1
|
Xue W, Tianrun W, Jiaqi Y, Xin L, Ruxue D, Peng Z. Bta-miR-149-3p suppresses inflammatory response in bovine Sertoli cells exposed to microcystin-leucine arginine (MC-LR) through TLR4/NF-kB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116636. [PMID: 38917588 DOI: 10.1016/j.ecoenv.2024.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
This study explored the regulatory role of bta-miR-149-3p in the inflammatory response induced by microcystin-leucine arginine (MC-LR) exposure in bovine Sertoli cells. The research endeavored to enhance the comprehension of the epigenetic mechanisms underlying MC-LR-induced cytotoxicity in Sertoli cells and establish a foundation for mitigating these effects in vitro. In this study, we elucidated the regulatory mechanism of bta-miR-149-3p in the MC-LR-induced inflammatory response by verifying the target gene of bta-miR-149-3p through luciferase assays and treating the cells with a bta-miR-149-3p inhibitor for 24 h. The results demonstrate that nuclear factor κB (NF-κB) acts as a downstream target gene of bta-miR-149-3p, which inhibits the MC-LR-induced inflammatory response in bovine Sertoli cells. This inhibition occurs by regulating the downregulation of tight junction constitutive proteins of the blood-testis barrier (BTB) through the suppression of the TLR-4/NF-κB signaling pathway (p < 0.05) and the up-regulation of the adhesion junction protein β-catenin (p < 0.05). Notably, MC-LR exposure resulted in the up-regulation (p < 0.05) of inflammatory cytokines (IL-6, IL-1β, and NLRP3) and the down-regulation (p < 0.05) of BTB tight junction constitutive proteins (ZO-1, Occludin) in Sertoli cells. Furthermore, the BTB constitutive protein ZO-1 exhibited significant down-regulation in Sertoli cells pretreated with the bta-miR-149-3p inhibitor compared to controls (p < 0.05), while Occludin showed no significant difference from CTNNB1 (p > 0.05). In summary, our findings suggest that bta-miR-149-3p suppresses the MC-LR-induced inflammatory response and alterations in the expression of BTB proteins in bovine Sertoli cells by inhibiting the TLR-4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wang Xue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China.
| | - Wang Tianrun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China
| | - Yao Jiaqi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China
| | - Li Xin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China
| | - Deng Ruxue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Heilongjiang Province, China
| | - Zheng Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, China.
| |
Collapse
|
2
|
Wei L, Fu J, He L, Wang H, Ruan J, Li F, Wu H. Microcystin-LR-induced autophagy regulates oxidative stress, inflammation, and apoptosis in grass carp ovary cells in vitro. Toxicol In Vitro 2023; 87:105520. [PMID: 36410616 DOI: 10.1016/j.tiv.2022.105520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
MC-LR is one of the cyanotoxins produced by fresh water cyanobacteria. Previous studies showed that autophagy played an important role in MC-LR-induced reproduction toxicity. However, information on the toxicological mechanism is limited. In this study, MC-LR could induce autophagy and apoptosis in GCO cells in vitro. In GCO cells that had been exposed to MC-LR, the inhibitor of 3-MA effectively decreased cell viability and damaged cell ultrastructure. Oxidative stress was significantly increased in the 3-MA + MC-LR group, accompanied by significantly increased MDA content and decreased CAT activity and GST, SOD1, GPx, and GR expression levels (P < 0.05). Inflammation was more serious in the 3-MA + MC-LR group than that of MC-LR group, which was evidenced by increasing expression levels of TNFα, IL11, MyD88, TNFR1, TRAF2, JNK, CCL4, and CCL20 (P < 0.05). Interestingly, the significant decrease of Caspase-9, Caspase-7, and Bax expression and significant increase of Bcl-2 and Bcl-2/Bax ratio in 3-MA + MC-LR group compared to MC-LR group, suggesting that extent of apoptosis were reduced. Taken together, these results indicated that MC-LR induced autophagy and apoptosis in GCO cells, however, the inhibition of autophagy decreased the extent of apoptosis, induced more serious oxidative stress and inflammation, which eventually induced cell death. Our findings provided some information for exploring the toxicity of MC-LR, however, the role of autophagy require further study in vivo.
Collapse
Affiliation(s)
- Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| | - Jianping Fu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi Province 330022, PR China
| | - Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Fugui Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| |
Collapse
|
3
|
Shi T, Xu LL, Chen L, He J, Wang YK, Chen F, Chen Y, Giesy JP, Wang YT, Wu QH, Xu WL, Chen J, Xie P. Acute exposure to microcystins affects hypothalamic-pituitary axes of male rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120843. [PMID: 36509348 DOI: 10.1016/j.envpol.2022.120843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MCs) produced by some cyanobacteria can cause toxicity in animals and humans. In recent years, growing evidence suggests that MCs can act as endocrine disruptors. This research systematically investigated effects of microcystin-LR (MC-LR) on endocrine organs, biosynthesis of hormones and positive/negative feedback of the endocrine system in rats. Male, Sprague-Dawley rats were acutely administrated MC-LR by a single intraperitoneal injection at doses of 45, 67.5 or 90 μg MC-LR/kg body mass (bm), and then euthanized 24 h after exposure. In exposed rats, histological damage of hypothalamus, pituitary, adrenal, testis and thyroid were observed. Serum concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT), expressions of genes and proteins for biosynthesis of hormones were lesser, which indicated an overall suppression of the hypothalamus-pituitary-adrenal (HPA) axis. Along the hypothalamus-pituitary-gonadal (HPG) axis, lesser concentrations of gonadotropin-releasing hormone (GnRH) and testosterone (T), but greater concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol (E2) were observed. Except for greater transcription of cyp19a1 in testes, transcriptions of genes and proteins for T and E2 biosynthesis along the HPG axis were lesser. As for the hypothalamus-pituitary-thyroid (HPT) axis, after MCs treatment, greater concentrations of thyroid-stimulating hormone (TSH), but lesser concentrations of free tri-iodothyronine (fT3) were observed in serum. Concentrations of free tetra-iodothyronine (fT4) were greater in rats dosed with 45 μg MCs/kg, bm, but lesser in rats dosed with 67.5 or 90 μg MCs/kg, bm. Transcripts of genes for biosynthesis of hormones and receptors along the HPT axis and expressions of proteins for biosynthesis of tetra-iodothyronine (T4) and tri-iodothyronine (T3) in thyroid were significantly altered. Cross-talk among the HPA, HPG and HPT axes probably occurred. It was concluded that MCs caused an imbalance of positive and negative feedback of hormonal regulatory axes, blocked biosynthesis of key hormones and exhibited endocrine-disrupting effects.
Collapse
Affiliation(s)
- Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Lin-Lin Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ye-Ke Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, USA
| | - Yu-Ting Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Qian-Hui Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| |
Collapse
|
4
|
Cai DM, Mei FB, Zhang CJ, An SC, Lv RB, Ren GH, Xiao CC, Long L, Huang TR, Deng W. The Abnormal Proliferation of Hepatocytes is Associated with MC-LR and C-Terminal Truncated HBX Synergistic Disturbance of the Redox Balance. J Hepatocell Carcinoma 2022; 9:1229-1246. [PMID: 36505941 PMCID: PMC9733568 DOI: 10.2147/jhc.s389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Background Microcystin-LR (MC-LR) and hepatitis B virus (HBV) are associated with hepatocellular carcinoma (HCC). However, the concentrations of MC-LR in drinking water and the synergistic effect of MC-LR and HBV on hepatocellular carcinogenesis through their disturbance of redox balance have not been fully elucidated. Methods We measured the MC-LR concentrations in 168 drinking water samples of areas with a high incidence of HCC. The relationships between MC-LR and both redox status and liver diseases in 177 local residents were analyzed. The hepatoma cell line HepG2 transfected with C-terminal truncated hepatitis B virus X gene (Ct-HBX) were treated with MC-LR. Reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) were measured. Cell proliferation, migration, invasion, and apoptosis were assessed with cell activity assays, scratch and transwell assays, and flow cytometry, respectively. The mRNA and protein expression-related redox status genes were analyzed with qPCR and Western blotting. Results The average concentration of MC-LR in well water, river water and reservoir water were 57.55 ng/L, 76.74 ng/L and 132.86 ng/L respectively, and the differences were statistically significant (P < 0.05). The MC-LR levels in drinking water were correlated with liver health status, including hepatitis, clonorchiasis, glutamic pyruvic transaminase abnormalities and hepatitis B surface antigen carriage (all P values < 0.05). The serum MDA increased in subjects who drank reservoir water and were infected with HBV (P < 0.05). In the cell experiment, ROS increased when Ct-HBX-transfected HepG2 cells were treated with MC-LR, followed by a decrease in SOD and GSH and an increase in MDA. MC-LR combined with Ct-HBX promoted the proliferation, migration and invasion of HepG2 cells, upregulated the mRNA and protein expression of MAOA gene, and downregulated UCP2 and GPX1 genes. Conclusion MC-LR and HBV may synergistically affect redox status and play an important role in hepatocarcinoma genesis.
Collapse
Affiliation(s)
- Dong-Mei Cai
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Fan-Biao Mei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Chao-Jun Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - San-Chun An
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Rui-Bo Lv
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Guan-Hua Ren
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Chan-Chan Xiao
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Long Long
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China
| | - Tian-Ren Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China
| | - Wei Deng
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China,Correspondence: Wei Deng; Tianren Huang, Department of Experimental Research, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Nanning, Guangxi, 530021, People’s Republic of China, Email ;
| |
Collapse
|
5
|
Zhou Y, Xue M, Jiang Y, Zhang M, Wang C, Wang X, Yu G, Tang Z. Beneficial Effects of Quercetin on Microcystin-LR Induced Tight Junction Defects. Front Pharmacol 2021; 12:733993. [PMID: 34566654 PMCID: PMC8462518 DOI: 10.3389/fphar.2021.733993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Quercetin has numerous functions including antioxidant and anti-inflammatory effects. The beneficial effect of quercetin against microcystin-LR (MC-LR)-induced testicular tight junctions (TJs) defects in vitro and in vivo were investigated. Significant reductions in transepithelial electrical resistance, occludin, and zonula occludens-1(ZO-1) levels were detected in the MC-LR-treated TM4 cells, and quercetin attenuated these effects. Interestingly, quercetin suppressed MC-LR-induced phosphorylation of protein kinase B (AKT). It effectively inhibited the accumulation of reactive oxygen species (ROS) in cells stimulated by MC-LR. In addition, ROS inhibitors blocked the TJ damage that is dependent on the AKT signaling pathway induced by MC-LR. In conclusion, our results suggest that alleviates MC-LR-impaired TJs by suppressing the ROS-regulated activation of the AKT pathway.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Xue
- College of Traditional Chinese Medicine·College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfei Jiang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Miaomiao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changming Wang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuyang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai, China
| | - Guang Yu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zongxiang Tang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Dos Santos Costa R, Quadra GR, de Oliveira Souza H, do Amaral VS, Navoni JA. The link between pharmaceuticals and cyanobacteria: a review regarding ecotoxicological, ecological, and sanitary aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41638-41650. [PMID: 34118004 DOI: 10.1007/s11356-021-14698-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria are important for ecosystem functioning, but eutrophication may affect the surrounding biome by losing ecosystem services and/or through affecting the cyanotoxins production that threatens ecological and human health. Pollution is an environmental issue that affects aquatic ecosystems worldwide, and the knowledge of the role of synthetic chemicals such as pharmaceuticals is still scarce. Therefore, studies coupling these two relevant issues are essential to better understand the ecological risks and the potential threats to public health. Thus, an overview of ecotoxicological tests performed in the literature exposing cyanobacteria to pharmaceuticals and the possible consequences regarding ecological and sanitary aspects was conducted. Moreover, a risk assessment was performed to enable a better understanding of pharmaceuticals affecting cyanobacteria ecology. Most of the studies found in the literature tested isolated pharmaceuticals in laboratory conditions, while others assessed mixture effects on in situ conditions. The endpoints most assessed were growth, photosynthesis, and antioxidant enzyme activity. The studies also point out that cyanobacteria may present resistance or sensitivity depending on the concentrations and the therapeutic class, which may cause a change in the ecosystem dynamics and/or sanitary implications due to cyanotoxin production. The risk assessment highlighted that antibiotics are among the most relevant substances due to the chemical diversity and higher levels found in the environment than other therapeutic classes. This review highlighted gaps regarding cyanotoxin release into aquatic environments due to the occurrence of pharmaceuticals and the need for more realistic experiments to better understand the potential consequences for human and environmental health.
Collapse
Affiliation(s)
- Rafaela Dos Santos Costa
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Centro de Biociências, Natal, 59064-741, Brazil
| | - Gabrielle Rabelo Quadra
- Universidade Federal de Juiz de Fora, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Juiz de Fora, 36036 900, Brazil
| | - Helena de Oliveira Souza
- Universidade Estadual do Rio de Janeiro Programa de Pós-Graduação em Meio Ambiente, Departamento de Oceanografia Química, Rio de Janeiro, 20550-900, Brasil
| | - Viviane Souza do Amaral
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Centro de Biociências, Natal, 59064-741, Brazil
- Universidade Federal do Rio Grande do Norte, Departamento de Biologia Celular e Genética, Natal, 59078-970, Brazil
| | - Julio Alejandro Navoni
- Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Centro de Biociências, Natal, 59064-741, Brazil.
- Instituto Federal do Rio Grande do Norte, Diretoria Acadêmica de Recursos Naturais, Natal, 59015-000, Brazil.
| |
Collapse
|
7
|
Zhou L, Pi W, Hao M, Li Y, An H, Li Q, Zhang P, Wen Y. An injectable and biodegradable nano-photothermal DNA hydrogel enhances penetration and efficacy of tumor therapy. Biomater Sci 2021; 9:4904-4921. [PMID: 34047319 DOI: 10.1039/d1bm00568e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological barrier of solid tumors hinders deep penetration of nanomedicine, constraining anticancer treatment. Moreover, the inherent multidrug resistance (MDR) of cancer tissues may further limit the efficacy of anti-tumor nanomedicine. We synthesized highly permeable, photothermal, injectable, and positively charged biodegradable nucleic acid hydrogel (DNA-gel) nanoparticles to deliver cancer drugs. The nanoparticles are derived from photothermal materials containing black phosphorus quantum dots (BPQDs). The intra-tumoral BPQDs improve the sensitivity of tumor cells to photothermal therapy (PTT) and photodynamic treatment (PDT). Tumor cells take up the positively charged and controllable size DNA-gel nanoparticles, facilitating easy penetration and translocation of the particles across and within the cells. Mouse models demonstrated the anti-tumor activity of the DNA gel nanoparticles in vivo. In particular, the DNA gel nanoparticles enhanced clearance of both small and large tumor masses. Just 20 days after treatment, the tumor masses had been cleared. Compared to DOX chemotherapy alone, the DNA-gel treatment also significantly reduced drug resistance and improved the overall survival of mice with orthotopic breast tumors (83.3%, 78 d). Therefore, DNA gel nanoparticles are safe and efficient supplements for cancer therapy.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Wei Pi
- Department of Orthopaedics and Trauma, Peking University People's Hospital, Beijing, 100044 China.
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yansheng Li
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Qicheng Li
- Department of Orthopaedics and Trauma, Peking University People's Hospital, Beijing, 100044 China.
| | - Peixun Zhang
- Department of Orthopaedics and Trauma, Peking University People's Hospital, Beijing, 100044 China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
8
|
Liu H, Tian Z, Guo Y, Liu X, Ma Y, Du X, Wang R, Zhang S, Shi L, Guo H, Zhang H. Microcystin-leucine arginine exposure contributes to apoptosis and follicular atresia in mice ovaries by endoplasmic reticulum stress-upregulated Ddit3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144070. [PMID: 33288253 DOI: 10.1016/j.scitotenv.2020.144070] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Microcystin-leucine arginine (MC-LR), an intracellular toxin to cause reproduction toxicity, is produced by blooming cyanobacteria and widely distributed in eutrophic waters. It is revealed that MC-LR-induced female reproductive toxicity is more severe than male reproductive toxicity. Previous studies mainly focused on male reproductive toxicity, and the molecular mechanisms of MC-LR-induced apoptosis, follicular atresia and infertility in female remain largely unclear. Here, it was found that MC-LR treatment could induce apoptosis, inflammation, follicular atresia, and decrease of gonadal index in mice ovaries. RNA-Seq data showed that the up-regulation of DNA-damage inducible transcript 3 (Ddit3) under endoplasmic reticulum (ER) stress had predominantly regulatory role in MC-LR-induced apoptotic pathway. Furthermore, MC-LR exposure promoted cleavage of activating transcription factor 6 (ATF6, 50kd), inositol-requiring enzyme 1 (Ire1) expression, phosphorylation of IRE1, mitogen-activated protein kinase 5 (Map3k5) and Ddit3 expression, which was accompanied by the upregulation of death receptor 5 (Dr5) and active-caspase-3, and a decrease in Bcl-2 expression. ER stress inhibitor 4-Phenyl butyric acid (4-PBA) ameliorated these MC-LR-induced changes in protein or mRNA level. More importantly, knockdown of Ddit3 suppressed MC-LR-induced cell apoptosis and follicular atresia by directly regulating Dr5 and Bcl-2. Additionally, it was also found that MC-LR increased Map3k5 phosphorylation by inhibiting protein phosphatase 2A (PP2A) activity, and then promoted Ddit3 expression. In short, our data suggests that Ddit3 promotes MC-LR-induced mice ovarian cells apoptosis and follicular atresia via ER stress activation, which provides a new insight into the relation between infertility in females and the emerging water pollutant MC-LR.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
9
|
Zhao S, Yuan C, Tuo X, Zhou C, Zhao Q, Shen T. MCLR induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in apoptosis in Sertoli cells. CHEMOSPHERE 2021; 263:127868. [PMID: 32828052 DOI: 10.1016/j.chemosphere.2020.127868] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Microcystins-LR (MCLR) is a potent reproductive system toxin. We have previously shown that MCLR induced endoplasmic reticulum (ER) stress and apoptosis in testis. ER is the main calcium storage site in cells, and its calcium homeostasis plays an important role in the regulation of apoptosis. Hence, in the present study, we have investigated the role of calcium (Ca2+) in inducing apoptosis and how it affect the mitochondria and endoplasmic reticulum in TM4 cells. Our study found that MCLR induced an increase in Ca2+ concentration in TM4 cells. Compared to the controls, MCLR induced phosphorylation of calmodulin-dependent protein kinase II (CaMKII) which was involved in MAPKs activation, resulting in the induction of mitochondrial apoptosis pathways. Ca2+ chelator Bapta-AM partially reversed MCLR-induced apoptosis, confirming the possible involvement of calcium homeostasis disruption after MCLR exposure. Meanwhile, MCLR activated unfolded protein response and activated the ER apoptotic pathway by activating caspase-12. In addition, exposure to MCLR causes mitochondrial defects and increased apoptosis by up-regulating caspase 3 and cytosol cytochrome c expression. Collectively, these results demonstrated that MCLR disturbed calcium homeostasis, which caused ER-mitochondria dysfunction, ultimately promoted cell apoptosis in Sertoli cells.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, China
| | - Chunyang Yuan
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Chengfan Zhou
- School of Public Health, Anhui Medical University, Hefei, China
| | - Qihong Zhao
- School of Public Health, Anhui Medical University, Hefei, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Yuan L, Liu H, Liu X, Zhang X, Wu J, Wang Y, Du X, Wang R, Ma Y, Chen X, Petlulu P, Cheng X, Zhuang D, Guo H, Zhang H. Epigenetic modification of H3K4 and oxidative stress are involved in MC-LR-induced apoptosis in testicular cells of SD rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:277-291. [PMID: 31691492 DOI: 10.1002/tox.22865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide, produced by aquatic cyanobacteria such as microcystis, with strong reproductive toxicity which poses greater threat to the reproductive abilities of humans and animals. By exploring the role of trimethylation of histone H3 at lysine 4 (H3K4me3) and the role of oxidative stress in MC-LR-induced apoptosis in testicular Sertoli cells in Sprague-Dawley (SD) rats, this study indicated that MC-LR increased the expression levels of apoptosis-related genes by raising the levels of H3K4me3. 5'-Deoxy-5'-methylthioadenosine (MTA), the inhibitor of H3K4me3, reduced apoptosis, indicating for the first time that epigenetic modification is closely related to the testicular reproductive toxicity induced by MC-LR. MC-LR also induced oxidative stress by stimulating the generation of reactive oxygen species (ROS), and subsequently triggering mitochondria-mediated apoptotic pathway by decreasing mitochondrial membrane potential and increasing the levels of Bax, Bcl-2, Caspase-3, and so on. MC-LR-induced apoptosis of testicular cells could be decreased after pretreatment with oxidative stress inhibitor N-acetyl-cysteine (NAC). Furthermore, the pathological damage to mitochondria and testes were observed in SD rats. These results show that MC-LR can induce apoptosis by raising the levels of H3K4me3, and pretreatment with MTA can ameliorate the MC-LR-induced apoptosis of cocultured cells by lowering the levels of H3K4me3. Furthermore, NAC has a protective effect on MC-LR-induced apoptosis of testicular cells in SD rats by inhibiting the oxidative stress.
Collapse
Affiliation(s)
- Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas
| | | | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Krishnan A, Koski G, Mou X. Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells. Toxicon 2019; 173:20-26. [PMID: 31734250 DOI: 10.1016/j.toxicon.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022]
Abstract
Microcystins (MCs) are a class of hepatotoxins that are commonly produced by freshwater cyanobacteria. MCs harm liver cells through inhibiting protein phosphatases 1 and 2A (PP1 and PP2A) and can produce dualistic effects, i.e., cell death and uncontrolled cellular proliferation. The induction of programmed cell death, i.e., apoptosis, in MC treated hepatic cells has been described previously; however, its exact pathway remains unclear. To address this, HepG2 human hepatoma cells were exposed to MC-LR, the most prevalent isomer of MCs, and morphological and physiological responses were examined. Microscopy and Alamar Blue assay showed that HepG2 cells responded to MC-LR treatment with apoptosis characteristics, such as clumping and shrinking of cells and detachment from the monolayer culture surface. A fluorescent caspase activation assay further revealed activation of all tested apoptosis-dependent caspases (i.e., caspase-3/7, 8 and 9) after 24 h of MC-LR treatment. Furthermore, caspase-8 was found being activated 4 h after MC-LR treatment, earlier than observed activation of caspase-9 (8 h after MC-LR treatment). These data demonstrated that MC-LR can induce apoptosis of HepG2 cells through both extrinsic and intrinsic pathways and that the extrinsic pathway may be activated before the intrinsic pathway. This indicates that extrinsic pathway is more sensitive than intrinsic pathway in MC induced apoptosis. This knowledge contributes to a better understanding of MC hepatotoxicity and can be further used for developing treatments for MC exposed hepatic cells.
Collapse
Affiliation(s)
- Anjali Krishnan
- Biological Science Department, Kent State University, Kent, OH 44242, United States
| | - Gary Koski
- Biological Science Department, Kent State University, Kent, OH 44242, United States
| | - Xiaozhen Mou
- Biological Science Department, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
12
|
Chronic Low Dose Oral Exposure to Microcystin-LR Exacerbates Hepatic Injury in a Murine Model of Non-Alcoholic Fatty Liver Disease. Toxins (Basel) 2019; 11:toxins11090486. [PMID: 31450746 PMCID: PMC6783870 DOI: 10.3390/toxins11090486] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Microcystins are potent hepatotoxins that have become a global health concern in recent years. Their actions in at-risk populations with pre-existing liver disease is unknown. We tested the hypothesis that the No Observed Adverse Effect Level (NOAEL) of Microcystin-LR (MC-LR) established in healthy mice would cause exacerbation of hepatic injury in a murine model (Leprdb/J) of Non-alcoholic Fatty Liver Disease (NAFLD). Ten-week-old male Leprdb/J mice were gavaged with 50 μg/kg, 100 μg/kg MC-LR or vehicle every 48 h for 4 weeks (n = 15–17 mice/group). Early mortality was observed in both the 50 μg/kg (1/17, 6%), and 100 μg/kg (3/17, 18%) MC-LR exposed mice. MC-LR exposure resulted in significant increases in circulating alkaline phosphatase levels, and histopathological markers of hepatic injury as well as significant upregulation of genes associated with hepatotoxicity, necrosis, nongenotoxic hepatocarcinogenicity and oxidative stress response. In addition, we observed exposure dependent changes in protein phosphorylation sites in pathways involved in inflammation, immune function, and response to oxidative stress. These results demonstrate that exposure to MC-LR at levels that are below the NOAEL established in healthy animals results in significant exacerbation of hepatic injury that is accompanied by genetic and phosphoproteomic dysregulation in key signaling pathways in the livers of NAFLD mice.
Collapse
|
13
|
Wei L, He L, Fu J, Liu Y, Ruan J, Liu L, Zhong Q. Molecular characterization of caspase-8-like and its expression induced by microcystin-LR in grass carp (Ctenopharygodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 89:727-735. [PMID: 30981886 DOI: 10.1016/j.fsi.2019.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Caspase-8, an initiator caspase, plays a vital role in apoptosis. In this study, caspase-8-like (named as Cicaspase-8-like), a homologue of caspase-8, was identified in grass carp (Ctenopharygodon idella). The full-length cDNA sequence of CiCaspase-8-like was 1409 bp and contained a 162 bp 5'-UTR, a 239 bp 3'-UTR and a 1008 bp coding sequence. The putative amino acids sequence was 335 residues long, including a large subunit (P20) and a small subunit (P10), but lacking conserved death effector domains. A histidine active site DHSQMDAFVCCVLSHG and a cysteine active-site motif KPKLFFIQACQG were found in P20. Phylogenetic analysis showed that Cicaspase-8-like clustered with the caspase-8 and caspase-8-like of other fish and grouped closely with Carassius auratus caspase-8-like. Quantitative real-time PCR revealed that the Cicaspase-8-like mRNA were expressed constitutively in all tested tissues from healthy grass carp, with high expression level in the blood, spleen, liver and gill, indicating its role in immune reaction. The expression of Cicaspase-8-like mRNA was decreased significantly in the liver because of the stress caused by microcystin-LR (MC-LR) (75 and 100 μg MC-LR/kg BW) at 24 h and 96 h post injection (P < 0.05), but it was increased significantly in grass carp treated with 25 μg MC-LR/kg BW at 24 h (P < 0.05) post injection. Cleaved fragments of Cicaspase-8-like were observed using western blot analysis, and the expression of Cicaspase-8-like protein was increased after MC-LR treatments. Moreover, the expression of both caspase-9 and caspase-3 mRNA increased significantly after treatment with the three doses of MC-LR. TUNEL assay results showed remarkable changes in apoptosis after the MC-LR treatment. These results suggest that Cicaspase-8-like is an important caspase and plays an essential role in MC-LR-induced apoptosis.
Collapse
Affiliation(s)
- LiLi Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| | - Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Qiwang Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| |
Collapse
|
14
|
Yu B, Meng Q, Hu H, Xu T, Shen Y, Cong H. Construction of Dimeric Drug-Loaded Polymeric Micelles with High Loading Efficiency for Cancer Therapy. Int J Mol Sci 2019; 20:E1961. [PMID: 31013608 PMCID: PMC6515377 DOI: 10.3390/ijms20081961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 11/20/2022] Open
Abstract
Polymeric micelles (PMs) have been applied widely to transport hydrophobic drugs to tumor sites for cancer treatment. However, the low load efficiency of the drug in the PMs significantly reduces the therapeutic efficiency. We report here that disulfide-linked camptothecin (CPT) as a kind of dimeric drug can be effectively embedded in the core of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) PMs for improving drug-loading efficiency, and PEG can be used as a hydrophilic shell. Moreover, the dimeric CPT-loaded PCL-PEG-PCL PMs exhibited excellent solubility in phosphate-buffered saline (PBS) media and significant cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China.
| | - Qingye Meng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Tao Xu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
15
|
Cong H, Zhou L, Meng Q, Zhang Y, Yu B, Shen Y, Hu H. Preparation and evaluation of PAMAM dendrimer-based polymer gels physically cross-linked by hydrogen bonding. Biomater Sci 2019; 7:3918-3925. [DOI: 10.1039/c9bm00960d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dendrimer-based polymer gels with good antibacterial properties and anti-inflammatory properties were prepared without any covalent bonding cross-linking agents.
Collapse
Affiliation(s)
- Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Liping Zhou
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Qingye Meng
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Yixin Zhang
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- Qingdao University
- Qingdao
- China
| |
Collapse
|
16
|
Adegoke EO, Xue W, Machebe NS, Adeniran SO, Hao W, Chen W, Han Z, Guixue Z, Peng Z. Sodium Selenite inhibits mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB and mitochondrial signaling pathways blockage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:165-175. [PMID: 30267989 DOI: 10.1016/j.ecoenv.2018.09.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
This study was conducted to investigate the ameliorative effect of selenium on microcystin-LR induced toxicity in bovine Sertoli cells. Bovine Sertoli cells were pretreated with selenium (Na2SeO3) for 24 h after which selenium pretreated and non-pretreated Sertoli cells were cultured in medium containing 10% heat activated fetal bovine serum FBS+ 80 µg/L MC-LR to assess its ameliorative effect on MC-LR toxicity. The results show that selenium pretreatment inhibited the MC-LR induced mitophagy, downregulation and mislocalization of blood-testis barrier constituent proteins in bovine Sertoli cells via NF-kB and cytochrome c release blockage. The observed downregulation of electron transport chain (ETC) related genes (mt-ND2, COX-1, COX-2) and upregulation of inflammatory cytokines (IL-6, TNF-α, IL-1β, IFN-γ, IL-4, IL-10, 1 L-13, TGFβ1) in non-pretreated cells exposed to MC-LR were ameliorated in selenium pretreated cells. There was no significant difference (P > 0.05) in the protein levels of blood-testis barrier constituent proteins (ZO-1, occludin, connexin-43, CTNNB1, N-cadherin) and mitochondria related genes (mt-ND2, COX-1, COX-2, ACAT1, mtTFA) of selenium pretreated Sertoli cell compared to the control. Taken together, we conclude that selenium inhibits MC-LR caused Mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell via mitochondrial and TLR4/NF-kB signaling pathways blockage.
Collapse
Affiliation(s)
- E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Xue
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - N S Machebe
- Department of Animal Science, University of Nigeria, Nsukka, Nigeria
| | - S O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Hao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Wang Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Zhang Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China
| | - Zhang Guixue
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China.
| | - Zheng Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, PR China.
| |
Collapse
|
17
|
Adegoke EO, Wang C, Machebe NS, Wang X, Wang H, Adeniran SO, Zhang H, Zheng P, Zhang G. Microcystin-leucine arginine (MC-LR) induced inflammatory response in bovine sertoli cell via TLR4/NF-kB signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:115-126. [PMID: 30212741 DOI: 10.1016/j.etap.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Sertoli cells were treated with 0, 20, 40, 60 and 80 μg/L of MC-LR to investigate its toxic effects, mechanism of action and immune response of the cells. Our results revealed that treatment containing 20 μg/L of MC-LR was non-toxic to the cells. Treatments containing 40, 60 and 80 μg/L of MC-LR reduced the cell viability, induced nuclear morphological changes and downregulated the blood-testis barrier constituent proteins within 48 h after treatment. The toll-like receptor 4 (TLR4) and nuclear factor-kappaB (NF-kB) were activated and significantly (P < 0.05) upregulated in cells treated with 40, 60 and 80 μg/L of MC-LR compared to the control. The pro-inflammatory cytokines were upregulated within 48 h after treatment. However commencing from 72 h, upregulation of anti-inflammatory cytokines and expression of blood-testis barrier constituent proteins was observed. This study indicates that MC-LR induced inflammatory response in bovine Sertoli cell via activation of TLR4/NF-kB signaling pathway.
Collapse
Affiliation(s)
- E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chen Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - N S Machebe
- Department of Animal Science, University of Nigeria, Nsukka, Nigeria
| | - Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Hao Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - S O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
18
|
Yu B, Song N, Hu H, Chen G, Shen Y, Cong H. A degradable triple temperature-, pH-, and redox-responsive drug system for cancer chemotherapy. J Biomed Mater Res A 2018; 106:3203-3210. [DOI: 10.1002/jbm.a.36515] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/07/2018] [Accepted: 07/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory; Qingdao University; Qingdao 266071 China
| | - Na Song
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
| | - Guihuan Chen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering; Qingdao University; Qingdao 266071 China
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory; Qingdao University; Qingdao 266071 China
| |
Collapse
|
19
|
Liu H, Zhang X, Zhang S, Huang H, Wu J, Wang Y, Yuan L, Liu C, Zeng X, Cheng X, Zhuang D, Zhang H. Oxidative Stress Mediates Microcystin-LR-Induced Endoplasmic Reticulum Stress and Autophagy in KK-1 Cells and C57BL/6 Mice Ovaries. Front Physiol 2018; 9:1058. [PMID: 30131715 PMCID: PMC6090159 DOI: 10.3389/fphys.2018.01058] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/16/2018] [Indexed: 01/28/2023] Open
Abstract
Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide intracellular toxin released by cyanobacteria that exhibits strong reproductive toxicity. However, little is known about its biotoxicity to the female reproductive system. The present study investigates unexplored molecular pathways by which oxidative stress acts on MC-LR-induced endoplasmic reticulum stress (ERs) and autophagy. In the present study, immortalized murine ovarian granular cells (KK-1 cells) were exposed to 8.5, 17, and 34 μg/mL (IC50) of MC-LR with or without N-acetyl-l-cysteine (NAC, 10 mM) for 24 h, and C57BL/6 mice were treated with 12.5, 25.0, and 40.0 μg/kg⋅bw of MC-LR with or without NAC (200 mg/kg⋅bw) for 14 days. The results revealed that MC-LR could induce cells apoptosis and morphologic changes in ovarian tissues, induce oxidative stress by stimulating the generation of reactive oxygen species (ROS), destroying antioxidant capacity, and subsequently trigger ERs and autophagy by inducing the hyper-expression of ATG12, ATG5, ATG16, EIF2α (phosphorylated at S51), CHOP, XBP1, GRP78, Beclin1, and PERK (Thr980). Furthermore, NAC pretreatment partly inhibited MC-LR-induced ERs and autophagy via the PERK/ATG12 and XBP1/Beclin1 pathways. These results suggest that oxidative stress mediated MC-LR-induced ERs and autophagy in KK-1 cells and C57BL/6 mice ovaries. Therefore, oxidative stress plays an important role in female toxicity induced by MC-LR.
Collapse
Affiliation(s)
- Haohao Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shenshen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinxia Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Le Yuan
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chuanrui Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xin Zeng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Donggang Zhuang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Chen Y, Wang J, Pan C, Li D, Han X. Microcystin-leucine-arginine causes blood-testis barrier disruption and degradation of occludin mediated by matrix metalloproteinase-8. Cell Mol Life Sci 2018; 75:1117-1132. [PMID: 29071384 PMCID: PMC11105681 DOI: 10.1007/s00018-017-2687-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) can cause male reproductive disorders. However, the underlying mechanisms are not yet fully understood. In this study, we aimed to investigate the effects of MC-LR on the integrity of blood-testis barrier (BTB) and the related molecular mechanisms. Both transepithelial electrical resistance measurement in vitro and electron microscope observation ex vivo revealed that MC-LR caused disruption of the tight junction between Sertoli cells, which was paralleled by the degradation of occludin. We observed increased expression of matrix metalloproteinase-8 (MMP-8) upon exposure to MC-LR, and confirmed that abrogation of MMP-8 activity by specific inhibitors as well as transfection with MMP-8 shRNA could abolish the degradation of occludin. Our data demonstrated that MC-LR up-regulated nuclear levels of c-Fos and c-Jun through activating ERK and JNK, and increased NF-κB levels by activating the phosphatidylinositol 3-kinase (PI3K)/AKT cascades. Enhanced binding of c-Fos and NF-κB to the promoter of MMP-8 promoted the transcription of MMP-8 gene. Furthermore, miR-184-3p was significantly downregulated in SC following exposure to MC-LR through targeting MMP-8 expression. Together, these results confirmed that MC-LR-induced MMP-8 expression was regulated at both transcriptional and post-transcriptional levels, which was involved in MC-LR-induced degradation of occludin and BTB destruction. This work may provide new perspectives in developing new diagnosis and treatment strategies for MC-induced male infertility.
Collapse
Affiliation(s)
- Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
21
|
Ma J, Li Y, Duan H, Sivakumar R, Li X. Chronic exposure of nanomolar MC-LR caused oxidative stress and inflammatory responses in HepG2 cells. CHEMOSPHERE 2018; 192:305-317. [PMID: 29117589 DOI: 10.1016/j.chemosphere.2017.10.158] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Low dose but long-term exposure of microcystin-LR (MC-LR) could induce human hepatitis and promote liver cancer according to epidemiological investigation results, but the exact mechanism has not been completely elucidated. In the present study, a chronic toxicity test of MC-LR exposure on HepG2 cells at 0.1-30 nM for 83 d was conducted under laboratory conditions. The western blot assay result revealed that MC-LR entered HepG2 cells, even at the concentration of 0.1 nM, after 83 d of exposure, but no cytotoxicity was observed in the HepG2 cells, as determined by the CCK-8 and LDH tests. However, the results of the DCF fluorescence assay showed that the intracellular ROS level in the 30 nM MC-LR-treated cells was significantly higher than that of the control cells, and 5 and 10 nM of MC-LR exposure totally increased the activity of SOD in HepG2 cells. These results indicate that MC-LR exposure at low concentration also induced excessive ROS in HepG2 cells. Additionally, long-term exposure of MC-LR at low concentration remarkably promoted the expression of NF-κB p65, COX-2, iNOS, TNF-α, IL-1β, and IL-6 in the cells, suggesting that long-term MC-LR exposure at low concentration can induce inflammatory reaction to HepG2 cells, which might account for MC-induced human hepatitis. Thus, we hypothesized that the pathogenesis of human hepatitis and hepatocarcinoma caused by MCs might be closely associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongying Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | | | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
22
|
Essential roles of Akt/Snail pathway in microcystin-LR-induced tight junction toxicity in Sertoli cell. Food Chem Toxicol 2018; 112:290-298. [PMID: 29307602 DOI: 10.1016/j.fct.2018.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Abstract
Microcystin (MC)-LR is a cyclic heptapeptide that acts as a potent reproductive system toxin. However, the underlying pathways of MCLR-induced reproductive system toxicity have not been well elucidated. The blood-testis barrier is mainly constituted by tight junctions (TJs) between adjacent Sertoli cells in the seminiferous epithelium near the basement membrane. The present study was designed to investigate changes in TJs and the underlying pathway in MC-LR-induced TJs toxicity in Sertoli cell. In our study, the transepithelial electrical resistance (TER) value was decreased in a dose dependent manner due to the markers of TJs occludin, claudin and zonula occludens-1 (ZO-1) expression decline. MC-LR is shown to induce cytotoxicity by inhibiting protein phosphatase 2A (PP2A) activity. Our results also showed that the PP2A activity presented a dose-dependent decline. Moreover, MC-LR stimulated protein expression of snail by Akt/GSK-3β activation. The activated Akt/GSK-3β and snail signaling pathway largely accounted for MC-LRinduced TJs toxicity, which could be partially reversed by snail siRNA interference or AKT chemical inhibitor in TM4 cells. These findings indicated that MC-LR inhibit the protein expression of TJs, and the activation of Akt/Snail signaling pathways due to PP2A inhibition is proposed to participate in this process.
Collapse
|
23
|
MiR-301b-3p/3584-5p enhances low-dose mono-n-butyl phthalate (MBP)-induced proliferation by targeting Rasd1 in Sertoli cells. Toxicol In Vitro 2017; 47:79-88. [PMID: 29162477 DOI: 10.1016/j.tiv.2017.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023]
Abstract
To investigate the possible molecular mechanism of low concentration plasticizer mono-n-butyl phthalate (MBP) -induced juvenile Sertoli cells (SCs) proliferation, we evaluated global alterations of miRNA and mRNA expression in rat SCs treated with 0.1mM MBP. Microarray analysis revealed that miR-3584-5p and miR-301b-3p were up-regulated and their common target gene Dexamethasone-induced Ras-related protein 1 (Rasd1) was down-regulated. Further work suggested that SCs proliferation induced by low concentration MBP in vitro might be mediated by Rasd1 regulating ERK1/2 signaling pathway. The present study is first to investigate the effect of low-dose MBP on SCs proliferation and may enhance our understanding on the modes of action of low concentration MBP on male reproductive system. We hope the results will contribute to explain the causes of precocious puberty and testicular tumors induced by exogenous chemicals.
Collapse
|
24
|
Elgawish RA, Yoshimura Y, Isobe N. Microcystin-leucine-arginine Modulates the Expression Patterns of Proinflammatory Cytokines and an Apoptotic Gene in Chicken Liver. J Poult Sci 2017; 55:70-77. [PMID: 32055159 PMCID: PMC6756373 DOI: 10.2141/jpsa.0170054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/15/2017] [Indexed: 01/05/2023] Open
Abstract
Microcystins (MCs) are included in drinking water and a family of cyclic heptapeptide hepatotoxins that have been implicated in the impairment of liver function in various animals. There is scarce information on the effect of MCs on cytokines and apoptotic gene expression and on whether MCs can induce inflammation and apoptosis in avian hepatic tissue. This study investigated the expression of genes related to proinflammatory interleukins, apoptosis, and antioxidant function in chicken liver tissues cultured in the presence of different doses of microcystin-leucine-arginine (MC-LR). Livers were collected from five hens and liver slices were placed in sterile tubes containing Dulbecco's medium supplemented with 0, 1, 10, or 100 ng/mL of MC-LR. After 6 h of cultivation, total RNA was extracted and quantitative PCR analysis was performed for interleukin genes (IL-1β, IL-6, and IL-8), TNF sf15, an apoptotic gene (caspase-3), and genes involved in antioxidant function ([catalase [CAT ], glutathione peroxidase [GSH-PX ], and superoxide dismutase [SOD]). Liver tissues in each group were fixed for histopathology. MC-LR downregulated the mRNA levels of IL-1β, IL-8, and TNF sf15 as compared to the control (0 ng/mL) in dose-dependent patterns; however, the differences were not significant. The expression of IL-6 in liver tissues exposed to 100 ng/mL of MC-LR was significantly (P<0.05) lower than that in tissues exposed to 1 ng/mL. In contrast, MC-LR upregulated the mRNA expression of caspase-3 and genes involved in antioxidant function in the liver tissues after 6 h, without the difference reaching statistical significance. Hepatocytes showed vacuolar degeneration and focal necrosis according to the dose of MC-LR. This study highlighted the risk of low doses of MC-LR in chicken liver. Moreover, MC-LR could modulate the transcriptional patterns of at least IL-6 in liver-tissue culture of chicken after 6 h of exposure.
Collapse
Affiliation(s)
- Rania A. Elgawish
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Yukinori Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
25
|
Miller TR, Beversdorf LJ, Weirich CA, Bartlett SL. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Mar Drugs 2017; 15:E160. [PMID: 28574457 PMCID: PMC5484110 DOI: 10.3390/md15060160] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are ubiquitous phototrophic bacteria that inhabit diverse environments across the planet. Seasonally, they dominate many eutrophic lakes impacted by excess nitrogen (N) and phosphorus (P) forming dense accumulations of biomass known as cyanobacterial harmful algal blooms or cyanoHABs. Their dominance in eutrophic lakes is attributed to a variety of unique adaptations including N and P concentrating mechanisms, N₂ fixation, colony formation that inhibits predation, vertical movement via gas vesicles, and the production of toxic or otherwise bioactive molecules. While some of these molecules have been explored for their medicinal benefits, others are potent toxins harmful to humans, animals, and other wildlife known as cyanotoxins. In humans these cyanotoxins affect various tissues, including the liver, central and peripheral nervous system, kidneys, and reproductive organs among others. They induce acute effects at low doses in the parts-per-billion range and some are tumor promoters linked to chronic diseases such as liver and colorectal cancer. The occurrence of cyanoHABs and cyanotoxins in lakes presents challenges for maintaining safe recreational aquatic environments and the production of potable drinking water. CyanoHABs are a growing problem in the North American (Laurentian) Great Lakes basin. This review summarizes information on the occurrence of cyanoHABs in the Great Lakes, toxicological effects of cyanotoxins, and appropriate numerical limits on cyanotoxins in finished drinking water.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Lucas J Beversdorf
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
26
|
Ma M, Pi F, Wang J, Ji J, Sun X. New insights into cytotoxicity induced by microcystin-LR, estradiol, and ractopamine with mathematical models: Individual and combined effects. CHEMOSPHERE 2017; 168:223-233. [PMID: 27783963 DOI: 10.1016/j.chemosphere.2016.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/18/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Humans are most likely to be exposed to microcystins (MCs) combined with other water pollutants rather than to individual compounds through the consumption of contaminated drinking water or through recreational activities, such as swimming. However, the combined effects of MC-LR, estradiol (EST), and ractopamine (RAC) have not been extensively researched. The goal of this study was to investigate the combined effects of these compounds. For this purpose, cytotoxicity was evaluated in HepG2 cells treated with single or combined doses of MC-LR, EST, and RAC based on concentration addition (CA), independent action (IA), and Chou-Talalay's combination-index (CI) methods. Singly applied MC-LR and EST induced HepG2 cellular proliferation at low-concentration levels (1 × 10-12-1 × 10-9 M), and decreased viability at higher doses of exposure (1 × 10-9-1 × 10-6 M). Exposure to binary or ternary mixtures of MC-LR, EST, and RAC exhibited synergistic effects at high concentrations, irrespective of the models used. In contrast, antagonism was observed for the mixture of MC-LR and EST at relatively low concentrations. A synergistic effect on reactive oxygen species (ROS) generation was observed for the combined drugs at high concentrations. Additionally, the ratio of apoptotic cells was increased more by the combined drugs than the single drugs, consistent with the inhibition of cell viability. The ROS increase after treatment with the combined drugs may enhance cytotoxicity and subsequently lead to cell apoptosis. Given the interactions between MC-LR, EST, and RAC, government regulatory standards for MC-LR should consider the toxicological interactions between MC-LR and other environment pollutions.
Collapse
Affiliation(s)
- Min Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiasheng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
27
|
Lundqvist J, Pekar H, Oskarsson A. Microcystins activate nuclear factor erythroid 2-related factor 2 (Nrf2) in human liver cells in vitro – Implications for an oxidative stress induction by microcystins. Toxicon 2017; 126:47-50. [DOI: 10.1016/j.toxicon.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/27/2023]
|
28
|
Microcystin-Leucine Arginine Causes Cytotoxic Effects in Sertoli Cells Resulting in Reproductive Dysfunction in Male Mice. Sci Rep 2016; 6:39238. [PMID: 27976743 PMCID: PMC5157014 DOI: 10.1038/srep39238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR) is a potent toxin for Sertoli cells. However, the specific molecular mechanisms of MC-induced cytotoxicity still remain unclear. In this study, we performed a comprehensive analyses of changes of miRNAs and mRNAs in Sertoli cells treated with MC-LR. Through computational approaches, we showed the pivotal roles of differentially expressed miRNAs that were associated with cell metabolism, cellular growth and proliferation, cell-to-cell signaling and interaction and cellular movement. Ingenuity Pathway Analyses (IPA) revealed some differentially expressed miRNAs and mRNAs that may cause reproductive system diseases. Target gene analyses suggested that destruction in tight junctions (TJ) and adherens junctions (AJ) in testes may be mediated by miRNAs. Consistent with a significant enrichment of chemokine signaling pathways, we observed numerous macrophages in the testes of mice following treatment with MC-LR, which may cause testicular inflammation. Moreover, miR-98-5p and miR-758 were predicted to bind the 3′-UTR region of the mitogen-activated protein kinase 11 (MAPK11, p38 β isoform) gene which stimulates tumor necrosis factor-α (TNF-α) expression in Sertoli cells. TNF-α could interact with the tumor necrosis factor receptor 1 (TNFR1) on germ cells leading to induction of germ cell apoptosis. Collectively, our integrated miRNA/mRNA analyses provided a molecular paradigm, which was experimentally validated, for understanding MC-LR-induced cytotoxicity.
Collapse
|
29
|
Wang X, Ding J, Xiang Z, Jiang P, Du J, Han X. Microcystin-LR causes sexual hormone disturbance in male rat by targeting gonadotropin-releasing hormone neurons. Toxicon 2016; 123:45-55. [DOI: 10.1016/j.toxicon.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
|
30
|
Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression. Toxicol Appl Pharmacol 2016; 310:32-40. [DOI: 10.1016/j.taap.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023]
|
31
|
Huang H, Liu C, Fu X, Zhang S, Xin Y, Li Y, Xue L, Cheng X, Zhang H. Microcystin-LR Induced Apoptosis in Rat Sertoli Cells via the Mitochondrial Caspase-Dependent Pathway: Role of Reactive Oxygen Species. Front Physiol 2016; 7:397. [PMID: 27667976 PMCID: PMC5016609 DOI: 10.3389/fphys.2016.00397] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023] Open
Abstract
Microcystins (MCs), the secondary metabolites of blue-green algae, are ubiquitous and major cyanotoxin contaminants. Besides the hepatopancreas/liver, the reproductive system is regarded as the most important target organ for MCs. Although reactive oxygen species (ROS) have been implicated in MCs-induced reproductive toxicity, the role of MCs in this pathway remains unclear. In the present study, Sertoli cells were employed to investigate apoptotic death involved in male reproductive toxicity of microcystin-LR (MC-LR). After exposure to various concentrations of MC-LR for 24 h, the growth of Sertoli cells was concentration-dependently decreased with an IC50 of ~32 μg/mL. Mitochondria-mediated apoptotic changes were observed in Sertoli cells exposed to 8, 16, and 32 μg/mL MC-LR including the increased expression of caspase pathway proteins, collapse of mitochondrial membrane potential (MMP), and generation of ROS. Pretreatment with a global caspase inhibitor was found to depress the activation of caspases, and eventually increased the survival rate of Sertoli cells, implying that the mitochondrial caspases pathway is involved in MC-LR-induced apoptosis. Furthermore, N-acetyl-l-cysteine attenuated the MC-LR-induced intracellular ROS generation, MMP collapse and cytochrome c release, resulting in the inhibition of apoptosis. Taken together, the observed results suggested that MC-LR induced apoptotic death of Sertoli cells by the activation of mitochondrial caspases cascade, while its effects on the ROS-mediated signaling pathway may contribute toward the initiation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hui Huang
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| | - Chuanrui Liu
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| | - Xiaoli Fu
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| | - Shenshen Zhang
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| | - Yongjuan Xin
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| | - Yang Li
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| | - Lijian Xue
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| | - Xuemin Cheng
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| | - Huizhen Zhang
- Department of Environmental Health, School of Public Health, Zhengzhou University Zhengzhou, China
| |
Collapse
|
32
|
Chen L, Chen J, Zhang X, Xie P. A review of reproductive toxicity of microcystins. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:381-99. [PMID: 26521084 DOI: 10.1016/j.jhazmat.2015.08.041] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 05/25/2023]
Abstract
Animal studies provide strong evidence of positive associations between microcystins (MCs) exposure and reproductive toxicity, representing a threat to human reproductive health and the biodiversity of wild life. This paper reviews current knowledge of the reproductive toxicity of MCs, with regard to mammals, fishes, amphibians, and birds, mostly in males. Toxicity of MCs is primarily governed by the inhibition of protein phosphatases 1 and 2A (PP1 and PP2A) and disturbance of cellular phosphorylation balance. MCs exposure is related to excessive production of reactive oxygen species (ROS) and oxidative stress, leading to cytoskeleton disruption, mitochondria dysfunction, endoplasmic reticulum (ER) stress, and DNA damage. MCs induce cell apoptosis mediated by the mitochondrial and ROS and ER pathways. Through PP1/2A inhibition and oxidative stress, MCs lead to differential expression/activity of transcriptional factors and proteins involved in the pathways of cellular differentiation, proliferation, and tumor promotion. MC-induced DNA damage is also involved in carcinogenicity. Apart from a direct effect on testes and ovaries, MCs indirectly affect sex hormones by damaging the hypothalamic-pituitary-gonad (HPG) axis and liver. Parental exposure to MCs may result in hepatotoxicity and neurotoxicity of offspring. We also summarize the current research gaps which should be addressed by further studies.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
33
|
Li Y, Zhang M, Chen P, Liu R, Liang G, Yin L, Pu Y. Effects of Microcystin-LR Exposure on Spermiogenesis in Nematode Caenorhabditis elegans. Int J Mol Sci 2015; 16:22927-37. [PMID: 26402677 PMCID: PMC4613343 DOI: 10.3390/ijms160922927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/17/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022] Open
Abstract
Little is known about the effect on spermiogenesis induced by microcystin-leucine arginine (MC-LR), even though such data are very important to better elucidate reproductive health. In the current work, with the aid of nematode Caenorhabditis elegans (C. elegans) as an animal model, we investigated the defects on spermiogenesis induced by MC-LR. Our results showed that MC-LR exposure induced sperm morphology abnormality and caused severe defects of sperm activation, trans-activation, sperm behavior and competition. Additionally, the expression levels of spe-15 were significantly decreased in C. elegans exposed to MC-LR lower than 16.0 μg/L, while the expression levels of spe-10 and fer-1 could be significantly lowered in C. elegans even exposed to 1.0 μg/L of MC-LR. Therefore, the present study reveals that MC-LR can induce adverse effects on spermiogenesis, and those defects of sperm functions may be induced by the decreases of spe-10, spe-15 and fer-1 gene expressions in C. elegans.
Collapse
Affiliation(s)
- Yunhui Li
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Minhui Zhang
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
34
|
Zhou Y, Wang H, Wang C, Qiu X, Benson M, Yin X, Xiang Z, Li D, Han X. Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity. Toxicol Appl Pharmacol 2015; 287:1-8. [DOI: 10.1016/j.taap.2015.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/17/2023]
|
35
|
Hu H, Yuan W, Liu FS, Cheng G, Xu FJ, Ma J. Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8942-51. [PMID: 25845425 DOI: 10.1021/acsami.5b02432] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes have excellent penetrability and encapsulation efficiency in the fields of drug and gene delivery. Because of their excellent physicochemical properties, biocompatible rodlike cellulose nanocrystals (CNCs) were reportedly expected to replace carbon nanotubes. In this work, CNCs from natural cotton wool were functionalized with disulfide bond-linked poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes for effective biomedical applications. A range of CNC-graft-PDMAEMA vectors (termed as CNC-SS-PDs) with various molecular weights of PDMAEMA were synthesized. Under reducible conditions, PDMAEMA chains can be easily cleaved from CNCs. The gene condensation ability, reduction sensitivity, cytotoxicity, gene transfection, and in vivo antitumor activities of CNC-SS-PDs were investigated in detail. The CNC-SS-PDs exhibited good transfection efficiencies and low cytotoxicities. The needlelike shape of CNCs had an important effect on enhancing transfection efficiency. The antitumor effect of CNC-SS-PDs was evaluated by a suicide gene/prodrug system (cytosine deaminase/5-fluorocytosine, CD/5-FC) in vitro and in vivo. This research demonstrates that the functionalization of CNCs with redox-responsive polycations is an effective method for developing novel gene delivery systems.
Collapse
Affiliation(s)
- Hao Hu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Yuan
- ∥State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fu-Sheng Liu
- ⊥Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital affiliated with Capital Medical University, Beijing 100050, China
| | - Gang Cheng
- #Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Fu-Jian Xu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Ma
- ∥State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
36
|
Piyathilaka MAPC, Pathmalal MM, Tennekoon KH, De Silva BGDNK, Samarakoon SR, Chanthirika S. Microcystin-LR-induced cytotoxicity and apoptosis in human embryonic kidney and human kidney adenocarcinoma cell lines. Microbiology (Reading) 2015; 161:819-28. [DOI: 10.1099/mic.0.000046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/26/2015] [Indexed: 01/08/2023] Open
|
37
|
Li X, Zhang X, Ju J, Li Y, Yin L, Pu Y. Maternal repeated oral exposure to microcystin-LR affects neurobehaviors in developing rats. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:64-69. [PMID: 25319481 DOI: 10.1002/etc.2765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/26/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
Microcystins are toxic peptides secreted by certain water blooms of toxic cyanobacteria. The most widely studied microcystin is microcystin-LR (MC-LR), which exhibits hepatotoxicity and neurotoxicity. However, limited information is available regarding the effects on offspring following maternal exposure. The present study was conducted to observe the effects of progestational exposure to MC-LR on postnatal development in rats. Female Sprague-Dawley rats (28 d old) were randomly divided into a control group and 3 treatment groups (1.0 µg MC-LR/kg body wt, 5.0 µg MC-LR/kg body wt, and 20.0 µg MC-LR/kg body wt), with 7 rats per group. The MC-LR was administered through gavage once every 48 h for 8 wk. Pure water was used as control. Each female rat was mated with an unexposed adult male rat. Motor development, behavioral development, and learning ability of pups were detected using surface righting reflex, negative geotaxis, and cliff avoidance tests on postnatal day 7. Open-field and Morris water maze tests were performed on postnatal day 28 and day 60. The levels of lipid peroxidation products and antioxidant indices in the rat hippocampus were also detected. Pups from the MC-LR-treated groups had significantly lower scores than controls in the cliff avoidance test (p < 0.05). Cognitive impairment, malondialdehyde level, and total superoxide dismutase activity significantly increased in MC-LR-exposed pups compared with controls (p < 0.05). Therefore, the present study reveals that maternal exposure to MC-LR has adverse effects on neurodevelopment in rat offspring.
Collapse
Affiliation(s)
- XiaoBo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
38
|
Chen Y, Zhou Y, Wang X, Qian W, Han X. Microcystin-LR induces autophagy and apoptosis in rat Sertoli cells in vitro. Toxicon 2013; 76:84-93. [PMID: 24047964 DOI: 10.1016/j.toxicon.2013.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Although microcystin-LR (MC-LR) produced by cyanobacteria has been demonstrated with strong reproductive toxicity, the mechanisms remain unclear. This study aimed to probe the effects of MC-LR on induction of autophagy in Sertoli cells, as well as the relationship between autophagy and apoptosis. After exposure to various concentrations of MC-LR for 24 or 48 h, cell viability and membrane integrity were significantly decreased under high MC-LR conditions (50-500 nM). The autophagosome marker protein LC3 was increased at mild MC-LR concentrations (0.5-5 nM). However, autophagosomes accumulated to their peak level under high MC-LR conditions in parallel with significantly up-regulated apoptosis. Treatment with an autophagy inhibitor (3-MA) abrogated autophagosome accumulation and apoptosis. This study demonstrated that MC-LR had toxic effects on Sertoli cells by inducing autophagy and apoptosis. The autophagosome accumulation may be involved in the apoptosis induced by MC-LR.
Collapse
Affiliation(s)
- Yu Chen
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | |
Collapse
|
39
|
Wang S, Tian D, Zheng W, Jiang S, Wang X, Andersen ME, Zheng Y, He G, Qu W. Combined exposure to 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone and microsytin-LR increases genotoxicity in Chinese hamster ovary cells through oxidative stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1678-1687. [PMID: 23286199 DOI: 10.1021/es304541a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The disinfection byproducts 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone (MX) and microcystins-LR (MC-LR), which are common contaminants in drinking water, often occur together in water sources in areas with high gastrointestinal tract cancer risks. While often studied alone, combination effects of these compounds are unknown. Here, we examine combined genotoxic responses to mixtures of MX and MC-LR using the Ames test, a cytokinesis-block micronuclei assay, and the comet assay with analysis for interactions by fractional analysis. We also evaluated a possible mechanism of genotoxicity by examining effects of the compounds on markers of oxidative stress. MX and MC-LR administrated jointly at noncytotoxic concentrations demonstrated significant interactions in the Ames test, the micronuclei assay, and the comet assay showing responses greater than those expected for additivity. Moreover, coexposure to MX and MC-LR significantly increased luciferase antioxidant response element activity, intracellular superoxide dismutase, catalase, glutathione, and reactive oxygen species production. In comparison with exposure to either compound alone, the mixtures of MX and MC-LR caused a less than additive effect on oxidative stress. Taken together, these results indicate that MC-LR exacerbates MX genotoxicity in low-dose combined exposure. This interaction may be enhanced by oxidative stress in the combined exposures.
Collapse
Affiliation(s)
- Shu Wang
- Department of Environmental Health, Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen L, Zhang X, Zhou W, Qiao Q, Liang H, Li G, Wang J, Cai F. The interactive effects of cytoskeleton disruption and mitochondria dysfunction lead to reproductive toxicity induced by microcystin-LR. PLoS One 2013; 8:e53949. [PMID: 23342045 PMCID: PMC3547071 DOI: 10.1371/journal.pone.0053949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
The worldwide occurrence of cyanobacterial blooms evokes profound concerns. The presence of microcystins (MCs) in waters and aquatic food increases the risk to human health. Some recent studies have suggested that the gonad is the second most important target organ of MCs, however, the potential toxicity mechanisms are still unclear. For a better understanding of reproductive toxicity of MCs on animals, we conducted the present experimental investigation. Male rats were intraperitoneally injected with MC-LR for 50 d with the doses of 1 and 10 µg/kg body weight per day. After prolonged exposure to MC-LR, the testes index significantly decreased in 10 µg/kg group. Light microscope observation indicated that the space between the seminiferous tubules was increased. Ultrastructural observation showed some histopathological characteristics, including cytoplasmic shrinkage, cell membrane blebbing, swollen mitochondria and deformed nucleus. Using Q-PCR methods, the transcriptional levels of some cytoskeletal and mitochondrial genes were determined. MC-LR exposure affected the homeostasis of the expression of cytoskeletal genes, causing possible dysfunction of cytoskeleton assembly. In MC-LR treatments, all the 8 mitochondrial genes related with oxidative phosphorylation (OXPHOS) significantly increased. The reactive oxygen species (ROS) level significantly increased in 10 µg/kg group. The mitochondria swelling and DNA damage were also determined in 10 µg/kg group. Hormone levels of testis significantly changed. The present study verified that both cytoskeleton disruption possibly due to cytoskeletal reorganization or depolymerization and mitochondria dysfunction interact with each other through inducing of reactive oxygen species and oxidative phosphorylation, and jointly result in testis impairment after exposure to MC-LR.
Collapse
Affiliation(s)
- Liang Chen
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Xuezhen Zhang
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Wenshan Zhou
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Qin Qiao
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Hualei Liang
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Guangyu Li
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Jianghua Wang
- Fisheries College, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, China
| | - Fei Cai
- Department of pharmacology, Medical College, Xianning University, Xianning, China
| |
Collapse
|
41
|
Zhou Y, Chen Y, Yuan M, Xiang Z, Han X. In vivo study on the effects of microcystin—LR on the apoptosis, proliferation and differentiation of rat testicular spermatogenic cells of male rats injected i.p. with toxins. J Toxicol Sci 2013; 38:661-70. [DOI: 10.2131/jts.38.661] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yuan Zhou
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, China
| | - Yu Chen
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, China
| | - Mingming Yuan
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, China
| |
Collapse
|