1
|
Kabekkodu SP, Gladwell LR, Choudhury M. The mitochondrial link: Phthalate exposure and cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119708. [PMID: 38508420 DOI: 10.1016/j.bbamcr.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Phthalates' pervasive presence in everyday life poses concern as they have been revealed to induce perturbing health defects. Utilized as a plasticizer, phthalates are riddled throughout many common consumer products including personal care products, food packaging, home furnishings, and medical supplies. Phthalates permeate into the environment by leaching out of these products which can subsequently be taken up by the human body. It is previously established that a connection exists between phthalate exposure and cardiovascular disease (CVD) development; however, the specific mitochondrial link in this scenario has not yet been described. Prior studies have indicated that one possible mechanism for how phthalates exert their effects is through mitochondrial dysfunction. By disturbing mitochondrial structure, function, and signaling, phthalates can contribute to the development of the foremost cause of death worldwide, CVD. This review will examine the potential link among phthalates and their effects on the mitochondria, permissive of CVD development.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
2
|
Kim D, Oh E, Kim H, Baek SM, Cho J, Kim EH, Choi S, Bian Y, Kim W, Bae ON. Mono-(2-ethylhexyl)-phthalate potentiates methylglyoxal-induced blood-brain barrier damage via mitochondria-derived oxidative stress and bioenergetic perturbation. Food Chem Toxicol 2023; 179:113985. [PMID: 37572985 DOI: 10.1016/j.fct.2023.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Phthalates in contaminated foods and personal care products are one of the most frequently exposed chemicals with a public health concern. Phthalate exposure is related to cardiovascular diseases, including diabetic vascular complications and cerebrovascular diseases, yet the mechanism is still unclear. The blood-brain barrier (BBB) integrity disruption is strongly associated with cardiovascular and neurological disease exacerbation. We investigated BBB damage by di-(2-ethylhexyl) phthalate (DEHP) or its metabolite mono-(2-ethylhexyl) phthalate (MEHP) using brain endothelial cells and rat models. BBB damage by the subthreshold level of MEHP, but not a DEHP, significantly increased by the presence of methylglyoxal (MG), a reactive dicarbonyl compound whose levels increase in the blood in hyperglycemic conditions in diabetic patients. Significant potentiation in apoptosis and autophagy activation, mitochondria-derived reactive oxygen species (ROS) production, and mitochondrial metabolic disturbance were observed in brain ECs by co-exposure to MG and MEHP. N-acetyl cysteine (NAC) restored autophagy activation as well as tight junction protein impairment induced by co-exposure to MG and MEHP. Intraperitoneal administration of MG and MEHP significantly altered mitochondrial membrane potential and tight junction integrity in rat brain endothelium. This study may provide novel insights into enhancing phthalate toxicity in susceptible populations, such as diabetic patients.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Eujin Oh
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Haram Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Seung Mi Baek
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Junho Cho
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang, 110122, China
| | - Wondong Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
3
|
Weng X, Zhu Q, Liao C, Jiang G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37196176 DOI: 10.1021/acs.est.3c00823] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
Collapse
Affiliation(s)
- Xueyu Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang Q, Yao X, Jiang N, Zhang J, Liu G, Li X, Wang C, Yang Z, Wang J, Zhu L, Wang J. Environmentally relevant concentrations of butyl benzyl phthalate triggered oxidative stress and apoptosis in adult zebrafish (Danio rerio) liver: Combined analysis at physiological and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160109. [PMID: 36370777 DOI: 10.1016/j.scitotenv.2022.160109] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Butyl benzyl phthalate (BBP), a typical phthalate plasticizer, is frequently detected in aquatic environments, but its possible effects on fish liver are unknown. In this study, adult zebrafish were exposed to 5-500 μg/L BBP and cultured for 28 days. The toxicity mechanism of environmentally relevant concentrations of BBP in the liver was explored using integrated biomarker response (IBR), molecular docking, and histopathological analysis, based on the tests of oxidative stress, apoptosis, and tissue damage, respectively. The results revealed that exposure to 500 μg/L BBP caused lipid peroxidation and DNA damage and induced inflammatory responses in the liver and intestinal tissues. The accumulation of reactive oxygen species (ROS) is the primary manifestation of BBP toxicity and is accompanied by changes in the activities of antioxidant and detoxification enzymes. Notably, the pro-apoptotic genes (p53 and caspase-3) were still significantly upregulated in the 50 μg/L and 500 μg/L treatment groups on day 28. Moreover, BBP interfered with apoptosis by forming a stable complex with apoptosis proteins (P53 and Caspase-3). Our findings are helpful for understanding the toxicity mechanisms of BBP, which could further promote the assessment of the potential environmental risks of BBP.
Collapse
Affiliation(s)
- Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Juan Zhang
- ShanDong Institute for Product Quality Inspection, Jinan 250100, PR China
| | | | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
5
|
Ozkemahli G, Erkekoglu P, Ercan A, Zeybek ND, Yersal N, Kocer-Gumusel B. Effects of single or combined exposure to bisphenol A and mono(2-ethylhexyl)phthalate on oxidant/antioxidant status, endoplasmic reticulum stress, and apoptosis in HepG2 cell line. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12189-12206. [PMID: 36104651 DOI: 10.1007/s11356-022-22937-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) may affect many biological processes like growth and stress response. Bisphenol A (BPA) is a plasticizer that is used to harden plastics and polycarbonates. Phthalates are used to add flexibility to polyvinyl chloride containing plastics. The main metabolite of di(2-ethylhexyl) phthalate (DEHP) is mono(2-ethylhexyl) phthalate (MEHP) and it is even more toxic than the parent compound. Humans are usually exposed to these chemicals in mixtures by different routes starting from fetal period. However, there are not many studies in literature that investigate the combined effects of these chemicals. The aim of this study is to investigate toxic effects of BPA and/or MEHP on HepG2 cell line. We have evaluated cytotoxicity, cytomorphological, apoptotic changes, oxidative stress, oxidant/antioxidant status alterations, and endoplasmic reticulum (ER) stress. Combined exposure to BPA and MEHP caused alterations in oxidant/antioxidant status and ER stress marker proteins in both cytoplasmic and nuclear cellular fractions. We can suggest that combined exposure to EDCs may cause serious toxicological outcomes and more mechanistic studies are needed to determine the combined toxic effects.
Collapse
Affiliation(s)
- Gizem Ozkemahli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Pinar Erkekoglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ayse Ercan
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Belma Kocer-Gumusel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Lokman Hekim University, 06510, Ankara, Turkey.
| |
Collapse
|
6
|
Lee CW, Cathey AL, Watkins DJ, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Associations of urinary phthalate metabolites and inflammatory biomarkers among pregnant women in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158773. [PMID: 36113809 PMCID: PMC10323976 DOI: 10.1016/j.scitotenv.2022.158773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 06/11/2023]
Abstract
Phthalates are ubiquitous environmental exposures that may be implicated in inflammatory processes, as demonstrated by previous in vivo and in vitro studies. Few human studies have substantiated these observations. This study sought to examine whether maternal phthalate exposures impact inflammatory processes, as measured by circulating inflammatory biomarkers, in the PROTECT cohort in northern Puerto Rico. Inflammatory biomarkers included matrix metalloproteinases 1, 2, and 9 (MMPs), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM), and intercellular cell adhesion molecule-1 (ICAM). Biomarkers were measured in maternal serum samples collected during pregnancy. 19 phthalate metabolites were assessed in urinary samples collected at three study visits across pregnancy. Phthalates with <50 % of measurements above the limit of detection were excluded from analysis. We utilized linear mixed effect models to estimate associations between interquartile range increases in phthalate metabolite concentrations and percent changes in inflammatory biomarkers. Our results revealed significant associations between mono-n-butyl phthalate (MBP) and higher MMP1 by 7.86 % (95 % CI: 0.49, 15.76) and between mono oxononyl phthalate (MONP) and higher MMP2 by 8.30 % (95 % CI: 2.22, 14.75). We observed negative or null associations between phthalate metabolites and MMP2, MMP9, ICAM, VCAM, and CRP. Many results were significantly modified by fetal sex, particularly those between di-2-ethylhexyl phthalate (DEHP) metabolites and MMP1 (p-interaction: MEHHP = 0.01, MEOHP = 0.04, MECPP = 0.01) and MMP2 (p-interaction: MEHHP = 0.03, MEOHP = 0.01, MECPP = 0.01), for which associations were positive among only women carrying female fetuses. MMPs have been previously associated with preeclampsia and hypertensive pregnancy disorders as mediators of artery remodeling. Hence, our findings suggest a potential role for phthalates in mediating the maternal inflammatory response, as well as significant sexual dimorphism in these relationships, which has implications for several adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Christine W Lee
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | | | - Carmen M Vélez-Vega
- Graduate School of Public Health, University of Puerto Rico, San Juan, PR, USA
| | | | - José F Cordero
- College of Public Health, University of Georgia, Athens, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA..
| |
Collapse
|
7
|
Isci G, Topdas EF, Dagdemir E, Genis HE. Risk assessment of oral exposure to phthalates from coffee samples marketed in Turkey. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Zhao S, Hong Y, Liang YY, Li XL, Shen JC, Sun CC, Chu LL, Hu J, Wang H, Xu DX, Zhang SC, Xu DD, Xu T, Zhao LL. Compartmentalized regulation of NAD + by Di (2-ethyl-hexyl) phthalate induces DNA damage in placental trophoblast. Redox Biol 2022; 55:102414. [PMID: 35926314 PMCID: PMC9356100 DOI: 10.1016/j.redox.2022.102414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP) is a wildly used plasticizer. Maternal exposure to DEHP during pregnancy blocks the placental cell cycle at the G2/M phase by reducing the efficiency of the DNA repair pathways and affects the health of offsprings. However, the mechanism by which DEHP inhibits the repair of DNA damage remains unclear. In this study, we demonstrated that DEHP inhibits DNA damage repair by reducing the activity of the DNA repair factor recruitment molecule PARP1. NAD+ and ATP are two substrates necessary for PARP1 activity. DEHP abated NAD+ in the nucleus by reducing the level of NAD+ synthase NMNAT1 and elevated NAD+ in the mitochondrial by promoting synthesis. Furthermore, DEHP destroyed the mitochondrial respiratory chain, affected the structure and quantity of mitochondria, and decreased ATP production. Therefore, DEHP inhibits PARP1 activity by reducing the amount of NAD+ and ATP, which hinders the DNA damage repair pathways. The supplement of NAD+ precursor NAM can partially rescue the DNA and mitochondria damage. It provides a new idea for the prevention of health problems of offsprings caused by DEHP injury to the placenta.
Collapse
Affiliation(s)
- Shuai Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yun Hong
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yue-Yue Liang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xiao-Lu Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Jiang-Chuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Cong-Cong Sun
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health / Center for Water and Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ling-Luo Chu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jie Hu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Shi-Chen Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, Anhui, 230601, China
| | - Dou-Dou Xu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Tao Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China.
| | - Ling-Li Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
9
|
Preparation, physicochemical characterization, and cytotoxicity of selenium nanoparticles stabilized by Oudemansiella radicata polysaccharide. Int J Biol Macromol 2022; 211:35-46. [DOI: 10.1016/j.ijbiomac.2022.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
|
10
|
Ashari S, Karami M, Shokrzadeh M, Bagheri A, Ghandadi M, Ranaee M, Dashti A, Mohammadi H. Quercetin ameliorates Di (2-ethylhexyl) phthalate-induced nephrotoxicity by inhibiting NF-κB signaling pathway. Toxicol Res (Camb) 2022; 11:272-285. [PMID: 35510228 PMCID: PMC9052324 DOI: 10.1093/toxres/tfac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 11/14/2022] Open
Abstract
This study aimed to evaluate the possible protective effects of quercetin, a natural flavonoid, against nephrotoxicity induced by Di (2-ethylhexyl) phthalate (DEHP) in kidney tissue of rats and human embryonic kidney (HEK) 293 cell line. The HEK-293 cells were treated with different concentrations of quercetin 24 h before treatment with monoethylhexyl phthalate (MEHP). Male rats were treated with 200-mg/kg DEHP, 200-mg/kg DEHP plus quercetin (50 and 100 mg/kg), and 200-mg/kg DEHP plus vitamin E (20 mg/kg) for 45 days by gavage. Quercetin treatment reduced cytotoxicity and oxidative damage inducing by MEHP in HEK-293 cells. The in vivo findings showed that 100-mg/kg quercetin significantly suppressed DEHP-induced kidney damage. For exploring the involved mechanisms, the expressions of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B (NFκB), and tumor necrosis factor alpha (TNFα) genes were determined via real-time Polymerase chain reaction (PCR) assay. High dose of quercetin significantly decreased the gene expressions of NF-κB and TNFα, whereas the alternations of Nrf2 and HO-1 gene expressions were not significant in quercetin groups in compared with DEHP group. These findings suggested that the suppression of DEHP-induced nephrotoxicity via quercetin is correlated, at least in part, with its potential to regulate NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sorour Ashari
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran,Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Ghandadi
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ranaee
- Clinical Research Development Center, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran,Department of Pathology, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Ayat Dashti
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Corresponding author: Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sea road, Payambar Azam University Complex. PO Box- 48175/861 Sari, Iran.
| |
Collapse
|
11
|
Traore K, More P, Adla A, Dogbey G, Papadopoulos V, Zirkin B. MEHP induces alteration of mitochondrial function and inhibition of steroid biosynthesis in MA-10 mouse tumor Leydig cells. Toxicology 2021; 463:152985. [PMID: 34627990 PMCID: PMC11436285 DOI: 10.1016/j.tox.2021.152985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is widely used in manufacturing. Previous studies have shown that mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of DEHP, has inhibitory effects on luteinizing hormone (LH)-stimulated steroid biosynthesis by Leydig cells. The molecular mechanisms underlying its effects, however, remain unclear. In the present study, we examined the effects of MEHP on changes in mitochondrial function in relationship to reduced progesterone formation by MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with MEHP (0-300 μM for 24 h) resulted in dose-dependent inhibition of LH-stimulated progesterone biosynthesis. Biochemical analysis data revealed that the levels of the mature steroidogenic acute regulatory protein (STAR), a protein that works at the outer mitochondrial membrane to facilitate the translocation of cholesterol for steroid formation, was significantly reduced in response to MEHP exposures. MEHP also caused reductions in MA-10 cell mitochondrial membrane potential (ΔΨm) and mitochondrial respiration as evidenced by decreases in the ability of the mitochondria to consume molecular oxygen. Additionally, significant increases in the generation of mitochondrial superoxide were observed. Taken together, these results indicate that MEHP inhibits steroid formation in MA-10 cells at least in part by its effects on mitochondrial function.
Collapse
Affiliation(s)
- Kassim Traore
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, South Lillington, NC 27556, United States.
| | - Prajakta More
- Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, South Lillington, NC 27556, United States
| | - Akhil Adla
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, South Lillington, NC 27556, United States
| | - Godwin Dogbey
- Department of Biochemistry and Genetics, Campbell University Jerry M. Wallace School of Osteopathic Medicine, South Lillington, NC 27556, United States
| | - Vassilios Papadopoulos
- Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| |
Collapse
|
12
|
Castillo-Rodríguez RA, Palencia G, Anaya-Rubio I, Pérez JCG, Jiménez-Farfán D, Escamilla-Ramírez Á, Zavala-Vega S, Cruz-Salgado A, Cervantes-Rebolledo C, Gracia-Mora I, Ruiz-Azuara L, Trejo-Solis C. Anti-proliferative, pro-apoptotic and anti-invasive effect of the copper coordination compound Cas III-La through the induction of reactive oxygen species and regulation of Wnt/β-catenin pathway in glioma. J Cancer 2021; 12:5693-5711. [PMID: 34475984 PMCID: PMC8408120 DOI: 10.7150/jca.59769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 01/12/2023] Open
Abstract
Gliomas are the most aggressive neoplasms that affect the central nervous system, being glioblastoma multiforme (GBM) the most malignant. The resistance of GBM to therapies is attributed to its high rate of cell proliferation, angiogenesis, invasion, and resistance to apoptosis; thus, finding alternative therapeutic approaches is vital. In this work, the anti-proliferative, pro-apoptotic, and anti-invasive effect of the copper coordination compound Casiopeina III-La (Cas III-La) on human U373 MG cells was determined in vitro and in vivo. Our results indicate that Cas III-La exerts an anti-proliferative effect, promoting apoptotic cell death and inactivating the invasive process by generating reactive oxygen species (ROS), inactivating GSK3β, activating JNK and ERK, and promoting the nuclear accumulation of β-catenin. The inhibition of ROS generation by N-acetyl-l-cysteine not only recovered cell migration and viability, but also reduced β-catenin accumulation and JNK and ERK activation. Additionally, Cas III-La significantly reduced tumor volume, cell proliferation and mitotic indices, and increased the apoptotic index in mice xenotransplanted with U373 glioma cells. Thus, Cas III-La is a promising agent to treat GBM.
Collapse
Affiliation(s)
| | - Guadalupe Palencia
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | - Isabel Anaya-Rubio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | | | - Dolores Jiménez-Farfán
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Ángel Escamilla-Ramírez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México.,Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, México
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | | | - Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Investigación Científica 70, Ciudad de México 04510, México
| | - Lena Ruiz-Azuara
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| |
Collapse
|
13
|
He Z, Wu S, Lin J, Booth A, Rankin GO, Martinez I, Chen YC. Polyphenols Extracted from Chinese Hickory ( Carya cathayensis) Promote Apoptosis and Inhibit Proliferation through the p53-Dependent Intrinsic and HIF-1α-VEGF Pathways in Ovarian Cancer Cells. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:8615. [PMID: 33520293 PMCID: PMC7842596 DOI: 10.3390/app10238615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovarian cancer is the second most common gynecologic cancer with an estimated 13,940 mortalities across the United States in 2020. Natural polyphenols have been shown to double the survival time of some cancer patients due to their anticancer properties. Therefore, the effect of polyphenols extracted from Chinese hickory seed skin Carya cathayensis (CHSP) on ovarian cancer was investigated in the present study. Cell viability results showed that CHSP is more effective in inhibiting ovarian cancer cells than normal ovarian cells, with the IC50 value for inhibition of cell proliferation of Ovarian cancer cells (OVCAR-3) being 10.33 ± 0.166 μg/mL for a 24 h treatment. Flow cytometry results showed that the apoptosis rate was significantly increased to 44.21% after 24 h treatment with 20 μg/mL of CHSP. Western blot analysis showed that CHSP induced apoptosis of ovarian cancer cells through a p53-dependent intrinsic pathway. Compared with control values, levels of VEGF excreted by OVCAR-3 cancer cells were reduced to 7.87% with a 40 μg/mL CHSP treatment. Consistent with our previous reports, CHSP inhibits vascular endothelial growth factor (VEGF) secretion by regulating the HIF-1α-VEGF pathway. In addition, we also found that the inhibitory effect of CHSP on ovarian cancer is related to the up-regulation of Phosphatase and tension homolog (PTEN) and down-regulation of nuclear factor kappa-B (NF-kappa B). These findings provide some evidence of the anti-ovarian cancer properties of CHSP and support the polyphenols as potential candidates for ovarian cancer adjuvant therapy.
Collapse
Affiliation(s)
- Zhiping He
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Shaozhen Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Ju Lin
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Ashley Booth
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Gary O’Neal Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology & Cell Biology and WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Yi Charlie Chen
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| |
Collapse
|
14
|
Xu J, Wang L, Zhang L, Zheng F, Wang F, Leng J, Wang K, Héroux P, Shen HM, Wu Y, Xia D. Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity. Redox Biol 2020; 38:101776. [PMID: 33161305 PMCID: PMC7649642 DOI: 10.1016/j.redox.2020.101776] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Phthalate ester plasticizers are used to improve the plasticity and strength of plastics. One of the most widely used and studied, di-2-ethylhexyl phthalate (DEHP), has been labeled as an endocrine disruptor. The major and toxic metabolic derivative of DEHP, mono-2-ethylhexyl phthalate (MEHP), is capable of interfering with mitochondrial function, but its mechanism of action on mitophagy remains elusive. Here, we report that MEHP exacerbates cytotoxicity by amplifying the PINK1-Parkin-mediated mitophagy pathway. First, MEHP exacerbated mitochondrial damage induced by low-dose CCCP via increased reactive oxygen species (ROS) production, decreased mitochondrial membrane potential (MMP), and enhanced fragmentation in mitochondria. Second, co-exposure to MEHP and CCCP (“MEHP-CCCP”) induced robust mitophagy. Mechanistically, MEHP-CCCP stabilized PINK1, increased the level of phosphorylated ubiquitin (pSer 65-Ub), and led to Parkin mitochondrial translocation and activation. Third, MEHP-CCCP synergistically caused more cell death, while inhibition of mitophagy, either through chemical or gene silencing, reduced cell death. Finally and importantly, co-treatment with N-acetyl cysteine (NAC) completely counteracted the effects of MEHP-CCCP, suggesting that mitochondrial ROS played a vital role in this process. Our results link mitophagy and MEHP cytotoxicity, providing an insight into the potential roles of endocrine disrupting chemicals (EDCs) in human diseases such as Parkinson's disease. Mono-2-ethylhexyl phthalate (MEHP) exacerbates mitochondrial damage induced by low-dose CCCP. Co-exposure to MEHP and CCCP (MEHP-CCCP) induces robust mitophagy in a PINK1-Parkin-dependent pathway. Mitophagy promotes MEHP-CCCP-induced cell death. ROS mediate MEHP-CCCP-induced mitophagy and cytotoxicity.
Collapse
Affiliation(s)
- Jian Xu
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Liming Wang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Fang Zheng
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Fang Wang
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jianhang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Keyi Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, PR China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Canada
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, And Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
15
|
Tête A, Gallais I, Imran M, Legoff L, Martin-Chouly C, Sparfel L, Bescher M, Sergent O, Podechard N, Lagadic-Gossmann D. MEHP/ethanol co-exposure favors the death of steatotic hepatocytes, possibly through CYP4A and ADH involvement. Food Chem Toxicol 2020; 146:111798. [PMID: 33022287 DOI: 10.1016/j.fct.2020.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Liver steatosis has been associated with various etiological factors (obesity, alcohol, environmental contaminants). How those factors work together to induce steatosis progression is still scarcely evaluated. Here, we tested whether phthalates could potentiate death of steatotic hepatocytes when combined with ethanol. Pre-steatotic WIF-B9 hepatocytes were co-exposed to mono (2-ethylhexyl) (MEHP, 500 nM; main metabolite of di (2-ethylhexyl) phthalate or DEHP) and ethanol (5 mM) for 5 days. An increased apoptotic death was detected, involving a DNA damage response. Using 4-Methypyrazole to inhibit ethanol metabolism, and CH-223191 to antagonize the AhR receptor, we found that an AhR-dependent increase in alcohol dehydrogenase (ADH) activity was essential for cell death upon MEHP/ethanol co-exposure. Toxicity was also prevented by HET0016 to inhibit the cytochrome P450 4A (CYP4A). Using the antioxidant thiourea, a role for oxidative stress was uncovered, notably triggering DNA damage. Finally, co-exposing the in vivo steatosis model of high fat diet (HFD)-zebrafish larvae to DEHP (2.56 nM)/ethanol (43 mM), induced the pathological progression of liver steatosis alongside an increased Cyp4t8 (human CYP4A homolog) mRNA expression. Altogether, these results further emphasized the deleterious impact of co-exposures to ethanol/environmental pollutant towards steatosis pathological progression, and unraveled a key role for ADH and CYP4A in such effects.
Collapse
Affiliation(s)
- Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Louis Legoff
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Maëlle Bescher
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
16
|
Wang X, Xu Y, Jia Q, Song X, Zhang L, Zhang W, Qian Y, Qiu J. Perturbations in glycerophospholipid levels of PC12 cells after exposure to PCB95 based on targeted lipidomics analysis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108788. [PMID: 32376495 DOI: 10.1016/j.cbpc.2020.108788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a group of organic chlorine chemicals that can induce various adverse health effects in animals and humans. The toxicology of PCBs is a significant public health concern because of their long-term presence in the environment. Among the 209 PCB congeners, PCB95 has been reported to be neurotoxic, however, there has been limited researches on evaluating whether and how PCB95 affects cellular lipids, the most abundant components of the brain. In this study, PCB95 was found to inhibit cell proliferation at concentrations of 0.1 μM, 2 μM and 10 μM for 120 h. Additionally, there may be a shift in apoptosis to necrosis at 2 μM PCB95 exposure for 24 h. However, lipid peroxidation was found not dominant for PCB95 exposure, especially at the concentrations of 0.1 μM and 2 μM. Because of playing vital roles in cell metabolism, 20 glycerophospholipids in PC12 cells were investigated after exposure to PCB95 for 120 h. The distinctions in the orthogonal projection to latent structures-discriminant analysis (OPLS-DA) models indicated that different concentrations of PCB95 leaded to aberrant glycerophospholipid metabolism. Based on the principles of t-test P-value < 0.05, variable importance at projection (VIP) value >1 and fold change >1, PC (14:0/14:0) and PC (16:0/14:0) were screened as potential biomarkers from all the target glycerophospholipids. This study is the first time that identifies the effects of PCB95 on specific glycerophospholipids in PC12 cells, and the observed changes in glycerophospholipids provides the basis for further evaluation of PCB95-induced neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiao Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
17
|
Liu ZH, Yang CX, Zhang L, Yang CY, Xu XQ. Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation. Onco Targets Ther 2019; 12:10749-10761. [PMID: 31849483 PMCID: PMC6910096 DOI: 10.2147/ott.s222819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Baicalein, a natural flavonoid derived from traditional Chinese herb Scutellaria baicalensis Georg (known as Huang Qin in Chinese), has been reported to exhibit notable antitumor activity in various cancer cells, including breast cancer. However, the detailed mechanisms underlying its induced apoptosis as a prooxidant in breast cancer cells are still unknown. Materials and methods In this study, we investigated the effect of endogenous copper on cytotoxic activity of baicalin against human breast cancer MCF-7 cells in vitro. Results Baicalein could remarkably reduce the cell viability in both dose- and time-dependent manners in MCF-7 cells but with lower cytotoxic effects on normal breast epithelial cells, MCF-10A. Such cell death could be prevented by pretreatment with Cu (I)-specific chelator neocuproine (Neo) and reactive oxygen species (ROS) scavengers. Meanwhile, baicalein could induce MCF-7 cell morphological changes, promote apoptotic cell death and increase the apoptotic cell number. Moreover, DCHF-DA staining, flow cytometry and Western blotting analyses proved that baicalein triggered the mitochondrial-dependent apoptotic pathway, as indicated by enhancement the level of intracellular ROS, disruption of mitochondrial membrane potential (ΔΨm), downregulation of anti-apoptotic protein Bcl-2, upregulation of pro-apoptotic protein Bax, release of cytochrome C and activation of caspase-9 and caspase-3 in MCF-7 cells. The pretreatment with Neo remarkably weakened these effects of baicalein. Furthermore, we confirmed that the prooxidant action of baicalein involved the direct production of hydroxyl radicals through redox recycling of copper ions. Conclusion These findings suggested that baicalein, acting as a prooxidant, could trigger apoptosis in MCF-7 cells occurs via the ROS-mediated intrinsic mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Zheng-Hong Liu
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang 222061, People's Republic of China
| | - Cheng-Xi Yang
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang 222061, People's Republic of China
| | - Lei Zhang
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang 222061, People's Republic of China
| | - Cong-Ying Yang
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang 222061, People's Republic of China
| | - Xiu-Quan Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
18
|
Zhang Q, Zhao Y, Talukder M, Han Y, Zhang C, Li XN, Li JL. Di(2-ethylhexyl) phthalate induced hepatotoxicity in quail (Coturnix japonica) via modulating the mitochondrial unfolded protein response and NRF2 mediated antioxidant defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:885-894. [PMID: 30257229 DOI: 10.1016/j.scitotenv.2018.09.211] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Among ubiquitously found environmental contaminants in the ecosystem, di(2-ethylhexyl) phthalate (DEHP) is an important environmental contaminant used as plasticizer in medical and consumer goods. The bioaccumulation and environmental persistence of DEHP cause serious global health effects in wildlife animals and human, especially hepatotoxicity. Herein, to explore the mechanisms of DEHP induced hepatotoxicity, quail were exposed with 0, 250, 500 and 1000 mg/kg BW/day DEHP by gavage administration daily for 45 days. Notably, the adipose tissue degeneration was observed in the liver of DEHP-exposed quail under the histopathological analysis. DEHP exposure increased the peroxidation product (MDA), GSH and GST, but decreased antioxidant function (T-AOC, SOD and GPX). DEHP induced the oxidative stress and pulsed on NRF2 signal pathway through activating downstream genes. Furthermore, DEHP induced mitochondrial ultrastructural abnormalities and mitochondrial dysfunctions. Mitochondrial unfolded protein response (mtUPR) was activated to relieve mitochondrial dysfunctions and mitigated oxidative stress. These findings showed that mitochondrial functions and redox homeostasis were affected by DEHP and resulted in irreversible hepatic injury. In Conclusion, this study suggested that DEHP-induced hepatotoxicity in quail was associated with activating the NRF2 mediated antioxidant defense and mtUPR. These results provided new evidence on molecular mechanism of DEHP induced hepatotoxicity.
Collapse
Affiliation(s)
- Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Yu Han
- Department of gastrointestinal oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Ginsenoside Rg3 Suppresses Proliferation and Induces Apoptosis in Human Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4306579. [PMID: 29750154 PMCID: PMC5884244 DOI: 10.1155/2018/4306579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most common primary malignancy of bone in children and the elderly. Recently, more and more researches have demonstrated that Ginsenoside Rg3 (Rg3) is involved in chemotherapy resistance in many cancer, making it a promising Chinese herbal monomer for oncotherapy. In this study, we investigated the efficacy of Rg3 in human osteosarcoma cell lines (MG-63, U-2OS, and SaOS-2). Cell proliferation was measured by CCK8 assay. The migration of cells was examined using the scratch assay method. Quantification of apoptosis was assessed further by flow cytometry. In addition, the expression of apoptosis-related genes (caspase9, caspase3, Bcl2, and Bax) were investigated using RT-PCR. We further investigated the protein level expression of Bcl 2, cleaved-caspase3, and PI3K/AKT/mTOR signaling pathway factors by Western blot assay. Our results revealed that Rg3 inhibited the proliferation and migration of human osteosarcoma cells and induced apoptosis in a concentration- and time-dependent manner. Western blot results showed that Rg3 reduced the protein expression of Bcl2 and PI3K/AKT/mTORbut increased the levels of cleaved-caspase3. Therefore, we hypothesized Rg3 inhibits the proliferation of osteosarcoma cell line and induces their apoptosis by affecting apoptosis-related genes (Bcl2, caspase3) as well as the PI3K/AKT/mTOR signaling pathway. To conclude, Rg3 is a new therapeutic agent against osteosarcoma.
Collapse
|
20
|
Shrivastava P, Naoghare PK, Gandhi D, Devi SS, Krishnamurthi K, Bafana A, Kashyap SM, Chakrabarti T. Application of cell-based assays for toxicity characterization of complex wastewater matrices: Possible applications in wastewater recycle and reuse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:555-566. [PMID: 28482324 DOI: 10.1016/j.ecoenv.2017.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Exposure to pre-concentrated inlet or outlet STP wastewater extracts at different concentrations (0.001% to 1%) induced dose-dependent toxicity in MCF-7 cells, whereas drinking water extracts did not induce cytotoxicity in cells treated. GC-MS analysis revealed the occurrence of xenobiotic compounds (Benzene, Phthalate, etc.) in inlet/outlet wastewater extracts. Cells exposed to inlet/outlet extract showed elevated levels of reactive oxygen species (ROS: inlet: 186.58%, p<0.05, outlet, 147.8%, p<0.01) and loss of mitochondrial membrane potential (Δψm: inlet, 74.91%, p<0.01; outlet, 86.70%, p<0.05) compared to the control. These concentrations induced DNA damage (Tail length: inlet: 34.4%, p<0.05, outlet, 26.7%, p<0.05) in treated cells compared to the control (Tail length: 7.5%). Cell cycle analysis displayed drastic reduction in the G1 phase in treated cells (inlet, G1:45.0%; outlet, G1:58.3%) compared to the control (G1:67.3%). Treated cells showed 45.18% and 28.0% apoptosis compared to the control (1.2%). Drinking water extracts did not show any significant alterations with respect to ROS, Δψm, DNA damage, cell cycle and apoptosis compared to the control. Genes involved in cell cycle and apoptosis were found to be differentially expressed in cells exposed to inlet/outlet extracts. Herein, we propose cell-based toxicity assays to evaluate the efficacies of wastewater treatment and recycling processes.
Collapse
Affiliation(s)
- Preeti Shrivastava
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Pravin K Naoghare
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| | - Deepa Gandhi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - S Saravana Devi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Kannan Krishnamurthi
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Amit Bafana
- Environmental Health Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sanjay M Kashyap
- Analytical Instrumentation Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | | |
Collapse
|
21
|
Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults. Sci Rep 2017; 7:44318. [PMID: 28290483 PMCID: PMC5349565 DOI: 10.1038/srep44318] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12–30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g; creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress.
Collapse
|
22
|
Ferguson KK, Chin HB. Environmental chemicals and preterm birth: Biological mechanisms and the state of the science. CURR EPIDEMIOL REP 2017; 4:56-71. [PMID: 28944158 PMCID: PMC5608103 DOI: 10.1007/s40471-017-0099-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW Preterm birth is a significant worldwide health problem of uncertain origins. The extant body of literature examining environmental contaminant exposures in relation to preterm birth is extensive but results remain ambiguous for most organic pollutants, metals and metalloids, and air pollutants. In the present review we examine recent epidemiologic studies investigating these associations, and identify recent advances and the state of the science. Additionally, we highlight biological mechanisms of action in the pathway between chemical exposures and preterm birth, including inflammation, oxidative stress, and endocrine disruption, that deserve more attention in this context. RECENT FINDINGS Important advances have been made in the study of the environment and preterm birth, particularly in regard to exposure assessment methods, exploration of effect modification by co-morbidities and exposures, and in identification of windows of vulnerability during gestation. There is strong evidence for an association between maternal exposure to some persistent pesticides, lead, and fine particulate matter, but data on other contaminants is sparse and only suggestive trends can be noted with the current data. SUMMARY Beyond replicating current findings, further work must be done to improve understanding of mechanisms underlying the associations observed between environmental chemical exposures and preterm birth. By examining windows of vulnerability, disaggregating preterm birth by phenotypes, and measuring biomarkers of mechanistic pathways in these epidemiologic studies we can improve our ability to detect associations with exposure, provide additional evidence for causality in an observational setting, and identify opportunities for intervention.
Collapse
Affiliation(s)
- Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Helen B. Chin
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
23
|
Combination of amino acid/dipeptide with ligustrazine-betulinic acid as antitumor agents. Eur J Med Chem 2017; 130:26-38. [PMID: 28237794 DOI: 10.1016/j.ejmech.2017.02.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
The lead compound TBA, 3β-Hydroxy-lup-20(29)-ene-28-oic acid-3, 5, 6-trimethylpyrazin-2-methyl ester, which exhibited promising antitumor activity and induced tumor cell apoptosis in various cancer cell lines, had previously been reported. Moreover, reports have revealed that the introduction of amino acid to betulinic acid could improve selective cytotoxicity as well as water solubility. Thus, a series of novel TBA amino acid and dipeptide derivatives were designed, synthesized and screened for selective cytotoxic activity against five cancer cell lines (HepG2, HT-29, Hela, BCG-823 and A549) and the not malignant cell line MDCK by standard MTT assay. Most of the tested TBA-amino acid and dipeptide analogues showed stronger anti-proliferative activity against all tested tumor cell lines than TBA. Among them, BA-25 exhibited the greatest cytotoxic activity on tumor cell lines (mean IC50 = 2.31 ± 0.78 μM), that was twofold than the positive drug cisplatin (DDP), while it showed lower cytotoxicity on MDCK cell line than DDP. Further cell apoptosis analyses indicated BA-25-induced apoptosis was associated with loss of mitochondrial membrane potential and increase of intracellular free Ca2+ concentration.
Collapse
|
24
|
Xu B, Chu F, Zhang Y, Wang X, Li Q, Liu W, Xu X, Xing Y, Chen J, Wang P, Lei H. A Series of New Ligustrazine-Triterpenes Derivatives as Anti-Tumor Agents: Design, Synthesis, and Biological Evaluation. Int J Mol Sci 2015; 16:21035-55. [PMID: 26404253 PMCID: PMC4613240 DOI: 10.3390/ijms160921035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/11/2023] Open
Abstract
A series of novel ligustrazine-triterpenes derivatives was designed, synthesized and screened for their cytotoxicity against five cancer cell lines (Bel-7402, HepG2, HT-29, Hela, and MCF-7) and Madin-Darby canine kidney (MDCK). Current study suggested that most of the ligustrazine-triterpenes conjunctions showed better cytotoxicity than the starting materials. In particular, compound 4a exhibited better cytotoxic activity (IC50 < 5.23 μM) against Bel-7402, HT-29, MCF-7, Hela, and HepG2 than the standard anticancer drug cisplatin (DDP). The cytotoxicity selectivity detection revealed that 4a exhibited low cytotoxicity (IC50 > 20 μM) towards MDCK cells. A combination of fluorescence staining observation and flow cytometric analysis indicated that 4a could induce HepG2 cell apoptosis. Further studies suggested that 4a-induced apoptosis is mediated through depolarization of the mitochondrial membrane potential and increase of intracellular free Ca2+ concentration. In addition, the structure-activity relationships of these derivatives were briefly discussed.
Collapse
Affiliation(s)
- Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Fuhao Chu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yuzhong Zhang
- Department of Pathology, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xiaobo Wang
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Qiang Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Wei Liu
- School of Management, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xin Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yanyi Xing
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Jing Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
25
|
A New Ligustrazine Derivative-Selective Cytotoxicity by Suppression of NF-κB/p65 and COX-2 Expression on Human Hepatoma Cells. Part 3. Int J Mol Sci 2015; 16:16401-13. [PMID: 26193270 PMCID: PMC4519956 DOI: 10.3390/ijms160716401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 01/14/2023] Open
Abstract
A new anticancer ligustrazine derivative, 3β-hydroxyolea-12-en-28-oic acid-3,5,6-trimethylpyrazin-2-methylester (T-OA, C38H58O3N2), was previously reported. It was synthesized via conjugating hepatoprotective and anticancer ingredients of traditional Chinese medicine. We found that T-OA exerted its anticancer activity by preventing the expression of nuclear transcription factor NF-κB/p65 and COX-2 in S180 mice. However, the selective cytotoxicity of T-OA on various kinds of cell lines has not been studied sufficiently. In the present study, compared with Cisplatin, T-OA was more toxic to human hepatoma cell line Bel-7402 (IC50 = 6.36 ± 1.56 µM) than other three cancer cell lines (HeLa, HT-29, BGC-823), and no toxicity was observed toward Madin–Darby canine kidney cell line MDCK (IC50 > 150 µM). The morphological changes of Bel-7402 cells demonstrated that T-OA had an apoptosis-inducing effect which had been substantiated using 4ʹ,6-diamidino-2-phenylindole (DAPI) staining, acridine orange (AO)/ethidium bromide (EB) staining, flow cytometry and mitochondrial membrane potential assay. Combining the immumohistochemical staining, we found T-OA could prevent the expression of NF-κB/p65 and COX-2 in Bel-7402 cells. Both of the proteins have been known to play roles in apoptosis and are mainly located in the nuclei. Moreover subcellular localization was performed to reveal that T-OA exerts in nuclei of Bel-7402 cells. The result was in accordance with the effects of down-regulating the expression of NF-κB/p65 and COX-2.
Collapse
|
26
|
Kalo D, Roth Z. Effects of mono(2-ethylhexyl)phthalate on cytoplasmic maturation of oocytes--The bovine model. Reprod Toxicol 2015; 53:141-51. [PMID: 25900598 DOI: 10.1016/j.reprotox.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/09/2015] [Accepted: 04/03/2015] [Indexed: 02/08/2023]
Abstract
Phthalates are known reproductive toxicants, but their intracellular disruptive effects on oocyte maturation competence are less known. We studied the potential risk associated with acute exposure of oocytes to mono(2-ethylhexyl)phthalate (MEHP). First, bovine oocytes were matured in vitro with or without 50 μM MEHP and examined for mitochondrial features associated with DNA fragmentation. MEHP increased reactive oxygen species levels and reduced the proportion of highly polarized mitochondria along with alterations in genes associated with mitochondrial oxidative phosphorylation (CYC1, MT-CO1 and ATP5B). In a second set of experiments, we associated the effects of MEHP on meiotic progression with those on cytoplasmic maturation. MEHP impaired reorganization of cytoplasmic organelles in matured oocytes reflected by reductions in category I mitochondria, type III cortical granules and class I endoplasmic reticulum. These alterations are associated with the previously reported reduced developmental competence of MEHP-treated bovine oocytes, and reveal the risk associated with acute exposure.
Collapse
Affiliation(s)
- D Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, and Center of Excellence in Agriculture and Environmental Health, the Hebrew University, Rehovot 76100, Israel
| | - Z Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, and Center of Excellence in Agriculture and Environmental Health, the Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
27
|
Sekaran S, Balaganapathy P, Parsanathan R, Elangovan S, Gunashekar J, Bhat FA, Jagadeesan A. Lactational exposure of phthalate causes long-term disruption in testicular architecture by altering tight junctional and apoptotic protein expression in Sertoli cells of first filial generation pubertal Wistar rats. Hum Exp Toxicol 2014; 34:575-90. [DOI: 10.1177/0960327114555926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental contaminant and a well-known endocrine disruptor (ED) that interferes with the reproductive function in both humans and animals. This study aimed to find out the impact of lactational exposure of DEHP in testes of first filial generation (F1) progeny male rat postnatal day (PND)-60. Lactating dams were orally treated with DEHP (0, 1, 10 and 100 mg/kg body weight/day, respectively) from the PND-1 to PND-21. Rats were killed at PND 60. Testes were removed and used for histological analysis and for isolation of Sertoli cells (SCs). The histoarchitecture of DEHP-treated rats showed disturbed testicular structure. DEHP-treated rats also showed increased oxidative stress by decreasing antioxidant levels in the SCs; it disrupted SC tight junctional proteins occludin, claudin, junctional adhesion molecule, zona occludens protein-1 (ZO-1), zona occludens protein-2 (ZO-2), and afadin-6 (AF-6), increased apoptosis by altering the apoptotic genes Bax, cytochrome c, caspase-8, -9, -3 and antiapoptotic gene Bcl-2. It is concluded that early postnatal exposure to DEHP disturbs histoarchitecture of testis and SC function in pubertal Wistar rats.
Collapse
Affiliation(s)
- S Sekaran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - P Balaganapathy
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - R Parsanathan
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - S Elangovan
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - J Gunashekar
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - FA Bhat
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | - A Jagadeesan
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
28
|
Ferguson K, Cantonwine DE, Rivera-González LO, Loch-Caruso R, Mukherjee B, Anzalota
Del Toro LV, Jiménez-Vélez B, Calafat AM, Ye X, Alshawabkeh AN, Cordero JF, Meeker JD. Urinary phthalate metabolite associations with biomarkers of inflammation and oxidative stress across pregnancy in Puerto Rico. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7018-25. [PMID: 24845688 PMCID: PMC4066910 DOI: 10.1021/es502076j] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phthalate exposure during pregnancy has been linked to adverse birth outcomes such as preterm birth, and inflammation and oxidative stress may mediate these relationships. In a prospective cohort study of pregnant women recruited early in gestation in Northern Puerto Rico, we investigated the associations between urinary phthalate metabolites and biomarkers of inflammation, including C-reactive protein, IL-1β, IL-6, IL-10, and TNF-α, and oxidative stress, including 8-hydroxydeoxyguanosine (OHdG) and 8-isoprostane. Inflammation biomarkers were measured in plasma twice during pregnancy (N = 215 measurements, N = 120 subjects), and oxidative stress biomarkers in urine were measured three times (N = 148 measurements, N = 54 subjects) per woman. In adjusted linear mixed models, metabolites of di-2-ethylhexyl phthalate (DEHP) were associated with increased IL-6 and IL-10 but relationships were generally not statistically significant. All phthalates were associated with increases in oxidative stress markers. Relationships with OHdG were significant for DEHP metabolites as well as mono-n-butyl phthalate (MBP) and monoiso-butyl phthalate (MiBP). For 8-isoprostane, associations with nearly all phthalates were statistically significant and the largest effect estimates were observed for MBP and MiBP (49-50% increase in 8-isoprostane with an interquartile range increase in metabolite concentration). These relationships suggest a possible mechanism for phthalate action that may be relevant to a number of adverse health outcomes.
Collapse
Affiliation(s)
- Kelly
K. Ferguson
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029, United States
| | - David E. Cantonwine
- Department
of Obstetrics and Gynecology, Brigham and
Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Luis O. Rivera-González
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029, United States
| | - Rita Loch-Caruso
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029, United States
| | - Bhramar Mukherjee
- Department
of Biostatistics, University of Michigan
School of Public Health, Ann Arbor, Michigan 48109-2029, United States
| | - Liza V. Anzalota
Del Toro
- University
of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San
Juan, 00936-5067, Puerto
Rico
| | - Braulio Jiménez-Vélez
- University
of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San
Juan, 00936-5067, Puerto
Rico
- University
of Puerto Rico School of Medicine, UPR Medical
Sciences Campus, San Juan, 00936-5067, Puerto Rico
| | - Antonia M. Calafat
- Division
of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Xiaoyun Ye
- Division
of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| | - Akram N. Alshawabkeh
- College
of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - José F. Cordero
- University
of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San
Juan, 00936-5067, Puerto
Rico
| | - John D. Meeker
- Department
of Environmental Health Sciences, University
of Michigan School of Public Health, Ann Arbor, Michigan 48109-2029, United States
- Phone: 734-764-7184; fax: 734-763-5455;
e-mail:
| |
Collapse
|
29
|
An Z, Qi Y, Huang D, Gu X, Tian Y, Li P, Li H, Zhang Y. EGCG inhibits Cd(2+)-induced apoptosis through scavenging ROS rather than chelating Cd(2+) in HL-7702 cells. Toxicol Mech Methods 2014; 24:259-67. [PMID: 24392852 DOI: 10.3109/15376516.2013.879975] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT AND OBJECTIVE Epigallocatechin-3-gallat (EGCG), the major catechin in green tea, shows a potential protective effect against heavy metal toxicity to humans. Apoptosis is one of the key events in cadmium (Cd(2+))-induced cytotoxicity. Nevertheless, the study of EGCG on Cd(2+)-induced apoptosis is rarely reported. The objective of this study was to clarify the effect and detailed mechanism of EGCG on Cd(2+)-induced apoptosis. METHODS Normal human liver cells (HL-7702) were treated with Cd(2+) for 21 h, and then co-treated with EGCG for 3 h. Cell viability, apoptosis, intracellular reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP) and caspase-3 activity were detected. On the other hand, the chelation of Cd(2+) with EGCG was tested by UV-Vis spectroscopy analysis and Nuclear Magnetic Resonance ((1)H NMR) spectroscopy under neutral condition (pH 7.2). RESULTS AND CONCLUSION Cd(2+) significantly decreased the cell viability and induced apoptosis in HL-7702 cells. Conversely, EGCG co-treatment resulted in significant inhibition of Cd(2+)-induced reduction of cell viability and apoptosis, implying a rescue effect of EGCG against Cd(2+) poisoning. The protective effect most likely arises from scavenging ROS and maintaining redox homeostasis, as the generation of intracellular ROS and MDA is significantly reduced by EGCG, which further prevents MMP collapse and suppresses caspase-3 activity. However, no evidence is observed for the chelation of EGCG with Cd(2+) under neutral condition. Therefore, a clear conclusion from this work can be made that EGCG could inhibit Cd(2+)-induced apoptosis by acting as a ROS scavenger rather than a metal chelating agent.
Collapse
Affiliation(s)
- Zhen An
- School of Life Sciences, Lanzhou University , Lanzhou, Gansu , China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Badaboina S, Bai HW, Park CH, Jang DM, Choi BY, Chung BY. Molecular mechanism of apoptosis induction in skin cancer cells by the centipedegrass extract. Altern Ther Health Med 2013; 13:350. [PMID: 24325618 PMCID: PMC3880216 DOI: 10.1186/1472-6882-13-350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/29/2013] [Indexed: 01/07/2023]
Abstract
Background Centipedegrass extract (CGE) is mainly composed of maysin and its derivatives, which are recognized internationally as natural compounds. Compared to other flavonoids, maysin has a unique structure in that mannose is bound to the flavonoid backbone. CGE exhibits some biological properties in that it can function as an anti-oxidant, anti-inflammatory, anti-adipogenic, and insecticidal. Whether CGE has other biological functions, such as anti-cancer activity, is unknown. Methods B16F1 (mouse) and SKMEL-5 (human) cells were treated with CGE, and their subsequent survival was determined using MTT assay. We performed a cell cycle analysis using propidium iodide (PI), and detected apoptosis using double staining with annexin V-FITC/PI. In addition, we examined mitochondrial membrane potentials using flow cytometry, as well as signaling mechanisms with an immunoblotting analysis. Results CGE inhibited skin cancer cell growth by arresting the cell cycle in the G2/M phase, and increased both early and late apoptotic cell populations without affecting normal cells. Furthermore, we observed mitochondrial transmembrane depolarization, increased cytochrome-c release, caspase-3 and caspase-7 activation, and increased poly ADP-ribose polymerase degradation. CGE also downregulated activation of p-AKT, p-glycogen synthase kinase-3β (GSK-3β), and p-BAD in a time-dependent manner. LY294002 inhibition of phosphoinositide 3-kinase (PI3K) significantly sensitized skin cancer cells, which led to an increase in CGE-induced apoptosis. Conclusions CGE controlled skin cancer cell growth by inhibiting the PI3K/AKT/GSK-3β signaling pathway and activating the effector caspases. This study is the first to demonstrate anti-cancer properties for CGE, and that CGE may be an effective therapeutic agent for treating skin cancer.
Collapse
|
31
|
Ventrice P, Ventrice D, Russo E, De Sarro G. Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:88-96. [PMID: 23603460 DOI: 10.1016/j.etap.2013.03.014] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 05/27/2023]
Abstract
Phthalates are chemicals widely used in industry and the consequences for human health caused by exposure to these agents are of significant current interest. Phthalate toxicity targets the reproductive and respiratory systems primarily, but they also may be involved in the processes of carcinogenesis and even in autism spectrum disorders. This article discusses the molecular and cellular mechanisms involved in organ toxicity of phthalates; furthermore, pharmacokinetic, chemistry and the European regulation are summarized.
Collapse
Affiliation(s)
- Pasquale Ventrice
- Chair of Pharmacology, Science of Health Department, School of Medicine, University of Catanzaro, Italy
| | | | | | | |
Collapse
|
32
|
Chu DP, Tian S, Qi L, Hao CJ, Xia HF, Ma X. Abnormality of maternal-to-embryonic transition contributes to MEHP-induced mouse 2-cell block. J Cell Physiol 2013; 228:753-63. [PMID: 22949295 DOI: 10.1002/jcp.24222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/27/2012] [Indexed: 11/09/2022]
Abstract
Mono (2-ethylhexyl) phthalate (MEHP), an environmental contaminant, is known to cause many serious diseases, especially in reproductive system. However, little is known about the effect of MEHP on preimplantation embryo development. In this study, we found that the development of mouse 2-cell embryo was blocked by 10(-3) M MEHP. A significant increase in the level of reactive oxygen species (ROS) was observed in arrested 2-cell embryo following 10(-3) M MEHP treatment for 24 h. However, antioxidants, catalase (CAT), and superoxide dismutase (SOD), reduced intracellular ROS and protected MEHP-exposed embryos from death but failed to return the arrested embryos. Further experiments demonstrated that the level of apoptosis was not altered in live arrested 2-cell embryo and increased in dead arrested 2-cell embryo after MEHP treatment, which implied that ROS and apoptosis were not related with 2-cell block. During analysis of the indicators of embryonic genome activation (EGA) initiation (Hsc70, MuERV-L, Hsp70.1, eIF-1A, and Zscan4) and maternal-effect genes (OCT4 and SOX2), we found that MEHP treatment could significantly decline Hsc70, MuERV-L mRNA level and SOX2 protein level, and markedly enhance Hsp70.1, eIF-1A, Zscan4 mRNA level, and OCT4 protein level at 2-cell to 4-cell stage. Supplementation of CAT and SOD did not reverse the expression tendency of EGA related genes. Collectively, this study demonstrates for the first time that MEHP-induced 2-cell block is mediated by the failure of EGA onset and maternal-effect genes, not oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Da-Peng Chu
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China
| | | | | | | | | | | |
Collapse
|