1
|
Ou J, Liu X, Chen J, Huang H, Wang Z, Xu B, Zhong S. Amelioration of arsenic-induced hepatic injury via sulfated glycosaminoglycan from swim bladder: Modulation of Nrf2 pathway and amino acid metabolism. Int J Biol Macromol 2024; 287:138528. [PMID: 39653196 DOI: 10.1016/j.ijbiomac.2024.138528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Arsenic, a known environmental pollutant with a carcinogenic risk, is associated with chronic liver toxicity. Prebiotic regulation represents an emerging dietary strategy to alleviate arsenic-induced hepatotoxicity; however, research in this area remains limited. This study employed sulfated swim bladder glycosaminoglycan (SBSG), a potential prebiotic, to assess its efficacy in mitigating arsenic-induced liver injury. In basic indicators, SBSG resisted oxidative stress by down-regulating AST, ALT, MDA, and MPO, up-regulating antioxidants (T-SOD, GSH, and GSH-px), and ameliorating histopathological damage. RT-qPCR analysis revealed that SBSG could regulate the Nrf2 signaling pathway and affect the expression of o genes related to ferroptosis and detoxification. The expression of protein further verified that SBSG could play an antioxidant and detoxifying role as an Nrf2 activator. Non-targeted metabolomics results demonstrated that SBSG primarily addresses metabolic disorders by up-regulating D-amino acid metabolism, ABC transporter, and alanine, aspartate and glutamate metabolism. Correlation analysis suggests that SBSG alleviates arsenic-induced liver oxidative damage through mechanisms linked to the Nrf2 pathway and amino acid metabolism. This study provided a research basis for expanding the dietary strategy to reduce arsenic induced toxicity.
Collapse
Affiliation(s)
- Jieying Ou
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Xiaofei Liu
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Jing Chen
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Houpei Huang
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Zhuo Wang
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Saiyi Zhong
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Hoque MN, Mannan ABA, Hossian A, Faisal GM, Hossain MA, Sultana M. Arsenotrophic Achromobacter aegrifaciens strains isolated from arsenic contaminated tubewell water and soil sources shared similar genomic potentials. BMC Microbiol 2024; 24:518. [PMID: 39627700 PMCID: PMC11616139 DOI: 10.1186/s12866-024-03676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Arsenic (As), found in diverse ecosystems, poses major public health risks in various parts of the world. Arsenotrophic bacteria in contaminated environments help reduce toxicity by converting arsenite (AsIII) to less harmful arsenate (AsV). We assumed that Achromobacter aegrifaciens strains from As-contaminated tubewell water and soil would share similar genomic characteristics associated with arsenic detoxification and bioremediation. To investigate this, we employed both culture-dependent and culture-independent viz. whole genome sequencing (WGS) methods to thoroughly elucidate the phenotypic and genotypic features of two A. aegrifaciens strains isolated from As-contaminated tubewell water (BAW48) and soil (BAS32) samples collected in the Bogura district of Bangladesh. RESULTS Both BAW48 and BAS32 isolates demonstrated As(III) oxidation in the KMNO4 test, which was corroborated by molecular analysis confirming the presence of aioA and arsB genes in both strains. These strains were found to be phylogenetically related to many strains of Achromobacter spp., isolated from biological inorganic reactors, environmental soils, sediments and human clinical samples across diverse geographical regions. Moreover, both strains possessed distinct heavy metal resistance genes conferring resistance to Co, Zn, Cu, Cd, Hg, As, and Cr. Three As gene clusters such as As(III) oxidizing aioBA, As(III) reducing arsRCDAB and the MMA(III) oxidizing ars resistance gene (arsHCsO) cluster were predicted in both genomes of A. aegrifaciens. Further genomic analyses revealed similar profiles in both strains, with mobile genetic elements, antimicrobials and heavy metal resistance genes, virulence genes, and metabolic features. Pangenome and synteny analysis showed that the two genomes are evolutionary distinct from other strains, but closely related to one another. CONCLUSION The genomic data confirmed that A. aegrifaciens strains can oxidize As(III) and detoxify heavy metals like As, suggesting their potential for As detoxification and bioremediation. These findings align with our assumption and provide a basis for developing sustainable solutions for bioremediation efforts in As-contaminated environments.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Anamica Hossian
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Present address: One Health Laboratory, International Centre for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, 1212, Bangladesh.
| |
Collapse
|
3
|
Smalling KL, Romanok KM, Bradley PM, Hladik ML, Gray JL, Kanagy LK, McCleskey RB, Stavreva DA, Alexander-Ozinskas AK, Alonso J, Avila W, Breitmeyer SE, Bustillo R, Gordon SE, Hager GL, Jones RR, Kolpin DW, Newton S, Reynolds P, Sloop J, Ventura A, Von Behren J, Ward MH, Solomon GM. Mixed contaminant exposure in tapwater and the potential implications for human-health in disadvantaged communities in California. WATER RESEARCH 2024; 267:122485. [PMID: 39368187 DOI: 10.1016/j.watres.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Water is an increasingly precious resource in California as years of drought, climate change, pollution, as well as an expanding population have all stressed the state's drinking water supplies. Currently, there are increasing concerns about whether regulated and unregulated contaminants in drinking water are linked to a variety of human-health outcomes particularly in socially disadvantaged communities with a history of health risks. To begin to address this data gap by broadly assessing contaminant mixture exposures, the current study was designed to collect tapwater samples from communities in Gold Country, the San Francisco Bay Area, two regions of the Central Valley (Merced/Fresno and Kern counties), and southeast Los Angeles for 251 organic chemicals and 32 inorganic constituents. Sampling prioritized low-income areas with suspected water quality challenges and elevated breast cancer rates. Results indicated that mixtures of regulated and unregulated contaminants were observed frequently in tapwater throughout the areas studied and the types and concentrations of detected contaminants varied by region, drinking-water source, and size of the public water system. Multiple exceedances of enforceable maximum contaminant level(s) (MCL), non-enforceable MCL goal(s) (MCLG), and other health advisories combined with frequent exceedances of benchmark-based hazard indices were also observed in samples collected in all five of the study regions. Given the current focus on improving water quality in socially disadvantaged communities, our study highlights the importance of assessing mixed-contaminant exposures in drinking water at the point of consumption to adequately address human-health concerns (e.g., breast cancer risk). Data from this pilot study provide a foundation for future studies across a greater number of communities in California to assess potential linkages between breast cancer rates and tapwater contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diana A Stavreva
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Jesus Alonso
- Clean Water Action/Clean Water Fund, Oakland, CA, USA
| | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | | | | | - Gordon L Hager
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rena R Jones
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Seth Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peggy Reynolds
- University of California San Francisco, San Francisco, CA, USA
| | - John Sloop
- ORISE, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - Mary H Ward
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gina M Solomon
- University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Siddique N, Chaudhary MZ, Anjum M, Abid J. Pollution level assessment, source apportionment, and health hazards of heavy metals and rare earth elements in the sediment core from the coast of Karachi, Pakistan. MARINE POLLUTION BULLETIN 2024; 209:117078. [PMID: 39393233 DOI: 10.1016/j.marpolbul.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
Evaluating the elemental composition of sediment cores is essential for understanding environmental changes, including depositional variations, soil formation processes, and human influences. Such investigations offer insights into the biological, geochemical, and industrial impacts on sediment quality and the health of marine ecosystems. This study evaluates the pollution levels and their sources along the coast of Karachi, Pakistan, as well as the effects of pollution on human and ecological health. The core sediment's elemental composition was determined by Neutron Activation Analysis. The mean values in mg/kg of the elements are Al (34800), As (11.15), Ba (371), Br (18.40), Ca (118850), Ce (41.43), Co (10.29), Cr (62.41), Cs (5.27), Eu (0.80), Fe (22855), Hf (2.43), K (11210), La (20.84), Lu (0.26), Mg (21750), Mn (416), Na (8350), Nd (18.92), Rb (66.35), Sb (1.04), Sc (8.31), Se (8.23), Sm (3.88), Sn (17.05), Ta (0.77), Th (7.17), U (3.96), V (71.80), Yb (1.28) and Zn (581). Various pollution indices were used to assess the pollution level of these elements in the sediment core. Statistical tools like Pearson's correlation matrix and Factor analysis were utilized for source apportionment of these elements. Source apportionment showed the sources of heavy metals and rare earth elements are Ship breaking facilities, different types of refuse effluents carried by the Malir river into the sea and the geology of the area. Carcinogenic and non-carcinogenic health hazards associated with exposure to toxic metals were also calculated. The ecological risk factor and sediment quality index showed As and Zn may harm the marine environment. In conclusion, this study found that the sediment of Karachi's coast is polluted with high levels of As, Br, Ca, Cr, Sn, and Zn; with As, Cr and Zn posing a threat to the marine ecology as well as human health.
Collapse
Affiliation(s)
| | | | - Mavia Anjum
- Radiation Physics Lab, COMSATS University Islamabad, Pakistan.
| | - Jawaria Abid
- Isotope Applications Division, PINSTECH, P.O. Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
5
|
Hafezizadeh M, Salehcheh M, Mohtadi S, Mansouri E, Khodayar MJ. Zingerone effects on arsenic-induced glucose intolerance and hepatotoxicity in mice via suppression of oxidative stress-mediated hepatic inflammation and apoptosis. J Trace Elem Med Biol 2024; 86:127562. [PMID: 39531827 DOI: 10.1016/j.jtemb.2024.127562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/04/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Arsenic (As), a poisonous metalloid, is widely distributed in air, water, and soil and has been associated with the occurrence of diabetes and liver toxicity. Zingerone (ZNG), one of the active compounds in ginger, has several pharmacological benefits such as antioxidant and anti-inflammatory characteristics. The objective of this research was to assess the protective role of ZNG against arsenic (As)-induced glucose intolerance (GI) and hepatotoxicity in mice. METHODS Male NMRI mice were treated with ZNG (25, 50, and 100 mg/kg, oral gavage for 29 days) before As administration (10 mg/kg, oral gavage for 29 days). On the 29th day, fasting blood glucose (FBG) and glucose tolerance test were measured. The animals were euthanized (day 30), and samples from blood and tissue (liver and pancreas) were gathered for further evaluations. RESULTS Administration of ZNG inhibited As-induced elevation of FBG and GI. Moreover, hepatic tissue damage and decreased Langerhans islets' diameter caused by As administration were improved by ZNG treatment. Pretreatment with ZNG attenuated the elevation of serum liver enzymes induced by As (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase). Also, the reduction in total thiol content, as well as the decline in antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) and the increase in lipid peroxidation marker (thiobarbituric acid reactive substances) in the liver tissue of As-exposed mice were reversed in ZNG-treated mice. Furthermore, ZNG prevented the increase of hepatic inflammatory markers (nitric oxide and tumor necrosis factor-alpha levels, and protein expression of nuclear factor-kappa B) and apoptosis-related marker (caspase-3 protein expression) in As-treated mice. CONCLUSIONS This study has provided evidence indicating that ZNG can act as a beneficial agent in preventing As-induced hepatotoxicity and diabetes.
Collapse
Affiliation(s)
- Mobina Hafezizadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Salehcheh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Vera-Espíndola F, Jeison D, Gentina JC, Muñoz J, González E. Reviewing arsenic biomineralization: An upcoming strategy for mining wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176538. [PMID: 39343396 DOI: 10.1016/j.scitotenv.2024.176538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Human activities are the main cause of arsenic contamination in the environment and water resources, being the mining industry an important source of arsenic contamination because this element is released into the environment in solid, liquid, and gaseous wastes. Currently, several physical and chemical processes could be used for the removal of arsenic in water, but these alternatives depend on the concentration of arsenic. At low concentrations (nanograms or micrograms per liter) arsenic can be removed by membrane technologies. When arsenic is at high concentrations (milligrams or grams per liter), treatment options are reduced to inefficient processes of high economic cost and poor chemical stability of the precipitate, returning consequently arsenic into the environment. Biomineralization is a biological process where microorganisms induce the formation of minerals. This bioprocess has gained interest in recent years for the removal of contaminants from liquid effluents. This review details the harmful effects of arsenic on the health and exposes the relevance of arsenic contamination related to mining activity, whose effluents contain high concentration of arsenic. It also describes and analyzes advances in arsenic treatment strategies through biomineralization using microorganisms, such as sulfate-reducing bacteria, iron- and manganese-oxidizing microorganisms, and ureolytic microorganisms, detailing aspects of effectiveness, applicability, chemical stability of biominerals and future perspectives in their industrial application. To our knowledge, there are no previous reports compiling, analyzing, and explaining in detail the biomineralization of arsenic as a single element. The importance of this review is to deliver in a summarized and systematized way the main aspects and perspectives on the application of microorganisms to remove toxic elements, such as arsenic, from effluents.
Collapse
Affiliation(s)
- Fernando Vera-Espíndola
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile.
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
| | - Juan Carlos Gentina
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
| | - Jesús Muñoz
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Ernesto González
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
7
|
Bidu NS, Lemos DS, Fernandes BJD. Occupational exposure to arsenic and leukopenia risk: Toxicological alert. Toxicol Ind Health 2024; 40:637-642. [PMID: 39222320 DOI: 10.1177/07482337241277261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Arsenic and its inorganic compounds affect numerous organs and systemic functions, such as the nervous and hematopoietic systems, liver, kidneys, and skin. Despite a large number of studies on arsenic toxicity, rare reports have investigated the leukopenia incidence in workers exposed to arsenic. In workplaces, the main source of workers' exposure is the contaminated air by the inorganic arsenic in mines, arsenic or copper smelter industries, and chemical factories. Erythropoiesis inhibition is one of the arsenic effects and it is related to regulatory factor GATA-1. This factor is necessary for the normal differentiation of early erythroid progenitors. JAK-STAT is an important intracellular signal transduction pathway responsible for the mediating normal functions of several cytokines related to cell proliferation and hematopoietic systems development and regulation. Arsenic inactivates JAK-STAT by inhibiting JAK tyrosine kinase and using the IFNγ pathway. The intravascular hemolysis starts after the absorption phase when arsenic binds to the globin of hemoglobin in erythrocytes and is transported into the body, which increases the oxidation of sulfhydryl groups in hemoglobin. So, this article intends to highlight the potential leukopenia risk via inhalation for workers exposed to arsenic and suggests a possible mechanism for this leukopenia through the JAK-signal transducer and activator of transcription (STAT) pathway inhibition.
Collapse
Affiliation(s)
- Nadielle Silva Bidu
- Pharmacy Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia/UFBA, Salvador, Brazil
- Clinical Toxicology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia/UFBA, Salvador, Brazil
| | - Diogo Sousa Lemos
- Undersecretary of Safety and Health at Work of the Brazil Federal District, Distrito Federal, Health Department, Brasilia, Brazil
| | - Bruno José Dumêt Fernandes
- Clinical Toxicology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia/UFBA, Salvador, Brazil
| |
Collapse
|
8
|
Ljubojević Pelić D, Lazić S, Živkov Baloš M. Chemical contaminants in donkey milk: A review of literature on sources, routes and pathways of contamination, regulatory framework, health risks, and preventive measures. Heliyon 2024; 10:e39999. [PMID: 39553575 PMCID: PMC11566849 DOI: 10.1016/j.heliyon.2024.e39999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Donkey milk has garnered increasing attention due to its potential health benefits and nutritional properties, positioning it as a valuable alternative to cow's milk for specific consumer groups, such as individuals with allergies, young children, elderly populations, and those with compromised immune systems. However, the presence of chemical contaminants in donkey milk presents a significant concern for food safety and public health. This review aims to provide an assessment of the types and sources of chemical contaminants in donkey milk, including heavy metals, mycotoxins, pesticides, polychlorinated biphenyls, and antimicrobial and antiparasitic veterinary drugs. Through a comprehensive analysis of available literature, we examine the routes and pathways through which these contaminants enter the milk, their prevalence, and the associated health risks. The review also briefly discusses analytical methods for detecting these contaminants and the existing legislative framework that regulates these contaminants, underscoring its critical role in safeguarding public health and promoting safe consumption of donkey milk products. By identifying gaps in existing research and suggesting areas for further study, this review seeks to contribute to the development of more effective strategies for monitoring and mitigating chemical contamination in donkey milk, ultimately safeguarding consumer health and supporting the sustainable production of this niche dairy product.
Collapse
Affiliation(s)
| | - Sava Lazić
- Scientific Veterinary Institute “Novi Sad”, Rumenački put 20, 21000, Novi Sad, Serbia
| | - Milica Živkov Baloš
- Scientific Veterinary Institute “Novi Sad”, Rumenački put 20, 21000, Novi Sad, Serbia
| |
Collapse
|
9
|
Zhou M, Liu Z, Zhang B, Hu B. Defense systems of soil microorganisms in response to compound contamination by arsenic and polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175364. [PMID: 39117226 DOI: 10.1016/j.scitotenv.2024.175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Arsenic and PAHs impose environmental stress on soil microorganisms, yet their compound effects remain poorly understood. While soil microorganisms possess the ability to metabolize As and PAHs, the mechanisms of microbial response are not fully elucidated. In our study, we established two simulated soil systems using soil collected from Xixi Wetland Park grassland, Hangzhou, China. The As-600 Group was contaminated with 600 mg/kg sodium arsenite, while the As-600-PAHs-30 Group received both 600 mg/kg sodium arsenite and 30 mg/kg PAHs (phenanthrene:fluoranthene:benzo[a]pyrene = 1:1:1). These systems were operated continuously for 270 days, and microbial responses were assessed using high-throughput sequencing and metagenomic analysis. Our findings revealed that compound contamination significantly promoted the abundance of microbial defense-related genes, with general defense genes increasing by 11.07 % ∼ 74.23 % and specific defense genes increasing by 44.13 % ∼ 55.74 %. The dominate species Rhodococcus adopts these general and specific defense mechanisms to resist compound pollution stress and gain ecological niche advantages, making it a candidate strain for soil remediation. Our study contributes to the assessment of ecological damage caused by As and PAHs from a microbial perspective and provides valuable insights for soil remediation.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zishu Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
10
|
Srivastava R, Singh Y, White JC, Dhankher OP. Mitigating toxic metals contamination in foods: Bridging knowledge gaps for addressing food safety. Trends Food Sci Technol 2024; 153:104725. [PMID: 39665028 PMCID: PMC11634057 DOI: 10.1016/j.tifs.2024.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Background Reducing exposure to harmful substances in food is highly desired, especially for infants, young children, and pregnant women. A workshop focused on understanding and reducing toxic metal contamination in food was conducted involving leading scientists, educators, practitioners, and key stakeholders in conjunction with the USDA National Institute of Food and Agriculture. Scope and approach The goal of this review and the workshop was to advance the current knowledge of major toxic metals concerning food safety, viz. arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), and chromium (Cr), preventive measures, identify critical knowledge gaps, and the need for research, extension, and education. Being a part of the "Closer to Zero (C2Z)" initiative of the USDA, FDA, and other federal agencies, the workshop adopted a "One Health" approach to mitigate dietary exposure and environmental pollution of hazardous elements. Key findings and conclusions The experts discussed the accumulation of toxic metals in food crops and drinking water in relation to soil biogeochemistry, plant uptake, and multidisciplinary factors such as food processing, detection, regulatory standards, etc. To forward food safety, this workshop critically examined toxic metals contamination, exposure and toxicity along the farm-to-fork-to-human continuum, research gaps, prevailing regulations, and sustainable remediation approaches, and offered significant recommendations. This review paper provides perspective on key findings of the workshop relative to addressing this important aspect of food safety, emphasizing interdisciplinary research that can effectively investigate and understand the complex and dynamic relationships between soil biogeochemistry, the microbiome, plant tolerance and accumulation strategies, uniform standards for acceptable and safe toxic element levels in food and water, and raising public awareness. This article also provides a foundation for decision-making regarding toxic metal fate and effects, including risk management strategies, in the face of modern industrialization and a changing climate.
Collapse
Affiliation(s)
- Richa Srivastava
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jason C. White
- The Connecticut Agricultural Experimental Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Fan Y, Jiang X, Xiao Y, Li H, Chen J, Bai W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: prospective mechanisms and biomarkers. Crit Rev Food Sci Nutr 2024; 64:11530-11542. [PMID: 37526321 DOI: 10.1080/10408398.2023.2240399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention, attributed to their health hazards to humans and animals. Due to the non-degradable property of heavy metals, organisms are inevitably exposed to heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). Several studies revealed that heavy metals can cause reproductive damage by the excessive production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation, and endocrine disruption. Natural antioxidants, mainly polyphenols, carotenoids, and vitamins, have been shown to mitigate heavy metal-induced reproductive toxicity potentially. In this review, accumulated evidences on the influences of four non-essential heavy metals As, Cd, Pb, and Hg on both males and females reproductive system were established. The purpose of this review is to explore the potential mechanisms of the effects of heavy metals on reproductive function and point out the potential biomarkers of natural antioxidants interventions toward heavy metal-induced reproductive toxicity. Notably, increasing evidence proven that the regulations of hypothalamic-pituitary-gonadal axis, Nrf2, MAPK, or NF-κB pathways are the important mechanisms for the amelioration of heavy metal induced reproductive toxicity by natural antioxidants. It also provided a promising guidance for prevention and management of heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yueyao Fan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Zaukuu JLZ, Mensah S, Mensah ET, Akomanin-Mensah F, Wiredu S, Kovacs Z. Combining NIR spectroscopy with chemometrics for discriminating naturally ripened banana and calcium carbide ripened banana. NPJ Sci Food 2024; 8:86. [PMID: 39461960 PMCID: PMC11513051 DOI: 10.1038/s41538-024-00327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Calcium carbide is prohibited as a fruit ripening agent in many countries due to its harmful effects. Current methods for detecting calcium carbide in fruit involve time-consuming and destructive chemical analysis techniques, necessitating the need for non-destructive and rapid detection techniques. This study combined near infrared (NIR) spectroscopy with chemometrics to detect two banana varieties ripened with calcium carbide in different forms when they are peeled or unpeeled. Sixteen linear discriminant analysis (LDA) models were developed with high average classification accuracies for classifying banana based on the mode used to ripen banana, type of carbide treatment and the duration of soaking banana in carbide solution. Banana colour was predicted with partial least squared regression (PLSR) models with R2CV > 0.74, RMSECV and <5.4 and RPD close to 3. NIR coupled with chemometrics has good potential as a technique for detecting carbide ripened banana even if the banana is peeled or not.
Collapse
Affiliation(s)
- John-Lewis Zinia Zaukuu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Sheila Mensah
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eric Tetteh Mensah
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Florence Akomanin-Mensah
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Solomon Wiredu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Zoltan Kovacs
- Department of Measurements and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, Budapest, Hungary.
| |
Collapse
|
13
|
Banaeeyeh S, Razavi BM, Hosseinzadeh H. Neuroprotective Effects of Morin Against Cadmium- and Arsenic-Induced Cell Damage in PC12 Neurons. Biol Trace Elem Res 2024:10.1007/s12011-024-04407-x. [PMID: 39436547 DOI: 10.1007/s12011-024-04407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Arsenic and cadmium, both toxic metals and widespread environmental pollutants, can trigger apoptosis and oxidative stress in various tissues and cells. Morin, a natural flavonoid with diverse biological properties, has been found to protect neurons from oxidative stress and apoptosis-induced damage. This research aimed to examine the protective properties of morin against neurotoxicity caused by arsenic and cadmium, utilizing PC12 cells as a model for nerve cells. The cells were pre-treated with different concentrations of morin and then exposed to arsenic and cadmium, after which cell viability and reactive oxygen species (ROS) production were assessed. Additionally, western blotting was performed to evaluate the protein levels of the Bax/Bcl-2 ratio and cleaved-caspase-3. Following exposure to arsenic and cadmium, there were significant increases in ROS, Bax/Bcl-2 ratio, and cleaved-caspase-3. However, the results of the study demonstrated the beneficial effects of morin at various concentrations, as it increased cell viability and decreased ROS production. Furthermore, morin at a concentration of 10 µM was found to reduce the elevated levels of cleaved-caspase-3 induced by arsenic and diminish the increased Bax/Bcl-2 ratio after exposure to arsenic and cadmium. The findings of this study suggest that morin can effectively protect cells from arsenic and cadmium-induced neurotoxicity through its antioxidant and anti-apoptotic effects. Thus, morin should be considered a promising agent for treating arsenic and cadmium toxicity.
Collapse
Affiliation(s)
- Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Lin Y, Liu J, Sun Y, Chen S, Chen J, Fu F. Bio-accessibility and bio-availability evaluation of each arsenic species existing in various edible seaweeds in vitro and in vivo for arsenic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174247. [PMID: 38936725 DOI: 10.1016/j.scitotenv.2024.174247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Seaweeds consumption is one of main internal exposure sources of arsenic for human. However, the absence of representative bio-availabilities of arsenic species makes the accurate assessment of arsenic health risk originating from seaweeds consumption impossible. Herein, the arsenic species in various seaweeds collected from Fujian of China were investigated, and the bio-accessibilities/bio-availabilities of arsenic species existing in seaweeds were evaluated in vitro and in vivo. Results revealed that in vitro bio-availabilities of arsenic species presenting in seaweeds, which obtained with Caco-2 cells, were lower than those of pure arsenic standards, and varied with order of inorganic arsenic (iAs) > dimethylarsinic acid (DMA) ≈ arsenobetaine (AsB) > arsenosugars. During gastrointestinal digestion of mice, As5+ was partly methylated into monomethylarsonic acid (MMA) and DMA, which makes the in vivo bioavailability of iAs (⁓31.8 %) obtained with mouse metabolic experiment is much higher than its in vitro bio-availability (⁓10.3 %). The in vivo bio-availabilities of DMA and total arsenic (tAs) are similar to their in vitro bio-availabilities. As the dominant arsenic species in most seaweeds, arsenosugars have an ⁓0.0 % of in vivo bioavailability and only a ⁓3.7 % of in vitro bioavailability. The simulated calculation of target hazard quotient (THQ) and target cancer risk (TR) revealed that the arsenic risk originating from seaweeds was greatly degraded by taking into consideration of arsenic species and bio-availabilities, and all seaweeds collected from Fujian are safety for consumption. The simulated calculation also revealed that arsenic risk of seaweeds can be also more accurately assessed based on tAs together with bioavailability, which provides a simple but accurate and protective method for the risk assessment of arsenic originating from seaweeds. Our work provides the possible representative bio-availabilities of arsenic species presenting in seaweeds for accurately assessing arsenic risk of seaweeds, and novel insights into the bio-availabilities of arsenic in animal.
Collapse
Affiliation(s)
- Yue Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Junfeng Liu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ying Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shilong Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jianlang Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
15
|
Tao L, Wang L, Liu L, Cheng X, Zhang Q. Phosphorous accumulation associated with mitochondrial PHT3-mediated enhanced arsenate tolerance in Chlamydomonas reinhardtii. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135460. [PMID: 39151356 DOI: 10.1016/j.jhazmat.2024.135460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Arsenate is a highly toxic element and excessive accumulation of arsenic in the aquatic environment easily triggers a problem threatening the ecological health. Phytoremediation has been widely explored as a method to alleviate As contamination. Here, the green algae, Chlamydomonas reinhardtii was investigated by profiling the accumulation of arsenate and phosphorus, which share the same uptake pathway, in response to arsenic stress. Both C. reinhardtii wild type C30 and the Crpht3 mutant were cultured under arsenic stress, and demonstrated a similar growth phenotype under limited phosphate supply. Sufficient phosphate obviously increased the uptake of polyphosphate and intercellular phosphate in the Crpht3 mutant, which increased the arsenic tolerance of the Crpht3 mutant under stress from 500 µmol L-1 As(V). Upregulation of the PHT3 gene in the Crpht3 mutant increased accumulation of phosphate in the cytoplasm under arsenate stress, which triggered a regulatory role for the differentially expressed genes that mediated improvement of the glutathione redox cycle, antioxidant activity and detoxification. While the wild type C30 showed weak arsenate tolerance because of little phosphate accumulation. These results suggest that the enhanced arsenic tolerance of the Crpht3 mutant is regulated by the PHT3 gene mediation. This study provides insight onto the responsive mechanisms of the PHT3 gene-mediated in alleviating arsenic toxicity in plants.
Collapse
Affiliation(s)
- Leyuan Tao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Laihua Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Xianguo Cheng
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qianru Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Akhtar MS, Jutt DSR, Aslam S, Nawaz R, Irshad MA, Khan M, Khairy M, Irfan A, Al-Hussain SA, Zaki MEA. Green synthesis of graphene oxide and magnetite nanoparticles and their arsenic removal efficiency from arsenic contaminated soil. Sci Rep 2024; 14:23094. [PMID: 39367070 PMCID: PMC11452486 DOI: 10.1038/s41598-024-73734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Graphene-based nanomaterials have been proved to be robust sorbents for efficient removal of environmental contaminants including arsenic (As). Biobased graphene oxide (bGO-P) derived from sugarcane bagasse via pyrolysis, GO-C via chemical exfoliation, and magnetite nanoparticles (FeNPs) via green approach using Azadirachta indica leaf extract were synthesized and characterized by Ultraviolet-Visible Spectrophotometer (UV-vis.), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), mean particle size and Scanning electron microscopy (SEM) along with Energy dispersive spectroscopy (EDX) analysis. Compared to cellulose and hemicellulose, the lignin fraction was less in the precursor material. The GOC, bGO-P and FeNPs displayed maximum absorption at 230, 236, and 374 nm, respectively. FTIR spectrum showed different functional groups (C-OH, C-O-C, COOH and O-H) modifying the surfaces of synthesized materials. Graphene based nanomaterials showed clustered dense flakes of GO-C and thin transparent flakes of bGO-P. Elemental composition by EDX analysis of GO-C (71.26% C and 27.36% O), bGO-P (74.54% C and 24.61% O) and FeNPs (55.61% Fe, 4.1% C and 35.72% O) confirmed the presence of carbon, oxygen, and iron in synthesized nanomaterials. Sorption study was conducted with soil amended with different doses of synthesized nanomaterials (10, 50 and 250 mg) and exposed to 100, 300 and 500 ppm of As. Arsenic concentrations were estimated by colorimetry and atomic absorption spectroscopy (AAS). GO-C, bGO-P, and FeNPs showed substantial As removal efficiency i.e., 81 to 99.3%, 65 to 98.8% and 73.1-89.9%, respectively. Green synthesis of bGO-P and magnetite nanoparticles removed substantial amounts of As compared to GO-C and can be effectively deployed for As removal or immobilization. Higher and medium sorbent doses (250 and 50 mg) exhibited greater As removal and data was best fitted for Freundlich isotherm evidencing favorable sorption. Nevertheless, at low sorbent doses, data was best fitted for both models. Newly synthesized nanomaterials emerged as promising materials for As removal strategy for soil nano-remediation and can be effectively deployed in As contaminated soils.
Collapse
Affiliation(s)
- Muhammad Shahbaz Akhtar
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan.
| | | | - Sohaib Aslam
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Maheer Khan
- Department of Pharmacy, The University of Lahore, Lahore, 54000, Pakistan
| | - M Khairy
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| |
Collapse
|
17
|
Peng Z, Liao Y, Yang W, Liu L. Metal(loid)-gut microbiota interactions and microbiota-related protective strategies: A review. ENVIRONMENT INTERNATIONAL 2024; 192:109017. [PMID: 39317009 DOI: 10.1016/j.envint.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Human exposure to metal(loid)s has dramatically increased over the past five decades, which has triggered public concern worldwide. Recently, gut microbiota has been considered a target for metal(loid)s, and some literature has reviewed the interactions between gut microbiota and heavy metal(loid)s (HMs) with high toxicity. However, whether there is an interaction between gut microbiota and metal(loid)s with essential roles or some normal functions are far from clear to date. Importantly, in addition to traditional probiotics that have been clarified to alleviate the adverse effect of HMs on the body, some novel probiotics, prebiotics, synbiotics, and postbiotics may also exhibit comparable or even better abilities of metal(loid) remediation. In this review, we mainly outline and discuss recent research findings on the metal(loid)-gut microbiota interactions and microbiota-related protective strategies.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
18
|
Salfate G, Negrete-Vergara C, Azócar L, Xiao LP, Sun RC, Sánchez J. Lignin and functional polymer-based materials: Synthesis, characterization and application for Cr (VI) and As (V) removal from aqueous media. Int J Biol Macromol 2024; 278:134697. [PMID: 39147352 DOI: 10.1016/j.ijbiomac.2024.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.
Collapse
Affiliation(s)
- Gabriel Salfate
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Camila Negrete-Vergara
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Laura Azócar
- Universidad Católica de la Santísima Concepción/Facultad de Ciencias, Departamento de Química Ambiental, Chile
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Prasad M, Madhavan A, Babu P, Salim A, Subhash S, Nair BG, Pal S. Alleviating arsenic stress affecting the growth of Vigna radiata through the application of Klebsiella strain ASBT-KP1 isolated from wastewater. Front Microbiol 2024; 15:1484069. [PMID: 39386362 PMCID: PMC11461332 DOI: 10.3389/fmicb.2024.1484069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Arsenic contamination of soil and water is a major environmental issue. Bioremediation through plant growth-promoting bacteria is viable, cost-effective, and sustainable. Along with arsenic removal, it also improves plant productivity under stressful conditions. A crucial aspect of such a strategy is the selection of bacterial inoculum. The described study demonstrates that the indigenous wastewater isolate, ASBT-KP1, could be a promising candidate. Identified as Klebsiella pneumoniae, ASBT-KP1 harbors genes associated with heavy metal and oxidative stress resistance, production of antimicrobial compounds and growth-promotion activity. The isolate efficiently accumulated 30 μg/g bacterial dry mass of arsenic. Tolerance toward arsenate and arsenite was 120 mM and 70 mM, respectively. Plant biomass content of Vigna radiata improved by 13% when grown in arsenic-free soil under laboratory conditions in the presence of the isolate. The increase became even more significant under the same conditions in the presence of arsenic, recording a 37% increase. The phylogenetic analysis assigned ASBT-KP1 to the clade of Klebsiella strains that promote plant growth. Similar results were also observed in Oryza sativa, employed to assess the ability of the strain to promote growth, in plants other than V. radiata. This study identifies a prospective candidate in ASBT-KP1 that could be employed as a plant growth-promoting rhizoinoculant in agricultural practices.
Collapse
Affiliation(s)
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | | | | | | | | | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
20
|
Chen X, Chen L, Chen B, Wei Q, Wu Y, Zhang Y. A Recombinant Lentiviral Vegfr2-Silencing Vector Attenuates Roxarsone-Promoted Growth of Rat Vascular Endothelial Cells and Angiogenesis in Matrigel Plug and B16F10 Xenograft Models. Vet Sci 2024; 11:451. [PMID: 39453043 PMCID: PMC11511396 DOI: 10.3390/vetsci11100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Roxarsone (ROX) is widely used as a feed addictive for livestock and poultry. ROX promotes angiogenesis, which can lead to health problems, and it is necessary to identify methods to counter this angiogenic effect of ROX. The VEGF/VEGFR2 signaling pathway is involved in the growth and reconstruction of new blood vessels during angiogenesis. In this study, a recombinant lentiviral vector encoding Vegfr2 shRNA was transfected into rat vascular endothelial cells and used in mouse matrigel plug and melanoma xenograft models to investigate its potential to regulate ROX-induced angiogenesis and tumor growth. Treating endothelial cells with ROX increased cell proliferation, migration, and a tube-like structure of growth relative to the control group. The addition of the lentiviral Vegfr2-silencing vector significantly attenuated the effects of ROX on endothelial cells. The hemoglobin content of mouse matrigel plugs treated with ROX was increased significantly. This effect was dramatically attenuated by the co-administration of shRNA targeting Vegfr2. The volume, weight and CD34 staining of the melanoma xenograft tumors increased by ROX were also attenuated by Vegfr2 silence. These results indicate that the down-regulation of VEGFR2 protein plays an inhibitory role in the ROX-promoted angiogenesis in vivo and in vitro. These data support the targeting of Vegfr2 gene as an effective means to treat ROX-induced angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Xin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Lin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
| | - Binlin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
| | - Qianhan Wei
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
| | - Yinchao Wu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
| | - Yumei Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
21
|
Khoddam MA, Norouzbeigi R, Velayi E, Cavallaro G. Statistical-based optimization and mechanism assessments of Arsenic (III) adsorption by ZnO-Halloysite nanocomposite. Sci Rep 2024; 14:21629. [PMID: 39285202 PMCID: PMC11405673 DOI: 10.1038/s41598-024-72885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Arsenic contamination in aqueous media is a serious environmental problem, especially in developing countries. In this research, the Box-Behnken response surface methodology was used to optimize the most relevant variables affecting arsenic adsorption on the ZnO-halloysite surface, including temperature, adsorbent dosage, pH, contact time, and As (III) initial concentration. The regression analysis indicated that the experimental data were appropriately fitted to a quadratic model with the adjusted R-squared value (R2) of 0.982 for As(III) adsorption capacity and a linear model with R2 of 0.931 for As(III) removal. The p-values for both adsorption capacity and removal efficiency were below 0.05, with F-values of 116.91 and 115.58, respectively, supporting the model's validity. The optimum conditions for maximum removal of As(III) were determined through numerical and graphical optimization using the desirability function. It was found that the optimum conditions for adsorption were pH = 7.99, contact time of 3.99 h, As(III) initial concentration of 49.96 mg/L, and adsorbent dosage of 0.135 g/40 ml. The accuracy of the optimization procedure was confirmed by a confirmatory experiment, which showed a maximum arsenic removal of 91.31% and an adsorption capacity of 12.63 mg/g under optimized conditions. Moreover, XPS analysis was performed at different pH levels to investigate the As (III) adsorption mechanism. The results demonstrated that As(III) adsorption occurs at acidic and neutral pH levels. On the other hand, when pH is increased to 8, As (III) oxidizes to As (V), and then adsorption occurs.
Collapse
Affiliation(s)
- Mohammad Ali Khoddam
- Nanomaterials and surface technology research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.B. 16765-163, Narmak, Tehran, Iran
| | - Reza Norouzbeigi
- Nanomaterials and surface technology research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.B. 16765-163, Narmak, Tehran, Iran.
| | - Elmira Velayi
- Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, P.O.Box: 537517-1379, Tabriz, Iran
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
| |
Collapse
|
22
|
Coimbra JLP, Campolina-Silva G, Lair DF, Guimarães-Ervilha LO, Souza ACF, Oliveira CA, Costa GMJ, Machado-Neves M. Subchronic intake of arsenic at environmentally relevant concentrations causes histological lesions and oxidative stress in the prostate of adult Wistar rats. Reprod Toxicol 2024; 128:108647. [PMID: 38909693 DOI: 10.1016/j.reprotox.2024.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
The prostate gland is one of the main sites of hyperplasia and cancer in elderly men. Numerous factors have been demonstrated to disrupt prostate homeostasis, including exposure to environmental pollutants. Arsenic is a metalloid found ubiquitously in soil, air, and water, which favors human poisoning through the involuntary intake of contaminated drinking water and food and has harmful effects by increasing the oxidative stress response. This study aimed to investigate the effects of prolonged exposure to arsenic at environmentally relevant concentrations on the prostate biology of adult Wistar rats. Thirty 80-day-old male rats were divided into three experimental groups. Rats from the control group received filtered water, whereas animals from the arsenic groups ingested 1 mg L-1 and 10 mg L-1 of arsenic, in the form of sodium arsenite, daily. The arsenic solutions were provided ad libitum in the drinking water for eight weeks. Our results showed that 1 mg L-1 and 10 mg L-1 of arsenic made the prostate susceptible to evolving benign and premalignant histopathological changes. While the ingestion of 1 mg L-1 of arsenic reduced SOD activity only, 10 mg L-1 diminished SOD and CAT activity in the prostate tissue, culminating in high MDA production. These doses, however, did not affect the intraprostatic levels of DHT and estradiol. In conclusion, exposure to arsenic at environmentally relevant concentrations through drinking water induces histological and oxidative stress-related changes in the prostate of adult rats, strengthening the between arsenic exposure and prostate disorders.
Collapse
Affiliation(s)
- John L P Coimbra
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Gabriel Campolina-Silva
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Québec, QC, Canada; CHU de Quebec Research Center, Université Laval, Québec, QC, Canada
| | - Daniel F Lair
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana C F Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleida A Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
23
|
Alnuqaydan AM. The dark side of beauty: an in-depth analysis of the health hazards and toxicological impact of synthetic cosmetics and personal care products. Front Public Health 2024; 12:1439027. [PMID: 39253281 PMCID: PMC11381309 DOI: 10.3389/fpubh.2024.1439027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Over the past three decades, the popularity of cosmetic and personal care products has skyrocketed, largely driven by social media influence and the propagation of unrealistic beauty standards, especially among younger demographics. These products, promising enhanced appearance and self-esteem, have become integral to contemporary society. However, users of synthetic, chemical-based cosmetics are exposed to significantly higher risks than those opting for natural alternatives. The use of synthetic products has been associated with a variety of chronic diseases, including cancer, respiratory conditions, neurological disorders, and endocrine disruption. This review explores the toxicological impact of beauty and personal care products on human health, highlighting the dangers posed by various chemicals, the rise of natural ingredients, the intricate effects of chemical mixtures, the advent of nanotechnology in cosmetics, and the urgent need for robust regulatory measures to ensure safety. The paper emphasizes the necessity for thorough safety assessments, ethical ingredient sourcing, consumer education, and collaboration between governments, regulatory bodies, manufacturers, and consumers. As we delve into the latest discoveries and emerging trends in beauty product regulation and safety, it is clear that the protection of public health and well-being is a critical concern in this ever-evolving field.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
24
|
Adebambo TH, Flores MFM, Zhang SL, Lerit DA. Arsenic impairs Drosophila neural stem cell mitotic progression and sleep behavior in a tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606375. [PMID: 39149321 PMCID: PMC11326188 DOI: 10.1101/2024.08.05.606375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite established exposure limits, arsenic remains the most significant environmental risk factor detrimental to human health and is associated with carcinogenesis and neurotoxicity. Arsenic compromises neurodevelopment, and it is associated with peripheral neuropathy in adults. Exposure to heavy metals, such as arsenic, may also increase the risk of neurodegenerative disorders. Nevertheless, the molecular mechanisms underlying arsenic-induced neurotoxicity remain poorly understood. Elucidating how arsenic contributes to neurotoxicity may mitigate some of the risks associated with chronic sublethal exposure and inform future interventions. In this study, we examine the effects of arsenic exposure on Drosophila larval neurodevelopment and adult neurologic function. Consistent with prior work, we identify significant developmental delays and heightened mortality in response to arsenic. Within the developing larval brain, we identify a dose-dependent increase in brain volume. This aberrant brain growth is coupled with impaired mitotic progression of the neural stem cells (NSCs), progenitors of the neurons and glia of the central nervous system. Live imaging of cycling NSCs reveals significant delays in cell cycle progression upon arsenic treatment, leading to genomic instability. In adults, chronic arsenic exposure reduces neurologic function, such as locomotion. Finally, we show arsenic selectively impairs circadian rhythms in a humanized tauopathy model. These findings inform mechanisms of arsenic neurotoxicity and reveal sex-specific and genetic vulnerabilities to sublethal exposure.
Collapse
Affiliation(s)
- Temitope H. Adebambo
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
| | | | - Shirley L. Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
- Winship Cancer Institute, Emory University, Atlanta GA 30322
| |
Collapse
|
25
|
Wang ZZ, Wang HL, Xiong W, Du J, Liu R. Traditional Chinese Medicine Erhuang Suppository for Treatment of Persistent High-risk Human Papillomavirus Infection and Its Impact on Transcriptome of Uterine Cervix. Curr Med Sci 2024; 44:841-853. [PMID: 39039373 DOI: 10.1007/s11596-024-2898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE High-risk human papillomavirus (HR-HPV) infection is the chief cause of cervical intraepithelial neoplasia (CIN) and cervical carcinoma. The Erhuang suppository (EHS) is a traditional Chinese medicine (TCM) prepared from realgar (As2S2), Coptidis rhizoma, alumen, and borneolum syntheticum and has been used for antiviral and antitumor purposes. However, whether EHS can efficiently alleviate HR-HPV infection remains unclear. This study was conducted to evaluate the efficacy of EHS for the treatment of persistent HR-HPV infection in the uterine cervix. METHODS In this study, we evaluated the therapeutic efficacy of EHS in a randomized controlled clinical trial with a 3-month follow-up. Totally, 70 patients with persistent HR-HPV infection were randomly assigned to receive intravaginal administration of EHS or placebo. HPV DNA, ThinPrep cytologic test (TCT), colposcopy, and safety evaluation were carried out after treatment. Microarray analysis was performed to compare transcriptome profiles before and after EHS treatment. A K14-HPV16 mouse model was generated to confirm the efficiency of EHS. RESULTS After 3 months, 74.3% (26/35) of the patients in the treatment group were HPV negative, compared to 6.9% (2/29) in the placebo group. High-throughput microarrays revealed distinct transcriptome profiles after treatment. The differentially expressed genes were significantly enriched in complement activation, immune response, and apoptotic processes. The K14-HPV16 mouse model also validated the remarkable efficacy of EHS. CONCLUSION This study demonstrated that EHS is effective against HR-HPV infection and cervical lesions. Additionally, no obvious systemic toxicity was observed in patients during the trial. The superior efficacy and safety of EHS demonstrated its considerable value as a potential cost-effective drug for the treatment of HPV infection and HPV-related cervical diseases.
Collapse
Affiliation(s)
- Zi-Zhuo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Li Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Xiong
- Department of Pharmacology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Zhong R, Pan D, Huang G, Yang G, Wang X, Niu R, Cai X, Ding Z, Chi W, Wang Y, Li X. Colloidal fraction on pomelo peel-derived biochar plays a dual role as electron shuttle and adsorbent in controlling arsenic transformation in anoxic paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173340. [PMID: 38763201 DOI: 10.1016/j.scitotenv.2024.173340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Arsenic release and reduction in anoxic environments can be mitigated or facilitated by biochar amendment. However, the key fractions in biochars and how they control arsenic transformation remain poorly understood. In this study, a biochar produced from pomelo peel was rich in colloids and was used to evaluate the roles of the colloidal and residual fractions of biochar in arsenic transformation in anoxic paddy soil. Bulk biochar showed a markedly higher maximum adsorption capacity for As(III) at 1732 mg/kg than for As(V) at 75.7 mg/kg, mainly because of the colloidal fraction on the surface. When compared with the control and treatments with the colloidal/residual fraction, the addition of bulk biochar facilitated As(V) reduction and release in the soil during days 0-12, but decreased the dissolved As(III) concentration during days 12-20. The colloidal fraction revealed significantly higher electron donating capacity (8.26 μmole-/g) than that of bulk biochar (0.88 μmole-/g) and residual fraction (0.65 μmole-/g), acting as electron shuttle to promote As(V) reduction. Because the colloidal fraction was rich in aliphatic carbon, fulvic acid-like compounds, potassium, and calcium, it favored As(III) adsorption when more As(III) was released, probably via organic-cation-As(III) complexation. These findings provide deeper insight into the role of the colloidal fraction of biochar in controlling anaerobic arsenic transformation, which will be helpful for the practical application of biochar in arsenic-contaminated environments.
Collapse
Affiliation(s)
- Ruilin Zhong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dandan Pan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guoyong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guang Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaonan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Rumiao Niu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ziman Ding
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Wenting Chi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Bai Y, Zhang D, Wang K, Li F, Chen N, Zhou Z, Ye J. Analysis of Heavy Metal Characteristics and Health Risk Assessment of Dried Fish Marketed in Guangzhou, China. Biol Trace Elem Res 2024:10.1007/s12011-024-04291-5. [PMID: 38954322 DOI: 10.1007/s12011-024-04291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
This study investigated heavy metal contamination in dried fish sold in Guangzhou, China, and evaluated the resultant non-carcinogenic and carcinogenic health risks. Dried fish samples were purchased from Baiyun, Tianhe, Panyu, and Yuexiu districts in Guangzhou, where the population is substantial. They were randomly acquired in bustling supermarkets and farmers' markets, targeting the most popular dried fish in these areas. Sixty samples from five dried fish types (Stolephorus chinensis, Thamnaconus modestus, Nemipterus-virgatus, river fish, Ctenopharyngodon idella) were analyzed for chromium (Cr), arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) content. Quantification of the heavy metals were carried out by inductively coupled plasma mass spectrometry (ICP-MS) for Cr, As, Cd, and Pb, and an automatic mercury analyzer for Hg. The median concentration of these heavy metals in dried fish were 0.358 mg/kg, 2.653 mg/kg, 0.032 mg/kg, 0.083 mg/kg, and 0.042 mg/kg, respectively. Pollution severity was ranked as dried Nemipterus-virgatus > dried Stolephorus chinensis > dried Thamnaconus modestus > dried river fish > dried Ctenopharyngodon idella, with As being the most predominant pollutant. All fish types showed severe As pollution. Non-carcinogenic risks were identified in the consumption of dried Nemipterus-virgatus and dried Stolephorus chinensis for both genders, while potential carcinogenic risks were associated with four of the fish types. Women faced higher health risks than men from dried fish consumption. Consequently, we advise consumers to minimize their intake of dried fish and regulatory agencies conduct regular monitoring of heavy metal levels in commercially available dried fish to avert potential health risks.
Collapse
Affiliation(s)
- Yifei Bai
- Department of Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dimei Zhang
- Department of Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kang Wang
- Department of Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fangfei Li
- Department of Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Nachuan Chen
- Department of Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhifeng Zhou
- Department of Hygiene Inspection and Quarantine Science, Center for Hygiene Testing and Analysis, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, 510515, Guangdong, China.
| | - Jufeng Ye
- Experimental Teaching Center of Preventive Medicine, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), National Preventive Medicine Experimental Teaching Demonstration Center, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
28
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
29
|
Larrán B, Loste A, Borobia M, Miranda M, López-Alonso M, Herrero-Latorre C, Marca MC, Orjales I. Trace element status in canine endocrine diseases. Res Vet Sci 2024; 174:105309. [PMID: 38781816 DOI: 10.1016/j.rvsc.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
A balanced trace element status is essential for the optimal functioning of all organisms. However, their concentrations are often altered in diverse medical conditions. This study investigated the trace element profiles in plasma samples of dogs with endocrine diseases and used chemometric techniques to explore their associations with biochemical data. Thirteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn) were measured in 40 dogs with hyperadrenocorticism (HAC), 29 dogs with diabetes mellitus (DM), 11 dogs with hypothyroidism (HT) and 30 control dogs using inductively coupled plasma mass spectrometry (ICP-MS). Statistically significant differences were observed for As, Cu, Mo, Se and Zn. In comparison with the control group, the HT patients had higher As and lower Se levels, while the HAC group had higher concentrations of Mo. All three disease groups had higher Cu and Zn concentrations than the control group, with the DM group having higher Cu concentrations and the HAC group higher Zn concentrations than the other endocrinopathy groups. The chemometric analysis revealed distinctive association patterns for discriminating each pathology group and the control group. Moreover, the analysis revealed the following associations: Mo with glucose levels and Cu with fructosamine levels in the DM group, As with cortisol levels in the HAC group, and Se with TT4 levels and As with TSH levels in the HT group. The study findings provide valuable insights into the complex relationships between trace elements and endocrinopathies, elucidating the associations with biochemical markers in these diseases. Larger-scale studies are necessary to fully understand the observed relationships and explore the potential clinical applications.
Collapse
Affiliation(s)
- Belén Larrán
- Departamento de Patoloxía animal, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Hospital Veterinario Universitario Rof Codina, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Araceli Loste
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Servicio de Endocrinología, Hospital Veterinario de la Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2-, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Marta Borobia
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Servicio de Endocrinología, Hospital Veterinario de la Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Marta Miranda
- Hospital Veterinario Universitario Rof Codina, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Marta López-Alonso
- Departamento de Patoloxía animal, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Herrero-Latorre
- Instituto de Investigación en Análises Químicas e Biolóxicas, Departamento de Química Analítica, Nutrición e Bromatoloxía, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - M Carmen Marca
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Servicio de Endocrinología, Hospital Veterinario de la Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inmaculada Orjales
- Hospital Veterinario Universitario Rof Codina, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; Departamento de Anatomía, Producción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
30
|
Bhat A, Tian F, Singh B. Advances in Nanomaterials and Colorimetric Detection of Arsenic in Water: Review and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2024; 24:3889. [PMID: 38931673 PMCID: PMC11207815 DOI: 10.3390/s24123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Arsenic, existing in various chemical forms such as arsenate (As(V)) and arsenite (As(III)), demands serious attention in water and environmental contexts due to its significant health risks. It is classified as "carcinogenic to humans" by the International Agency for Research on Cancer (IARC) and is listed by the World Health Organization (WHO) as one of the top 10 chemicals posing major public health concerns. This widespread contamination results in millions of people globally being exposed to dangerous levels of arsenic, making it a top priority for the WHO. Chronic arsenic toxicity, known as arsenicosis, presents with specific skin lesions like pigmentation and keratosis, along with systemic manifestations including chronic lung diseases, liver issues, vascular problems, hypertension, diabetes mellitus, and cancer, often leading to fatal outcomes. Therefore, it is crucial to explore novel, cost-effective, and reliable methods with rapid response and improved sensitivities (detection limits). Most of the traditional detection techniques often face limitations in terms of complexity, cost, and the need for sophisticated equipment requiring skilled analysts and procedures, which thereby impedes their practical use, particularly in resource-constrained settings. Colorimetric methods leverage colour changes which are observable and quantifiable using simple instrumentation or even visual inspection. This review explores the colorimetric techniques designed to detect arsenite and arsenate in water. It covers recent developments in colorimetric techniques, and advancements in the role of nanomaterials in colorimetric arsenic detection, followed by discussion on current challenges and future prospects. The review emphasizes efforts to improve sensitivity, selectivity, cost, and portability, as well as the role of advanced materials/nanomaterials to boost the performance of colorimetric assays/sensors towards combatting this pervasive global health concern.
Collapse
Affiliation(s)
- Abhijnan Bhat
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Health, Engineering & Materials Science (HEMS) Research Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
| | - Furong Tian
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Health, Engineering & Materials Science (HEMS) Research Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| |
Collapse
|
31
|
Jiang Y, Gao X, Yang X, Gong P, Pan Z, Yi L, Ma S, Li C, Kong S, Wang Y. Sulfate-reducing bacteria (SRB) mediated carbonate dissolution and arsenic release: Behavior and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172572. [PMID: 38641113 DOI: 10.1016/j.scitotenv.2024.172572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Carbonate bound arsenic act as an important reservoir for arsenic (As) in nature aquifers. Sulfate-reducing bacteria (SRB), one of the dominant bacterial species in reductive groundwater, profoundly affects the biogeochemical cycling of As. However, whether and how SRB act on the migration and transformation of carbonate bound arsenic remains to be elucidated. Batch culture experiment was employed using filed collected arsenic bearing calcite to investigate the release and species transformation of As by SRB. We found that arsenic in the carbonate samples mostly exist as inorganic As(V) (93.92 %) and As(III). The present of SRB significantly facilitated arsenic release from carbonates with a maximum of 22.3 μg/L. The main release mechanisms of As by SRB include 1) calcite dissolution and the liberate of arsenic in calcite lattices, and 2) the break of H-bonds frees arsenic absorbed on carbonate surface. A redistribution of arsenic during culture incubation took place which may due to the precipitation of As2Sx or secondary FeAl minerals. To our best knowledge, it is the first experimental study focusing on the release of carbonate bound arsenic by SRB. This study provides new insights into the fate and transport of arsenic mediated by microorganism within high arsenic groundwater-sediment system.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China; Institute of Karst Geology, Chinese Academy of Geological Sciences, 50 Qixing Road, Guilin, Guangxi 541004, China.
| | - Xinwen Yang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Peili Gong
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Zhendong Pan
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Ling Yi
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Siyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Shuqiong Kong
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| |
Collapse
|
32
|
Ricardo TGO, Eduardo FSM, Rafael TMA, Moisés SHI, Verónica CH, Cesar SF, Sofía GGA, Eduardo PC. The leachate from the Urban Solid Waste Transfer Station produces neurotoxicity in Wistar rats. Toxicol Rep 2024; 12:318-324. [PMID: 38510067 PMCID: PMC10950561 DOI: 10.1016/j.toxrep.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Leachate from municipal solid waste is a mixture of xenobiotics capable of contaminating bodies of water and causing damage to the health of living beings that inhabit or consume contaminated water. A previous study revealed the presence of heavy metals in Urban Solid Waste Transfer Station (USWTS) leachate above the permissible national and international limits. In the present study, we demonstrate that subchronic oral administration (5 and 25 % v/v) of leachate to male Wistar rats caused changes in the immunoreactivity of the glial markers: GFAP and Iba-1, accompanied by an increase in the expression of caspase-3, and a decrease in the expression of the NeuN protein. Results indicate that the heavy metals present in the leachate induced neuronal loss in the prefrontal cortex, suggesting that these contaminants can cause neurological problems in mammals that consume surface water with xenobiotics, since the leachate could contaminate water bodies and underground water.
Collapse
Affiliation(s)
- Torres-González Omar Ricardo
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | | | | | - Sánchez-Hernández Iván Moisés
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | | | - Soria-Fregozo Cesar
- Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Mexico
| | - González-Garibay Angélica Sofía
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| | - Padilla-Camberos Eduardo
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Mexico
| |
Collapse
|
33
|
Okada N, Nozaki H, Nakamura S, Manjate EPA, Gebretsadik A, Ohtomo Y, Arima T, Kawamura Y. Optimizing multi-spectral ore sorting incorporating wavelength selection utilizing neighborhood component analysis for effective arsenic mineral detection. Sci Rep 2024; 14:11544. [PMID: 38773148 PMCID: PMC11109168 DOI: 10.1038/s41598-024-62166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
Arsenic contamination not only complicates mineral processing but also poses environmental and health risks. To address these challenges, this research investigates the feasibility of utilizing Hyperspectral imaging combined with machine learning techniques for the identification of arsenic-containing minerals in copper ore samples, with a focus on practical application in sorting and processing operations. Through experimentation with various copper sulfide ores, Neighborhood Component Analysis (NCA) was employed to select essential wavelength bands from Hyperspectral data, subsequently used as inputs for machine learning algorithms to identify arsenic concentrations. Results demonstrate that by selecting a subset of informative bands using NCA, accurate mineral identification can be achieved with a significantly reduced the size of dataset, enabling efficient processing and analysis. Comparison with other wavelength selection methods highlights the superiority of NCA in optimizing classification accuracy. Specifically, the identification accuracy showed 91.9% or more when utilizing 8 or more bands selected by NCA and was comparable to hyperspectral data analysis with 204 bands. The findings suggest potential for cost-effective implementation of multispectral cameras in mineral processing operations. Future research directions include refining machine learning algorithms, exploring broader applications across diverse ore types, and integrating hyperspectral imaging with emerging sensor technologies for enhanced mineral processing capabilities.
Collapse
Affiliation(s)
- Natsuo Okada
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, 060-8628, Japan.
| | - Hiromasa Nozaki
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, 060-8628, Japan
| | - Shinichiro Nakamura
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, 060-8628, Japan
| | | | - Angesom Gebretsadik
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, 060-8628, Japan
- Department of Mining Engineering, Aksum University, 7080, Aksum, Tigray, Ethiopia
| | - Yoko Ohtomo
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, 060-8628, Japan
| | - Takahiko Arima
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, 060-8628, Japan
| | - Youhei Kawamura
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Sapporo, 060-8628, Japan
| |
Collapse
|
34
|
Alymbaeva D, Szabo C, Jocsak G, Bartha T, Zsarnovszky A, Kovago C, Ondrasovicova S, Kiss DS. Analysis of arsenic-modulated expression of hypothalamic estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptor gamma mRNA and simultaneous mitochondrial morphology and respiration rates in the mouse. PLoS One 2024; 19:e0303528. [PMID: 38753618 PMCID: PMC11098319 DOI: 10.1371/journal.pone.0303528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,β; TRα,β) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,β, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRβ and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.
Collapse
Affiliation(s)
- Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Csaba Szabo
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- Department of Animal Physiology and Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Physiology and Health, Institute of Physiology and Nutrition, Hungarian University of Agricultural and Life Sciences, Kaposvar, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
35
|
Huang D, Sun X, Ghani MU, Li B, Yang J, Chen Z, Kong T, Xiao E, Liu H, Wang Q, Sun W. Bacteria associated with Comamonadaceae are key arsenite oxidizer associated with Pteris vittata root. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123909. [PMID: 38582183 DOI: 10.1016/j.envpol.2024.123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Pteris vittata (P. vittata), an arsenic (As) hyperaccumulator commonly used in the phytoremediation of As-contaminated soils, contains root-associated bacteria (RAB) including those that colonize the root rhizosphere and endosphere, which can adapt to As contamination and improve plant health. As(III)-oxidizing RAB can convert the more toxic arsenite (As(III)) to less toxic arsenate (As(V)) under As-rich conditions, which may promote plant survial. Previous studies have shown that microbial As(III) oxidation occurs in the rhizospheres and endospheres of P. vittata. However, knowledge of RAB of P. vittata responsible for As(III) oxidation remained limited. In this study, members of the Comamonadaceae family were identified as putative As(III) oxidizers, and the core microbiome associated with P. vittata roots using DNA-stable isotope probing (SIP), amplicon sequencing and metagenomic analysis. Metagenomic binning revealed that metagenome assembled genomes (MAGs) associated with Comamonadaceae contained several functional genes related to carbon fixation, arsenic resistance, plant growth promotion and bacterial colonization. As(III) oxidation and plant growth promotion may be key features of RAB in promoting P. vittata growth. These results extend the current knowledge of the diversity of As(III)-oxidizing RAB and provide new insights into improving the efficiency of arsenic phytoremediation.
Collapse
Affiliation(s)
- Duanyi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muhammad Usman Ghani
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jinchan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
36
|
Cordeiro IF, Lemes CGDC, Sanchez AB, da Silva AK, de Paula CH, de Matos RC, Ribeiro DF, de Matos JP, Garcia CCM, Beirão M, Becker CG, Pires MRS, Moreira LM. Amphibian tolerance to arsenic: microbiome-mediated insights. Sci Rep 2024; 14:10193. [PMID: 38702361 PMCID: PMC11068734 DOI: 10.1038/s41598-024-60879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Amphibians are often recognized as bioindicators of healthy ecosystems. The persistence of amphibian populations in heavily contaminated environments provides an excellent opportunity to investigate rapid vertebrate adaptations to harmful contaminants. Using a combination of culture-based challenge assays and a skin permeability assay, we tested whether the skin-associated microbiota may confer adaptive tolerance to tropical amphibians in regions heavily contaminated with arsenic, thus supporting the adaptive microbiome principle and immune interactions of the amphibian mucus. At lower arsenic concentrations (1 and 5 mM As3+), we found a significantly higher number of bacterial isolates tolerant to arsenic from amphibians sampled at an arsenic contaminated region (TES) than from amphibians sampled at an arsenic free region (JN). Strikingly, none of the bacterial isolates from our arsenic free region tolerated high concentrations of arsenic. In our skin permeability experiment, where we tested whether a subset of arsenic-tolerant bacterial isolates could reduce skin permeability to arsenic, we found that isolates known to tolerate high concentrations of arsenic significantly reduced amphibian skin permeability to this metalloid. This pattern did not hold true for bacterial isolates with low arsenic tolerance. Our results describe a pattern of environmental selection of arsenic-tolerant skin bacteria capable of protecting amphibians from intoxication, which helps explain the persistence of amphibian populations in water bodies heavily contaminated with arsenic.
Collapse
Affiliation(s)
- Isabella Ferreira Cordeiro
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | | | - Angélica Bianchini Sanchez
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Ana Karla da Silva
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Camila Henriques de Paula
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Rosilene Cristina de Matos
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Dilson Fagundes Ribeiro
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Jéssica Pereira de Matos
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
- Laboratório de Genômica e Interação Bactérias-Ambiente, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil
| | - Marina Beirão
- Departamento de Biodiversidade Evolução e Meio Ambiente, Instituto de Ciências Biológicas, Universidade Federal de Ouro Preto, Belo Horizonte, MG, 31270-901, Brazil
| | - C Guilherme Becker
- Department of Biology, One Health Microbiome Center, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Maria Rita Silvério Pires
- Departamento de Biodiversidade Evolução e Meio Ambiente, Instituto de Ciências Biológicas, Universidade Federal de Ouro Preto, Belo Horizonte, MG, 31270-901, Brazil
| | - Leandro Marcio Moreira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
- Laboratório de Genômica e Interação Bactérias-Ambiente, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil.
| |
Collapse
|
37
|
Kumar A, Kumar K, Ali M, Raj V, Srivastava A, Kumar M, Niraj PK, Kumar M, Kumar R, Kumar D, Bishwapriya A, Kumar R, Kumar S, Anand G, Kumar S, Sakamoto M, Ghosh AK. Severe Disease Burden and the Mitigation Strategy in the Arsenic-Exposed Population of Kaliprasad Village in Bhagalpur District of Bihar, India. Biol Trace Elem Res 2024; 202:1948-1964. [PMID: 37632687 DOI: 10.1007/s12011-023-03822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The present study was carried out in the village Kaliprasad of Bhagalpur district of Bihar to know the arsenic exposure effect in the exposed population. A total of n = 102 households were studied, and their water and biological samples such as urine and hair were collected and analyzed in a graphite furnace atomic absorption spectrophotometer (GF-AAS). The assessment of arsenic-exposed village population reveals that the villagers were suffering from serious health-related problems such as skin manifestations (hyperkeratosis and melanosis in their palm and soles), breathlessness, general body weakness, mental disorders, diabetes, hypertension (raised blood pressure), hormonal imbalance, neurological disorders, and few cancer cases. About 77% of household hand pump water had arsenic level more than the WHO recommended level of 10 µg/L, with highest level of 523 µg/L. Moreover, in 60% individual's urine samples, arsenic concentration was very high with maximum 374 µg/L while in hair 64% individuals had arsenic concentration above the permissible limit with maximum arsenic concentration of 11,398 µg/kg. The hazard quotient (HQ) was also calculated to know the arsenic risk percentage in children as 87.11%, in females as 83.15%, and in males as 82.27% by groundwater. This has surpassed the threshold value of 1 × 10 - 6 for carcinogenic risk (CR) in children, female, and male population group in the village. Hence, the exposed population of Kaliprasad village are at very high risk of the disease burden.
Collapse
Affiliation(s)
- Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India.
| | - Kanhaiya Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Mohammad Ali
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Vivek Raj
- Patna Women's College, Patna, Bihar, India
| | - Abhinav Srivastava
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | | | - Pintoo Kumar Niraj
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Mukesh Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Rishav Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Dhruv Kumar
- UPES University, Dehradun, Uttarakhand, India
| | | | - Ranjit Kumar
- Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Suresh Kumar
- Sido Kanhu Murmu University, Dumka, Jharkhand, India
| | | | | | | | - Ashok Kumar Ghosh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| |
Collapse
|
38
|
Gou J, Xia J, Li Y, Qiu Y, Jiang F. A novel sulfidogenic process via sulfur reduction to remove arsenate in acid mine drainage: Insights into the performance and microbial mechanisms. WATER RESEARCH 2024; 254:121423. [PMID: 38461598 DOI: 10.1016/j.watres.2024.121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Biological sulfidogenic processes based on sulfate-reducing bacteria (SRB) are not suitable for arsenic (As)-containing acid mine drainage (AMD) treatment because of the formation of the mobile thioarsenite during sulfate reduction. In contrast, biological sulfidogenic processes based on sulfur-reducing bacteria (S0RB) produce sulfide without pH increase, which could achieve more effective As removal than the SRB-based process. However, the reduction ability and toxicity tolerance of S0RB to As remains mysterious, which may substantially affect the practical applicability of this process when treating arsenate (As(V))-containing AMD. Thus, this study aims to develop a biological sulfur reduction process driven by S0RB, and explore its long-term performance on As(V) removal and microbial community evolution. Operating under moderately acidic conditions (pH=4.0), the presence of 10 mg/L As(V) significantly suppressed the activity of S0RB, leading to the failure of As(V) removal. Surprisingly, a drop in pH to 3.0 enhanced the tolerance of S0RB to As toxicity, allowing for efficient sulfide production (396±102 mg S/L) through sulfur reduction. Consequently, effective and stable removal of As(V) (99.9 %) was achieved, even though the sulfidogenic bacteria were exposed to high levels of As(V) (42 mg/L) in long-term trials. Spectral and spectroscopic analysis showed that As-bearing sulfide minerals were present in the bioreactor. Remarkably, the presence of As(V) induced notable changes in the microbial community composition, with Desulfurella and Clostridium identified as predominate sulfur reducers. The qPCR result further revealed an increase in the concentration of functional genes related to As transport (asrA and arsB) in the bioreactor sludge as the pH decreased from 4.0 to 3.0. This suggests the involvement of microorganisms carrying asrA and arsB in an As transport process. Furthermore, metagenomic binning demonstrated that Desulfurella contained essential genes associated with sulfur reduction and As transportation, indicating its genetic potential for sulfide production and As tolerance. In summary, this study underscores the effectiveness of the biological sulfur reduction process driven by S0RB in treating As(V)-contaminated AMD. It offers insights into the role of S0RB in remediating As contamination and provides valuable knowledge for practical applications.
Collapse
Affiliation(s)
- Jiahua Gou
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Juntao Xia
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yanying Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
39
|
Maity J, Pal P, Pal R, Mukhopadhyay PK. Co-administration of L-Ascorbic Acid and α-Tocopherol Alleviates Arsenic-Induced Immunotoxicities in the Thymus and Spleen by Dwindling Oxidative Stress-Induced Inflammation. Biol Trace Elem Res 2024; 202:2199-2227. [PMID: 37704839 DOI: 10.1007/s12011-023-03841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Herein, we investigated whether L-ascorbic acid (L-AA) and α-tocopherol (α-T) co-administration has the potential to alleviate arsenic-induced immunotoxicities in the thymus, spleen, and circulating leukocytes. Forty-eight adult male Wistar rats were randomly divided into four groups before the treatment: group I (control); group II (sodium arsenite, 3 mg/kg/day/rat); group III (sodium arsenite + L-AA (200 mg/kg/day/rat) and α-T (400 mg/kg/day/rat)); group IV (L-AA and α-T). The result showed that sodium arsenite exposure (consecutive 30 days) caused weight reduction, structural alterations in the thymus and spleen, accompanied by a decrease in thymocyte and splenocyte count. Decreased superoxide dismutase and catalase activity, increased malondialdehyde and protein-carbonyl content, reduced Nrf2 and Bcl2 expression, and increased p-ERK, NF-kβ, Bax, and cleaved-caspase-3 expression were also observed in the thymus and spleen of arsenic-exposed rats. Enhanced plasma ACTH and corticosterone, ROS-induced apoptosis of lymphocytes were also observed. L-AA and α-T co-administration has the potential to abrogate the deleterious impact of arsenic on the thymus, spleen, and circulating lymphocytes. Whole transcriptome analysis of leukocytes revealed that arsenic treatment augmented the expression of Itga4, Itgam, and MMP9 genes, which might help in transient migration of the leukocytes through the endothelial cell layer. Co-administration with L-AA and α-T maintained Itga4, Itgam, and MMP9 gene expression within leukocytes at a lower level.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | |
Collapse
|
40
|
He S, Jiang T, Zhang D, Li M, Yu T, Zhai M, He B, Yin T, Wang X, Tao F, Yao Y, Ji D, Yang Y, Liang C. Association of exposure to multiple heavy metals during pregnancy with the risk of gestational diabetes mellitus and insulin secretion phase after glucose stimulation. ENVIRONMENTAL RESEARCH 2024; 248:118237. [PMID: 38244971 DOI: 10.1016/j.envres.2024.118237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Epidemiological evidence for the association between heavy metals exposure during pregnancy and gestational diabetes mellitus (GDM) is still inconsistent. Additionally, that is poorly understood about the potential cause behind the association, for instance, whether heavy metal exposure is related to the change of insulin secretion phase is unknown. OBJECTIVES We aimed to explore the relationships of blood levels of arsenic (As), lead (Pb), thallium (Tl), nickel (Ni), cadmium (Cd), cobalt (Co), barium (Ba), chromium (Cr), mercury (Hg) and copper (Cu) during early pregnancy with the odds of GDM, either as an individual or a mixture, as well as the association of the metals with insulin secretion phase after glucose stimulation. METHODS We performed a nested case-control study consisting of 302 pregnant women with GDM and 302 controls at the First Affiliated Hospital of Anhui Medical University in Hefei, China. Around the 12th week of pregnancy, blood samples of pregnant women were collected and levels of As, Pb, Tl, Ni, Cd, Co, Ba, Cr, Hg and Cu in blood were measured. An oral glucose tolerance test (OGTT) was done in each pregnant woman during the 24-28th week of pregnancy to diagnose GDM and C-peptide (CP) levels during OGTT were measured simultaneously. The four metals (As, Pb, Tl and Ni) with the highest effect on odds of GDM were selected for the subsequent analyses via the random forest model. Conditional logistic regression models were performed to analyze the relationships of blood As, Pb, Tl and Ni levels with the odds of GDM. The weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR) were used to assess the joint effects of levels of As, Pb, Tl and Ni on the odds of GDM as well as to evaluate which metal level contributed most to the association. Latent profile analysis (LPA) was conducted to identify profiles of glycemic and C-peptide levels at different time points. Multiple linear regression models were employed to explore the relationships of metals with glycaemia-related indices (fasting blood glucose (FBG), 1-hour blood glucose (1h BG), 2-hour blood glucose (2h BG), fasting C-peptide (FCP), 1-hour C-peptide (1h CP), 2-hour C-peptide (2h CP), FCP/FBG, 1h CP/1h BG, 2h CP/2h BG, area under the curve of C-peptide (AUCP), area under the curve of glucose (AUCG), AUCP/AUCG and profiles of BGs and CPs, respectively. Mixed-effects models with repeated measures data were used to explore the relationship between As (the ultimately selected metal) level and glucose-stimulated insulin secretion phase. The mediation effects of AUCP and AUCG on the association of As exposure with odds of GDM were investigated using mediation models. RESULTS The odds of GDM in pregnant women increased with every ln unit increase in blood As concentration (odds ratio (OR) = 1.46, 95% confidence interval (CI) = 1.04-2.05). The joint effects of As, Pb, Tl and Ni levels on the odds of GDM was statistically significant when blood levels of four metals were exceeded their 50th percentile, with As level being a major contributor. Blood As level was positively associated with AUCG and the category of glucose latent profile, the values of AUCG were much higher in GDM group than those in non-GDM group, which suggested that As exposure associated with the odds of GDM may be due to that As exposure was related to the impairment of glucose tolerance among pregnant women. The significant and positive relationships of As level with AUCP, CP latent profile category, 2h CP and 2h CP/2h BG were observed, respectively; and the values of 1h CP/1h BG and AUCP/AUCG were much lower in GDM group than those in non-GDM group, which suggested that As exposure may not relate to the impairment of insulin secretion (pancreatic β-cell function) among pregnant women. The relationships between As level and 2h CP as well as 2h CP/2h BG were positive and significant; additionally, the values of 2h CP/2h BG in GDM group were comparable with those in non-GDM group; the peak value of CP occurred at 2h in GDM group, as well as the values of 2h CP/2h BG in high As exposure group were much higher than those in low As exposure group, which suggested that As exposure associated with the increased odds of GDM may be due to that As exposure was related to the change of insulin secretion phase (delayment of the peak of insulin secretion) among pregnant women. In addition, AUCP mediated 11% (p < 0.05) and AUCG mediated 43% (p < 0.05) of the association between As exposure and the odds of GDM. CONCLUSION Our results suggested that joint exposure to As, Pb, Tl and Ni during early pregnancy was positively associated with the odds of GDM, As was a major contributor; and the association of environmental As exposure with the increased odds of GDM may be due to that As exposure was related to the impairment of glucose tolerance and change of insulin secretion phase after glucose stimulation (delayment of the peak of insulin secretion) among pregnant women.
Collapse
Affiliation(s)
- Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongyang Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mengzhu Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Muxin Zhai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Bingxia He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuyou Yao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
41
|
Jin Y, Song Q, He R, Diao H, Gaoyang H, Wang L, Fan L, Wang D. Nod-like receptor protein 3 inflammasome-mediated pyroptosis contributes to chronic NaAsO 2 exposure-induced fibrotic changes and dysfunction in the liver of SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116282. [PMID: 38564859 DOI: 10.1016/j.ecoenv.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.
Collapse
Affiliation(s)
- Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Huijie Gaoyang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
42
|
Li M, Zhou J, Cheng Z, Ren Y, Liu Y, Wang L, Cao L, Shen Z. Pollution levels and probability risk assessment of potential toxic elements in soil of Pb-Zn smelting areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:165. [PMID: 38592368 DOI: 10.1007/s10653-024-01933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Soil pollution around Pb-Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb-Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10-3 and 8.05 × 10-4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb-Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb-Zn smelting areas.
Collapse
Affiliation(s)
- Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinyang Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liu Cao
- Jiyuan Industrial and Urban Integration Demonstration Zone Ecological Environment Bureau, Jiyuan, 459000, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
43
|
Kumari S, Kumari P, Sinha S, Azad GK, Yasmin S. Alleviation of arsenic-induced neurobehavioral defects with selenium in the larvae of Zaprionus indianus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2121-2132. [PMID: 37787783 DOI: 10.1007/s00210-023-02746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Selenium is an essential antioxidative micronutrient. This study was conducted to characterize the arsenic toxicity induced on the African fig fly, Zaprionus indianus, and its possible amelioration by selenium. We used computational tools and in vivo experiments to elucidate the mechanism of action of arsenic and selenium on Z. indianus larvae. We conducted experiments to study neurobehavioral parameters including learning and memory ability test and crawling and contraction assays. Our in silico study revealed twelve primary targets of arsenic trioxide. The gene ontology annotation of primary and secondary targets of arsenic trioxide revealed selenocysteine metabolic processes as one of the most reliable targets. To validate our in silico data, we analyzed the effect of arsenic trioxide on larvae of Z. indianus and tested the possible amelioration by sodium selenite supplementation. Our data demonstrated that the arsenic trioxide deteriorated the learning and memory ability of 2nd instar larvae of Z. indianus and such effect was reversed by sodium selenite supplementation. Furthermore, crawling and contraction assay done on 3rd instar larvae showed that there was reduction in both parameters upon arsenic trioxide exposure, which was restored with sodium selenite supplementation. Altogether, our computational and in vivo results strongly indicated that the neurobehavioral defects induced by arsenic trioxide on the larvae of Z. indianus can be successfully alleviated in the presence of sodium selenite.
Collapse
Affiliation(s)
- Shilpi Kumari
- Department of Zoology, Patna Women's College, Patna University, Patna, Bihar, India
| | - Puja Kumari
- Department of Zoology, Patna Women's College, Patna University, Patna, Bihar, India
| | - Sneha Sinha
- Department of Zoology, Patna Women's College, Patna University, Patna, Bihar, India
| | - Gajendra Kumar Azad
- Department of Zoology, Molecular Biology Laboratory, Patna University, Patna, Bihar, India
| | - Shahla Yasmin
- Department of Zoology, Patna University, Patna, Bihar, India.
| |
Collapse
|
44
|
Shokat S, Iqbal R, Riaz S, Yaqub A. Association Between Arsenic Toxicity, AS3MT Gene Polymorphism and Onset of Type 2 Diabetes. Biol Trace Elem Res 2024; 202:1550-1558. [PMID: 37889428 DOI: 10.1007/s12011-023-03919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Arsenic (As) exposure in drinking water has become a serious public health issue. AS3MT gene is involved in the metabolism of arsenic, so a single nucleotide polymorphism in this gene may lead to the development of type 2 diabetes in arsenic-exposed areas. This study aimed to evaluate the association of the AS3MT gene with the development of type 2 diabetes in highly arsenic-exposed areas of Punjab, Pakistan. Total 200 samples equal in number from high arsenic exposed-areas of Lahore (Nishtar) and Kasur (Mustafa Abad) were collected. rs11191439 was utilized as an influential variable to evaluate the association between arsenic metabolism and diabetes status to find a single nucleotide polymorphism in the AS3MT gene. We observed the arsenic level in drinking water of the arsenic-exposed selected areas 115.54 ± 1.23 µg/L and 96.88 ± 0.48 µg/L, respectively. The As level in the urine of diabetics (98.54 ± 2.63 µg/L and 56.38 ± 12.66 µg/L) was higher as compared to non-diabetics (77.58 ± 1.8 µg/L and 46.9 ± 8.95 µg/L) of both affected areas, respectively. Correspondingly, the As level in the blood of diabetics (6.48 ± 0.08 µg/L and 5.49 ± 1.43 µg/L) and non-diabetics (6.22 ± 0.12 µg/L and 5.26 ± 0.24 µg/L) in the affected areas. Genotyping showed significant differences in the frequencies of alleles among cases and controls. Nevertheless, notable disparities in genotype distribution were observed in SNPs rs11191439 (T/C) (P < 0.05) and when comparing T2D patients and non-diabetic control subjects. The AS3MT gene and clinical parameters show a significant association with the affected people with diabetes living in arsenic-exposed areas.
Collapse
Affiliation(s)
- Saima Shokat
- Department of Zoology, Government College University, Lahore, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Samreen Riaz
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Atif Yaqub
- Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
45
|
Bradley PM, Hicks EC, Levitt JP, Lloyd DC, McDonald MM, Romanok KM, Smalling KL, Ayotte JD. A brief note on substantial sub-daily arsenic variability in pumping drinking-water wells in New Hampshire. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170838. [PMID: 38340869 DOI: 10.1016/j.scitotenv.2024.170838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Large variations in redox-related water parameters, like pH and dissolved oxygen (DO), have been documented in New Hampshire (United States) drinking-water wells over the course of a few hours under pumping conditions. These findings suggest that comparable sub-daily variability in dissolved concentrations of redox-reactive and toxic arsenic (As) also may occur, representing a potentially critical public-health data gap and a fundamental challenge for long-term As-trends monitoring. To test this hypothesis, discrete groundwater As samples were collected approximately hourly during one day in May and again in August 2019 from three New Hampshire drinking-water wells (2 public-supply, 1 private) under active pumping conditions. Collected samples were assessed by laboratory analysis (total As [AsTot], As(III), As(V)) and by field analysis (AsTot) using a novel integrated biosensor system. Laboratory analysis revealed sub-daily variability (range) in AsTot concentrations equivalent to 16 % - 36 % of that observed in the antecedent 3-year bimonthly trend monitoring. Thus, the results indicated that, along with previously demonstrated seasonality effects, the timing and duration of pumping are important considerations when assessing trends in drinking-water As exposures and concomitant risks. Results also illustrated the utility of the field sensor for monitoring and management of AsTot exposures in near-real-time.
Collapse
Affiliation(s)
- Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC, USA.
| | | | - Joseph P Levitt
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| | | | | | - Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, USA
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, USA
| | - Joseph D Ayotte
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH, USA
| |
Collapse
|
46
|
Mukhi S, Rukmini MS, Ajay Manjrekar P, Iyyaswami R, H. S. Assessment of Arsenic, Vanadium, Mercury, and Cadmium in Food and Drug Packaging. F1000Res 2024; 11:648. [PMID: 38779461 PMCID: PMC11109717 DOI: 10.12688/f1000research.121473.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 05/25/2024] Open
Abstract
Background Food and drug packaging materials are an integral part of our everyday life. Noxious elements can inadvertently be included in packaging materials in various stages of their production. Adulterants, adhesives, colorants and heavy metal interference are the common sources of contamination in food packaging materials. Heavy metal toxicity has far-reaching ill effects on living organisms. The present study aimed at qualitatively and quantitatively analysing heavy metal content of various materials that are used for food and drug packaging in India. Methods The qualitative detection was done by rapid assay and heavy metals were quantified with the help of inductively coupled plasma-optical emission spectrometry (ICP-OES). A total of thirteen types of food and drug packaging materials were procured from local market and analysed for four heavy metals viz. arsenic (As), vanadium (V), mercury (Hg) and cadmium (Cd). The concentration of each heavy metal in the samples was compared with the permissible values published by the European Council. Results Heavy metals were qualitatively detected in ten out of thirteen samples. Among the ten samples mercury and arsenic were detected the most followed by cadmium and vanadium. Quantitative estimation by ICP-OES showed presence of vanadium and cadmium in ten samples and arsenic and mercury in all the thirteen samples above the permissible range. Conclusions The notable elevation in mercury concentration, followed by cadmium, arsenic and vanadium registering the least, presents a potential health hazard to consumers and compromises the food quality.
Collapse
Affiliation(s)
- Senna Mukhi
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - M. S. Rukmini
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Poornima Ajay Manjrekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Reghupathi Iyyaswami
- Department of Chemical Engineering, National Institute of Technology (NITK), Suratkal, Mangalore, India
| | - Sindhu H.
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
47
|
Chen W, Wang D, Ma L, Wu F, Ren Q, Tao J, Chen X, Zhang A. Chronic arsenite exposure induced skeletal muscle atrophy by disrupting angiotensin II-melatonin axis in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1350-1359. [PMID: 37966059 DOI: 10.1002/tox.24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Arsenic is a well-known environmental toxicant and emerging evidence suggests that arsenic exposure has potential skeletal muscle toxicity; however, the underlying mechanism has not yet been clarified. The aim of this study was to investigate the correlation among adverse effects of subchronic and chronic environmental arsenic exposure on skeletal muscle as well as specific myokines secretion and angiotensin II (AngII)-melatonin (MT) axis in rats. Four-week-old rats were exposed to arsenite (iAs) in drinking water at environmental relevant concentration of 10 ppm for 3 or 9 months. Results indicated that the gastrocnemius muscle had atrophied and its mass was decreased in rats exposed to arsenite for 9 months, whereas, they had no significant changes in rats exposed to arsenite for 3 months. The levels of serum-specific myokine irisin and gastrocnemius muscle insulin-like growth factor-1 (IGF-1) were increased in 3-month exposure group and decreased in 9-month exposure group, while serum myostatin (MSTN) was increased significantly in 9-month exposure group. In addition, serum AngII level increased both in 3- and 9-month exposure groups, while serum MT level increased in 3-month exposure group and decreased in 9-month exposure group. Importantly, the ratio of AngII to MT level in serum increased gradually with the prolongation of arsenite exposure. It showed a certain correlation between AngII-MT axis and gastrocnemius muscle mass, gastrocnemius muscle level of IGF-1 or serum levels of irisin and MSTN. In conclusion, the disruption of AngII-MT axis balance may be a significant factor for skeletal muscle atrophy induced by chronic environmental arsenic exposure.
Collapse
Affiliation(s)
- Wanying Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Fan Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Qian Ren
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Junyan Tao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
48
|
Jhuang JR, Lee CH, Chiang CJ, Chen CJ, Lee WC. Reduced burden of Arsenic-Related cancers after water mitigation in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 185:108542. [PMID: 38461779 DOI: 10.1016/j.envint.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Epidemiological evidence has demonstrated an association between arsenic in drinking water and increased cancer incidence. This population-based study investigates the impact of a tap water supply system installation in Blackfoot disease-endemic regions of Taiwan on cancer incidence. METHODS By using the Taiwan Cancer Registry dataset, we enrolled patients aged 40-84 diagnosed with arsenic-related cancers, including hepatocellular carcinoma, small and squamous cell lung cancer, Bowen's disease, basal and squamous cell skin cancer, urothelial bladder cancer, and upper tract urothelial carcinoma between 1995 and 2019. Random-effects age-period-cohort models were used to estimate the cancer incidence data, and a stabilized kriging method was employed to interpolate incidence rates to more precise spatiotemporal units. RESULTS The results showed that the age-standardized incidence rates of all six types of studied cancers were consistently higher in Blackfoot disease-endemic areas than those in other areas from 1995 to 2019. However, the gap in incidence rates between Blackfoot disease-endemic areas and the remaining regions began to narrow approximately after the 1960 birth cohort when the tap water supply system installation commenced. For small and squamous cell lung cancer, Bowen's disease, and urothelial bladder cancer, the excess incidence rates sharply declined to null for those born after the year of arsenic mitigation. For upper tract urothelial carcinoma, the excess incidence rates decreased more gradually for those born after the year of arsenic mitigation. For hepatocellular carcinoma and basal and squamous cell skin cancer, the excess incidence rates remained constant. Spatiotemporal clusters of high incidence rates were identified in the core townships of Blackfoot disease-endemic areas. These clusters began to dissipate mainly after the 1960 birth cohort. CONCLUSION Arsenic mitigation from drinking water in Taiwan is associated with a reduced burden of small and squamous cell lung cancers, Bowen's disease, urothelial bladder cancer, and upper tract urothelial carcinoma.
Collapse
Affiliation(s)
- Jing-Rong Jhuang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan; Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
49
|
Dresler SR, Pinto BI, Salanga MC, Propper CR, Berry SR, Kellar RS. Arsenic Impairs Wound Healing Processes in Dermal Fibroblasts and Mice. Int J Mol Sci 2024; 25:2161. [PMID: 38396835 PMCID: PMC10888720 DOI: 10.3390/ijms25042161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inorganic arsenic (NaAsO2) is a naturally occurring metalloid found in water resources globally and in the United States at concentrations exceeding the U.S. Environmental Protection Agency Maximum Contamination Level of 10 ppb. While exposure to arsenic has been linked to cancer, cardiovascular disease, and skin lesions, the impact of arsenic exposure on wound healing is not fully understood. Cultured dermal fibroblasts exposed to NaAsO2 displayed reduced migration (scratch closure), proliferation, and viability with a lowest observable effect level (LOEL) of 10 µM NaAsO2 following 24 h exposure. An enrichment of Matrix Metalloproteinase 1 (MMP1) transcripts was observed at a LOEL of 1 µM NaAsO2 and 24 h exposure. In vivo, C57BL/6 mice were exposed to 10 µM NaAsO2 in their drinking water for eight weeks, then subjected to two full thickness dorsal wounds. Wounds were evaluated for closure after 6 days. Female mice displayed a significant reduction in wound closure and higher erythema levels, while males showed no effects. Gene expression analysis from skin excised from the wound site revealed significant enrichment in Arsenic 3-Methyltransferase (As3mt) and Estrogen Receptor 2 (Esr2) mRNA in the skin of female mice. These results indicate that arsenic at environmentally relevant concentrations may negatively impact wound healing processes in a sex-specific manner.
Collapse
Affiliation(s)
- Sara R. Dresler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Bronson I. Pinto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Savannah R. Berry
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Robert S. Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
- Center for Materials Interfaces in Research & Applications, ¡MIRA!, Flagstaff, AZ 86011, USA
| |
Collapse
|
50
|
Joseph J, Väisänen A, Patil AB, Lahtinen M. The effect of synthesis conditions on the in situ grown MIL-100(Fe)-chitosan beads: Interplay between structural properties and arsenic adsorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132893. [PMID: 37944234 DOI: 10.1016/j.jhazmat.2023.132893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Efficient sequestration of arsenic from drinking water is a global need. Herein we report eco-friendly porous hybrid adsorbent beads for removal of arsenic, through in situ synthesis of MIL-100(Fe) in the chitosan solvogel. To understand the structural vs. performance correlation, series of hybrid adsorbents were synthesized by modulating synthesis conditions like temperature, crystallization time, and concentration. Adsorbents were investigated using PXRD, FT-IR, SEM, and ICP-OES. Intriguing correlation between crystallinity and adsorption performance was observed as low and high crystalline MIL-100(Fe)-chitosan (ChitFe5 and ChitFe7, respectively) exhibited exceptional adsorption towards As5+ by removing it from water with 99% efficiency, whereas for As3+ species removal of about 85% was afforded. Adsorption isotherms indicated that increase in crystallinity (ChitFe5 -> ChitFe7), adsorption capacities of As5+ and As3+ increased from 23.2 to 64.5, and from 28.1 to 35.3 mg/g, respectively. Selectivity tests of the adsorbents towards As5+ and As3+ over competitive anions in the equimolar competitive systems having nitrates, sulfates, and carbonates demonstrated that the performance of the absorbents was fully maintained, relative to the control system. Through this study a highly selective and efficient adsorbent for arsenic species is designed and a clear insight into the structural tuning and its effect on adsorption performance is provided.
Collapse
Affiliation(s)
- Jessy Joseph
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Ari Väisänen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland
| | - Ajay B Patil
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Process Metallurgy, Helmholtz Institute Freiberg for Resource Technology (HIF), Freiberg 09599, Germany
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014, Finland.
| |
Collapse
|