1
|
Egler SG, Roldão TM, Santos GO, Heidelmann GP, Fraga IG, Correia FV, Saggioro EM. Phytotoxicity of single and mixed rare earth element (La, Nd and Sm) exposures on Lactuca sativa seed germination and growth. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1193-1209. [PMID: 39379770 DOI: 10.1007/s10646-024-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
The mode of action, bioaccumulation potential and toxicity of Rare Earth Elements (REE), with several applications in the technology, medical and agricultural fields, are still understudied. The nitrates acute effects on single exposures, binary and ternary mixtures of lanthanum (La), neodymium (Nd) and samarium (Sm) on Lactuca sativa lettuce seed germination and wet biomass in an artificial soil (AS) and an Ultisol were assessed. Germination (EC50), wet biomass (IC50) and germination inhibition (% GI) were evaluated. EC50 values show La was the most toxic in Ultisol, Sm in AS, and Nd appears with intermediate values on both substrates. The IC50, both single and mixed, decreased from 3- to 181-fold with increasing test concentrations in relation to the control in AS, while increases in Ultisol were observed, followed by decreases at higher doses which may be associated with the low-dose stimulation effect (hormesis). Our findings may be used to subsidize REE risk assessment studies and reinforce the hormesis effect to prevent the use of high application of REE fertilizers, avoiding the accumulation of REE in agricultural soils.
Collapse
Affiliation(s)
- Silvia Gonçalves Egler
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil.
| | - Tamine Martins Roldão
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil
| | - Gabriel Oliveira Santos
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil
| | - Gisele Petronilho Heidelmann
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil
| | - Inês Gomes Fraga
- Centro de Tecnologia Mineral, CETEM/MCTI, Av. Pedro Calmon, 900, Cidade Universitária, CEP: 21.941-908, Rio de Janeiro, RJ, Brasil
| | - Fabio Veríssimo Correia
- UNIRIO, Departamento de Ciências Naturais, Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, 22290-240, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Av. Leopoldo Bulhões 1480, Rio de Janeiro, RJ, 21041-210, Brasil
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, 21040-360, Brasil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Av. Leopoldo Bulhões 1480, Rio de Janeiro, RJ, 21041-210, Brasil
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365-Manguinhos, Rio de Janeiro, RJ, 21040-360, Brasil
| |
Collapse
|
2
|
Ou T, Bao H, Zhou Y, Liu Z, Sui H, Yong L, Mao W, Wang Y, Bao H, Xiao X, Zhang L, Yang D, Jiang D, Li N, Wei S, Song Y. Concentration and health risk assessment of 16 rare earth elements in six types of tea in China. Food Chem Toxicol 2024; 190:114832. [PMID: 38908816 DOI: 10.1016/j.fct.2024.114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Rare Earth Elements (REEs) have been implicated in potential health effects. However, the health risk of REE exposure among tea drinkers in China remains poorly understood. This study aimed to characterize the concentration of REEs in different tea categories and evaluate the associated health risks for tea consumers in China. By analyzing the content of 16 REEs in 4326 tea samples from China, the exposure level of REEs to the general population was estimated. The content of these 16 REEs was similar across six types of tea, with oolong tea exhibiting the highest levels. The concentration of light rare earth elements (LREEs) in six types of tea was higher than that of heavy rare earth elements (HREEs). The daily mean and 95th percentile (P95) exposure to REEs from tea for the general population in China were 0.0328 μg/kg BW and 0.1283 μg/kg BW, respectively, which are significantly lower than the temporary acceptable daily dose (tADI). Our findings suggest that REEs from tea do not pose a known health risk to Chinese consumers.
Collapse
Affiliation(s)
- Tong Ou
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Hanbing Bao
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China; Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujing Zhou
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaoping Liu
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Haixia Sui
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Weifeng Mao
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Yibaina Wang
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Huihui Bao
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Xiao Xiao
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Lei Zhang
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Dajin Yang
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Dingguo Jiang
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Ning Li
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China.
| |
Collapse
|
3
|
Jiang T, He S, Wang J, Li M, Chen J, Zhang D, Zhang R, Tao F, Yao Y, Hao J, Ji D, Liang C. The association between levels of samarium, hafnium, tungsten and rhenium in seminal plasma and the risk of idiopathic oligo-astheno-teratozoospermia in men of childbearing age. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:668-681. [PMID: 38017218 DOI: 10.1007/s11356-023-31017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Oligo-astheno-teratozoospermia (OAT) is a global public health problem, which affects 30% men of childbearing age. Meanwhile, with the rapid development of industry and economy, the contents of rare earth elements (REEs) in the environment are increasing. However, little is known about the associations between REEs levels and OAT risk. To evaluate the associations between the levels of four REEs (samarium (Sm), hafnium (Hf), tungsten (W), rhenium (Re)) in seminal plasma and OAT risk, from October 2021 to November 2022, semen samples from 924 men of childbearing age (460 controls and 464 cases) were collected from the reproductive center of the First Affiliated Hospital of Anhui Medical University. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure the levels of Sm, Hf, Re and W in seminal plasma. Bayesian kernel machine regression (BKMR) was conducted to explore the joint effects of levels of four REEs in seminal plasma on the risk of OAT and select the one exerting a major role; generalized linear regression models (GLM) with log link function were employed to investigate the association of every REE level in seminal plasma and OAT risk; sankey diagram and linear regression models were utilized to describe the associations between the levels of four REEs and the indexes of sperm quality. The levels of four REEs in seminal plasma were higher in the case group than levels in the control group (pSm = 0.011, pHf = 0.040, pW = 0.062, pRe = 0.001, respectively). In BKMR analysis, the OAT risk increased when the overall levels of four REEs were higher than their 55th percentile compared to all of them at their 50th percentile, and Re level played a major role in the association. Additionally, Re level in seminal plasma was positively associated with the OAT risk in the single element model after adjustment of covariates (medium vs. low: OR (95% CI) = 1.55 (1.10, 2.18); high vs. low: OR (95% CI) = 1.69 (1.18, 2.42)). Lastly, the sankey diagram and linear regression models revealed that Sm level was negatively associated with the PR%, total sperm count and total progressively motile sperm count; Hf level was negatively associated with the PR%; W and Re levels were negatively associated with the PR% and total motility, and Re level was positively associated with abnormal morphology rate. Men of childbearing age with OAT had higher levels of Sm, Hf and Re in seminal plasma than those in the control group. An increasing trend for the OAT risk was observed with an increase in mixture levels of Sm, Hf, W and Re, and Re exposure level played a major role in the association whether in BKMR model or single element model. Additionally, the levels of these four REEs were negatively associated with the indexes of sperm quality.
Collapse
Affiliation(s)
- Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jieyu Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mengzhu Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiayi Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Dongyang Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Runtao Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiahu Hao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the people's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
4
|
El Ayari T, Ben Ahmed R, Hammemi Z, Kouki A, Chelb E, Nechi S, Trigui El Menif N. Effects of rare earth element samarium doped zinc oxide nanoparticles on Mytilus galloprovincialis (Lamarck, 1819): Filtration rates and histopathology. J Trace Elem Med Biol 2024; 81:127349. [PMID: 38006813 DOI: 10.1016/j.jtemb.2023.127349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Doping was reported to improve the photo catalytic performance, antioxidant, antibacterial and other biological properties of nanoparticles. While, improving the nanoparticle properties, doping could change toxicity profile to living organism. Hence, the aim of this work was to assess the effects of samarium doped zinc oxide nanoparticles (Sm doped ZnO NPs) on the edible mussel Mytilus galloprovincialis. METHODS Sm doped ZnO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) techniques. 156 mussels were exposed during 7 days to a low, intermediate and high concentration of Sm doped ZnO NPs (0.5, 1 and 1.5 mg/L, respectively). The filtration rates were assessed after 1 and 2 h. Histopathological alterations were determined in gills, digestive glands and gonads using a quantitative analysis. RESULTS The filtration rates decreased in all individuals exposed to Sm doped ZnO NPs, a significant decrease was noted with the low and intermediate concentration (0.5 and 1 mg/L) of Sm doped ZnO NPs after 1 and 2 h, respectively. The histopathological index (Ih) estimated for gills, digestive glands and gonads showed differences depending on the organ and the nanoparticle concentration. The highest Ih were reported for digestive glands and female gonads exposed to the intermediate concentration (1 mg/L) of Sm doped ZnO NPs. As for gills and male gonads, the highest Ih were noted with the high concentration (1.5 mg/L) of Sm doped ZnO NPs. CONCLUSION Results from this study revealed the toxicity of Sm doped ZnO NPs in Mytilus galloprovincialis gills, digestive glands and gonads. The toxicity induced by this nanoparticle varies depending on the organ and the concentration.
Collapse
Affiliation(s)
- Tahani El Ayari
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia.
| | - Raja Ben Ahmed
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and physiology of Aquatic Organisms Laboratory, Tunis, Tunisia
| | - Zaineb Hammemi
- Laboratoire des composes hétāéro-organiques et des matériaux nanostructurés, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Abdessalem Kouki
- Laboratoire de Microscopie électronique et de Microanalyse, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Emna Chelb
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Salwa Nechi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| |
Collapse
|
5
|
Wang Y, He L, Dong S, Fu H, Wang G, Liang X, Tan W, He H, Zhu R, Zhu J. Accumulation, translocation, and fractionation of rare earth elements (REEs) in fern species of hyperaccumulators and non-hyperaccumulators growing in urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167344. [PMID: 37751840 DOI: 10.1016/j.scitotenv.2023.167344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The issue of ion-adsorption type rare earth deposits (IADs) in urban areas of South China has garnered significant attention due to its environmental implications. Hyperaccumulator-based phytoremediation is a potentially effective solution for reducing the environmental impact of IADs in urban areas, particularly using ferns as they are known to be REE hyperaccumulators. However, the ability of different fern species to accumulate REEs in urban areas remains unknown. In this study, four fern species, including known hyperaccumulators (Dicranopteris linearis and Blechnum orientale) and other ferns (Pteris ensiformis and Cibotium barometz), were studied to investigate their REE accumulation abilities in the Guangzhou urban area. The aboveground parts of Dicranopteris linearis (848.7 μg g-1) and Blechum orientale (1046.8 μg g-1) have been found to accumulate high concentrations of REEs, demonstrating they probably can be applied for phytoremediation in the natural environments. Despite having lower REE concentrations than REE hyperaccumulators, Pteris ensiformis and Cibotium barometz still probably have the function as phytostabilizers in urban areas, as REEs can be enriched in their roots beyond the normal levels of plants. The enrichment of REEs in ferns is influenced by the availability of various nutrients (K, Ca, Fe, and P), which probably can be associated with different growth processes. The four fern species show LREE enrichment, moderate Eu anomalies and different Ce anomalies. It is difficult to absorb and transfer Ce to the aboveground parts of Blechnum orientale and Cibotium barometz. The study also identified selective enrichment of Ce in Pteris ensiformis, which has potential for comprehensive extraction of REEs when combined with other REE hyperaccumulators. REE fractionations are probably determined by the specific characteristics of different fern parts. Overall, these findings provide insights for addressing potential environmental problems related to IADs and offer guidelines for phytoremediation technology in addressing high REE levels in urban areas.
Collapse
Affiliation(s)
- Yuanyuan Wang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyong Dong
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Haoyang Fu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gaofeng Wang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tan
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Palaniappan N, Cole IS, Kuznetsov AE, Thomas KJ, Ruszkowski P, Kujawska M. Samarium functionalized few-layer nano graphene oxide redox behavior, cytotoxicity and corrosion inhibition on Mg AZ31 alloy in 3.5% NaCl environment. J Mol Struct 2023; 1294:136353. [DOI: 10.1016/j.molstruc.2023.136353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
7
|
Chen D, Liang J, Jiang C, Wu D, Huang B, Teng X, Tang Y. Mitochondrion Participated in Effect Mechanism of Manganese Poisoning on Heat Shock Protein and Ultrastructure of Testes in Chickens. Biol Trace Elem Res 2023; 201:1432-1441. [PMID: 35513734 DOI: 10.1007/s12011-022-03259-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Manganese (Mn) poisoning can happen in the case of environmental pollution and occupational exposure. However, the underlying mechanisms of Mn-induced teste toxicity and whether mitochondrion and heat shock proteins (HSPs) are involved in toxic effect of Mn on chicken testes remain poorly understood. To investigate this, MnCl2·4H2O was administered in the diet (600, 900, and 1800 mg/kg Mn) of chickens for 30, 60, and 90 days. Electron microscopy and qPCR were performed. Results showed that Mn exposure suppressed dose- and time-dependently HSP40 and HSP60 mRNA levels, meanwhile increased does-dependently HSP27, HSP70, and HSP90 mRNA levels at all three time points under three Mn exposure concentrations. Furthermore, Mn treatment damaged myoid cells, spermatocytes, and Sertoli cells through electron microscopic observation, indicating that Mn treatment damaged chicken testes. In addition, abnormal shapes of mitochondria were found, and mitochondria displayed extensive vacuolation. The increase of HSP90 and HSP70 induced by Mn exposure inhibited HSP40 and stimulated HSP27, respectively, in chicken testes, which needs further to be explored. Taken together, our study suggested that there was toxic effect in excess Mn on chickens, and HSPs and mitochondria were involved in the mechanism of dose-dependent injury caused by Mn in chicken testes. This study provided new insights for Mn toxicity identification in animal husbandry production practice.
Collapse
Affiliation(s)
- Dechun Chen
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiatian Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Di Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Bin Huang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China
| | - Xiaohua Teng
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China.
| |
Collapse
|
8
|
Varying Doses of Rare-Earth-Metal-Based Neodymium Zirconate Zinc Sulfide Nanocomposite Disrupt Blood and Serum Parameters, as well as Markers of Oxidative Stress in the Selected Organs of Albino Mice. Genes (Basel) 2022; 13:genes13122262. [PMID: 36553529 PMCID: PMC9778612 DOI: 10.3390/genes13122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Despite extensive industrial use, the biocompatibility of nanocomposites has not been extensively explored. The present study was designed to report the effect of variable doses of a newly synthesized nanocomposite, Neodymium Zirconate Zinc Sulfide, on selective serum and complete blood count parameters and on the oxidative stress markers from the vital organs of albino mice. Albino mice (C57BL/6 strain, 5 weeks old) of both sexes were orally treated for 11 days, either with 10 mg (low dose) or 20 mg/mL saline/kg body weight (high dose) of Neodymium Zirconate Zinc Sulfide nanocomposite. A control group that was not treated with the nanocomposite but with saline solution was also maintained. Data analysis revealed that high-dose nanocomposite-treated male mice had significantly reduced hemoglobin concentration as compared to the control males. Female mice treated with both doses of nanocomposite had higher serum triglyceride levels than controls. High-dose-treated female mice had elevated serum cholesterol concentration compared to their saline-treated controls. Oxidative stress marker analysis from selected organs indicated that concentrations of malonaldehyde (MDA) in the kidney and liver, Superoxide dismutase (SOD) levels in the brain and catalase in the kidney of male mice treated with the nanocomposite were significantly higher than in the control group, whereas SOD in the heart, MDA in the heart and kidney and catalase levels in the kidney were significantly disrupted in female mice compared to their respective controls.
Collapse
|
9
|
Wang Y, Wang G, Sun M, Liang X, He H, Zhu J, Takahashi Y. Environmental risk assessment of the potential "Chemical Time Bomb" of ion-adsorption type rare earth elements in urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153305. [PMID: 35074386 DOI: 10.1016/j.scitotenv.2022.153305] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Ion-adsorption type rare earth elements (REEs) located in tropical and subtropical zones have abundant movable and bioavailable ion-exchangeable REEs and could be an environmental hazard. However, our understanding of their environmental risk in urban areas is limited. We aimed to determine whether ion-adsorption type REEs in Guangzhou represent a kind of potential "Chemical Time Bomb" (CTB) and assess the environmental risk. We conducted a comprehensive survey of REEs in 181 samples including regolith (n = 70), surface water (n = 55), sediment (n = 25), vegetables (n = 22) and rhizosphere soil (n = 9), collected from five regions around Guangzhou, as a representative city of ion-adsorption type REEs in tropical and subtropical zones. The existing environmental risk was assessed by calculating the estimated daily intake (EDI) of REEs through vegetable consumption, and leaching simulation experiments were used to discuss the factors affecting the long-term stability of REEs. The average REEs concentrations (ΣREEs) in the regolith and sediment were 458.5 and 218.6 μg·g-1, respectively, which were higher than the background values of regolith (197.3 μg·g-1) and sediment (173.3 μg·g-1), and large proportions of ion-exchangeable REEs were observed in regolith and sediment, indicating that ion-adsorption type REEs in Guangzhou are a kind of potential CTB. The average ΣREEs in surface water (3.9 μg·L-1), rhizosphere soil (466.9 μg·g-1) and vegetables (25.0 μg·g-1·dw) suggest that REEs have migrated to the supergene environment even organisms. The average EDI (55.4 μg·kg-1·d-1) close to the safety limitation (70 μg·kg-1·d-1) suggests that the existing health risk is very worrisome. Human factors, including acid rain, mining and farming, probably ignite the CTB, causing the release of REEs to the urban environment on a large scale. This prospective study demonstrated that REEs exposure problems in urban areas of ion-adsorption type REEs should not be ignored.
Collapse
Affiliation(s)
- Yuanyuan Wang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaofeng Wang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingqi Sun
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yoshio Takahashi
- Department of Earth and Planetary Science Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
De Tommaso G, Salvatore MM, Siciliano A, Staropoli A, Vinale F, Nicoletti R, DellaGreca M, Guida M, Salvatore F, Iuliano M, Andolfi A. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La 3+, Nd 3+, Sm 3+, Gd 3+). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061959. [PMID: 35335320 PMCID: PMC8954165 DOI: 10.3390/molecules27061959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Rare-earth elements are emerging contaminants of soil and water bodies which destiny in the environment and effects on organisms is modulated by their interactions with natural ligands produced by bacteria, fungi and plants. Within this framework, coordination by harzianic acid (H2L), a Trichoderma secondary metabolite, of a selection of tripositive rare-earth cations Ln3+ (Ln3+ = La3+, Nd3+, Sm3+, and Gd3+) was investigated at 25 °C, and in a CH3OH/0.1 M NaClO4 (50/50 w/w) solvent, using mass spectrometry, circular dichroism, UV-Vis spectrophotometry, and pH measurements. Experimental data can be satisfactorily explained by assuming, for all investigated cations, the formation of a mono-complex (LnL+) and a bis-complex (LnL2-). Differences were found between the formation constants of complexes of different Ln3+ cations, which can be correlated with ionic radius. Since gadolinium is the element that raises the most concern among lanthanide elements, its effects on organisms at different levels of biological organization were explored, in the presence and absence of harzianic acid. Results of ecotoxicological tests suggest that harzianic acid can decrease gadolinium biotoxicity, presumably because of complex formation with Gd3+.
Collapse
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (M.G.)
| | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (M.G.)
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| |
Collapse
|
11
|
Qi Z, Liu Y, Yang H, Yang X, Wang H, Liu B, Yuan Y, Wang G, Xu B, Liu W, Xu Z, Deng Y. Protective role of m 6A binding protein YTHDC2 on CCNB2 in manganese-induced spermatogenesis dysfunction. Chem Biol Interact 2022; 351:109754. [PMID: 34822792 DOI: 10.1016/j.cbi.2021.109754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Human infertility has become the third largest serious disease in the world, seriously affecting the quality of human fertility. Studies have shown that manganese (Mn) can accumulate in the testis through the blood-testicular barrier and damage the male reproductive system. However, the mechanism has not been explored clearly. Recent studies have reported that YTH domain-containing 2 (YTHDC2) can regulate reproductive function. However, none has explored the role of YTHDC2 in Mn-induced reproductive toxicity. The present study investigated whether YTHDC2/CyclinB2 (CCNB2) pathway participates in Mn-induced reproductive toxicity using Kunming mice, spermatogonia, and the seminal plasma of male workers. The mice were received intraperitoneal (i.p.) injections of 0, 12.5, 25, and 50 mg/kg MnCl2 once daily for 2 weeks. The cells were treated with 0, 100, 200 and 400 μM MnCl2 for 24 h. Here, we found that occupational Mn exposure significantly increased Mn levels in the seminal plasma of male workers, while decreased sperm density, semen quality, and the levels of YTHDC2, CCNB1, and CCNB2. We found that Mn can inhibit the YTHDC2/CCNB2 signaling pathway and block the G2/M phase of the cell cycle. Moreover, the morphology of cells and the histomorphology of mice testis were injured. Notably, over-expression (OE) of YTHDC2 increased CCNB2 levels, reduced cell cycle arrest, and improved reproductive toxicity after Mn exposure. These findings suggest that the YTHDC2/CCNB2 signaling pathway participates in Mn-induced reproductive toxicity, and OE of YTHDC2 can mitigate the toxicity of Mn.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Preventive Health, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China.
| | - Haibo Yang
- Department of Occupational Diseases, Linyi People's Hospital, Shandong, People's Republic of China.
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Haiying Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Bingchen Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yuan Yuan
- Center of Experiment, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Gang Wang
- Center of Experiment, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
12
|
Wu S, Zhong G, Wan F, Jiang X, Tang Z, Hu T, Rao G, Lan J, Hussain R, Tang L, Zhang H, Huang R, Hu L. Evaluation of toxic effects induced by arsenic trioxide or/and antimony on autophagy and apoptosis in testis of adult mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54647-54660. [PMID: 34014480 DOI: 10.1007/s11356-021-14486-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Arsenic trioxide (ATO) and antimony (Sb) are well-known ubiquitous environmental contaminants and cause unpromising male reproductive effects in target and non-target exposed organisms. The main objective of this study was to investigate the effects of ATO or/and Sb on process of autophagy, apoptosis, and reproductive organ in adult mice. For this reason, a total of 32 adult mice were randomly divided into different groups like control group, ATO-treated group, Sb-treated group, and combined group. The duration of current experimental trial was 2 months. Various adverse effects of ATO or/and Sb on sperm parameters, oxidative stress, autophagy, and apoptosis were determined in testis of mice. Results indicated that parameters of sperm quality for organ coefficient, sperm count, ratio of sperm survival, testosterone level, and germ cells were significantly decreased, while malformation rate and vacuolization significantly increased in mice exposed to different treatments. Furthermore, the status of antioxidant index of T-AOC, SOD, and MsrB1 levels was reduced, while MDA increased significantly in ATO + Sb group. Results on TEM investigation determined that the autophagosomes, autolysosome, nuclear pyknosis, and chromatin condensation were prominent ailments, and the levels of autophagy and pro-apoptosis indictors including Beclin1, Atg-5, LC3B/LC3A, caspase-8, cytc, cleaved caspase-3, p53, and Bax were up-regulated in treated group, while the content of an anti-apoptosis maker (Bcl-2) was down-regulated. In conclusion, the results of our experiment suggested that abnormal process of autophagy and apoptosis was triggered by arsenic and antimony, and intensity of toxic effects increased in combined treatments of ATO and Sb.
Collapse
Affiliation(s)
- Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Juan Lan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Lixuan Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Ji J, Hong F, Zhou Y, Liu T, Fan D, Zhang X, Lu Y, Jiang L, Wang X, Wang C. Molecular mechanisms associated with oxidative damage in the mouse testis induced by LaCl 3. ENVIRONMENTAL TOXICOLOGY 2021; 36:408-416. [PMID: 33098623 DOI: 10.1002/tox.23046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
China is the world's largest rare earth producer and exporter, previous studies have shown that rare earth elements can cause oxidative damage in animal testis. However, the molecular mechanisms underlying these observations have yet to be elucidated. In this paper, male mice were fed with different doses (10, 20, and 40 mg/kg BW) of LaCl3 for 90 consecutive days, regulatory role of nuclear factor erythroid-2 related factor 2 (Nrf-2)/antioxidant response element (ARE) pathway in testicular oxidative stress induced by LaCl3 were investigated. Analysis showed that LaCl3 exposure could lead to severe testicular pathological changes and apoptosis in spermatogenic cells, it up-regulated the peroxidation of lipids, proteins and DNA, and induced the excessive levels of reactive oxygen species (ROS) production in mouse testis, reduced the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione S epoxide transferase (GST) as well as the glutathione (GSH) content. Furthermore, exposure to LaCl3 also downregulated the expression of Nrf2 and its target gene products, including heme oxygenase 1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H dehydrogenase [quinine] 1(NQO1), protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3K), but upregulated the expression of Kelch-like ECH-related protein 1 (Keap1) in damaged mouse testes. Collectively, our data imply that the oxidative damage induced by LaCl3 in testis was related to inhibition of the Nrf-2/AREs pathway activation.
Collapse
Affiliation(s)
- Jianhui Ji
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Fashui Hong
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Yingjun Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, China
| | - Tingwu Liu
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Dongxue Fan
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Xingxiang Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Yutian Lu
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Lingling Jiang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Xiaomei Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Chen Wang
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
14
|
Hu R, Beguiristain T, De Junet A, Leyval C. No significant transfer of the rare earth element samarium from spiked soil to alfalfa by Funneliformis mosseae. MYCORRHIZA 2020; 30:761-771. [PMID: 33105489 DOI: 10.1007/s00572-020-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Rare earth elements including samarium have been widely used in modern technologies in recent decades. Following over-exploitation and soil contamination, they can accumulate in plants and be toxic at high concentrations. Arbuscular mycorrhizae benefit plants in metal-contaminated soils by improving their survival and growth and alleviating metal toxicity, but little information is available about soil contaminated by rare earth elements. We performed two experiments using samarium to study the role of arbuscular mycorrhizal fungi on plant growth and samarium transfer to alfalfa in a samarium-spiked soil. A pot experiment was conducted in a soil spiked with two concentrations of samarium and a non-spiked control, inoculated or not with a metal-tolerant Funneliformis mosseae. A compartmented pot experiment was then performed with a separated compartment containing samarium-spiked sand only accessible by F. mosseae fungal hyphae to further study the transport of samarium from the soil to alfalfa. The biomass of alfalfa grown on samarium-spiked soil was reduced, while it was significantly higher following arbuscular mycorrhiza inoculation in the pot experiment, both in the control and samarium-spiked soil. Although mycorrhizal plants had a higher phosphorus content than non-mycorrhizal ones, there was no significant difference in samarium concentrations between mycorrhizal and non-mycorrhizal plants. The compartment experiment confirmed that there was no significant samarium transfer to the plant by F. mosseae. Other fungi and plants should be tested, and field experiments performed, but our results suggest that arbuscular mycorrhizal plants might be considered in phytorestoration of rare-earth-contaminated soils.
Collapse
Affiliation(s)
- Ruoyu Hu
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France
| | | | | | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France.
| |
Collapse
|
15
|
Wei J, Wang C, Yin S, Pi X, Jin L, Li Z, Liu J, Wang L, Yin C, Ren A. Concentrations of rare earth elements in maternal serum during pregnancy and risk for fetal neural tube defects. ENVIRONMENT INTERNATIONAL 2020; 137:105542. [PMID: 32059143 DOI: 10.1016/j.envint.2020.105542] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Rare earth elements (REEs) are ubiquitous in the environment. Animal experiments have shown that many REEs have adverse impacts on the health of fetuses. However, data from humans are scarce. In this study, we examined the associations between concentrations of 10 REEs in maternal serum and the risk for fetal neural tube defects (NTDs). The study included 200 pregnant women with pregnancies affected by NTDs and 400 pregnant women with healthy fetuses/infants. Fifteen REEs in maternal serum were assessed; 10 of them were detectable in over 60% of samples and were included in statistical analyses, including lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), terbium (Tb), dysprosium (Dy), lutetium (Lu), and yttrium (Y). When the elements were considered individually with the use of Logistic regression model, the risk for NTDs increased by 2.78-fold (1.25-6.17) and 4.31-fold (1.93-9.62) for La, and 1.52-fold (0.70-3.31) and 4.73-fold (2.08-10.76) for Ce, in the second and third tertiles, respectively, compared to the lowest concentration tertile. When Bayesian kernel machine regression was used to examine the joint effect of exposure to all 10 REEs, the risk for NTDs increased with overall levels of these REEs and the association between La and NTD risk remained when other nine elements were taken into consideration simultaneously. Taken together, this study shows that the risk for NTDs increases with La concentrations when single REEs are considered and with concentrations of all 10 REEs when these REEs are considered as a co-exposure mixture.
Collapse
Affiliation(s)
- Jing Wei
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Shengju Yin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xin Pi
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China.
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China.
| |
Collapse
|
16
|
Palacios-Torres Y, de la Rosa JD, Olivero-Verbel J. Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113290. [PMID: 31813704 DOI: 10.1016/j.envpol.2019.113290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
The Atrato watershed is a rainforest that supports exceptional wildlife species and is considered one of the most biodiversity-rich areas on the planet, currently threatened by massive gold mining. Aimed to protect this natural resource, the Constitutional Court of Colombia declared the river subject to rights. The objective of this study was to quantify trace elements in sediments and fish from Atrato watershed, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream the river. Concentration Factors (CF) suggest sediments were moderately polluted by Cr, Cu, Cd, and strongly polluted by As. Most stations had Cr (98%) and Ni (78%) concentrations greater than the Probable Effect Concentration (PEC) criteria. Together, toxic elements generate a Pollution Load Index (PLI) and a Potential Ecological Risk Index (RI) that categorized 54% of the sediments as polluted, and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels for Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with fish trophic level, suggesting these two metals biomagnify in the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. Collectively, data suggest gold mining carried out in this biodiversity hotspot releases toxic elements that have abrogated sediment quality in Atrato River, and their incorporation in the trophic chain constitutes a large threat on environmental and human health due to fish consumption. Urgent legal and civil actions should be implemented to halt massive mining-driven deforestation to enforce Atrato River rights.
Collapse
Affiliation(s)
- Yuber Palacios-Torres
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia; Environmental Toxicology and Natural Resources Group, School of Natural Sciences, Technological University of Choco "Diego Luis Cordoba", Quibdo, Choco, A.A. 292, Colombia
| | - Jesus D de la Rosa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry-CIQSO, University of Huelva, Campus del Carmen, E-21071 Huelva, Spain
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
17
|
Celis JE, Espejo W, González‐Acuña D. Chemical elements of emerging technologies are being increasingly demanded worldwide: a possible menace for wildlife conservation? Anim Conserv 2019. [DOI: 10.1111/acv.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J. E. Celis
- Department of Animal Science Facultad de Ciencias Veterinarias Universidad de Concepción Chillán Chile
| | - W. Espejo
- Melimoyu Ecosystem Research Institute Santiago Chile
| | - D. González‐Acuña
- Department of Animal Science Facultad de Ciencias Veterinarias Universidad de Concepción Chillán Chile
| |
Collapse
|
18
|
Li X, Yi H, Wang H. Sulphur dioxide and arsenic affect male reproduction via interfering with spermatogenesis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:164-173. [PMID: 30195209 DOI: 10.1016/j.ecoenv.2018.08.109] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
As two potential environmental hazards, sulphur dioxide (SO2) and arsenic have adverse effects on male reproduction, but the mechanism of which and their combined toxicity are not clear. In this study, we investigate male reproductive toxicity with a focus on spermatogenesis by treating mice with 5 mg/m3 SO2 and/or 5 mg/L arsenic. Our results showed that arsenic exposure caused significant decreases in water and food consumption and body weight in mice, whereas these changes were not observed in the SO2-only group. Both SO2 and arsenic reduced sperm counts, increased the percentage of sperm malformation, and induced abnormal testicular pathological changes. Elevated H2O2 and MDA contents, declined T-SOD activity, decreased spermatogenic cell counts, enhanced caspase-3 activity, and increased TUNEL-positive cells were also observed in mice exposed to SO2 and/or arsenic. Moreover, SO2 and arsenic co-exposure changed the mRNA levels of Bax and Bcl-2, decreased serum testosterone levels, and downregulated the expression of steroidogenic-related genes (LHR, StAR, and ABP) in mice. These findings provide a new theoretical basis for understanding how SO2 and arsenic interfere with spermatogenesis leading to infertility. These results also suggest that SO2 and arsenic co-exposure likely result in an additive effect on male reproductive toxicity in mice.
Collapse
Affiliation(s)
- Xiujuan Li
- School of Life Science, Shanxi University, Taiyuan 030006, China; College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Hong Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Monell Chemical Senses Center, Philadelphia, PA, USA
| |
Collapse
|
19
|
Hanana H, Turcotte P, Dubé M, Gagnon C, Gagné F. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after chronic exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:662-670. [PMID: 30245300 DOI: 10.1016/j.ecoenv.2018.09.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Samarium (Sm) and yttrium (Y) are commonly used rare earth elements (REEs) but there is a scarcity of information concerning their biological effects in non-target aquatic organisms. The purpose of this study was to determine the bioavailability of those REEs and their toxicity on Dreissena polymorpha after exposure to increasing concentration of Sm and Y for 28 days at 15 °C. At the end of the exposure period, the gene expression of superoxide dismutase (SOD), catalase (CAT), metallothionein (MT), glutathione-S-transferase (GST), cytochrome c oxidase 1 (CO1) and cyclin D (Cyc D) were analysed. In addition, we examined lipid peroxidation (LPO), DNA strand breaks (DSB), GST and prostaglandin cyclooxygenase (COX) activities. Results showed a concentration dependent increase in the level of the REEs accumulated in the soft tissue of mussels. Both REEs decreased CAT but did not significantly modulated SOD and MT expressions. Furthermore, Sm3+ up-regulated GST, CO1 and Cyc D, while Y3+ increased and decreased GST and CO1 transcripts levels, respectively. Biomarker activities showed no oxidative damage as evidenced by LPO, while COX activity was decreased and DNA strand breaks levels were changed suggesting that Sm and Y exhibit anti-inflammatory and genotoxic effects. Factorial analysis revealed that the major impacted biomarkers by Sm were LPO, CAT, CO1 and COX, while GST gene expression, COX, Cyc D and CAT as the major biomarkers affected by Y. We conclude that these REEs display different mode of action but further investigations are required in order to define the exact mechanism involved in their toxicity.
Collapse
Affiliation(s)
- Houda Hanana
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7.
| | - Patrice Turcotte
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - Maxime Dubé
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - Christian Gagnon
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7
| | - François Gagné
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada H2Y 2E7.
| |
Collapse
|
20
|
Liang Q, Yin H, Li J, Zhang L, Hou R, Wang S. Investigation of rare earth elements in urine and drinking water of children in mining area. Medicine (Baltimore) 2018; 97:e12717. [PMID: 30290677 PMCID: PMC6200459 DOI: 10.1097/md.0000000000012717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To compare the contents of rare earth elements in urine and drinking water of children in the mining and control areas and evaluate the health risk of children in the mining area.Urine and drinking water of 128 children in the mining area and 125 children in the control area were collected from June to July 2015. The contents of rare earth elements were determined using inductively coupled plasma mass spectrometry.The detection rates of rare earth elements, including yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm), in the urine of children in the exposed group were all 100%, except for samarium (98%); the rates in the control group were 85.7%, 100%, 100%, 98%, 98%, and 59.2%, respectively, and the remaining elements were not detectable. The concentrations of Y, La, Ce, Pr, Nd, and Sm in the urine of children in the exposed group were significantly higher than that in the control group (P < .01). In addition, the composition ratio of lanthanum was higher than that in the control group. The detection rates of lanthanum and Ce in the drinking water of children in the exposed group were 1.44% and 0.72%, respectively. The others were not detectable; the rates in the control group were all 0%.The pollution caused by the presence of Y, La, Ce, Pr, Nd, and Sm in the mining area might affect the health of children in the area, but drinking water might not be the cause.
Collapse
Affiliation(s)
- Qingqing Liang
- School of Public Health, Baotou Medical College of Inner Mongolia University of Science and Techonology
| | - Haijing Yin
- School of Public Health, Baotou Medical College of Inner Mongolia University of Science and Techonology
| | - Jianting Li
- Baotou Research Institute of Rare Earths, Baotou, Inner Mongolia, China
| | - Liping Zhang
- School of Public Health, Baotou Medical College of Inner Mongolia University of Science and Techonology
| | - Ruili Hou
- School of Public Health, Baotou Medical College of Inner Mongolia University of Science and Techonology
| | - Suhua Wang
- School of Public Health, Baotou Medical College of Inner Mongolia University of Science and Techonology
| |
Collapse
|
21
|
Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 2016; 29:365-76. [PMID: 27053146 PMCID: PMC4879157 DOI: 10.1007/s10534-016-9931-7] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/01/2022]
Abstract
Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd(3+)) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.
Collapse
Affiliation(s)
- Moshe Rogosnitzky
- MedInsight Research Institute, Baltimore, MD, 21202, USA. .,Center for Drug Repurposing, Ariel University, 40700, Ariel, Israel.
| | - Stacy Branch
- MedInsight Research Institute, Baltimore, MD, 21202, USA
| |
Collapse
|
22
|
Du Y, Zhu Y, Teng X, Zhang K, Teng X, Li S. Toxicological Effect of Manganese on NF-κB/iNOS-COX-2 Signaling Pathway in Chicken Testes. Biol Trace Elem Res 2015; 168:227-34. [PMID: 25904117 DOI: 10.1007/s12011-015-0340-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
Manganese (Mn) pollution can cause tissue and organ dysfunction and structural damage. The toxicity of Mn in poultry was reported, but inflammatory damage that Mn induced in the testicular tissue has not been reported. The aim of this study was to investigate the effect of Mn poisoning on NF-κB/iNOS-COX-2 signaling pathway in chicken testes. One hundred eighty Hyline male chickens at 7 days of age were fed either commercial diet or MnCl2-added commercial diet containing 600, 900, and 1800 mg/kg Mn for 30, 60, and 90 days, respectively. The messenger RNA (mRNA) expression of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), nitric oxide (NO) content, iNOS activity, and histopathology were examined in chicken testes. The results showed that excess Mn upregulated mRNA expression of NF-κB, COX-2, TNF-α, and iNOS, NO content, and iNOS activity at 60th and 90th day. Mn had a time-dependent effect on NF-κB and TNF-α mRNA expression. Mn had a dose- and time-dependent effect on NO content and iNOS activity. Mn exposure induced chicken testis histological changes in dose- and time-dependent manner. It indicated that Mn exposure resulted in inflammatory injury of chicken testis tissue through NF-κB/iNOS-COX-2 signaling pathway.
Collapse
Affiliation(s)
- Ye Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yihao Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaojie Teng
- Heilongjiang Grassland and Forage Central Experimental Station, Harbin, 150069, People's Republic of China.
| | - Kun Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
23
|
Wu Z, Huang Z, Yin G, Wang L, Gao F. Fabrication of Gd/Eu-codoped SmPO4 nanorods for dual-modal magnetic resonance and bio-optical imaging. J Colloid Interface Sci 2015; 466:1-11. [PMID: 26692538 DOI: 10.1016/j.jcis.2015.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 02/05/2023]
Abstract
Ln-based complexes can be used as T1-enhanced contrast agents of magnetic resonance (MR) imaging in clinical field. Herein, we present a facile and feasible biomineralization process to fabricate Gd/Eu-codoped SmPO4 nanorods (NRs) with silk fibroin (SF) peptides (codoped SF-NRs) as T1-enhanced contrast agents, which possess paramagnetic property, photoluminescence (PL), better cyto-/tissue-compatibility and longer half-life in blood due to SF coating on their surface. Their bio-distributions in TB-N mice via tail-vein injection indicated that, although SF-NRs could be safely cleared away through renal and fecal excretion, SF-NRs easily permeated and aggregated in tumors. The results of in vitro MR imaging demonstrate that the longitudinal relaxivity r1 value of codoped SF-NRs (0.31 Sm-Gd mM(-1) s(-1)) is not only significantly higher than those of Gd-doped and Eu-doped SmPO4 SF-NRs, but also higher than those of codoped pure NRs. The tests of in vivo T1 weighted MR imaging via intro-tumor injection and tail-vein injection confirm that, compared to the pure NRs, the codoped SF-NRs exhibited higher positive signal-enhancement ability. Furthermore, the better luminescence imaging of living cells under the fluorescence microscope (94% stronger than that of the NRs without SF). A formation mechanism of codoped SF-NRs is proposed, to explain the synergistic effect of Gd/Eu codoping and SF coating on their enhanced bio-compatibility, half-life in blood, T1-weighted MR imaging and PL imaging.
Collapse
Affiliation(s)
- Zhi Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhongbing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Lei Wang
- Molecular Imaging Center, Department of Radiology, West China Hospital of Sichuan University, No. 2, 4th Keyuan Road, Chengdu 610093, China
| | - Fabao Gao
- Molecular Imaging Center, Department of Radiology, West China Hospital of Sichuan University, No. 2, 4th Keyuan Road, Chengdu 610093, China.
| |
Collapse
|