1
|
Yang X, Chu F, Jiao Z, Yu H, Yang W, Li Y, Lu C, Ma H, Wang S, Liu Z, Qin S, Sun H. Ellagic acid ameliorates arsenic-induced neuronal ferroptosis and cognitive impairment via Nrf2/GPX4 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116833. [PMID: 39128446 DOI: 10.1016/j.ecoenv.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Arsenic, a neurotoxic metalloid, poses significant health risks. However, ellagic acid, renowned for its antioxidant properties, has shown potential in neuroprotection. This study aimed to investigate the neuroprotective effects of ellagic acid against arsenic-induced neuronal ferroptosis and cognitive impairment and elucidate the underlying mechanisms. Using an arsenic-exposed Wistar rat model and an arsenic-induced HT22 cells model, we assessed cognitive ability, measured serum and brain arsenic levels, and evaluated pathological damage through histological analysis and transmission electron microscopy. Additionally, we examined oxidative stress and iron ion levels using GSH, MDA, ROS and tissue iron biochemical kits, and analyzed the expression of ferroptosis-related markers using western blot and qRT-PCR. Our results revealed that arsenic exposure increased both serum and brain arsenic levels, resulting in hippocampal pathological damage and subsequent decline in learning and memory abilities. Arsenic-induced neuronal ferroptosis was mediated by the inhibition of the xCT/GSH/GPX4/Nrf2 signaling axis and disruption of iron metabolism. Notably, ellagic acid intervention effectively reduced serum and brain arsenic levels, ameliorated neuronal damage, and improved oxidative stress, ferroptosis, and cognitive impairment. These beneficial effects were associated with the activation of the Nrf2/Keap1 signaling pathway, upregulation of GPX4 expression, and enhanced iron ion excretion. In conclusion, ellagic acid demonstrates promising neuroprotective effects against arsenic-induced neurotoxicity by mitigating neuronal ferroptosis and cognitive impairment.
Collapse
Affiliation(s)
- Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Zhe Jiao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hao Yu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Zhipeng Liu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Shaoxiao Qin
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
2
|
Bartos M, Gallegos CE, Mónaco N, Lencinas I, Dominguez S, Bras C, Del Carmen Esandi M, Bouzat C, Gumilar F. Developmental exposure to arsenic reduces anxiety levels and leads to a depressive-like behavior in female offspring rats: Molecular changes in the prefrontal cortex. Neurotoxicology 2024; 104:85-94. [PMID: 39079579 DOI: 10.1016/j.neuro.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Exposure to inorganic arsenic (iAs) detrimentally affects the structure and function of the central nervous system. In-utero and postnatal exposure to iAs has been connected to adverse effects on cognitive development. Therefore, this investigation explores neurobehavioral and neurochemical effects of 0.05 and 0.10 mg/L iAs exposure during gestation and lactation periods on 90-day-old female offspring rats. The assessment of anxiety- and depressive-like behaviors was conducted through the application of an elevated plus maze and a forced swim test. The neurochemical changes were evaluated in the prefrontal cortex (PFC) through the determination of enzyme activities and α1 GABAA subunit expression levels. Our findings revealed a notable impact of iAs exposure on anxiety and the induction of depressive-like behavior in 90-day-old female offspring. Furthermore, the antioxidant status within the PFC exhibited discernible alterations in exposed rats. Notably, the activities of acetylcholinesterase and glutamate pyruvate transaminase demonstrated an increase, while glutamate oxaloacetate transaminase activity displayed a decrease within the PFC due to the iAs treatment. Additionally, a distinct downregulation in the mRNA expression of the α1GABAA receptor was observed in this neuronal region. These findings strongly suggest that iAs exposure during early stages of rat development causes significant modifications in brain oxidative stress markers and perturbs the activity of enzymes associated with cholinergic and glutamatergic systems. In parallel, it elicits a discernible reduction in the level of GABA receptors within the PFC. These molecular alterations may play a role in the diminished anxiety levels and the depressive-like behavior outlined in the current investigation.
Collapse
Affiliation(s)
- Mariana Bartos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Cristina E Gallegos
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Nina Mónaco
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Ileana Lencinas
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Sergio Dominguez
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - Cristina Bras
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-CONICET, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Fernanda Gumilar
- Laboratorio de Toxicología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR) Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca CP8000, Argentina.
| |
Collapse
|
3
|
He F, Liu R. Mechanistic insights into phenanthrene-triggered oxidative stress-associated neurotoxicity, genotoxicity, and behavioral disturbances toward the brandling worm (Eisenia fetida) brain: The need for an ecotoxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131072. [PMID: 36857826 DOI: 10.1016/j.jhazmat.2023.131072] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, earthworm (Eisenia fetida) brain was chosen as targeted receptors to probe the mechanisms of oxidative stress-related neurotoxicity, genotoxicity, and behavioral disturbances triggered by PHE. Results showed that PHE stress can initiate significant amounts of ROS, thus triggering oxidative stress in E. fetida brain. These effects were accompanied by a significant increase of damage to macromolecules DNA and lipids, resulting in severe oxidative effects. PHE exposure can induce AChE inhibition by ROS-induced injury and the accumulation of excess ACh at the nicotinic post-synaptic membrane, thus inducing aggravated neurological dysfunction and neurotoxicity of E. fetida through an oxidative stress pathway. Moreover, the burrowing behavior of earthworms was disturbed by oxidative stress-induced neurotoxicity after exposure to PHE. Furthermore, the abnormal mRNA expression profiles of oxidative stress- and neurotoxicity-related genes in worm brain were induced by PHE stress. The IBR results suggested that E. fetida brain was suffered more serious damage caused by PHE under higher doses and long-term exposure. Taken together, PHE exposure can trigger oxidative stress-mediated neurotoxicity and genotoxicity in worm brain and behavioral disorder through ROS-induced damage. This study is of great significance to evaluate the harmful effects of PHE and its mechanisms on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
4
|
He F, Liu R, Tian G, Qi Y, Wang T. Ecotoxicological evaluation of oxidative stress-mediated neurotoxic effects, genetic toxicity, behavioral disorders, and the corresponding mechanisms induced by fluorene-contaminated soil targeted to earthworm (Eisenia fetida) brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162014. [PMID: 36740067 DOI: 10.1016/j.scitotenv.2023.162014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Fluorene is a commonly identified PAH pollutant in soil and exhibits various worrisome hazardous effects to soil organisms. Currently, the toxicity profiles of fluorene on earthworm brain are rare, and the mechanisms and their corresponding pathways involved in fluorene-triggered neurotoxicity, genotoxicity, and behavior changes have not been reported hitherto. Herein, earthworm (Eisenia fetida) brain was chosen as targeted receptor to explore the neurotoxic effects, genetic toxicity, behavioral disorders, and related mechanisms caused by fluorene-induced oxidative stress pathways. The results showed excess fluorene initiated the release of excessive quantities of ROS in earthworm brain, which have caused oxidative stress and accompanied by serious oxidative effects, including LPO (lipid peroxidation) and DNA injury. To minimize the damage effects, the antioxidant defense mechanisms (antioxidant enzymes and non-enzymatic antioxidants) were activated, and entailed a decrease of the antioxidant capacity in E. fetida brain, which, in turn, causes further ROS-induced ROS release. Exposure of fluorene induced the abnormal mRNA expression of genes relevant to oxidative stress (e.g., GST, SOD, CAT, GPx, MT, and Hsp70) and neurotoxicity (e.g., H02, C04, D06, and E08) in E. fetida brain. Specifically, fluorene can bind directly to AChE, destroying the conformation of this protein, and even affecting its physiological functions. This occurrence caused the inhibition of AChE activity and excess ACh accumulation at the nicotinic post-synaptic membrane, finally triggering neurotoxicity by activation of pathways related to oxidative stress. Moreover, the avoidance responses and burrowing behavior were obviously disturbed by oxidative stress-induced neurotoxicity after exposure to fluorene. The results form IBR suggested more severe poisoning effects to E. fetida brain initiated by high-dose and long-term exposure of fluorene. Among, oxidative stress injury and genotoxic potential are more sensitive endpoint than others. Collectively, fluorene stress can provoke potential neurotoxicity, genotoxicity, and behavioral disturbances targeted to E. fetida brain through the ROS-mediated pathways involving oxidative stress. These findings are of great significance to estimate the detrimental effects of fluorene and the corresponding mechanisms on soil eco-safety.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
5
|
Bjørklund G, Rahaman MS, Shanaida M, Lysiuk R, Oliynyk P, Lenchyk L, Chirumbolo S, Chasapis CT, Peana M. Natural Dietary Compounds in the Treatment of Arsenic Toxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154871. [PMID: 35956821 PMCID: PMC9370003 DOI: 10.3390/molecules27154871] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022]
Abstract
Chronic exposure to arsenic (As) compounds leads to its accumulation in the body, with skin lesions and cancer being the most typical outcomes. Treating As-induced diseases continues to be challenging as there is no specific, safe, and efficacious therapeutic management. Therapeutic and preventive measures available to combat As toxicity refer to chelation therapy, antioxidant therapy, and the intake of natural dietary compounds. Although chelation therapy is the most commonly used method for detoxifying As, it has several side effects resulting in various toxicities such as hepatotoxicity, neurotoxicity, and other adverse consequences. Drugs of plant origin and natural dietary compounds show efficient and progressive relief from As-mediated toxicity without any particular side effects. These natural compounds have also been found to aid the elimination of As from the body and, therefore, can be more effective than conventional therapeutic agents in ameliorating As toxicity. This review provides an overview of the recently updated knowledge on treating As poisoning through natural dietary compounds. This updated information may serve as a basis for defining novel prophylactic and therapeutic formulations.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence: (G.B.); (M.P.)
| | - Md. Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan; or
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Petro Oliynyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61002 Kharkiv, Ukraine;
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
- CONEM Scientific Secretary, strada Le Grazie 9, 37134 Verona, Italy
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 265 04 Patras, Greece;
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
- Correspondence: (G.B.); (M.P.)
| |
Collapse
|
6
|
Ansari JA, Dey RK, Mishra SK, Roy O, Kushwaha S, Singh V, Patnaik S, Ghosh D. Perinatal arsenic exposure-induced sustained microglial activation leads to impaired cognitive response in BALB/c mice. Neurotoxicology 2022; 92:1-14. [PMID: 35777461 DOI: 10.1016/j.neuro.2022.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Arsenic is infamous for its adverse health effects worldwide. It is known to induce cognitive impairment in experimental model animals and children in the arsenic-affected area. Although the effect of arsenic on neuronal health is well studied, but the involvement of the brain immune component, microglia, has not been well explored. The present study is focused on examining the role of microglia in arsenic-induced cognitive impairment. We have used balb/c mice for the study. Pregnant dams were gavaged with sodium arsenite (0.38 mg/kg body weight) from gestational day 5 (GD5) till postnatal day 22 (PND22). Mice were sacrificed on PND 7, 14, 22 and isolated brains were used for various assays. The study reveals that perinatal arsenic exposure keeps the microglia activated and skews them towards the M1 phenotype. Increased microglial proliferation, ROS, NO, higher levels of proinflammatory cytokines and chemokines were observed in the arsenic exposed group. Enhanced phagocytosis and phagocytic receptor TREM2, along with decreased expression of SNAP25 and PSD95, were correlated for enhanced neuronal pruning leading to impaired learning and memory response. Taken together, the study reveals an association between arsenic exposure and altered cognitive response where enhanced neuronal pruning by arsenic-activated microglia plays an important role in developing mice.
Collapse
Affiliation(s)
- Jamal Ahmad Ansari
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajib K Dey
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubhendra K Mishra
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Opalina Roy
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shaivya Kushwaha
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikas Singh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Analysis Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Debabrata Ghosh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Tripathi S, Fhatima S, Parmar D, Singh DP, Mishra S, Mishra R, Singh G. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse ( Mus musculus) brain. 3 Biotech 2022; 12:116. [PMID: 35547012 PMCID: PMC9023648 DOI: 10.1007/s13205-022-03171-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022] Open
Abstract
Arsenic and chromium are the most common environmental toxicants prevailing in nature. Hence, the present study endeavors to investigate the salutary effects of Coenzyme Q10 (CoQ10), Biochanin A (BCA), and Phloretin (PHL) on the combined neurotoxic impact of arsenic and chromium in the Swiss albino mice (Mus musculus). Sodium meta-arsenite (100 ppm) and potassium dichromate (75 ppm) were given orally in conjugation with CoQ10 (10 mg/kg), BCA & PHL (50 mg/kg each) in accordance with body weight per day for the 2 weeks experimental duration. Weight reduction was figured out in the exposed toxic group of arsenic and chromium in contrast with the comparison group (control), and with the selected anti-oxidants treatment, it rose significantly to the basal status (p < 0.05). The concentration of arsenic and chromium was reduced significantly (p < 0.001) amidst all the natural compounds co-medicated groups. Anti-oxidant indicators, viz. lipid peroxidation (LPO) and protein carbonyl content (PCC), were found elevated, with reduction observed in the levels of superoxide dismutase (SOD), reduced glutathione (GSH), glutathione s-transferase (GST), and total thiols (TT) in the arsenic and chromium, co-exposed mice. The alterations in redox homeostasis were well corroborated with the estimations of cholinesterase's enzymes (p < 0.05) along with DNA fragmentation assay and altered Nrf2 signaling. The administration of CoQ10, BCA, and PHL ameliorated the effects of arsenic and chromium induced oxidative stress in the exposed mice. Our research unfolds the remedial outcome of these natural compounds contrary to the combined arsenic and chromium associated-neurotoxicity in the experimental model.
Collapse
|
8
|
Khedr NF, Talkan OFA. New insights into arsenic, lead, and iron neurotoxicity: Activation of MAPK signaling pathway and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23040. [DOI: 10.1002/jbt.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023]
Affiliation(s)
- Naglaa F. Khedr
- Department of Biochemistry, Faculty of Pharmacy Tanta University Tanta Egypt
| | - Ola F. A. Talkan
- Chemistry Department, Animal Health Research Institute‐Shiben El‐Kom Lab. Agriculture Research Center Menofia Shiben El‐Kom Egypt
| |
Collapse
|
9
|
Imosemi IO. Aquoeus Extracts of Daucus Carota (Linn) Protected the Postnatal Developing Cerebellum of Wistar Rats Against Arsenic-Induced Oxidative Stress. Niger J Physiol Sci 2021; 36:211-220. [PMID: 35947743 DOI: 10.54548/njps.v36i2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2022] [Indexed: 06/15/2023]
Abstract
The neuroprotective effects of the aqueous extract of Daucus carota (Dc) tuber against arsenic-induced oxidative damage on the developing cerebellum of Wistar rats were studied. Twenty-five pregnant rats (110-200g) were divided into five groups (n=5) - control received distilled water; Arsenic (As); Dc (200mg/kg); Dc (200mg/kg) +As; Vitamin C (Vc) (100mg/kg) +As. The pregnant rats in all the groups were treated orally from the first day of pregnancy to postnatal day 21. The Dc extract and Vc were administered one hour before the administration of As. Body weight of the pups on days 1, 7, 14, 21 and 28 were recorded, while neurobehavioural (forelimb grip strength and negative geotaxis) tests were done on day 21 pups. The rats were sacrificed and cerebellar tissues were collected for oxidative stress, histological (H and E), and immunohistochemical studies. Decreased forelimb grip strength, increased lipid peroxidation and decreased glutathione, glutathione peroxidase, catalase and superoxide dismutase was observed in the As group compared with the control and other treated groups. Histologically, the cerebellar cortex of the As pups showed persistent external granular layer (EGL) on postnatal day 21, reduced thickness of the molecular layer (ML) on postnatal day 28, pyknotic and depleted Purkinje cells compared with the control and other treated rats. Immunohistochemical evaluations of the cerebellar cortex showed astroliosis in the As-treated group on day 21 pups compared with the control and other treated groups. Aqueous extracts of Daucus carota and Vitamin C reversed the toxicity caused by arsenic. From the results of the study, arsenic-induced oxidative stress with morphological alterations in the perinatal developing rat cerebellum. Extracts of Daucus carota exhibited antioxidant activity as such may be a potential neuroprotective agent.
Collapse
|
10
|
Hu T, Shen L, Huang Q, Wu C, Zhang H, Zeng Q, Wang G, Wei S, Zhang S, Zhang J, Khan NU, Shen X, Luo P. Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study. Front Pharmacol 2021; 12:749035. [PMID: 34899304 PMCID: PMC8660860 DOI: 10.3389/fphar.2021.749035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to understand the mechanism of sodium arsenite (NaAsO2)-induced apoptosis of L-02 human hepatic cells, and how Dictyophora polysaccharide (DIP) protects L-02 cells from arsenic-induced apoptosis. The results revealed that DIP pretreatment inhibited NaAsO2 induced L-02 cells apoptosis by increasing anti-apoptotic Bcl-2 expression and decreasing pro-apoptotic Bax expression. Proteomic analysis showed that arsenic treatment disrupted the expression of metabolism and apoptosis associated proteins, including ribosomal proteins (RPs). After pretreatment with DIP, the expression levels of these proteins were reversed or restored. For the first time, it was observed that the significant decrease of cytoplasmic RPs and the increase of mitochondrial RPs were related to human normal cell apoptosis induced by arsenic. This is also the first report that the protective effect of DIP on cells was related to RPs. The results highlight the relationship between RPs and apoptosis, as well as the relationship between RPs and DIP attenuating arsenic-induced apoptosis.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Changyan Wu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shuling Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiangchun Shen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Lee NK, Lim SM, Cheon MJ, Paik HD. Physicochemical Analysis of Yogurt Produced by Leuconostoc mesenteroides H40 and Its Effects on Oxidative Stress in Neuronal Cells. Food Sci Anim Resour 2021; 41:261-273. [PMID: 33987547 PMCID: PMC8115002 DOI: 10.5851/kosfa.2020.e97] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Leuconostoc mesenteroides H40 (H40) was isolated from kimchi,
and its probiotic properties and neuroprotective effect was evaluated in
oxidatively stressed SH-SY5Y cells. H40 was stable in artificial gastric
conditions and can be attached in HT-29 cells. In addition, H40 did not produce
β-glucuronidase and showed resistant to several antibiotics. The
conditioned medium (CM) was made using HT-29 cells refined with heat-killed
probiotics (Probiotics-CM) and heated yogurts (Y-CM) to investigate the
neuroprotective effect. Treatment with H40-CM not only increased cell viability
but also significantly improved brain derived neurotropic factor
(BDNF) expression and reduced the
Bax/Bcl-2 ratio in oxidatively stress-induced SH-SY5Y
cells. Besides, probiotic Y-CM significantly increased BDNF
mRNA expression and decreased Bax/Bcl-2 ratio. The
physicochemical properties of probiotic yogurt with H40 was not significantly
different from the control yogurt. The viable cell counts of lactic acid
bacteria in control and probiotic yogurt with H40 was 8.66 Log CFU/mL and 8.96
Log CFU/mL, respectively. Therefore, these results indicate that H40 can be used
as prophylactic functional dairy food having neuroprotective effects.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sung-Min Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Min-Jeong Cheon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Shameema K, Anand PP, Vardhanan YS. Protective effect of Catharanthus roseus plant extracts against endosulfan and its isomers induced impacts on non-targeted insect model, Drosophila melanogaster and live brain cell imaging. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108916. [PMID: 33141080 DOI: 10.1016/j.cbpc.2020.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Endosulfan has been recognized as a highly controversial pesticide due to its acute toxicity, potential bioaccumulation, persistency, and long-range atmospheric transport. Several plant extracts act as antioxidant agents against wide-range of pesticide toxicity hazards through the free radicals scavenging properties. Plants' secondary metabolites are considered as efficient protective agents against various cellular toxic injuries. Understanding these properties of botanicals, several researchers currently focused on the detoxification and ameliorative potency of plant extracts against highly toxic chemicals. In our studies, we focused on the endosulfan total and its isomers (alpha and beta) induced changes on Drosophila melanogaster and their ameliorative effects by co-administrated with methanolic and aqueous extracts of Catharanthus roseus whole plant. We selected the 1/5th EC50 concentration of alpha-endosulfan, beta-endosulfan, and endosulfan (total) and co-administrated with 1/50th EC50 concentration of aqueous and methanolic extracts and evaluated their ameliorative effects, in terms of verifying the life stage activities, protein profiling and also by using live brain cells imaging. We finally concluded that, the methanolic and aqueous extracts inhibit the toxic impacts caused by endosulfan and its isomers and also increasing the survival rate of the test organism.
Collapse
Affiliation(s)
- K Shameema
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India
| | - P P Anand
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India
| | - Y Shibu Vardhanan
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala 673 635, India.
| |
Collapse
|
13
|
Wang Y, Liu Y, Liu S, Wu B. Influence of Iron on Cytotoxicity and Gene Expression Profiles Induced by Arsenic in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224484. [PMID: 31739468 PMCID: PMC6888336 DOI: 10.3390/ijerph16224484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
The toxicity of arsenic (As) could be influenced by many environmental factors and elements. Iron (Fe) is one of the elements that could be involved in As-induced toxicity. In this study, the interactive effects of Fe and As in HepG2 cells were analyzed based on cytotoxicity and transcriptomic analyses. The results showed that Fe could decrease cell viability and increase mitochondrial depolarization induced by As exposure. Oxidative stress and damage have been proven to be one of the main mechanisms of As toxicity. Our results showed that Fe increased the generation of reactive oxygen species (ROS) and lipid peroxidation product malondialdehyde (MDA) induced by As exposure. Microarray analysis further verified that Fe increased the alteration of gene expression and biological processes related to oxidative stress, cell proliferation, and the apoptotic signaling pathway caused by As exposure. Both results of cytotoxicity and transcriptomic analyses suggest that an increase of Fe in the human body could increase the As-induced toxicity, which should be considered during the health risk assessment of As.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
- Correspondence:
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (S.L.); (B.W.)
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (S.L.); (B.W.)
| |
Collapse
|
14
|
Ahmed RG, El-Gareib AW. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose Response 2019; 17:1559325819858266. [PMID: 31258454 PMCID: PMC6589982 DOI: 10.1177/1559325819858266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to evaluate the effects of gestational administrations of arsenic trioxide (ATO; As2O3) on fetal neuroendocrine development (the thyroid-cerebrum axis). Pregnant Wistar rats were orally administered ATO (5 or 10 mg/kg) from gestation day (GD) 1 to 20. Both doses of ATO diminished free thyroxine and free triiodothyronine levels and augmented thyrotropin level in both dams and fetuses at GD 20. Also, the maternofetal hypothyroidism in both groups caused a dose-dependent reduction in the fetal serum growth hormone, insulin growth factor-I (IGF-I), and IGF-II levels at embryonic day (ED) 20. These disorders perturbed the maternofetal body weight, fetal brain weight, and survival of pregnant and their fetuses. In addition, destructive degeneration, vacuolation, hyperplasia, and edema were observed in the fetal thyroid and cerebrum of both ATO groups at ED 20. These disruptions appear to depend on intensification in the values of lipid peroxidation, nitric oxide, and H2O2, suppression of messenger RNA (mRNA) expression of nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma, and activation of mRNA expression of caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, Bcl-2–associated X protein, and inducible nitric oxide synthase in the fetal cerebrum. These data suggest that gestational ATO may disturb thyroid-cerebrum axis generating fetal neurodevelopmental toxicity.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
15
|
Rahman MM, Hossain KFB, Banik S, Sikder MT, Akter M, Bondad SEC, Rahaman MS, Hosokawa T, Saito T, Kurasaki M. Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:146-163. [PMID: 30384162 DOI: 10.1016/j.ecoenv.2018.10.054] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
Metals are ubiquitous in the environment due to huge industrial applications in the form of different chemicals and from extensive mining activities. The frequent exposures to metals and metalloids are crucial for the human health. Trace metals are beneficial for health whereas non-essential metals are dangerous for the health and some are proven etiological factors for diseases including cancers and neurological disorders. The interactions of essential trace metals such as selenium (Se) and zinc (Zn) with non-essential metals viz. lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) in biological system are very critical and complex. A huge number of studies report the protective role of Se and Zn against metal toxicity, both in animal and cellular levels, and also explain the numerous mechanisms involved. However, it has been considered that a tiny dyshomeostasis in the metals/trace metals status in biological system could induce severe deleterious effects that can manifest to numerous diseases. Thus, in this particular review, we have demonstrated the critical protection mechanism/s of Se and Zn against Cd, Pb, As and Hg toxicity in a one by one manner to clarify the up-to-date findings and perspectives. Furthermore, biomolecular consequences are comprehensively presented in light of particular cellular/biomolecular events which are somehow linked to a subsequent disease. The analyzed reports support significant protection potential of Se and Zn, either alone or in combination with other agents, against each of the abovementioned non-essential metals. However, Se and Zn are still not being used as detoxifying agents due to some unexplained reasons. We hypothesized that Se could be a potential candidate for detoxifying As and Hg regardless of their chemical speciations, but requires intensive clinical trials. However, particularly Zn-Hg interaction warrants more investigations both in animal and cellular level.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan; Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Subrata Banik
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Md Tajuddin Sikder
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | | | - Md Shiblur Rahaman
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Toshiyuki Hosokawa
- Research Division of Higher Education, Institute for the Advancement of Higher Education, Hokkaido University, 060-0817 Sapporo, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, 060-0812 Sapporo, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, 060-0810 Sapporo, Japan; Faculty of Environmental Earth Science, Hokkaido University, 060-0810 Sapporo, Japan.
| |
Collapse
|
16
|
Chandravanshi LP, Gupta R, Shukla RK. Developmental Neurotoxicity of Arsenic: Involvement of Oxidative Stress and Mitochondrial Functions. Biol Trace Elem Res 2018; 186:185-198. [PMID: 29502250 DOI: 10.1007/s12011-018-1286-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
Over the last decade, there has been an increased concern about the health risks from exposure to arsenic at low doses, because of their neurotoxic effects on the developing brain. The exact mechanism underlying arsenic-induced neurotoxicity during sensitive periods of brain development remains unclear, although enhanced oxidative stresses, leading to mitochondrial dysfunctions might be involved. Here, we highlight the generation of reactive oxygen species (ROS) and oxidative stress which leads to mitochondrial dysfunctions and apoptosis in arsenic-induced developmental neurotoxicity. Here, the administration of sodium arsenite at doses of 2 or 4 mg/kg body weight in female rats from gestational to lactational (GD6-PD21) resulted to increased ROS, led to oxidative stress, and increased the apoptosis in the frontal cortex, hippocampus, and corpus striatum of developing rats on PD22, compared to controls. Enhanced levels of ROS were associated with decreased mitochondrial membrane potential and the activity of mitochondrial complexes, and hampered antioxidant levels. Further, neuronal apoptosis, as measured by changes in the expression of pro-apoptotic (Bax, Caspase-3), anti-apoptotic (Bcl2), and stress marker proteins (p-p38, pJNK) in arsenic-exposed rats, was discussed. The severities of changes were found to more persist in the corpus striatum than in other brain regions of arsenic-exposed rats even after the withdrawal of exposure on PD45 as compared to controls. Therefore, our results indicate that perinatal arsenic exposure leads to abrupt changes in ROS, oxidative stress, and mitochondrial functions and that apoptotic factor in different brain regions of rats might contribute to this arsenic-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Lalit P Chandravanshi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, MG Marg, Lucknow, 226 001, India.
| | - Richa Gupta
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, MG Marg, Lucknow, 226 001, India
| | - Rajendra K Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
17
|
Serrazina DC, Lopes De Andrade V, Cota M, Mateus ML, Aschner M, Dos Santos APM. Biomarkers of exposure and effect in a working population exposed to lead, manganese and arsenic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:983-997. [PMID: 30296394 DOI: 10.1080/15287394.2018.1509408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lead (Pb), manganese (Mn) and arsenic (As) are among the major toxicants in mining environments. Miners are commonly and repeatedly exposed to this toxic mixture. Some adverse effects may appear at concentrations below environmental quality guidelines for individual mixture components. Further, Pb, Mn, and As induce common adverse outcomes, such as interferences in the cholinergic system and heme synthesis. It is thus vital to monitor miners through biomarkers (BM), such that subclinical effects may be identified at an early stage. The main objectives of this study were to evaluate the exposure of a mining population to these three metals and determine alterations in cholinergic and heme synthesis parameters. Blood and urine samples of workers (n = 60) were obtained from a Portuguese mining industry and compared with a control population (n = 80). The levels of the metals were determined in biological samples, as well as urinary heme precursor levels, delta aminolevulinic acid (ALA) and porphyrins, and blood acetylcholinesterase (AChE) activity. The miners exhibited significantly higher values of Pb and As in blood and urine compared to control. In the case of Mn near or slightly higher than limit values were found. Our data show that heme precursors may be used simultaneously with metal levels as BMs for multiple metal exposures on an individual basis, resulting in 94.3% and 95.7% accuracy, respectively, in blood and urine, for subjects correctly identified with respect to occupation. This study also revealed that biological monitoring of this working population regarding metal body burden and heme precursor accumulation is advisable.
Collapse
Affiliation(s)
- Daniela C Serrazina
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
- b Faculdade de Ciências , Universidade de Lisboa , Lisboa, Portugal
| | - Vanda Lopes De Andrade
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Madalena Cota
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
- b Faculdade de Ciências , Universidade de Lisboa , Lisboa, Portugal
| | - Maria Luísa Mateus
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Michael Aschner
- c Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , USA
| | | |
Collapse
|
18
|
R G A, El-Gareib AW. WITHDRAWN: Toxic effects of gestational arsenic trioxide on the neuroendocrine axis of developing rats. Food Chem Toxicol 2018:S0278-6915(18)30663-X. [PMID: 30218683 DOI: 10.1016/j.fct.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
19
|
Sharma A, Kshetrimayum C, Sadhu HG, Kumar S. Arsenic-induced oxidative stress, cholinesterase activity in the brain of Swiss albino mice, and its amelioration by antioxidants Vitamin E and Coenzyme Q10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23946-23953. [PMID: 29948670 DOI: 10.1007/s11356-018-2398-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Arsenic toxicity becomes one of the major public health issues in several countries. Chronic and acute exposure to arsenic has been reported to be toxic to various systems of the human body and also observed in controlled experimental studies. The study was conducted to evaluate the neurotoxic effect of arsenic in Swiss albino mice and its amelioration by Vitamin E, Coenzyme Q10 and their combination. Swiss albino mice were treated with arsenic of 136 ppm for 15 days. The daily dose is 1/3 of LD 50 (acute) reported dose of arsenic. Thereafter, the animals were maintained either on drinking water or treated with Vitamin E (50 mg/kg bwt), Coenzyme Q10 (10 mg/kg bwt), and their combination by i.p.daily for 15 days. After the treatment, animals were sacrificed. The weight of the brain was marginally lower (ns), in arsenic-treated group as compared to control and antioxidant-protected groups. The LPO (lipid peroxidation) level was higher in arsenic-treated group, and this elevation was checked to some extent by the selected antioxidants which were statistically significant in combination of antioxidant-protected group. A significant reduction was found in GSH (reduced glutathione) level in the brain of arsenic-treated mice whereas GSH level was considerably higher in antioxidant-protected groups. Further, total thiol and total protein level were lower in arsenic-treated group. However, total thiol was significantly higher in antioxidant-protected groups. CAT (catalase) activity was significantly lower while SOD (superoxide dismutase) activity was marginally lowered in arsenic-treated group, and it was slightly higher in antioxidant-protected groups. Further, reduction in AChE (acetylcholinesterase) and BChE (butyrylcholinesterase) and motor coordination activity were also observed in arsenic-treated groups. Whereas, a higher AChE, BChE, and motor coordination activity was observed in antioxidant-protected group. These data indicate a positive role of selected antioxidant against the toxicity of arsenic in the brain of mice.
Collapse
Affiliation(s)
- Anupama Sharma
- Division of Reproductive and Cytotoxicology, ICMR- National Institute of Occupational Health, Meghani nagar, Ahmedabad, 380016, India
| | - Chaoba Kshetrimayum
- Division of Reproductive and Cytotoxicology, ICMR- National Institute of Occupational Health, Meghani nagar, Ahmedabad, 380016, India
| | - Harsiddha G Sadhu
- Division of Reproductive and Cytotoxicology, ICMR- National Institute of Occupational Health, Meghani nagar, Ahmedabad, 380016, India
| | - Sunil Kumar
- Division of Reproductive and Cytotoxicology, ICMR- National Institute of Occupational Health, Meghani nagar, Ahmedabad, 380016, India.
| |
Collapse
|
20
|
Mónaco NM, Bartos M, Dominguez S, Gallegos C, Bras C, Esandi MDC, Bouzat C, Giannuzzi L, Minetti A, Gumilar F. Low arsenic concentrations impair memory in rat offpring exposed during pregnancy and lactation: Role of α7 nicotinic receptor, glutamate and oxidative stress. Neurotoxicology 2018; 67:37-45. [DOI: 10.1016/j.neuro.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
|
21
|
Bjørklund G, Aaseth J, Chirumbolo S, Urbina MA, Uddin R. Effects of arsenic toxicity beyond epigenetic modifications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:955-965. [PMID: 28484874 DOI: 10.1007/s10653-017-9967-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/21/2017] [Indexed: 05/24/2023]
Abstract
Worldwide chronic arsenic (As) poisoning by arsenic-contaminated groundwater is one of the most threatening public health problems. Chronic inorganic As (inAs) exposure has been associated with various forms of cancers and numerous other pathological effects in humans, collectively known as arsenicosis. Over the past decade, evidence indicated that As-induced epigenetic modifications have a role in the adverse effects on human health. The main objective of this article is to review the evidence on epigenetic modifications induced by arsenicals. The epigenetic components play a crucial role in the regulation of gene expression, at both transcriptional and posttranscriptional levels. We synthesized the large body of existing research on arsenic exposure and epigenetic mechanisms of health outcomes with an emphasis on recent publications. Changes in patterns of DNA methylation, histone posttranslational modifications, and microRNAs have been repeatedly observed after inAs exposure in laboratory studies and in studies of human populations. Such alterations have the potential to disturb cellular homeostasis, resulting in the modulation of key pathways in the As-induced carcinogenesis. The present article reviews recent data on As-induced epigenetic effects and concludes that it is time for heightened awareness of pathogenic arsenic exposure, particularly for pregnant women and children, given the potential for a long-lasting disturbed cellular homeostasis.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences, Elverum, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Riaz Uddin
- Department of Pharmacy, Stamford University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
22
|
Du X, Tian M, Wang X, Zhang J, Huang Q, Liu L, Shen H. Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:590-600. [PMID: 29223816 DOI: 10.1016/j.envpol.2017.11.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/03/2017] [Accepted: 11/25/2017] [Indexed: 05/25/2023]
Abstract
The neurotoxicity of arsenic is a serious health problem, especially for children. DNA epigenetic change may be an important pathogenic mechanism, but the molecular pathway remains obscure. In this study, the weaned male Sprague-Dawly (SD) rats were treated with arsenic trioxide via drinking water for 6 months, simulating real developmental exposure situation of children. Arsenic exposure impaired the cognitive abilities, and altered the expression of neuronal activity-regulated genes. Total arsenic concentrations of cortex and hippocampus tissues were significantly increased in a dose-dependent manner. The reduction in 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5hmC) levels as well as the down-regulation of DNA methyltransferases (DNMTs) and ten-eleven translocations (TETs) expression suggested that DNA methylation/demethylation processes were significantly suppressed in brain tissues. S-adenosylmethionine (SAM) level wasn't changed, but the expression of the important indicators of oxidative/anti-oxidative balance and tricarboxylic acid (TCA) cycle was significantly deregulated. Overall, arsenic can disrupt oxidative/anti-oxidative balance, further inhibit TETs expression through TCA cycle and alpha-ketoglutarate (α-KG) pathway, and consequently cause DNA methylation/demethylation disruption. The present study implies oxidative stress but not SAM depletion may lead to DNA epigenetic alteration and arsenic neurotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Xiaoxue Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, China.
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Liangpo Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| |
Collapse
|
23
|
Sharma A, Flora SJS. Nutritional management can assist a significant role in alleviation of arsenicosis. J Trace Elem Med Biol 2018; 45:11-20. [PMID: 29173466 DOI: 10.1016/j.jtemb.2017.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 01/24/2023]
Abstract
Consumption of arsenic contaminated water causes serious skin disease and cancer in a significant number of exposed people. Chelating agents, consider an expensive therapy, are employed in the treatment of arsenic intoxication. There are reports which suggest that the poorest suffer the most from arsenicosis. This may be due to improper diet intake, consist of low protein and micronutrients which increase the vulnerability to arsenic-related disorders. Several human studies demonstrated the associations between malnourishment and the development of arsenic-caused skin lesions, skin cancer and cardiovascular effects. Thus, there is an urgent need of implementation of mitigation strategies for improving the health of exposed populations. Nutrition enhances the detoxification process so food rich in vitamins, protein, antioxidants help in its detoxification process. Methylation is the detoxification process which takes place via S-adenosylmethionine (SAM). It is a methyl group donor and it derived its methyl group from diet. Nutritional intervention thus may appear as a practical and inexpensive approach. Nutrition provides protection from toxic effect of arsenic by two ways (i) methylation of As (ii) antioxidants which provides protection against free radical species. The governments and NGOs may run awareness programmes in arsenic affected area regarding prevention and alternate therapy which can decrease the susceptibility of the exposed population. They could also help in distributing cheaper, high protein diets particularly to the masses who cannot afford such foods. Thus, to prevent arsenicosis alternate therapy and proper nutrition could be the important strategy for alleviating its toxic effects. This mini review provides an insight on the importance of nutrition in preventing adverse effect cause by arsenic to suffer population.
Collapse
Affiliation(s)
- Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
24
|
Bhattacharya S. Medicinal plants and natural products in amelioration of arsenic toxicity: a short review. PHARMACEUTICAL BIOLOGY 2017; 55:349-354. [PMID: 27931138 PMCID: PMC6130623 DOI: 10.1080/13880209.2016.1235207] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Chronic arsenic toxicity (arsenicosis) is considered a serious public health menace worldwide, as there is no specific, safe, and efficacious therapeutic management of arsenicosis. OBJECTIVES To collate the studies on medicinal plants and natural products with arsenic toxicity ameliorative effect, active pre-clinically and/or clinically. METHODS Literature survey was carried out by using Google, Scholar Google and Pub-Med. Only the scientific journal articles found on the internet for last two decades were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. RESULTS Literature study revealed that 34 medicinal plants and 14 natural products exhibited significant protection from arsenic toxicity, mostly in preclinical trials and a few in clinical studies. CONCLUSION This research could lead to development of a potentially useful agent in clinical management of arsenicosis in humans.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- a West Bengal Medical Services Corporation Ltd , Salt Lake City, Kolkata , West Bengal , India
| |
Collapse
|
25
|
Yu H, Wu B, Zhang XX, Liu S, Yu J, Cheng S, Ren HQ, Ye L. Arsenic Metabolism and Toxicity Influenced by Ferric Iron in Simulated Gastrointestinal Tract and the Roles of Gut Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7189-97. [PMID: 27280682 DOI: 10.1021/acs.est.6b01533] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron (Fe) is a common trace element in drinking water. However, little is known about how environmental concentrations of Fe affect the metabolism and toxicity of arsenic (As) in drinking water. In this study, influence of Fe at drinking water-related concentrations (0.1, 0.3, and 3 mg Fe (total)/L) on As metabolism and toxicity, and the roles of gut microbiota during this process were investigated by using in vitro Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Results showed that Fe had ability to decrease bioaccessible As by coflocculation in small intestine. 0.1 and 0.3 mg/L Fe significantly increased As methylation in simulated transverse and descending colon. Gut microbiota played an important role in alteration of As species, and Fe could affect As metabolism by changing the gut microbiota. Bacteroides, Clostridium, Alistipes, and Bilophila had As resistance and potential ability to methylate As. Cytotoxicity assays of effluents from simulated colons showed that the low levels of Fe decreased As toxicity on human hepatoma cell line HepG2, which might be due to the increase of methylated As. When assessing the health risk of As in drinking water, the residual Fe should be considered.
Collapse
Affiliation(s)
- Haiyan Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Shupei Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023, P.R. China
| |
Collapse
|
26
|
Yu H, Liu S, Li M, Wu B. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:339-351. [PMID: 26169729 DOI: 10.1007/s10653-015-9742-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
Health risk of arsenic (As) has received increasing attention. Acute and chronic exposure to As could cause several detrimental effects on human health. As toxicity is closely related to its bioaccessibility and metabolism. In real environment, many factors, such as diet and nutrition, can influence As bioaccessibility, metabolism and toxicity. This paper mainly reviews the influences of diets and elements on As bioaccessibility, metabolism and toxicity and their underlying mechanisms to provide suggestions for future investigations. Vitamins, jaggery, fruit, tea, glutathione, N-acetylcysteine and zinc could reduce the As-induced toxicity by increasing antioxidative enzymes to antagonize oxidative stress caused by As and/or increasing As methylation. However, bean and betel nut could increase risk of skin lesions caused by As. Interestingly, high-fat diet, selenium and iron have incompatible effects on As bioaccessibility, metabolism and toxicity in different experimental conditions. Based on current literatures, the As methylation and As-induced oxidative damage might be two main ways that the diets and elements influence As toxicity. Combined application of in vitro human cell lines and gastrointestinal models might be useful tools to simultaneously characterize the changes in As bioaccessibility and toxicity in the future research.
Collapse
Affiliation(s)
- Haiyan Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
27
|
Prakash C, Soni M, Kumar V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J Appl Toxicol 2015; 36:179-88. [DOI: 10.1002/jat.3256] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Chandra Prakash
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| | - Manisha Soni
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| | - Vijay Kumar
- Department of Biochemistry; Maharshi Dayanand University; Rohtak 124001 Haryana India
| |
Collapse
|
28
|
Tsai FS, Wu LY, Yang SE, Cheng HY, Tsai CC, Wu CR, Lin LW. Ferulic acid reverses the cognitive dysfunction caused by amyloid β peptide 1-40 through anti-oxidant activity and cholinergic activation in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:319-35. [PMID: 25807957 DOI: 10.1142/s0192415x15500214] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cholinergic dysfunction and oxidation stress are the dominant mechanisms of memory deficit in Alzheimer's disease (AD). This study describes how ferulic acid (FA) ameliorates cognitive deficits induced by mecamylamine (MECA), scopolamine (SCOP), central acetylcholinergic neurotoxin ethylcholine mustard aziridinium ion (AF64A) and amyloid β peptide (Aβ1-40). This study also elucidates the role of anti-oxidant enzymes and cholinergic marker acetylcholinesterase (AChE) in the reversal of FA from Aβ1-40-induced cognitive deficits in rats. At 100 mg/kg, FA attenuated impairment induced by MECA and SCOP plus MECA; however, this improvement was not blocked by the peripheral muscarinic receptor antagonist scopolamine methylbromide (M-SCOP). At 100 and 300 mg/kg, FA also attenuated the impairment of inhibitory passive avoidance induced by AF64A. Further, FA attenuated the performance impairment and memory deficit induced by Aβ1-40 in rats, as did vitamin E/C. FA reversed the deterioration of superoxide dismutase (SOD) and AChE activities, and the glutathione disulfide (GSSG) and glutathione (GSH) levels in the cortex and hippocampus. Vitamin E/C only selectively reversed deterioration in the hippocampus. We suggest that FA reduced the progression of cognitive deficits by activating central muscarinic and nicotinic receptors and anti-oxidant enzymes.
Collapse
Affiliation(s)
- Fan-Shiu Tsai
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Chandravanshi LP, Yadav RS, Shukla RK, Singh A, Sultana S, Pant AB, Parmar D, Khanna VK. Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 2014; 34:60-75. [DOI: 10.1016/j.ijdevneu.2014.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/25/2014] [Accepted: 01/31/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Rajesh S. Yadav
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
- Department of Criminology and Forensic ScienceHarisingh Gour UniversitySagar470003India
| | - Rajendra K. Shukla
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Anshuman Singh
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Sarwat Sultana
- Neurotoxicology LaboratoryDepartment of Medical Elementology and ToxicologyJamia HamdardNew Delhi110 062India
| | - Aditya B. Pant
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Devendra Parmar
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Vinay K. Khanna
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| |
Collapse
|
30
|
Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013; 28:314-28. [PMID: 24426232 DOI: 10.1007/s12291-013-0375-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
The recognition of vitamin C is associated with a history of an unrelenting search for the cause of the ancient haemorrhagic disease scurvy. Isolated in 1928, vitamin C is essential for the development and maintenance of connective tissues. It plays an important role in bone formation, wound healing and the maintenance of healthy gums. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. It is an antioxidant that protects body from free radical damage. It is used as therapeutic agent in many diseases and disorders. Vitamin C protects the immune system, reduces the severity of allergic reactions and helps to fight off infections. However the significance and beneficial effect of vitamin C in respect to human disease such as cancer, atherosclerosis, diabetes, neurodegenerative disease and metal toxicity however remains equivocal. Thus further continuous uninterrupted efforts may open new vistas to understand its significance in disease management.
Collapse
Affiliation(s)
- Shailja Chambial
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Placheril J John
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, 302004 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| |
Collapse
|
31
|
Stern M, Gierse A, Tan S, Bicker G. Human Ntera2 cells as a predictive in vitro test system for developmental neurotoxicity. Arch Toxicol 2013; 88:127-36. [DOI: 10.1007/s00204-013-1098-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/11/2013] [Indexed: 01/05/2023]
|