sites with the highest density were located within the Greenbelt zone, in the suburban/rural areas in the western portion of the city of Ottawa, and along the Ottawa River; the lowest densities occurred at sites in the suburban/urban core. B. burgdorferi infection rates exhibited a similar spatial distribution pattern. Of the 23 sites for which data for two tick cohorts were available, 11 sites were classified as “high-stable”, 4 were classified as “emerging”, 2 were classified as “low-stable”, and 6 were classified as “non-zero”. B. burgdorferi-infected ticks were found at all high-stable sites, and at one emerging site. These findings suggest that high-stable sites pose a risk of Lyme disease exposure to the community as they have reproducing tick populations with consistent levels of B. burgdorferi infection. Continued surveillance for I. scapularis, B. burgdorferi, and range expansion of other tick species and emerging tick-borne pathogens is important to identify areas posing a high risk for human exposure to tick-borne pathogens in the face of ongoing climate change and urban expansion.
Collapse
Affiliation(s)
- Holly Burrows
- Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Roman McKay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Andreea Slatculescu
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - James Logan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Charles Thickstun
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - L. Robbin Lindsay
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Antonia Dibernardo
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jules K. Koffi
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - Nicholas H. Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - Manisha A. Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
28
|
Gray J, Kahl O, Zintl A. What do we still need to know about Ixodes ricinus? Ticks Tick Borne Dis 2021; 12:101682. [PMID: 33571753 DOI: 10.1016/j.ttbdis.2021.101682] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
In spite of many decades of intensive research on Ixodes ricinus, the castor bean tick of Europe, several important aspects of its basic biology remain elusive, such as the factors determining seasonal development, tick abundance and host specificity, and the importance of water management. Additionally, there are more recent questions about the geographical diversity of tick genotypes and phenotypes, the role of migratory birds in the ecoepidemiology of I. ricinus, the importance of protective immune responses against I. ricinus, particularly in the context of vaccination, and the role of the microbiome in pathogen transmission. Without more detailed knowledge of these issues, it is difficult to assess the likely effects of changes in climate and biodiversity on tick distribution and activity, to predict potential risks arising from new and established tick populations and I. ricinus-borne pathogens, and to improve prevention and control measures. This review aims to discuss the most important outstanding questions against the backdrop of the current state of knowledge of this important tick species.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
29
|
Herrera DJ, Moore SM, Flockhart DTT, McShea WJ, Cove MV. Thinking outside the park: recommendations for camera trapping mammal communities in the urban matrix. JOURNAL OF URBAN ECOLOGY 2021. [DOI: 10.1093/jue/juaa036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Urbanization is increasing globally, fragmenting habitats and prompting human–wildlife conflict. Urban wildlife research is concurrently expanding, but sampling methods are often biased towards large and intact habitats in public green spaces, neglecting the far more abundant, but degraded, habitats in the urban matrix. Here, we introduce the Five P’s of Urban Ecology—Partnerships, Planning, Placements, Public participation and Processing—as a path to overcoming the logistical barriers often associated with camera-trapping in the urban matrix. Though the Five P’s can be applied to a variety of urban sampling methods, we showcase the camera-trapping efforts of the DC Cat Count project in Washington, DC, as a case study. We compared occupancy models for eight urban mammal species using broad categorizations of land cover and local land use to determine drivers of mammal occurrence within the urban matrix as compared with urban habitat patches. Many native species maintained a strong association with large, semi-natural green spaces, but occupancy was not limited to these locations, and in some cases, the use of private yards and the built environment were not notably different. Furthermore, some species exhibited higher occupancy probabilities in developed areas over green spaces. Though seemingly intuitive, we offer advice on how to greatly reduce habitat-biased sampling methods in urban wildlife research and illustrate the importance of doing so to ensure accurate results that support the formation of effective urban planning and policy.
Collapse
Affiliation(s)
- Daniel J Herrera
- Humane Rescue Alliance, 71 Oglethorpe Street NW, Washington, DC 20011, USA
| | - Sophie M Moore
- Humane Rescue Alliance, 71 Oglethorpe Street NW, Washington, DC 20011, USA
| | - D T Tyler Flockhart
- Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Rd, Frostburg, MD 21532, USA
| | - William J McShea
- Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Michael V Cove
- North Carolina Museum of Natural Sciences, 11 W Jones Street, Raleigh, NC, 27601, USA
| |
Collapse
|
30
|
Halsey SJ, Miller JR. Maintenance of
Borrelia burgdorferi
among vertebrate hosts: a test of dilution effect mechanisms. Ecosphere 2020. [DOI: 10.1002/ecs2.3048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Samniqueka J. Halsey
- School of Natural Resources University of Missouri‐Columbia 1111 E. Rollin Street Columbia Missouri 65201 USA
| | - James R. Miller
- Department of Natural Resources and Environmental Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
31
|
Salkeld DJ, Antolin MF. Ecological Fallacy and Aggregated Data: A Case Study of Fried Chicken Restaurants, Obesity and Lyme Disease. ECOHEALTH 2020; 17:4-12. [PMID: 32026056 DOI: 10.1007/s10393-020-01472-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/12/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Interdisciplinary approaches are merited when attempting to understand the complex and idiosyncratic processes driving the spillover of pathogens from wildlife and vector species to human populations. Public health data are often available for zoonotic pathogens but can lead to erroneous conclusions if the data have been spatially or temporally aggregated. As an illustration, we use human Lyme disease incidence data as a case study to examine correlations between mammalian biodiversity, fried chicken restaurants and obesity rates on human disease incidence. We demonstrate that Lyme disease incidence is negatively correlated with mammalian biodiversity, the abundance of fried chicken restaurants and obesity rates. We argue, however, that these correlations are spurious, representing both an 'ecologic fallacy' and Simpson's paradox, and are generated by the use of aggregated data. We argue that correlations based on aggregated data across large spatial scales must be rigorously examined before being invoked as proof of disease ecology theory or as a rationale for public health policy.
Collapse
Affiliation(s)
- Daniel J Salkeld
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
32
|
Vadell MV, Gómez Villafañe IE, Carbajo AE. Hantavirus infection and biodiversity in the Americas. Oecologia 2019; 192:169-177. [PMID: 31807865 DOI: 10.1007/s00442-019-04564-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
Abstract
Species diversity has been proposed to decrease prevalence of disease in a wide variety of host-pathogen systems, in a phenomenon labeled the dilution effect. This phenomenon was first proposed and tested for vector-borne diseases but was later extended to directly transmitted parasite systems such as hantavirus. Though there seems to be clear evidence for the dilution effect in some hantavirus/rodent systems, the generality of this hypothesis remains debated. In the present meta-analysis, we examined the evidence supporting the dilution effect for hantavirus/rodent systems in the Americas. General linear models employed on data from 56 field studies identified the abundance of the reservoir rodent species and its relative proportion in the community as the only relevant variables explaining the prevalence of antibodies against hantavirus in the reservoir. Thus, we found no clear support for the dilution effect hypothesis for hantavirus/rodent systems in the Americas.
Collapse
Affiliation(s)
- María Victoria Vadell
- Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS "Dr. Carlos G. Malbrán", Puerto Iguazú, Misiones, Argentina.
| | - Isabel Elisa Gómez Villafañe
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Eduardo Carbajo
- Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
33
|
Margos G, Fingerle V, Reynolds S. Borrelia bavariensis: Vector Switch, Niche Invasion, and Geographical Spread of a Tick-Borne Bacterial Parasite. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Ginsberg HS, Rulison EL, Miller JL, Pang G, Arsnoe IM, Hickling GJ, Ogden NH, LeBrun RA, Tsao JI. Local abundance of Ixodes scapularis in forests: Effects of environmental moisture, vegetation characteristics, and host abundance. Ticks Tick Borne Dis 2019; 11:101271. [PMID: 31677969 DOI: 10.1016/j.ttbdis.2019.101271] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/29/2022]
Abstract
Ixodes scapularis is the primary vector of Lyme disease spirochetes in eastern and central North America, and local densities of this tick can affect human disease risk. We sampled larvae and nymphs from sites in Massachusetts and Wisconsin, USA, using flag/drag devices and by collecting ticks from hosts, and measured environmental variables to evaluate the environmental factors that affect local distribution and abundance of I. scapularis. Our sites were all forested areas with known I. scapularis populations. Environmental variables included those associated with weather (e.g., temperature and relative humidity), vegetation characteristics (at canopy, shrub, and ground levels), and host abundance (small and medium-sized mammals and reptiles). The numbers of larvae on animals at a given site and season showed a logarithmic relationship to the numbers in flag/drag samples, suggesting limitation in the numbers on host animals. The numbers of nymphs on animals showed no relationship to the numbers in flag/drag samples. These results suggest that only a small proportion of larvae and nymphs found hosts because in neither stage did the numbers of host-seeking ticks decline with increased numbers on hosts. Canopy cover was predictive of larval and nymphal numbers in flag/drag samples, but not of numbers on hosts. Numbers of small and medium-sized mammal hosts the previous year were generally not predictive of the current year's tick numbers, except that mouse abundance predicted log numbers of nymphs on all hosts the following year. Some measures of larval abundance were predictive of nymphal numbers the following year. The mean number of larvae per mouse was well predicted by measures of overall larval abundance (based on flag/drag samples and samples from all hosts), and some environmental factors contributed significantly to the model. In contrast, the mean numbers of nymphs per mouse were not well predicted by environmental variables, only by overall nymphal abundance on hosts. Therefore, larvae respond differently than nymphs to environmental factors. Furthermore, flag/drag samples provide different information about nymphal numbers than do samples from hosts. Flag/drag samples can provide information about human risk of acquiring nymph-borne pathogens because they provide information on the densities of ticks that might encounter humans, but to understand the epizootiology of tick-borne agents both flag/drag and host infestation data are needed.
Collapse
Affiliation(s)
- Howard S Ginsberg
- U.S. Geological Survey, Patuxent Wildlife Research Center, Rhode Island Field Station, Woodward Hall-PSE, University of Rhode Island, Kingston, RI 02881, USA; Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA.
| | - Eric L Rulison
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA
| | - Jasmine L Miller
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA
| | - Genevieve Pang
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Isis M Arsnoe
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Graham J Hickling
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN 37920, USA
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, QC, Canada
| | - Roger A LeBrun
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas. Parasit Vectors 2019; 12:434. [PMID: 31492171 PMCID: PMC6731612 DOI: 10.1186/s13071-019-3700-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
Background The density of questing ticks infected with tick-borne pathogens is an important parameter that determines tick-borne disease risk. An important factor determining this density is the availability of different wildlife species as hosts for ticks and their pathogens. Here, we investigated how wildlife communities contribute to tick-borne disease risk. The density of Ixodes ricinus nymphs infected with Borrelia burgdorferi (sensu lato), Borrelia miyamotoi, Neoehrlichia mikurensis and Anaplasma phagocytophilum among 19 forest sites were correlated to the encounter probability of different vertebrate hosts, determined by encounter rates as measured by (camera) trapping and mathematical modeling. Result We found that the density of any tick life stage was proportional to the encounter probability of ungulates. Moreover, the density of nymphs decreased with the encounter probability of hare, rabbit and red fox. The density of nymphs infected with the transovarially-transmitted B. miyamotoi increased with the density of questing nymphs and the encounter probability of bank vole. The density of nymphs infected with all other pathogens increased with the encounter probability of competent hosts: bank vole for Borrelia afzelii and N. mikurensis, ungulates for A. phagocytophilum and blackbird for Borrelia garinii and Borrelia valaisiana. The negative relationship we found was a decrease in the density of nymphs infected with B. garinii and B. valaisiana with the encounter probability of wood mouse. Conclusions Only a few animal species drive the densities of infected nymphs in forested areas. There, foxes and leporids have negative effects on tick abundance, and consequently on the density of infected nymphs. The abundance of competent hosts generally drives the abundances of their tick-borne pathogen. A dilution effect was only observed for bird-associated Lyme spirochetes.![]()
Collapse
|
36
|
Roberts MG, Heesterbeek JAP. Quantifying the dilution effect for models in ecological epidemiology. J R Soc Interface 2019; 15:rsif.2017.0791. [PMID: 29563242 DOI: 10.1098/rsif.2017.0791] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/26/2018] [Indexed: 11/12/2022] Open
Abstract
The dilution effect, where an increase in biodiversity results in a reduction in the prevalence of an infectious disease, has been the subject of speculation and controversy. Conversely, an amplification effect occurs when increased biodiversity is related to an increase in prevalence. We explore the conditions under which these effects arise, using multi species compartmental models that integrate ecological and epidemiological interactions. We introduce three potential metrics for quantifying dilution and amplification, one based on infection prevalence in a focal host species, one based on the size of the infected subpopulation of that species and one based on the basic reproduction number. We introduce our approach in the simplest epidemiological setting with two species, and show that the existence and strength of a dilution effect is influenced strongly by the choices made to describe the system and the metric used to gauge the effect. We show that our method can be generalized to any number of species and to more complicated ecological and epidemiological dynamics. Our method allows a rigorous analysis of ecological systems where dilution effects have been postulated, and contributes to future progress in understanding the phenomenon of dilution in the context of infectious disease dynamics and infection risk.
Collapse
Affiliation(s)
- M G Roberts
- Institute of Natural and Mathematical Sciences, New Zealand Institute for Advanced Study and the Infectious Disease Research Centre, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - J A P Heesterbeek
- Department of Farm Animal Health, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
37
|
Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Sci Rep 2019; 9:5088. [PMID: 30911054 PMCID: PMC6434031 DOI: 10.1038/s41598-019-41686-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Lyme borreliosis is the most common vector-borne zoonosis in the northern hemisphere, and the pathogens causing Lyme borreliosis have distinct, incompletely described transmission cycles involving multiple host groups. The mammal community in Fennoscandia differs from continental Europe, and we have limited data on potential competent and incompetent hosts of the different genospecies of Borrelia burgdorferi sensu lato (sl) at the northern distribution ranges where Lyme borreliosis is emerging. We used qPCR to determine presence of B. burgdorferi sl in tissue samples (ear) from 16 mammalian species and questing ticks from Norway, and we sequenced the 5S-23 S rDNA intergenic spacer region to determine genospecies from 1449 qPCR-positive isolates obtaining 423 sequences. All infections coming from small rodents and shrews were linked to the genospecies B. afzelii, while B. burgdorferi sensu stricto (ss) was only found in red squirrels (Sciurus vulgaris). Red squirrels were also infected with B. afzelii and B. garinii. There was no evidence of B. burgdorferi sl infection in moose (Alces alces), red deer (Cervus elaphus) or roe deer (Capreolus capreolus), confirming the role of cervids as incompetent hosts. In infected questing ticks in the two western counties, B. afzelii (67% and 75%) dominated over B. garinii (27% and 21%) and with only a few recorded B. burgdorferi ss and B. valaisiana. B. burgdorferi ss were more common in adult ticks than in nymphs, consistent with a reservoir in squirrels. Our study identifies potential competent hosts for the different genospecies, which is key to understand transmission cycles at high latitudes of Europe.
Collapse
|
38
|
Marklewitz M, Junglen S. Evolutionary and ecological insights into the emergence of arthropod-borne viruses. Acta Trop 2019; 190:52-58. [PMID: 30339799 DOI: 10.1016/j.actatropica.2018.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023]
Abstract
The emergence of arthropod-borne viruses (arboviruses) is of global concern as they can rapidly spread across countries and to new continents as the recent examples of chikungunya virus and Zika virus have demonstrated. Whereas the global movement patterns of emerging arboviruses are comparatively well studied, there is little knowledge on initial emergence processes that enable sylvatic (enzootic) viruses to leave their natural amplification cycle and infect humans or livestock, often also involving infection of anthropophilic vector species. Emerging arboviruses almost exclusively originate in highly biodiverse ecosystems of tropical countries. Changes in host population diversity and density can affect pathogen transmission patterns and are likely to influence arbovirus emergence processes. This review focuses on concepts from disease ecology, explaining the interplay between biodiversity and pathogen emergence.
Collapse
Affiliation(s)
- Marco Marklewitz
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany
| | - Sandra Junglen
- Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
39
|
Huang CI, Kay SC, Davis S, Tufts DM, Gaffett K, Tefft B, Diuk-Wasser MA. High burdens of Ixodes scapularis larval ticks on white-tailed deer may limit Lyme disease risk in a low biodiversity setting. Ticks Tick Borne Dis 2018; 10:258-268. [PMID: 30446377 PMCID: PMC6377166 DOI: 10.1016/j.ttbdis.2018.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 11/24/2022]
Abstract
An inverse relationship between biodiversity and human health has been termed the ‘dilution effect’ paradigm. In the case of tick-borne infections such as Lyme disease, the key assumption is that Borrelia burgdorferi sensu lato abundance is increased by the loss of less competent (dilution) hosts as biodiversity declines. White-tailed deer play a dual role in the pathogen cycle, as key reproductive hosts for adult ticks and incompetent hosts for the pathogen. While the role of deer as hosts of adult ticks is well established, the extent to which deer also feed immature ticks and reduce the proportion infected is unknown because of logistic constraints in measuring this empirically. We estimated the proportion of larvae that fed on deer in an extremely species-poor community on Block Island, RI, where tick nymphal infection prevalence was found to be lower than expected. In 2014, we measured the density, larval tick burdens, and realized reservoir competence of small mammal and bird hosts on Block Island, RI. In 2015, we measured the infection prevalence of host-seeking Ixodes scapularis nymphs resulting from larvae fed on available hosts in 2014. We back-estimated the proportion of larvae expected to have fed on deer in 2014 (the only unknown parameter) to result in the nymphal infection prevalence observed in 2015. Back-estimation predicted that 29% of larval ticks must have fed on deer to yield the observed 30% nymphal infection prevalence. In comparison, the proportion of larvae feeding on mice was 44% and 27% on birds. Our study identified an influential role of deer in reducing nymphal tick infection prevalence and a potential role as dilution hosts if the reduction in nymphal infection prevalence outweighs the role of deer as tick population amplifiers. Because both deer and competent hosts may increase in anthropogenic, fragmented habitats, the links between fragmentation, biodiversity, and Lyme disease risk may be complex and difficult to predict. Furthermore, a nonlinear relationship between deer abundance and Lyme disease risk would reduce the efficacy of deer population reduction efforts to control Lyme disease.
Collapse
Affiliation(s)
- Ching-I Huang
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Samantha C Kay
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Stephen Davis
- School of Science, Royal Melbourne Institute of Technology, 124 La Trobe St., Melbourne, Australia.
| | - Danielle M Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Kimberley Gaffett
- The Nature Conservancy on Block Island, P.O. Box 1287, Block Island, RI 02807, United States.
| | - Brian Tefft
- Rhode Island Department of Environmental Management, Division of Fish and Wildlife, 277 Great Neck Road West Kingston, RI 02892, United States.
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| |
Collapse
|
40
|
Kiewra D, Szymanowski M, Zalewska G, Dobracka B, Dobracki W, Klakočar J, Czułowska A, Plewa-Tutaj K. Seroprevalence of Borrelia burgdorferi in forest workers from inspectorates with different forest types in Lower Silesia, SW Poland: preliminary study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:502-510. [PMID: 29963907 DOI: 10.1080/09603123.2018.1489954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
To estimate the Lyme borreliosis (LB) risk for forest workers, totally 646 blood samples were tested for IgG and IgM anti-Borrelia burgdorferi s.l. (anti-B.b.) antibody occurrence using ELISA tests confirmed with western blot. To clarify the varied LB risk, additionally, the data from the Forest Data Bank determining the detailed forest habitat type in particular forest inspectorates were used. The occurrence of the anti-B.b. antibody was confirmed in 22% (8.7% IgM, 17.8% IgG) of forest workers. Analysis of the influence of the habitat type (forest types) indicated the significant positive impact of the occurrence of the deciduous and mixed-deciduous forests on the seroprevalence of anti-B.b. IgG level among forestry workers. However, the share of forest type cannot be the only factor taken into account when assessing risk.
Collapse
Affiliation(s)
- Dorota Kiewra
- a Department of Microbial Ecology and Environmental Protection , Institute of Genetics and Microbiology, University of Wrocław , Wrocław , Poland
| | - Mariusz Szymanowski
- b Department of Geoinformatics and Cartography , Institute of Geography and Regional Development, University of Wrocław , Wrocław , Poland
| | - Grażyna Zalewska
- c Provincial Sanitary and Epidemiological Station in Wroclaw , Wrocław , Poland
| | - Beata Dobracka
- d Infectious Diseases Outpatient Clinic MED-FIX Medical Center in Wrocław , Wrocław , Poland
| | - Witold Dobracki
- e Faculty of Health Sciences , Medical University of Wrocław , Wrocław , Poland
| | - Jacek Klakočar
- f Provincial Sanitary and Epidemiological Station in Wroclaw , Wrocław , Poland
| | - Aleksandra Czułowska
- a Department of Microbial Ecology and Environmental Protection , Institute of Genetics and Microbiology, University of Wrocław , Wrocław , Poland
| | - Kinga Plewa-Tutaj
- a Department of Microbial Ecology and Environmental Protection , Institute of Genetics and Microbiology, University of Wrocław , Wrocław , Poland
| |
Collapse
|
41
|
Aerts R, Honnay O, Van Nieuwenhuyse A. Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br Med Bull 2018; 127:5-22. [PMID: 30007287 DOI: 10.1093/bmb/ldy021] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/13/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Natural environments and green spaces provide ecosystem services that enhance human health and well-being. They improve mental health, mitigate allergies and reduce all-cause, respiratory, cardiovascular and cancer mortality. The presence, accessibility, proximity and greenness of green spaces determine the magnitude of their positive health effects, but the role of biodiversity (including species and ecosystem diversity) within green spaces remains underexplored. This review describes mechanisms and evidence of effects of biodiversity in nature and green spaces on human health. SOURCES OF DATA We identified studies listed in PubMed and Web of Science using combinations of keywords including 'biodiversity', 'diversity', 'species richness', 'human health', 'mental health' and 'well-being' with no restrictions on the year of publication. Papers were considered for detailed evaluation if they were written in English and reported data on levels of biodiversity and health outcomes. AREAS OF AGREEMENT There is evidence for positive associations between species diversity and well-being (psychological and physical) and between ecosystem diversity and immune system regulation. AREAS OF CONCERN There is a very limited number of studies that relate measured biodiversity to human health. There is more evidence for self-reported psychological well-being than for well-defined clinical outcomes. High species diversity has been associated with both reduced and increased vector-borne disease risk. GROWING POINTS Biodiversity supports ecosystem services mitigating heat, noise and air pollution, which all mediate the positive health effects of green spaces, but direct and long-term health outcomes of species diversity have been insufficiently studied so far. AREAS TIMELY FOR RESEARCH Additional research and newly developed methods are needed to quantify short- and long-term health effects of exposure to perceived and objectively measured species diversity, including health effects of nature-based solutions and exposure to microbiota.
Collapse
Affiliation(s)
- Raf Aerts
- Department of Chemical and Physical Health Risks, Unit Health Impact Assessment, Sciensano (Belgian Institute of Health), Brussels, Belgium.,Department of Earth and Environmental Sciences, Division Forest, Nature and Landscape, University of Leuven (KU Leuven), Leuven, Belgium.,Department of Biology, Division Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Leuven, Belgium
| | - Olivier Honnay
- Department of Biology, Division Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Leuven, Belgium
| | - An Van Nieuwenhuyse
- Department of Chemical and Physical Health Risks, Unit Health Impact Assessment, Sciensano (Belgian Institute of Health), Brussels, Belgium.,Department of Public Health and Primary Care, Division Environment and Health, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
42
|
McMahon BJ, Morand S, Gray JS. Ecosystem change and zoonoses in the Anthropocene. Zoonoses Public Health 2018; 65:755-765. [PMID: 30105852 DOI: 10.1111/zph.12489] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/08/2018] [Accepted: 05/27/2018] [Indexed: 12/21/2022]
Abstract
Changes in land use, animal populations and climate, primarily due to increasing human populations, drive the emergence of zoonoses. Force of infection (FOI), which for these diseases is a measure of the ease with which a pathogen reaches the human population, can change with specific zoonoses and context. Here, we outline three ecosystem categories-domestic, peridomestic and sylvatic, where disease ecology alters the FOI of specific zoonoses. Human intervention is an overriding effect in the emergence of zoonoses; therefore, we need to understand the disease ecology and other influencing factors of pathogens and parasites that are likely to interact differently within ecological and cultural contexts. Planning for One Health and community ecology, such as an ecological impact assessment, is required to prepare and manage the emergence and impact of zoonoses in the Anthropocene.
Collapse
Affiliation(s)
- Barry J McMahon
- UCD School of Agriculture & Food Science, University College Dublin, Dublin 4, Ireland
| | - Serge Morand
- CNRS - CIRAD ASTRE, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Jeremy S Gray
- UCD School of Biology & Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
43
|
Linske MA, Williams SC, Ward JS, Stafford KC. Indirect Effects of Japanese Barberry Infestations on White-Footed Mice Exposure to Borrelia burgdorferi. ENVIRONMENTAL ENTOMOLOGY 2018; 47:795-802. [PMID: 29850912 DOI: 10.1093/ee/nvy079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 06/08/2023]
Abstract
Japanese barberry (Berberis thunbergii de Candolle; Ranunculales: Berberidaceae) is an exotic shrub that has invaded woodland understories in the northeastern United States. It forms dense thickets providing ideal structure and microclimate for questing blacklegged ticks (Ixodes scapularis Say; Acari: Ixodidae). While there have been studies on the favorable habitat barberry provides blacklegged ticks, little has been studied on the relationship between barberry, vectors (ticks), and reservoirs (white-footed mice; Peromyscus leucopus Rafinesque; Rodentia: Cricetidae); specifically, the influence Japanese barberry has on the abundance of blacklegged ticks and Borrelia burgdorferi infection (Johnson, Schmid, Hyde, Steigerwalt, and Brenner; Spirochaetales: Spirochaetaceae) in mice. We studied the impacts of barberry treatment over the course of 6 yr to determine influence on encounter abundance with white-footed mice, encounter abundance with B. burgdorferi-infected mice, and juvenile blacklegged ticks parasitizing mice. Results from our study suggest that while both white-footed mouse and B. burgdorferi-infected mouse encounters remained similar between barberry treatment areas, juvenile tick attachment to mice was significantly greater in intact barberry stands (X¯ = 4.4 ticks per mouse ± 0.23 SEM) compared with managed (X¯ = 2.8 ± 0.17; P < 0.001) or absent (X¯ = 2.2 ± 0.16; P < 0.001) stands. Results of this study indicated that management of barberry stands reduced contact opportunities between blacklegged ticks and white-footed mice. Continued efforts to manage Japanese barberry will not only allow for reestablishment of native plant species, but will also reduce the number of B. burgdorferi-infected blacklegged ticks on the landscape.
Collapse
Affiliation(s)
- Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT
- Department of Natural Resources and the Environment, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT
| | - Scott C Williams
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
| | - Jeffrey S Ward
- Department of Forestry and Horticulture, The Connecticut Agricultural Experiment Station, New Haven, CT
| | - Kirby C Stafford
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
| |
Collapse
|
44
|
Mendoza EJ, Warner B, Kobinger G, Ogden NH, Safronetz D. Baited vaccines: A strategy to mitigate rodent-borne viral zoonoses in humans. Zoonoses Public Health 2018; 65:711-727. [PMID: 29931738 DOI: 10.1111/zph.12487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/05/2018] [Accepted: 05/21/2018] [Indexed: 11/27/2022]
Abstract
Rodents serve as the natural reservoir and vector for a variety of pathogens, some of which are responsible for severe and life-threatening disease in humans. Despite the significant impact in humans many of these viruses, including Old and New World hantaviruses as well as Arenaviruses, most have no specific vaccine or therapeutic to treat or prevent human infection. The recent success of wildlife vaccines to mitigate rabies in animal populations offers interesting insight into the use of similar strategies for other zoonotic agents of human disease. In this review, we discuss the notion of using baited vaccines as a means to interrupt the transmission of viral pathogens between rodent reservoirs and to susceptible human hosts.
Collapse
Affiliation(s)
- Emelissa J Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Bryce Warner
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gary Kobinger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Centre Hospitalier de l'Université Laval, Quebec City, Quebec, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, Quebec, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
45
|
Chvostáč M, Špitalská E, Václav R, Vaculová T, Minichová L, Derdáková M. Seasonal Patterns in the Prevalence and Diversity of Tick-Borne Borrelia burgdorferi Sensu Lato, Anaplasma phagocytophilum and Rickettsia spp. in an Urban Temperate Forest in South Western Slovakia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050994. [PMID: 29762516 PMCID: PMC5982033 DOI: 10.3390/ijerph15050994] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022]
Abstract
In Europe, Ixodes ricinus is the most important vector of tick-borne zoonotic bacteria. It transmits spirochaetes from the Borrelia burgdorferi sensu lato complex, Anaplasma phagocytophilum and Rickettsia spp. Although spatial differences in the prevalence of tick-borne pathogens have been intensively studied, seasonal (within-year) fluctuations in the prevalence of these pathogens within sites are often overlooked. We analyzed the occurrence and seasonal dynamics of Ixodes ricinus in an urban forest in Bratislava, Slovakia. Furthemore, we examined temporal trends in the community structure of B. burgdorferi s.l., A. phagocytophilum and Rickettsia spp. in questing and bird-feeding ticks. The total prevalence for B. burgdorferi s.l. in questing I. ricinus was 6.8%, involving six genospecies with the dominance of bird-associated B. garinii and B. valaisiana.A. phagocytophilum, R. helvetica and R. monacensis occurred in 5.9%, 5.0% and 0.2% of questing ticks, respectively. In total, 12.5% and 4.4% of bird-feeding I. ricinus ticks carried B. burgdorferi s.l. and R. helvetica. The total prevalence of B. burgdorferi s.l. in our study site was two times lower than the mean prevalence for Europe. In contrast, A. phagocytophilum prevalence was significantly higher compared to those in other habitats of Slovakia. Our results imply that tick propagation and the transmission, suppression and seasonal dynamics of tick-borne pathogens at the study site were primarily shaped by abundance and temporal population fluctuations in ruminant and bird hosts.
Collapse
Affiliation(s)
- Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Eva Špitalská
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Radovan Václav
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Tatiana Vaculová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Lenka Minichová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia.
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| |
Collapse
|
46
|
Linske MA, Williams SC, Stafford KC, Ortega IM. Ixodes scapularis (Acari: Ixodidae) Reservoir Host Diversity and Abundance Impacts on Dilution of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in Residential and Woodland Habitats in Connecticut, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:681-690. [PMID: 29340657 DOI: 10.1093/jme/tjx237] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The dilution effect in the zoonotic disease transmission cycle theorizes that an increased diversity of host species will alter transmission dynamics, result in a decrease in pathogen prevalence, and potentially lower human disease incidence. The interrelationship of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner) (Spirochaetales: Spirochaetaceae), the etiological agent of Lyme disease (LD), and its primary vector, blacklegged ticks (Ixodes scapularis Say) (Acari: Ixodidae), is a commonly used example of the dilution effect, suggesting that an increased diversity of host species will be found in large, undisturbed forested tracts and lower diversity in fragmented forests. Given that Connecticut woodlands are mature with heavy upper canopies and generally poor habitat quality, we hypothesized there would be higher diversity of host species resulting in lower prevalence of B. burgdorferi in white-footed mice (Peromyscus leucopus Rafinesque) (Rodentia: Cricetidae) in forested residential areas. Using camera and live small mammal trapping techniques, we determined there was a greater richness of reservoir host species, significantly higher encounters with hosts, and significantly lower B. burgdorferi host-infection in residential areas as compared to large, intact forested stands. Furthermore, we determined that the driving factor of pathogen dilution was not host species diversity, but rather overall encounter abundance with alternative hosts, regardless of habitat type. Our study challenges major concepts of the dilution effect within the Connecticut landscape and calls for new managerial actions to address the current state of our woodlands and abundance of host species in the interest of both forest and public health.
Collapse
Affiliation(s)
- Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
- Department of Natural Resources and the Environment, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT
| | - Scott C Williams
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
- Department of Forestry and Horticulture, The Connecticut Agricultural Experiment Station, New Haven, CT
| | - Kirby C Stafford
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
| | - Isaac M Ortega
- Department of Natural Resources and the Environment, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT
| |
Collapse
|
47
|
Ruyts SC, Landuyt D, Ampoorter E, Heylen D, Ehrmann S, Coipan EC, Matthysen E, Sprong H, Verheyen K. Low probability of a dilution effect for Lyme borreliosis in Belgian forests. Ticks Tick Borne Dis 2018; 9:1143-1152. [PMID: 29716838 DOI: 10.1016/j.ttbdis.2018.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 11/16/2022]
Abstract
An increasing number of studies have investigated the consequences of biodiversity loss for the occurrence of vector-borne diseases such as Lyme borreliosis, the most common tick-borne disease in the northern hemisphere. As host species differ in their ability to transmit the Lyme borreliosis bacteria Borrelia burgdorferi s.l. to ticks, increased host diversity can decrease disease prevalence by increasing the proportion of dilution hosts, host species that transmit pathogens less efficiently. Previous research shows that Lyme borreliosis risk differs between forest types and suggests that a higher diversity of host species might dilute the contribution of small rodents to infect ticks with B. afzelii, a common Borrelia genospecies. However, empirical evidence for a dilution effect in Europe is largely lacking. We tested the dilution effect hypothesis in 19 Belgian forest stands of different forest types along a diversity gradient. We used empirical data and a Bayesian belief network to investigate the impact of the proportion of dilution hosts on the density of ticks infected with B. afzelii, and identified the key drivers determining the density of infected ticks, which is a measure of human infection risk. Densities of ticks and B. afzelii infection prevalence differed between forest types, but the model indicated that the density of infected ticks is hardly affected by dilution. The most important variables explaining variability in disease risk were related to the density of ticks. Combining empirical data with a model-based approach supported decision making to reduce tick-borne disease risk. We found a low probability of a dilution effect for Lyme borreliosis in a north-western European context. We emphasize that under these circumstances, Lyme borreliosis prevention should rather aim at reducing tick-human contact rate instead of attempting to increase the proportion of dilution hosts.
Collapse
Affiliation(s)
- Sanne C Ruyts
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Dries Landuyt
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Evy Ampoorter
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium
| | - Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 11, 2610, Wilrijk, Belgium
| | - Steffen Ehrmann
- Geobotany, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Elena C Coipan
- Wageningen University and Research, Plant Sciences Group, Bio-interactions and Plant Health Business Unit, P.O. Box 16, 6700 AA,Wageningen, The Netherlands
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 11, 2610, Wilrijk, Belgium
| | - Hein Sprong
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and Environment, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, 9090, Melle-Gontrode, Belgium.
| |
Collapse
|
48
|
Bouchard C, Aenishaenslin C, Rees EE, Koffi JK, Pelcat Y, Ripoche M, Milord F, Lindsay LR, Ogden NH, Leighton PA. Integrated Social-Behavioral and Ecological Risk Maps to Prioritize Local Public Health Responses to Lyme Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047008. [PMID: 29671475 PMCID: PMC6071748 DOI: 10.1289/ehp1943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND The risk of contracting Lyme disease (LD) can vary spatially because of spatial heterogeneity in risk factors such as social-behavior and exposure to ecological risk factors. Integrating these risk factors to inform decision-making should therefore increase the effectiveness of mitigation interventions. OBJECTIVES The objective of this study was to develop an integrated social-behavioral and ecological risk-mapping approach to identify priority areas for LD interventions. METHODS The study was conducted in the Montérégie region of Southern Quebec, Canada, where LD is a newly endemic disease. Spatial variation in LD knowledge, risk perceptions, and behaviors in the population were measured using web survey data collected in 2012. These data were used as a proxy for the social-behavioral component of risk. Tick vector population densities were measured in the environment during field surveillance from 2007 to 2012 to provide an index of the ecological component of risk. Social-behavioral and ecological components of risk were combined with human population density to create integrated risk maps. Map predictions were validated by testing the association between high-risk areas and the current spatial distribution of human LD cases. RESULTS Social-behavioral and ecological components of LD risk had markedly different distributions within the study region, suggesting that both factors should be considered for locally adapted interventions. The occurrence of human LD cases in a municipality was positively associated with tick density (p<0.01) but was not significantly associated with social-behavioral risk. CONCLUSION This study is an applied demonstration of how integrated social-behavioral and ecological risk maps can be created to assist decision-making. Social survey data are a valuable but underutilized source of information for understanding regional variation in LD exposure, and integrating this information into risk maps provides a novel approach for prioritizing and adapting interventions to the local characteristics of target populations. https://doi.org/10.1289/EHP1943.
Collapse
Affiliation(s)
- Catherine Bouchard
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Cécile Aenishaenslin
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Erin E Rees
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jules K Koffi
- Policy Integration and Zoonoses Division, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Yann Pelcat
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Marion Ripoche
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - François Milord
- Direction de santé publique de la Montérégie, Centre intégré de santé et de services sociaux Montérégie-Centre, Québec, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Patrick A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de médecine vétérinaire (FMV), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
49
|
Linking host traits, interactions with competitors and disease: Mechanistic foundations for disease dilution. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Kowalec M, Szewczyk T, Welc-Falęciak R, Siński E, Karbowiak G, Bajer A. Ticks and the city - are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit Vectors 2017; 10:573. [PMID: 29157278 PMCID: PMC5697153 DOI: 10.1186/s13071-017-2391-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ixodes ricinus ticks are commonly encountered in either natural or urban areas, contributing to Lyme disease agents Borreliella [(Borrelia burgdorferi (sensu lato)] spp. and Borrelia miyamotoi enzootic cycles in cities. It is an actual problem whether urbanization affects pathogen circulation and therefore risk of infection. The aim of the study was to evaluate main tick-borne disease risk factors in natural, endemic areas of north-east (NE) Poland (Białowieża) and urban areas of central Poland (Warsaw), measuring tick abundance/density, prevalence of infection with spirochaetes and diversity of these pathogens in spring-early summer and late summer-autumn periods between 2012 and 2015. METHODS Questing I. ricinus ticks were collected from three urban sites in Warsaw, central Poland and three natural sites in Białowieża, NE Poland. A total of 2993 ticks were analyzed for the presence of Borreliella spp. and/or Borrelia miyamotoi DNA by PCR. Tick abundance was analyzed by General Linear Models (GLM). Prevalence and distribution of spirochaetes was analyzed by Maximum Likelihood techniques based on log-linear analysis of contingency tables (HILOGLINEAR). Species typing and molecular phylogenetic analysis based on the sequenced flaB marker were carried out. RESULTS Overall 4617 I. ricinus ticks were collected (2258 nymphs and 2359 adults). We report well established population of ticks in urban areas (10.1 ± 0.9 ticks/100 m2), as in endemic natural areas with higher mean tick abundance (16.5 ± 1.5 ticks/100 m2). Tick densities were the highest in spring-early summer in both types of areas. We observed no effect of the type of area on Borreliella spp. and B. miyamotoi presence in ticks, resulting in similar prevalence of spirochaetes in urban and natural areas [10.9% (95% CI: 9.7-12.2%) vs 12.4% (95% CI: 10.1-15.1%), respectively]. Prevalence of spirochaetes was significantly higher in the summer-autumn period than in the spring-early summer [15.0% (95% CI: 12.8-17.5%) vs 10.4% (95% CI: 9.2-11.6%), respectively]. We have detected six species of bacteria present in both types of areas, with different frequencies: dominance of B. afzelii (69.3%) in urban and B. garinii (48.1%) in natural areas. Although we observed higher tick densities in forests than in maintained parks, the prevalence of spirochaetes was significantly higher in the latter [9.8% (95% CI: 8.6-11.0%) vs 17.5% (95% CI: 14.4-20.5%)]. CONCLUSIONS Surprisingly, a similar risk of infection with Borreliella spp. and/or B. miyamotoi was discovered in highly- and low-transformed areas. We suggest that the awareness of presence of these disease agents in cities should be raised.
Collapse
Affiliation(s)
- Maciej Kowalec
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Tomasz Szewczyk
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818, Warsaw, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Edward Siński
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Grzegorz Karbowiak
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818, Warsaw, Poland
| | - Anna Bajer
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
| |
Collapse
|