1
|
Žaltauskaitė J, Miškelytė D, Sujetovienė G, Dikšaitytė A, Kacienė G, Januškaitienė I, Dagiliūtė R. Comprehensive tetracycline, ciprofloxacin and sulfamethoxazole toxicity evaluation to earthworm Dendrobaena veneta through life-cycle, behavioral and biochemical parameters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 113:104609. [PMID: 39667546 DOI: 10.1016/j.etap.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Veterinary antibiotics are widely spread in the environment, however, the knowledge about their impact on soil key species is still limited. This study evaluated the short-term and long-term effects of tetracycline (TC), ciprofloxacin (CIP) and sulfamethoxazole (SMX) (1-500 mg kg) on earthworm Dendrobaena veneta by measuring multiple parameters (survival, growth, reproduction, behavior and biochemical responses). Neither antibiotic induced acute toxicity and low mortality was observed after chronic exposure. TC and CIP had a negligible effect on the earthworm's weight from the 6th week of exposure, SMX inhibited the earthworm growth when was present in the range of 50-500 mg kg-1. In parallel, SMX reduced earthworm reproduction at environmentally relevant concentrations. Antibiotics altered superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and gluthathione-S-transferase (GST) activities and induced lipid peroxidation. Overall, earthworms showed no apparent acute response at environmentally relevant concentrations except for avoidance behavior; after long-term exposure earthworms experienced biochemical, physiological, and reproductive impairments and reduced survival at high soil contamination.
Collapse
Affiliation(s)
- Jūratė Žaltauskaitė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania.
| | - Diana Miškelytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Gintarė Sujetovienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Austra Dikšaitytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Giedrė Kacienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Irena Januškaitienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Renata Dagiliūtė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| |
Collapse
|
2
|
Kalugendo E, Nazir A, Agarwal R. Assessment of azithromycin-induced toxicity in Caenorhabditis elegans: Effects on morphology, behavior, and lipid metabolism. Toxicol Rep 2024; 13:101832. [PMID: 39717856 PMCID: PMC11664063 DOI: 10.1016/j.toxrep.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Antibiotics are indispensable in modern healthcare, playing a critical role in mitigating bacterial infections. Azithromycin is used to fight upper respiratory tract infections, however has potential toxic effects that remain inadequately understood. In our present study, azithromycin exposure to Caenorhabditis elegans led to significant physiological and behavioral change, with pronounced effects observed at the studied concentration. The study employs an N2 wild-type strain to examine key physiological and behavioral parameters within the worm. C.elegans were exposed to two concentrations of azithromycin (0.0038 and 0.00038 mg/ml) from the embryonic stage to the L4 stage for 48 hours. The study assessed key endpoints including body length, thrashing behavior, brood size, embryonic viability, lipid accumulation via Nile red staining, pharyngeal pumping rate, and response to 1-Nonanol (which assesses neurotransmitter function). Results showed that at 0.0038 mg/ml, azithromycin significantly reduced body length, increased progeny production, altered lipid deposition, delayed response to 1-Nonanol, and decreased feeding rates. Even at the lowest concentration (0.00038 mg/ml), changes in body length and lipid accumulation were observed. These findings suggest that the toxicity of azithromycin in C.elegans is dose-dependent and varies with exposure duration and developmental stage. Further research is needed to elucidate the molecular mechanisms underlying these toxic effects, particularly at environmentally relevant concentrations of azithromycin.
Collapse
Affiliation(s)
- Elisa Kalugendo
- Laboratory of Forensic Chemistry and Toxicology, School of Forensic Sciences, National Forensic Sciences University, Delhi, India
| | - Aamir Nazir
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rakhi Agarwal
- Laboratory of Forensic Chemistry and Toxicology, School of Forensic Sciences, National Forensic Sciences University, Delhi, India
| |
Collapse
|
3
|
Cardoso-Vera JD, Islas-Flores H, Pérez-Alvarez I, Díaz-Camal N. Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants (Basel) 2024; 13:1399. [PMID: 39594540 PMCID: PMC11590872 DOI: 10.3390/antiox13111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Amphibians, which are essential components of ecosystems, are susceptible to pharmaceutical contamination, a phenomenon of increasing concern owing to the widespread consumption and detection of pharmaceutical compounds in environmental matrices. This review investigates oxidative stress (OS) as the primary mechanism of drug toxicity in these organisms. The evidence gathered reveals that various pharmaceuticals, from antibiotics to anesthetics, induce OS by altering biomarkers of oxidative damage and antioxidant defense. These findings underscore the deleterious effects of pharmaceuticals on amphibian health and development and emphasize the necessity of incorporating OS biomarkers into ecotoxicological risk assessments. Although further studies on diverse amphibian species, drug mixtures, and field studies are required, OS biomarkers offer valuable tools for identifying sublethal risks. Furthermore, the development of more refined OS biomarkers will facilitate the early detection of adverse effects, which are crucial for protecting amphibians and their ecosystems. Ultimately, this review calls for continued research and mitigation strategies to safeguard biodiversity from pharmaceutical contamination.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | | | | |
Collapse
|
4
|
Wang CL, Li P, Liu B, Ma YQ, Feng JX, Xu YN, Liu L, Li ZH. Decrypting the skeletal toxicity of vertebrates caused by environmental pollutants from an evolutionary perspective: From fish to mammals. ENVIRONMENTAL RESEARCH 2024; 255:119173. [PMID: 38763280 DOI: 10.1016/j.envres.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.
Collapse
Affiliation(s)
- Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ya-Nan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
5
|
Dhaouadi F, Aouaini F, Basha B, Bonilla-Petriciolet A, Georgin J, Ben Lamine A. Evaluation and analysis of the adsorption mechanism of three emerging pharmaceutical pollutants on a phosphorised carbon-based adsorbent: Application of advanced analytical models to overcome the limitation of classical models. Heliyon 2024; 10:e34788. [PMID: 39148977 PMCID: PMC11325378 DOI: 10.1016/j.heliyon.2024.e34788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
The double layer adsorption of sulfamethoxazole, ketoprofen and carbamazepine on a phosphorus carbon-based adsorbent was analyzed using statistical physics models. The objective of this research was to provide a physicochemical analysis of the adsorption mechanism of these organic compounds via the calculation of both steric and energetic parameters. Results showed that the adsorption mechanism of these pharmaceuticals was multimolecular where the presence of molecular aggregates (mainly dimers) could be expected in the aqueous solution. This adsorbent showed adsorption capacities at saturation from 15 to 36 mg/g for tested pharmaceutical molecules. The ketoprofen adsorption was exothermic, while the adsorption of sulfamethoxazole and carbamazepine was endothermic. The adsorption mechanism of these molecules involved physical interaction forces with interaction energies from 5.95 to 19.66 kJ/mol. These results contribute with insights on the adsorption mechanisms of pharmaceutical pollutants. The identification of molecular aggregates, the calculation of maximum adsorption capacities and the characterization of thermodynamic behavior provide crucial information for the understanding of these adsorption systems and to optimize their removal operating conditions. These findings have direct implications for wastewater treatment and environmental remediation associated with pharmaceutical pollution where advanced adsorption technologies are required.
Collapse
Affiliation(s)
- Fatma Dhaouadi
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Beriham Basha
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Jordana Georgin
- Departmentof Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| |
Collapse
|
6
|
Peluso J, Chehda AM, Aronzon CM. A multi-approach analysis of the toxicity of a commercial formulation of monensin on Rhinella arenarum embryos and larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104454. [PMID: 38670417 DOI: 10.1016/j.etap.2024.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Monensin, an antibacterial commonly used in animal fattening, can enter aquatic ecosystems and harm non-target organisms. Since there are no previous studies about the effects of monensin on amphibians, the aim of the present study was to evaluate the lethal and sublethal toxicity of a commercial formulation of monensin (CFM) through standardized bioassays with embryos and larvae of the amphibian Rhinella arenarum. Oxidative stress (catalase and glutathione S-transferase activities, and reduced glutathione and lipid peroxidation levels), cholinesterasic effect (acetylcholinesterase and butyrylcholinesterase activities) and mutagenicity (micronuclei frequency) biomarkers were evaluated. The CFM produced teratogenic effects, with a teratogenic index of 6.21. Embryos (504 h-LC50: 273.33 µg/L) were more sensitive than larvae, as no significant mortality was observed on larvae exposed up to 3000 µg/L for 504 h. However, oxidative stress, cholinesterasic effect and mutagenicity biomarkers were altered on larvae exposed for 96 h to environmentally relevant concentrations (4, 12 and 20 µg/L of monensin active ingredient). The CFM caused adverse effects on the exposed organisms, primarily on embryos, leading to lethal and sublethal effects, which could impact the wildlife when it reaches aquatic ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Agostina Martínez Chehda
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Carolina M Aronzon
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
7
|
Ye T, He S, Li J, Luo J, Yang S, Wang P, Li C. Metagenomic and transcriptomic analysis revealing the impact of oxytetracycline and ciprofloxacin on gut microbiota and gene expression in the Chinese giant salamander (Andrias davidianus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106925. [PMID: 38718521 DOI: 10.1016/j.aquatox.2024.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024]
Abstract
Excessive antibiotic use has led to the spread of antibiotic resistance genes (ARGs), impacting gut microbiota and host health. However, the effects of antibiotics on amphibian populations remain unclear. We investigated the impact of oxytetracycline (OTC) and ciprofloxacin (CIP) on Chinese giant salamanders (Andrias davidianus), focusing on gut microbiota, ARGs, and gene expression by performing metagenome and transcriptome sequencing. A. davidianus were given OTC (20 or 40 mg/kg) or CIP (50 or 100 mg/kg) orally for 7 days. The results revealed that oral administration of OTC and CIP led to distinct changes in microbial composition and functional potential, with CIP treatment having a greater impact than OTC. Antibiotic treatment also influenced the abundance of ARGs, with an increase in fluoroquinolone and multi-drug resistance genes observed post-treatment. The construction of metagenome-assembled genomes (MAGs) accurately validated that CIP intervention enriched fish-associated potential pathogens Aeromonas hydrophila carrying an increased number of ARGs. Additionally, mobile genetic elements (MGEs), such as phages and plasmids, were implicated in the dissemination of ARGs. Transcriptomic analysis of the gut revealed significant alterations in gene expression, particularly in immune-related pathways, with differential effects observed between OTC and CIP treatments. Integration of metagenomic and transcriptomic data highlighted potential correlations between gut gene expression and microbial composition, suggesting complex interactions between the host gut and its gut microbiota in response to antibiotic exposure. These findings underscore the importance of understanding the impact of antibiotic intervention on the gut microbiome and host health in amphibians, particularly in the context of antibiotic resistance and immune function.
Collapse
Affiliation(s)
- Ting Ye
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, Guizhou, 550005, PR China
| | - Shumao He
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, Guizhou, 550005, PR China
| | - Jiahui Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, Guizhou, 550005, PR China
| | - Jianlin Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, Guizhou, 550005, PR China
| | - Sixue Yang
- Zhiran Biotechnology Co. Ltd, Tianjin, 301000, PR China
| | - Peng Wang
- Zhiran Biotechnology Co. Ltd, Tianjin, 301000, PR China.
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, Guizhou, 550005, PR China.
| |
Collapse
|
8
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
9
|
Fayaz T, Renuka N, Ratha SK. Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: Advances and future perspectives. CHEMOSPHERE 2024; 349:140822. [PMID: 38042426 DOI: 10.1016/j.chemosphere.2023.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Antibiotic pollution has caused a continuous increase in the development of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in aquatic environments worldwide. Algae-based bioremediation technology is a promising eco-friendly means to remove antibiotics and highly resistant ARGs, and the generated biomass can be utilized to produce value-added products of industrial significance. This review discussed the prevalence of antibiotics and ARGs in aquatic environments and their environmental risks to non-target organisms. The potential of various microalgal species for antibiotic and ARG removal, their mechanisms, strategies for enhanced removal, and future directions were reviewed. Antibiotics can be degraded into non-toxic compounds in microalgal cells through the action of extracellular polymeric substances, glutathione-S-transferase, and cytochrome P450; however, antibiotic stress can alter microalgal gene expression and growth. This review also deciphered the effect of antibiotic stress on microalgal physiology, biomass production, and biochemical composition that can impact their commercial applications.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| |
Collapse
|
10
|
Grčić I, Radetić L, Miklec K, Presečki I, Leskovar K, Meaški H, Čizmić M, Brnardić I. Solar photocatalysis application in UWWTP outlets - simulations based on predictive models in flat-plate reactors and pollutant degradation studies with in silico toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132589. [PMID: 37742381 DOI: 10.1016/j.jhazmat.2023.132589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The application of the solar photocatalysis for the degradation of residual pollutants found in surface water was demonstrated. Semi-pilot scale flat-plate cascade reactor (FPCR) was used to study the degradation of model organic pollutants: enrofloxacin (ENRO), 17β-estradiol (E2) and 1H-benzotriazole (1H-BT) over TiO2 thin-film supported on glass fibers. A modular panel with full-spectra solar lamps with appropriate UVB and UVA irradiation levels was used as a simulation of sunlight. Pollutant degradation in FPCR was estimated using predictive models; intrinsic reaction rate constants (ki) for ENRO, E2 and 1H-BT independent of the reactor size, flow rate and irradiation conditions were determined: 9.60, 3.35 and 0.37 109 s-1 W-0.5 m1.5, respectively. Main degradation products (DPs), formed upon hydroxylation, ring opening and oxidation, were identified using LC-QTOF-MS. The ecotoxicological impact was assessed via T.E.S.T. and ECOSAR open-source tools showing the formation of less harmful DPs after sufficient reaction time. Pollutant degradation was simulated at four locations of interest, i.e. exhausts from urban wastewater treatment plants (UWWTPs) in Zagreb, Croatia (45°N), Krakow, Poland (50°N), Sevilla, Spain (37°N) and Ioannina, Greece (39.6°N). Results have proved that a simple flat-plate system with supported photocatalysts can be easily scaled up and incorporated at the outlet of UWWTP for the reduction of pollutant load and related toxicity. The exhaust canal in Zagreb with the estimated length of a photocatalytic layer of 122 m for the > 90% degradation of all target pollutants was discussed as the best installation site among studied locations. ENVIRONMENTAL IMPLICATION: A multi-disciplinary approach to the tentative application of TiO2 solar photocatalysis outdoors to reduce pollutant loads and toxicity in surface waters was demonstrated. Possible application at four selected locations in Europe, as an additional step in water treatment after urban wastewater treatment plants (UWWTPs) was discussed. Target pollutants were studied under environmentally relevant conditions (sunlight levels, water matrix, simulation of process on a real scale at selected geographical location), at both higher and low concentrations.
Collapse
Affiliation(s)
- Ivana Grčić
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia.
| | - Lucija Radetić
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Kristina Miklec
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Ivana Presečki
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Karlo Leskovar
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Hrvoje Meaški
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Mirta Čizmić
- Selvita S.A., Hondlova 2, 10 000 Zagreb, Croatia
| | - Ivan Brnardić
- University of Zagreb, Faculty of Metallurgy, Aleja narodnih heroja 3, 44000 Sisak, Croatia
| |
Collapse
|
11
|
Dallas JW, Kazarina A, Lee STM, Warne RW. Cross-species gut microbiota transplantation predictably affects host heat tolerance. J Exp Biol 2024; 227:jeb246735. [PMID: 38073469 PMCID: PMC10906491 DOI: 10.1242/jeb.246735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
The gut microbiome is known to influence and have regulatory effects in diverse physiological functions of host animals, but only recently has the relationship between host thermal biology and gut microbiota been explored. Here, we examined how early-life manipulations of the gut microbiota in larval amphibians influenced their critical thermal maximum (CTmax) at different acclimation temperatures. We stripped the resident microbiome from egg masses of wild-caught wood frogs (Lithobates sylvaticus) via an antibiotic wash, and then inoculated the eggs with pond water (control), no inoculation, or the intestinal microbiota of another species that has a wider thermal tolerance - green frogs (Lithobates clamitans). We predicted that this cross-species transplant would increase the CTmax of the recipient wood frog larvae relative to the other treatments. In line with this prediction, green frog microbiome-recipient larvae had the highest CTmax while those with no inoculum had the lowest CTmax. Both the microbiome treatment and acclimation temperature significantly influenced the larval gut microbiota communities and α-diversity indices. Green frog microbiome-inoculated larvae were enriched in Rikenellaceae relative to the other treatments, which produce short-chain fatty acids and could contribute to greater energy availability and enhanced heat tolerance. Larvae that received no inoculation had a higher relative abundance of potentially pathogenic Aeromonas spp., which negatively affects host health and performance. Our results are the first to show that cross-species gut microbiota transplants alter heat tolerance in a predictable manner. This finding has repercussions for the conservation of species that are threatened by climate change and demonstrates a need to further explore the mechanisms by which the gut microbiota modulate host thermal tolerance.
Collapse
Affiliation(s)
- Jason W. Dallas
- Southern Illinois University,School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| | - Anna Kazarina
- Kansas State University, Division of Biology, 1717 Claflin Rd, Manhattan, KS 66506, USA
| | - Sonny T. M. Lee
- Kansas State University, Division of Biology, 1717 Claflin Rd, Manhattan, KS 66506, USA
| | - Robin W. Warne
- Southern Illinois University,School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| |
Collapse
|
12
|
Liu C, Pan K, Xu H, Song Y, Qi X, Lu Y, Jiang X, Liu H. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides). CHEMOSPHERE 2024; 348:140751. [PMID: 37992902 DOI: 10.1016/j.chemosphere.2023.140751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Antibiotic residues in the aquaculture environments may lead to antibiotic resistance, and potentially exert adverse effects on health of the non-target organisms and humans. In order to evaluate the effect of enrofloxacin of environmental concentrations on largemouth bass (Micropterus salmoides). Two hundred and seventy largemouth basses (with an average weight of 7.88 ± 0.60 g) were randomly divided into three groups, and separately exposed to 0, 1, 100 μg/L enrofloxacin (Control, ENR1, ENR100) for 30 days to detect the effect of enrofloxacin on the growth performance, oxidative stress, intestinal microbiota structure, inflammatory response and structure of the intestine. The results showed that ENR significantly reduced the final body weight (FBW) and weight gain rate (WGR), and increased feed conversion ratio (FCR) (P < 0.05). The histopathological analysis revealed that the villus width and muscular thickness of anterior intestine were significantly decreased with the increasing of enrofloxacin concentration. The activity of SOD was significantly increased at enrofloxacin stress, while CAT and POD activity were significantly decreased compared to control group (P < 0.05). The activities of lysozyme (LZM), alkaline phosphatase (AKP) and peroxidase (POD) in ENR1 was higher than that of control and ENR100 groups. Enrofloxacin treatment up-regulated the expression IL-1β and TNF-α, and down-regulated IL-10, and decreasing the expression level ZO-1, claudin-1, and occludin. Furthermore, the enrofloxacin treatment significantly decreased the intestinal bacterial diversity (P < 0.05). Exposure to 100 μg/L enrofloxacin obviously increased the relative abundance of Bacteroidota, Myxococcota, and Zixibacteria of fish gut, and reduced Firmicutes; 1 μg/L enrofloxacin considerably increased Bacteroidota, Myxococcota, and Actinobacteria, and reduced Firmicutes. The relative abundance of DTB120 and Elusimicrobiota was positively correlated with the occludin and claudin-1 gene. Taken together, exposure to enrofloxacin inhibited the growth of largemouth bass, influenced intestinal health, and induced dysbiosis of the intestinal microbiota.
Collapse
Affiliation(s)
- Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Shen M, Hu Y, Zhao K, Li C, Liu B, Li M, Lyu C, Sun L, Zhong S. Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review. TOXICS 2023; 11:966. [PMID: 38133367 PMCID: PMC10747319 DOI: 10.3390/toxics11120966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of "pseudo-persistence". This article provides a comprehensive review of the literature on FQs in water bodies, summarizing and analyzing contamination levels of FQs in global surface water over the past three years, as well as the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity, and the influencing factors. The results show that FQs contamination is widespread in surface water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy contaminants. Furthermore, contamination levels are generally higher in developing and developed countries. It has been observed that compound types, species, and environmental factors influence the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and analyzes the current research status and shortcomings of FQs, providing guidance and theoretical support for future research directions.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (Y.H.); (K.Z.); (C.L.); (B.L.); (M.L.); (C.L.)
| | - Lei Sun
- Liaoning Provincial Mineral Exploration Institute Co., Ltd., Shenyang 110031, China
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
14
|
Delgado N, Orozco J, Zambrano S, Casas-Zapata JC, Marino D. Veterinary pharmaceutical as emerging contaminants in wastewater and surface water: An overview. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132431. [PMID: 37688873 DOI: 10.1016/j.jhazmat.2023.132431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Veterinary pharmaceuticals have become of interest due to their indiscriminate use. Thus, this paper compiles studies on detection in surface and wastewater, and the treatment applied for their removal. Additionally, a case study was performed to evaluate its commercialization, as the ecological risk assessment for the most relevant compounds. 241 compounds were detected. The highest concentrations were found for antibiotics such as oxytetracycline, amoxicillin, and monensin, with values up to 3732.4 µg/L. Biological treatments have been mainly reported, obtaining removal greater than 80% for sulfadiazine, sulfamethazine, sulfamethoxazole, enrofloxacin, and oxytetracycline. Considering the case study, enrofloxacin and oxytetracycline were widely commercialized. Finally, there was a low risk for the species exposed to enrofloxacin, in contrast, the species exposed to oxytetracycline presented a high risk of long-term mortality. Concluding that veterinary compounds have emerged as a significant concern regarding water source contamination, owing to their potential adverse effects on aquatic biota and even human. This is particularly relevant because many water bodies that receive wastewater are utilized for drinking water purposes. Consequently, the development of comprehensive, full-scale systems for efficient antibiotic removal before their introduction into water sources becomes imperative. Equally important is the need to reconsider their extensive use altogether.
Collapse
Affiliation(s)
- Nasly Delgado
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia.
| | - Jessica Orozco
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Santiago Zambrano
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Juan C Casas-Zapata
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Damián Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 47y 115, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
15
|
Salgado Costa C, Bahl F, Natale GS, Mac Loughlin TM, Marino DJG, Venturino A, Rodriguez-Mozaz S, Santos LHMLM. First evidence of environmental bioaccumulation of pharmaceuticals on adult native anurans (Rhinella arenarum) from Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122231. [PMID: 37481029 DOI: 10.1016/j.envpol.2023.122231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The presence of pharmaceutically active compounds (PhACs) in surface water is well known, whereas their natural occurrence in biota is much less explored. The aim of this work was to evaluate the bioaccumulation of PhACs in adult toads of the neotropical species Rhinella arenarum. Three sites were selected in Buenos Aires (Argentina): a reference site (Site 1), a site with direct discharge from a secondary wastewater treatment plant (WWTP) (Site 2) and a site 300 m downstream of the WWTP discharge (Site 3). Surface water samples, as well as muscle, liver and fat bodies of toads were collected, extracted and analyzed by LC-MS/MS. Highly significant differences in total PhACs concentration in surface water (p < 0.005) were detected between Site 2 and the other sites. These concentrations ranged from 0.37 to 52.46 ng/L at Site 1, 0.71-6950.37 ng/L at Site 2, and 0.12-75.45 ng/L at Site 3. In general, bioaccumulation of PhACs in toad tissues was similar between sites and tissues of each site. The highest concentrations were detected in the muscle of toads from Site 3 (1.06-87.24 ng/g dw), followed by liver (1.77-38.10 ng/g dw) and fat bodies (0.68-20.59 ng/g dw) from Site 1. Ibuprofen (6950 ng/L), acetaminophen (3277 ng/L) and valsartan (2504 ng/L) were the compounds with the highest concentrations in surface water from Site 2, whereas acetaminophen (87.2 ng/g dw, muscle from Site 3), desloratadine (38.1 ng/g dw, liver from Site 1), and phenazone (25.9 ng/g dw, liver from Site 1) were the ones that showed the highest concentrations in biota. This is the first time a field study has examined the environmental bioaccumulation of PhACs in anurans, demonstrating their potential for monitoring the status of natural ecosystems.
Collapse
Affiliation(s)
- C Salgado Costa
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - F Bahl
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - G S Natale
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - T M Mac Loughlin
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - D J G Marino
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - A Venturino
- CITAAC, CONICET, IBAC, Facultad de Ciencias Agrarias, Universidad Nacional Del Comahue, Cinco Saltos, Río Negro, Argentina
| | - S Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
16
|
Huang J, Liao L, Wang G, Du Z, Wu Z. Reproductive toxicity of enrofloxacin in Caenorhabditis elegans involves oxidative stress-induced cell apoptosis. J Environ Sci (China) 2023; 127:726-737. [PMID: 36522101 DOI: 10.1016/j.jes.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Fluoroquinolone antibiotics (FQs) that persist and bioaccumulate in the environment have aroused people's great concern. Here, we studied the adverse effects of FQs in soil animals of Caenorhabditis elegans via food-chronically exposure. The result shows C. elegans exposed to FQs exhibited reproductive toxicity with small-brood size and low-egg hatchability. To study the underlying mechanism, we conduct a deep investigation of enrofloxacin (ENR), one of the most frequently detected FQs, on nematodes which is one of commonly used animal indicator of soil sustainability. The concentration-effect curves simulated by the Hill model showed that the half effect concentrations (EC50) of ENR were (494.3 ± 272.9) µmol/kg and (107.4 ± 30.9) µmol/kg for the brood size and the hatchability, respectively. Differential gene expression between the control and the ENR-exposure group enriched with the oxidative stress and cell apoptosis pathways. The results together with the enzyme activity in oxidative stress and the cell corpses suggested that ENR-induced reproductive toxicity was related to germ cell apoptosis under oxidative stress. The risk quotients of some soil and livestock samples were calculated based on the threshold value of EC10 for the egg hatchability (2.65 µmol/kg). The results indicated that there was possible reproductive toxicity on the nematodes in certain agricultural soils for the FQs. This study suggested that chronic exposure to FQs at certain levels in environment would induce reproductive toxicity to the nematodes and might reduce the soil sustainability, alarming the environment risks of antibiotics abuse.
Collapse
Affiliation(s)
- Jiahao Huang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lizi Liao
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Guowei Wang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Zhengxing Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Lin Z, Wan G, Wu J, Liu H, Zhang F, Tang X, Ruan J. Toxicologic effect of short-term enrofloxacin exposure on brain of Carassius auratus var. Pengze. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161730. [PMID: 36681334 DOI: 10.1016/j.scitotenv.2023.161730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
To further explore short-term exposure of enrofloxacin (ENR) induced toxicity in crucian carp brain that has been reported by our previous work, as well as the possible toxicological mechanisms, this study investigated the blood-brain barrier (BBB) permeability to low dosage of ENR through comprehensively assessing expression of BBB constitutive molecules zonula occludens-1 (ZO-1) and permeability glycoprotein (P-gp), as well as ENR residue in brain of crucian carp. Toxicologic effect of ENR on brain tissue was determined through evaluating expression of brain-derived proteins S100B, neuron specific enolase (NSE) and glial fibrillary acidic protein (GFAP) in crucian carp brain tissue, as well as contents of the proteins in serum. The toxicological mechanisms were explored through analyzing transcriptome analysis data. Results showed that ENR possessed excellent permeability to crucian carp BBB, which was closely related to deranged BBB structure and declined ENR efflux that were attributed to downregulated expression of ZO-1 and P-gp by ENR exposure. Meanwhile, S100B, NSE and GFAP were upregulated in brain by ENR, and came out into blood across the damaged BBB. These data revealed that ENR induced disruption of BBB and damage of brain tissue in crucian carp. Transcriptome analysis data indicated that ENR induced toxicologic effect might be related to modification of metabolism, organismal systems, and genetic information processing, etc., and that PI3K/Akt, MAPK, HIF-1, and ubiquitin mediated proteolysis involved the mechanisms, most of the mechanisms were attributed to ENR induced oxidative stress in crucian carp brain.
Collapse
Affiliation(s)
- Zhen Lin
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gen Wan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiayi Wu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Fan Zhang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaochen Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jiming Ruan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
18
|
Araújo AM, Ringeard H, Nunes B. Do microplastics influence the long-term effects of ciprofloxacin on the polychaete Hediste diversicolor? An integrated behavioral and biochemical approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104088. [PMID: 36841270 DOI: 10.1016/j.etap.2023.104088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Ciprofloxacin (CPX), the most commonly used fluoroquinolone antibiotic, and microplastics (MPs) are two classes of emerging contaminants with severe adverse impacts on aquatic organisms. Previous studies suggest that both CPX and MPs induce deleterious changes in exposed aquatic biota, but the characterization of a chronic and combined ecotoxicological response is not well known, especially in organisms from estuarine ecosystems. Thus, in this study, we investigated the behavioral and biochemical effects of environmentally relevant levels of CPX alone and in combination with polyethylene terephthalate (PET) microplastics over 28 days of exposure, using the polychaete Hediste diversicolor as a model. In addition to behavioral parameters, different biochemical endpoints were also evaluated, namely the levels of metabolic enzymes of phase I (7-ethoxy-resorufin-O-deethylase, EROD), and phase II (glutathione-S-transferase, GSTs), antioxidant defense (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), oxidative damage (lipid peroxidation, by means of levels of thiobarbituric acid reactive substances [TBARS]) and acetylcholinesterase (AChE). Chronic exposure to ciprofloxacin caused a decrease in burrowing time and a significant increase in SOD activity. In animals exposed to the combination of CPX and PET MPs, effects on behavioral traits were also observed, with higher concentrations of MPs leading to a marked delay in the animals' burrowing time. In addition, these animals showed changes in their antioxidant defenses, namely, a significant increase in SOD activity, while GPx activity was severely compromised. For none of the experimental groups, significant alterations were observed in the metabolic enzymes, TBARS or AChE. These findings provide the first insights into the responses of H. diversicolor when exposed to the combination of CPX and PET MPs, highlighting that, although the here studied conditions, there was no evidence of oxidative damage or neurotoxicity, these organisms are not risk-free in co-exposure scenarios, even at low environmental relevant concentrations.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Henri Ringeard
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
20
|
Cuzziol Boccioni AP, García-Effron G, Peltzer PM, Lajmanovich RC. Effect of glyphosate and ciprofloxacin exposure on enteric bacteria of tadpoles. Rev Argent Microbiol 2023:S0325-7541(22)00107-9. [PMID: 36682905 DOI: 10.1016/j.ram.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/30/2022] [Accepted: 08/20/2022] [Indexed: 01/21/2023] Open
Abstract
The high load of agrochemicals and antibiotics present in agricultural aquatic environments represents a risk for wildlife. Since enteric bacteria, which play a key role in the physiological functioning of their hosts, are sensitive to a wide variety of pollutants, their study allows to evaluate the health of organisms. This study aimed to evaluate the effects of commercial formulations of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP), individually and in mixture, on the bacterial diversity of the intestinal content of common toad (Rhinella arenarum) tadpoles. The diversity of cultivable fast-growing bacteria with low nutritional requirements was evaluated using classic microbiological tests and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification. Bacterial diversity varied among treatments. Taxa diversity increased in the GBH-treated group but decreased in the CIP-treated group. Remarkably, Yersinia spp. and Proteus spp. were only found in the GBH-treated group. The prevalence of Klebsiella spp. and Pseudomonas spp. decreased in the intestinal microbiota of the GBH-CIP-treated group. To our knowledge, this is the first report on the alteration of cultivable enteric bacteria of autochthonous tadpoles due to two pollutants of emerging concern. Our results demonstrate that R. arenarum tadpoles can be used as non-conventional model organisms for environmental pollution monitoring. Our preliminary findings would contribute to understanding how the presence of GBH and CIP in freshwaters may represent a threat to wildlife and human health by causing enteric dysbiosis of part of the bacterial community.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermo García-Effron
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
21
|
Kitamura RSA, Vicentini M, Bitencourt V, Vicari T, Motta W, Brito JCM, Cestari MM, Prodocimo MM, de Assis HCS, Gomes MP. Salvinia molesta phytoremediation capacity as a nature-based solution to prevent harmful effects and accumulation of ciprofloxacin in Neotropical catfish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41848-41863. [PMID: 36639588 DOI: 10.1007/s11356-023-25226-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Phytoremediation has been a potential solution for the removal of pharmaceuticals from water. Here, we evaluated the toxicological safety of ciprofloxacin-contaminated water treated by 96 h with Salvinia molesta. The Neotropical catfish Rhamdia quelen was used as a model, and the potential of the phytoremediation technique for mitigating the drug accumulation in the fishes was also studied. Fish exposed to Cipro (1 and 10 µg·L-1) in untreated water showed toxic responses (alteration of hematological, genotoxicity, biochemical, and histopathological biomarkers) and accumulated Cipro in their muscles at concentrations high for human consumption (target hazardous quotient > 1). Fish exposed to water treated with S. molesta showed no toxic effect and no accumulation of Cipro in their tissues. This must be related to the fact that S. molesta removed up to 97% of Cipro from the water. The decrease in Cipro concentrations after water treatment with S. molesta not only prevented the toxic effects of Cipro on R. quelen fish but also prevented the antimicrobial accumulation in fish flesh, favouring safe consumption by humans. For the very first time, we showed the potential of phytoremediation as an efficiently nature-based solution to prevent environmental toxicological effects of antimicrobials to nontarget organisms such as fish and humans. The use of S. molesta for Cipro-removal from water is a green technology to be considered in the combat against antimicrobial resistance.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
- Department of Botany, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
| | - Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Vitória Bitencourt
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Taynah Vicari
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | - Welton Motta
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | | | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81537-980, Brazil
| | - Helena Cristina Silva de Assis
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Marcelo Pedrosa Gomes
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Botany, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| |
Collapse
|
22
|
Prusty D, Mansingh S, Parida KM. Synthesis of Z-schemes 0D–3D heterojunction bi-functional photocatalyst with ZnInCuS alloyed QDs supported BiOI MF for H 2O 2 production and N 2 fixation. Catal Sci Technol 2023. [DOI: 10.1039/d2cy02107b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Photocatalytic H2O2 and NH3 production on Zn–Cu–In–S QDs coupled with BiOI MFs via a Z-scheme charge transfer dynamic.
Collapse
Affiliation(s)
- Deeptimayee Prusty
- Centre for Nanoscience and Nanotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India
| | - Sriram Mansingh
- Centre for Nanoscience and Nanotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India
| | - K. M. Parida
- Centre for Nanoscience and Nanotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India
| |
Collapse
|
23
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Prusty D, Mansingh S, Priyadarshini N, Parida KM. Defect Control via Compositional Engineering of Zn-Cu-In-S Alloyed QDs for Photocatalytic H 2O 2 Generation and Micropollutant Degradation: Affecting Parameters, Kinetics, and Insightful Mechanism. Inorg Chem 2022; 61:18934-18949. [DOI: 10.1021/acs.inorgchem.2c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Deeptimayee Prusty
- Centre for Nanoscience and Nanotechnology, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar751030, Odisha, India
| | - Sriram Mansingh
- Centre for Nanoscience and Nanotechnology, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar751030, Odisha, India
| | - Newmoon Priyadarshini
- Centre for Nanoscience and Nanotechnology, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar751030, Odisha, India
| | - K. M. Parida
- Centre for Nanoscience and Nanotechnology, Siksha “O” Anusandhan (Deemed to be University), Bhubaneswar751030, Odisha, India
| |
Collapse
|
25
|
Rutkoski CF, Grott SC, Israel NG, Carneiro FE, de Campos Guerreiro F, Santos S, Horn PA, Trentini AA, Barbosa da Silva E, Coelho de Albuquerque CA, Alves TC, Alves de Almeida E. Hepatic and blood alterations in Lithobates catesbeianus tadpoles exposed to sulfamethoxazole and oxytetracycline. CHEMOSPHERE 2022; 307:136215. [PMID: 36041517 DOI: 10.1016/j.chemosphere.2022.136215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/10/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this study the effects of environmentally realistic concentrations of the antibiotics sulfamethoxazole (SMX) and oxytetracyclyne (OTC) on Lithobates catesbeianus tadpoles were evaluated, through the analyzes of the frequencies of micronucleus and nuclear abnormalities in erythrocytes, alterations in leucocytes, liver histopathology, and changes in hepatic esterase activities and oxidative stress biomarkers. The animals were exposed for 16 days at concentrations of 0 (control), 20, 90 and 460 ng L-1. No significant difference was found in the frequencies of micronucleus and nuclear abnormalities. The two highest concentrations of SMX and all concentrations of OTC caused a significant increase in the number of lymphocytes. A significant decrease in the number of neutrophils compared to the control group was observed for all concentrations tested of both antibiotics. Also, decrease in the activity of glutathione S-transferase and high histopathological severity scores, indicating liver damage, were found in tadpoles exposed to the two highest concentrations of SMX and all concentrations of OTC. The main changes in the liver histopathology were the presence of inflammatory infiltrate, melanomacrophages, vascular congestion, blood cells and eosinophils. Esterase activities were unchanged. Indeed, the two highest concentrations of OTC caused a reduction in the activities of superoxide dismutase and glucose 6-phosphate dehydrogenase, while the highest concentration inhibited the activity of glutathione peroxidase and increased protein carbonyl levels. These results evidences that environmentally realistic concentrations of SMX and OTC in aquatic environments are capable to significantly disrupt tadpoles' physiology, possibly affecting negatively their survival rate in natural environments.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Sabrina Santos
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Amanda Alves Trentini
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
26
|
Shan L, Gao M, Pan X, Li W, Wang J, Li H, Tian H. Association between fluoroquinolone exposure and children's growth and development: A multisite biomonitoring-based study in northern China. ENVIRONMENTAL RESEARCH 2022; 214:113924. [PMID: 35868578 DOI: 10.1016/j.envres.2022.113924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although animal experiments found that antibiotic exposure during early life increased adiposity, limited human epidemiological evidence is available for the effects of veterinary antibiotic exposure on children's growth and development. OBJECTIVE This study was conducted to examine the body burden of fluoroquinolones in northern Chinese children and assess its association with growth and development. METHODS After recruiting 233 children aged 0-15 years from 12 different sites in northern China in 2020, we measured urinary concentrations of 5 respective fluoroquinolones (fleroxacin, ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) by high performance liquid chromatography. Categories of children's growth and development were identified based on the Z score of body mass index. The health risks of individual and combined antibiotic exposure were estimated by the hazard quotient (HQ) and hazard index (HI), respectively. The association between children's growth and development with antibiotic concentrations was evaluated via multiple logistic regression analysis. RESULTS In total, 4 antibiotics, fleroxacin, ofloxacin, ciprofloxacin, and enrofloxacin, were found in urine samples of northern Chinese children at an overall frequency of 57.08%. Due to diet and economic differences, antibiotic concentrations in urine samples differed by study area, and the highest concentrations were found in Tianjin, Henan, and Beijing. The percentage of the participants with HQ > 1 caused by ciprofloxacin exposure was 20.61%, and the HI values in 23.18% of samples exceeded 1, suggesting potential health risks. The odds ratio (95% confidence interval) of overweight or obesity risk of tertile 2 of enrofloxacin was 3.01 (1.12, 8.11), indicating an increase in overweight or obesity risk for children with middle-concentration enrofloxacin exposure. CONCLUSION This is the first study to show a positive association of enrofloxacin internal exposure with overweight or obesity risk in children, demonstrating that more attention should be given to the usage and disposal of fluoroquinolones to safeguard children's health.
Collapse
Affiliation(s)
- Lixin Shan
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Xiaohua Pan
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Wenjie Li
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Jingjie Wang
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
27
|
Okoye CO, Nyaruaba R, Ita RE, Okon SU, Addey CI, Ebido CC, Opabunmi AO, Okeke ES, Chukwudozie KI. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103995. [PMID: 36210048 DOI: 10.1016/j.etap.2022.103995] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution is becoming an increasingly severe threat globally. Antibiotics have emerged as a new class of environmental pollutants due to their expanding usage and indiscriminate application in animal husbandry as growth boosters. Contamination of aquatic ecosystems by antibiotics can have a variety of negative impacts on the microbial flora of these water bodies, as well as lead to the development and spread of antibiotic-resistant genes. Various strategies for removing antibiotics from aqueous systems and environments have been developed. Many of these approaches, however, are constrained by their high operating costs and the generation of secondary pollutants. This review aims to summarize research on the distribution and effects of antibiotics in aquatic environments, their interaction with other emerging contaminants, and their remediation strategy. The ecological risks associated with antibiotics in aquatic ecosystems and the need for more effective monitoring and detection system are also highlighted.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Raphael Nyaruaba
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Richard Ekeng Ita
- Department of Biological Sciences Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Samuel Ukpong Okon
- Department of Marine Science, Akwa Ibom State University, Mkpat Enin, P.M.B. 1167, Nigeria; Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Chike C Ebido
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctor, Nairobi, Kenya.
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya; Department of Clinical Medicine, School of Medicine, Jiangsu University 212013, PR China.
| |
Collapse
|
28
|
Fernández LP, Brasca R, Repetti MR, Attademo AM, Peltzer PM, Lajmanovich RC, Culzoni MJ. Bioaccumulation of abacavir and efavirenz in Rhinella arenarum tadpoles after exposure to environmentally relevant concentrations. CHEMOSPHERE 2022; 301:134631. [PMID: 35443209 DOI: 10.1016/j.chemosphere.2022.134631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Antiretrovirals are pharmaceuticals used in the treatment of the human immunodeficiency virus; they are contaminants of emerging concern that have received considerable attention in recent decades due to their potential negative environmental effects. Data on the bioaccumulation and possible environmental risks posed by these drugs to aquatic organisms are very scarce. Therefore, the aim of this study was to evaluate the bioaccumulation of abacavir and efavirenz in Rhinella arenarum tadpoles subjected to acute static toxicity tests (96 h) at environmentally relevant concentrations. The analytical procedure consisted of the development and optimization of a method involving ultra-high performance liquid chromatography with tandem mass spectrometry detection. The instrumental conditions, optimized by design of experiments using the response surface methodology, yielded limits of detection of 0.3 μg L-1 for abacavir and 0.9 μg L-1 for efavirenz; and limits of quantification of 1.9 μg L-1 for abacavir and 5.6 μg L-1 for efavirenz. Subsequently, the bioaccumulation of the pharmaceutical drugs in tadpoles was evaluated at three exposure concentrations. Efavirenz displayed the highest bioaccumulation levels. This study shows the bioaccumulation potential of abacavir and efavirenz in amphibian tadpoles at exposure concentrations similar to those already detected in the environment, indicating an ecological risk for R. arenarum and probably other aquatic organisms exposed to these drugs in water bodies.
Collapse
Affiliation(s)
- Lesly Paradina Fernández
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Romina Brasca
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Maria Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Nguyen TD, Itayama T, Ramaraj R, Iwami N, Shimizu K, Dao TS, Pham TL, Maseda H. Physiological response of Simocephalus vetulus to five antibiotics and their mixture under 48-h acute exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154585. [PMID: 35306083 DOI: 10.1016/j.scitotenv.2022.154585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 05/20/2023]
Abstract
Antibiotics, widely known as major environmental xenobiotics, are increasingly being released into ecosystems due to their essential functions in human health and production. During the COVID-19 pandemic waves, antibiotic use increases remarkably in treating bacterial coinfections. Antibiotics were initially expected only to affect prokaryotes, but recent research has shown that they can disturb the biological systems of eukaryotes, especially vulnerable aquatic creatures, through both direct and indirect processes. However, their toxicity to the freshwater cladoceran Simocephalus vetulus, an essential link in the aquatic food web, has never been evaluated. The effects of four fluoroquinolones (ciprofloxacin: CFX, ofloxacin: OFX, gatifloxacin: GFX, delafloxacin: DFX), tetracycline (TET), and a mixture of these medicines (MIX) on S. vetulus thoracic limb rate (TLR) were examined in this study. After S. vetulus was exposed to 20 and 40 mg GFX L-1, 90% and 100% mortality rates were recorded. At 2.5-10 mg L-1, GFX dramatically lowered the TLR of S. vetulus, resulting in a median effective concentration of 9.69 mg L-1. TLRs increased when the organisms were exposed to 10-40 mg L-1 of CFX and 1.25-40 mg L-1 of OFX. However, DFX and TET exposures did not affect TLRs. Exposure to MIX reduced TLR only at 40 mg L-1, suggesting an antagonistic interaction among the five pharmaceuticals. This study demonstrated that S. vetulus physiological responses to antibiotics, even in the same class, are complex and elusive. Beyond a common additive concentration principle, the antagonistic interaction of antibiotic mixture indicates a high level of uncertainty in terms of ecological dangers. We initially introduce S. vetulus to ecotoxicological studies of antibiotics, presenting the species as a low-cost model for physiological investigations of environmental xenobiotics.
Collapse
Affiliation(s)
- Tan-Duc Nguyen
- Graduate school of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Japan
| | - Tomoaki Itayama
- Graduate school of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Japan.
| | - Rameshprabu Ramaraj
- School of Renewable Energy, Maejo University, Sansai, Chiang Mai 50290, Thailand
| | - Norio Iwami
- School of Science and Engineering, Meise University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506, Japan
| | - Kazuya Shimizu
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, Japan
| | - Thanh-Son Dao
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Thanh Luu Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 100000, Viet Nam; Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City 700000, Viet Nam
| | - Hideaki Maseda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
30
|
Cao XQ, He SW, Liu B, Wang X, Xing SY, Cao ZH, Chen CZ, Li P, Li ZH. Exposure to enrofloxacin and depuration: Endocrine disrupting effect in juvenile grass carp (Ctenopharyngodon idella). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109358. [PMID: 35489638 DOI: 10.1016/j.cbpc.2022.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to determine the effects of Enrofloxacin (ENR) exposure and depuration on the disruption of thyroid function and growth of juvenile grass carp (Ctenopharyngodon idella) as well as to assess the risk of ENR exposure to human health. Juvenile grass carp were treated with ENR solutions at different concentration gradients for 21 days and then depurated for 14 days. The results indicated ENR accumulation in the juvenile grass carp muscles, which persisted after depuration. In addition, exposure to ENR could alter growth by regulating the expression of genes associated with growth hormone/insulin-like growth factor (GH)/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis. During ENR exposure, no significant changes in growth hormone levels were observed; however, a significant increase in the growth hormone level was noted. GH/IGF axis-related genes were upregulated after ENR exposure, and their expression levels remained high after depuration. Notably, a significant increase in the serum triiodothyronine (T3) and thyroxine (T4) levels coincided with the upregulation of HPT axis-related genes in both exposure and depuration treatments, and their expression levels remained high after depuration. Therefore, juvenile grass carp exposure to ENR induces physiological stress through HPT and GH/IGF axes that cannot be recovered after depuration. ENR accumulates in the muscles of juvenile grass carp and may pose a threat to human health. Therefore, exposure of juvenile grass carp to ENR results in impaired thyroid function and impaired growth. In addition, consumption of ENR-exposed fish poses human health risks.
Collapse
Affiliation(s)
- Xu-Qian Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shao-Ying Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Han Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | | | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
31
|
Yun D, Kang D, Jang J, Angeles AT, Pyo J, Jeon J, Baek SS, Cho KH. A novel method for micropollutant quantification using deep learning and multi-objective optimization. WATER RESEARCH 2022; 212:118080. [PMID: 35114526 DOI: 10.1016/j.watres.2022.118080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Micropollutants (MPs) released into aquatic ecosystems have adverse effects on public health. Hence, monitoring and managing MPs in aquatic systems are imperative. MPs can be quantified by high-resolution mass spectrometry (HRMS) with stable isotope-labeled (SIL) standards. However, high cost of SIL solutions is a significant issue. This study aims to develop a rapid and cost-effective analytical approach to estimate MP concentrations in aquatic systems based on deep learning (DL) and multi-objective optimization. We hypothesized that internal standards could quantify the MP concentrations other than the target substance. Our approach considered the precision of intra-/inter-day repeatability and natural organic matter information to reduce instrumental error and matrix effect. We selected standard solutions to estimate the concentrations of 18 MPs. Among the optimal DL models, DarkNet-53 using nine standard solutions yielded the highest performance, while ResNet-50 yielded the lowest. Overall, this study demonstrated the capability of DL models for estimating MP concentrations.
Collapse
Affiliation(s)
- Daeun Yun
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, South Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Jiyi Jang
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, South Korea
| | - Anne Therese Angeles
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, South Korea
| | - JongCheol Pyo
- Center for Environmental Data Strategy, Korea Environment Institute, Sejong 30147, South Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, South Korea.
| |
Collapse
|
32
|
Enrofloxacin—The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections? Int J Mol Sci 2022; 23:ijms23073648. [PMID: 35409007 PMCID: PMC8998546 DOI: 10.3390/ijms23073648] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Enrofloxacin is a compound that originates from a group of fluoroquinolones that is widely used in veterinary medicine as an antibacterial agent (this antibiotic is not approved for use as a drug in humans). It reveals strong antibiotic activity against both Gram-positive and Gram-negative bacteria, mainly due to the inhibition of bacterial gyrase and topoisomerase IV enzymatic actions. The high efficacy of this molecule has been demonstrated in the treatment of various animals on farms and other locations. However, the use of enrofloxacin causes severe adverse effects, including skeletal, reproductive, immune, and digestive disorders. In this review article, we present in detail and discuss the advantageous and disadvantageous properties of enrofloxacin, showing the benefits and risks of the use of this compound in veterinary medicine. Animal health and the environmental effects of this stable antibiotic (with half-life as long as 3–9 years in various natural environments) are analyzed, as are the interesting properties of this molecule that are expressed when present in complexes with metals. Recommendations for further research on enrofloxacin are also proposed.
Collapse
|
33
|
Goessens T, De Baere S, Deknock A, De Troyer N, Van Leeuwenberg R, Martel A, Pasmans F, Goethals P, Lens L, Spanoghe P, Vanhaecke L, Croubels S. Agricultural contaminants in amphibian breeding ponds: Occurrence, risk and correlation with agricultural land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150661. [PMID: 34597541 DOI: 10.1016/j.scitotenv.2021.150661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic pressure such as agricultural pollution globally affects amphibian populations. In this study, a total of 178 different compounds from five agrochemical groups (i.e. antimicrobial drugs residues (ADRs), coccidiostats and anthelmintics, heavy metals, mycotoxins and pesticides) were determined monthly, from March until June 2019 in 26 amphibian breeding ponds in Flanders, Belgium. Furthermore, a possible correlation between the number and concentration of selected contaminants that were found and the percentage of arable land within a 200 m radius was studied. Within each group, the highest detected concentrations were obtained for 4-epioxytetracycline (0.422 μg L-1), levamisole (0.550 μg L-1), zinc (333.1 μg L-1), 3-acetyldeoxynivalenol (0.013 μg L-1), and terbuthylazine (38.7 μg L-1), respectively, with detection frequencies ranging from 1 (i.e. 3-acetyldeoxynivalenol) to 26 (i.e. zinc) out of 26 ponds. Based on reported acute and chronic ecotoxicological endpoints, detected concentrations of bifenthrin, cadmium, copper, cypermethrin, hexachlorobenzene, mercury, terbuthylazine, and zinc pose a substantial ecological risk to aquatic invertebrates such as Daphnia magna and Ceriodaphnia dubia, which both play a role in the food web and potentially in amphibian disease dynamics. Additionally, the detected concentrations of copper were high enough to exert chronic toxicity in the gray treefrog (Hyla versicolor). The number of detected compounds per pond ranged between 0 and 5 (ADRs), 0 - 2 (coccidiostats and anthelmintics), 1 - 7 (heavy metals), 0 - 4 (mycotoxins), and 0 - 12 (pesticides) across the four months. Furthermore, no significant correlation was demonstrated between the number of detected compounds per pond, as well as the detected concentrations of 4-epioxytetracycline, levamisole, copper, zinc, enniatin B and terbuthylazine, and the percentage of arable land within a 200 m radius. For heavy metals and pesticides, the number of compounds per pond varied significantly between months. Conclusively, amphibian breeding ponds in Flanders were frequently contaminated with agrochemicals, yielding concentrations up to the high μg per liter level, regardless of the percentage surrounding arable land, however showing temporal variation for heavy metals and pesticides. This research also identifies potential hazardous substances which may be added to the European watch list (CD 2018/408/EC) in the future.
Collapse
Affiliation(s)
- T Goessens
- Ghent University, Department of Pharmacology, Toxicology and Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Merelbeke, Belgium.
| | - S De Baere
- Ghent University, Department of Pharmacology, Toxicology and Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - A Deknock
- Ghent University, Department of Biology, Animal Sciences and Aquatic Ecology, Aquatic Ecology Unit, Faculty of Bioscience Engineering, Ghent, Belgium
| | - N De Troyer
- Ghent University, Department of Biology, Animal Sciences and Aquatic Ecology, Aquatic Ecology Unit, Faculty of Bioscience Engineering, Ghent, Belgium
| | - R Van Leeuwenberg
- Ghent University, Department of Pathology, Bacteriology and Avian Diseases, Laboratory of Bacteriology and Mycology, Wildlife Health Ghent, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - A Martel
- Ghent University, Department of Pathology, Bacteriology and Avian Diseases, Laboratory of Bacteriology and Mycology, Wildlife Health Ghent, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - F Pasmans
- Ghent University, Department of Pathology, Bacteriology and Avian Diseases, Laboratory of Bacteriology and Mycology, Wildlife Health Ghent, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - P Goethals
- Ghent University, Department of Biology, Animal Sciences and Aquatic Ecology, Aquatic Ecology Unit, Faculty of Bioscience Engineering, Ghent, Belgium
| | - L Lens
- Ghent University, Department of Biology, Terrestrial Ecology Unit, Faculty of Sciences, Ghent, Belgium
| | - P Spanoghe
- Ghent University, Department of Plants and Crops, Laboratory of Crop Protection Chemistry, Faculty of Bioscience Engineering, Ghent, Belgium
| | - L Vanhaecke
- Ghent University, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Merelbeke, Belgium; Queen's University, School of Biological Sciences, Institute for Global Food Security, Belfast, Ireland
| | - S Croubels
- Ghent University, Department of Pharmacology, Toxicology and Biochemistry, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Merelbeke, Belgium
| |
Collapse
|
34
|
Antibiotic Resistance Gene Transformation and Ultrastructural Alterations of Lettuce (Lactuca sativa L.) Resulting from Sulfadiazine Accumulation in Culture Solution. Processes (Basel) 2021. [DOI: 10.3390/pr9081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The research herein explored the possible mechanism of toxicity of the antibiotic sulfadiazine (SD) and the related antibiotic resistance gene transformation in lettuce by systematically investigating its growth responses, ultrastructural changes, and antibiotic resistance gene transformation via solution culture experiments. The results showed that SD mainly accumulated in the roots of lettuce at concentrations ranging from 6.48 to 120.87 μg/kg, which were significantly higher than those in leaves (3.90 to 16.74 μg/kg). Lower concentrations of SD (0.5 and 2.0 mg/L) in the culture nutrient solution exerted little effect on lettuce growth, while at SD concentrations higher than 10 mg/L, the growth of lettuce was significantly inhibited, manifesting as shorter root length and lower dry matter yield of whole lettuce plants. Compared with that for the control group, the absolute abundance of bacteria in the root endophyte, rhizosphere, and phyllosphere communities under different concentrations of SD treatment decreased significantly. sul1 and sul2 mainly accumulated in the root endophyte community, at levels significantly higher than those in the leaf endophyte community. Studies of electrolyte leakage and ultrastructural characteristics of root and leaf cells indicated that lettuce grown in culture solutions with high SD concentrations suffered severe damage and disintegration of the cell walls of organs, especially chloroplasts, in leaves. Furthermore, the possible mechanism of SD toxicity in lettuce was confirmed to start with the roots, followed by a free flow of SD into the leaves to destroy the chloroplasts in the leaf cells, which ultimately reduced photosynthesis and decreased plant growth. Studies have shown that antibiotic residues have negative effects on the growth of lettuce and highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophyte systems.
Collapse
|
35
|
Cuzziol Boccioni AP, Lajmanovich RC, Peltzer PM, Attademo AM, Martinuzzi CS. Toxicity assessment at different experimental scenarios with glyphosate, chlorpyrifos and antibiotics in Rhinella arenarum (Anura: Bufonidae) tadpoles. CHEMOSPHERE 2021; 273:128475. [PMID: 33069438 DOI: 10.1016/j.chemosphere.2020.128475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
The presence of pesticides as well as that of several antibiotics provided at a great scale to poultry, cattle, and swine in aquatic environments within agroecosystems is a matter of growing concern. The objective of the present study was to characterize the sublethal effects of four environmental toxic compounds at two experimental pollution scenarios on the morphology, development and thyroid (T4), acetylcholinesterase (AChE) and glutathione S-transferase (GST) levels in Rhinella arenarum tadpoles. The first experimental pollution scenario aimed to evaluate the individual and mixed toxicity (50:50% v/v) of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP) on earlier developmental stages. The second experimental pollution scenario aimed to evaluate the effects of other toxic compounds (the insecticide chlorpyrifos (CP) and the antibiotic amoxicillin (AMX)) added to the ones from the first scenario on previously exposed premetamorphic tadpoles. In all the treatments of the first pollution scenario, the most conspicuous effect observed in early-stage tadpoles was a high prevalence of morphological abnormalities. Exposure to GBH and to its mixture with CIP also led to a significant decrease in T4 levels and lower development. Both pollutant combinations from the second experimental scenario significantly increased T4 levels, inhibited AChE activities, and led to lower development, whereas the quaternary mixture led to a significant decrease in GST levels. The alterations here revealed by our approaches in several morphological and biochemical endpoints allow characterizing the ecotoxicological risk for anurans exposed to complex mixtures of pollutants that frequently occur in aquatic systems.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| |
Collapse
|
36
|
Ramesh M, Sujitha M, Anila PA, Ren Z, Poopal RK. Responses of Cirrhinus mrigala to second-generation fluoroquinolone (ciprofloxacin) toxicity: Assessment of antioxidants, tissue morphology, and inorganic ions. ENVIRONMENTAL TOXICOLOGY 2021; 36:887-902. [PMID: 33382204 DOI: 10.1002/tox.23091] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Ciprofloxacin drugs are a second-generation fluoroquinolone highly prescribed medication against various bacterial infections in human and aquaculture practices. These drugs are chemically designed to persist in the body long enough to achieve target objectives. Extensive usage has resulted in ciprofloxacin becoming a ubiquitous contaminant in the environment. Unfortunately, the ecotoxicological profiles for ciprofloxacin are scanty. This study was aimed to assess the ecotoxicity of ciprofloxacin at environmentally relevant concentrations (1 μg/L, and 1.5 μg/L) to a cultivable fish Cirrhinus mrigala. Responses of antioxidant enzymes, histological anomalies, and inorganic ion levels were studied. SOD activity in gill, liver, and kidney tissues was elevated in ciprofloxacin-exposed groups when compared with the control group. CAT activity was predominantly decreased in ciprofloxacin treated groups relative to the control group. GST activity in the ciprofloxacin treated groups was increased (except kidney tissues [Treatment I (1 μg/L)], and gill tissues fifteenth day) significantly (p < .05). The LPO level was elevated in the ciprofloxacin treatment groups throughout the study period (except Treatment II (1.5 μg/L) tenth day in kidney tissues). A series of histological anomalies were noticed in the gill, liver, and kidney tissues of the ciprofloxacin treated groups. Ciprofloxacin exposure caused a significant decrease of sodium, potassium, and chloride levels in the plasma of C. mrigala. A parallel among an imbalanced oxidative defense system, tissue structural changes, and alterations of plasma inorganic ions could be considered as a reliable biomarker for antibiotic toxicity study. This study could be a primary platform for further toxicity studies to understand the potential molecular impacts and adverse effects of ciprofloxacin on aquatic organisms.
Collapse
Affiliation(s)
- Mathan Ramesh
- Institute of Environment and Ecology, Shandong Normal University, Jinan, China
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Madhavan Sujitha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Pottanthara Ashokan Anila
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, China
| | | |
Collapse
|
37
|
Dos Santos FI, Mizobata AA, Suyama GA, Cenci GB, Follador FAC, Arruda G, Hellmann L, Gomes EMV, de Oliveira Schmitz AP, Pokrywiecki JC, Lingnau R, Manosso FC, Pokrywiecki TS, Düsman E. Cytotoxicity and mutagenicity of the waters of the Marrecas River (Paraná, Brazil) to bullfrogs (Lithobates catesbeianus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21742-21753. [PMID: 33410086 DOI: 10.1007/s11356-020-12026-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Animals have a long history of assessing ecosystem responses to environmental disturbances, and amphibians stand out for presenting themselves as good animal model and bioindicators of environmental quality. The main purpose of the present work was to investigate the cellular effects of contamination of waters of the Marrecas River, located in the southwest of the state of Paraná, Brazil. Therefore, the objective of the present study was to investigate and monitor the cytotoxic and mutagenic effect, with bullfrog tadpoles, and to discuss these effects with land use along this hydrographic basin. Mutagenic effects were determined by micronucleus assay, and cytotoxicity by other nuclear changes, such as segmented cells, binucleated cells, cells with buds and reniform cells. Water samples were obtained at nine sites along the Marrecas River, covering areas with rural and urban hydrological contribution. For each site, four samples were collected, along the years 2017 and 2018, encompassing the four seasons (summer, autumn, winter, and spring). The results showed mutagenic and cytotoxic effect in four sampling sites, and only cytotoxic effect in other four sites. These effects may be due, possibly, to the use of different agrochemicals across the hydrographic basin region, which have predominant hydrological contributions from crops. Data of this study indicate the presence of cytotoxic and mutagenic contaminants in the waters of the Marrecas River, which can generate environmental problems on the river fauna/flora, and can also affect the local population health.
Collapse
Affiliation(s)
- Flavia Isabelli Dos Santos
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Andressa Akemi Mizobata
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Gabrielle Arisa Suyama
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Giovana Baptista Cenci
- Academic of Chemical Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Franciele Ani Caovilla Follador
- Academic Center for Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Gisele Arruda
- Academic Center for Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Liliane Hellmann
- Academic Department of Physics, Statistics and Mathematics, Universidade Tecnológica Federal do Paraná (UTFPR), Francisco Beltrão, PR, Brazil
| | - Eduardo Michel Vieira Gomes
- Academic Department of Physics, Statistics and Mathematics, Universidade Tecnológica Federal do Paraná (UTFPR), Francisco Beltrão, PR, Brazil
| | - Ana Paula de Oliveira Schmitz
- Academic Department of Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Juan Carlos Pokrywiecki
- Academic Department of Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Rodrigo Lingnau
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná (UTFPR), Linha Santa Bárbara s/n, Caixa Postal 165, Francisco Beltrão, PR CEP 85601-970, Brazil
| | - Fernando Cesar Manosso
- Academic Department of Agricultural Sciences, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Ticiane Sauer Pokrywiecki
- Academic Department of Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Francisco Beltrão, Francisco Beltrão, Paraná, Brazil
| | - Elisângela Düsman
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná (UTFPR), Linha Santa Bárbara s/n, Caixa Postal 165, Francisco Beltrão, PR CEP 85601-970, Brazil.
| |
Collapse
|
38
|
Petersen BD, Pereira TCB, Altenhofen S, Nabinger DD, Ferreira PMDA, Bogo MR, Bonan CD. Antibiotic drugs alter zebrafish behavior. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108936. [PMID: 33160041 DOI: 10.1016/j.cbpc.2020.108936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Antibiotics are widely used drugs in human and veterinary health as well as in the food industry. The majority of these compounds are, however, excreted unchanged and found as contaminants in water bodies. Although the toxicity of these drugs was previously studied in aquatic organisms, the behavioral effects of these pollutants have not been fully explored. Here we exposed adult zebrafish to environmentally relevant concentrations of different classes of antibiotics (Chlortetracycline, Ciprofloxacin, and Ceftazidime) and assessed zebrafish exploratory, cognitive, aggressive, and social behaviors. Ciprofloxacin, Chlortetracycline, and Ceftazidime exposure induced hyperlocomotion, which was characterized by an increase in the distance traveled in zebrafish. These antibiotics promoted cognitive decline and exacerbated aggressive behavior. In summary, this study shows that antibiotic contamination may impact zebrafish behavior in a short-time manner.
Collapse
Affiliation(s)
- Barbara Dutra Petersen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Maria de Abreu Ferreira
- Laboratório de Ecologia de Interações, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Fekadu S, Alemayehu E, Dewil R, Van der Bruggen B. Electrochemical degradation of antivirus drug lamivudine formulation: photoelectrocoagulation, peroxi-electrocoagulation, and peroxi-photoelectrocoagulation processes. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01521-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
40
|
Nogueira AF, Nunes B. Effects of low levels of the antibiotic ciprofloxacin on the polychaete Hediste diversicolor: biochemical and behavioural effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103505. [PMID: 33002593 DOI: 10.1016/j.etap.2020.103505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The release of pharmaceutical chemicals in the biosphere can have unpredictable ecological consequences, and knowledge concerning their putative toxic effects is still scarce. One example of a widely used pharmaceutical that is present in the aquatic environment is ciprofloxacin. Previous indications suggest that this drug may exert several adverse effects on exposed biota, but the characterization of a full ecotoxicological response to this drug is far from complete, especially in estuarine ecosystems. This work aimed to characterize the acute and chronic effects of ciprofloxacin in the polychaete Hediste diversicolor (Annelida: Polychaeta), exposed to environmentally relevant levels of this drug, close to the real concentrations of this pharmaceutical in surface waters. The adopted toxic endpoints were behavioral parameters, combined with a biomarker-based approach (quantification of the activities of catalase (CAT), glutathione-S-transferase (GSTs), cholinesterases (ChEs), glutathione peroxidase (GPx), and lipid peroxidation levels. Exposure to ciprofloxacin caused effects on behavioural traits, such as an increase in burrowing times and hyperactivity, alongside alterations in biomarkers, including a significant increase in CAT activity following acute exposure. In addition, and after both acute and chronic exposure, lipid peroxidation was reduced, while AChE activities were enhanced. It was possible to ascertain the occurrence of pro-oxidative alterations following exposure to low levels of ciprofloxacin, which were counteracted by the triggering of CAT activity. The meaning of the enhancement of AChE activity is not clear, but it appears to be linked with the observed behavioural changes, and may have been associated with the stimulation of the behavioural traits. These data strongly suggest that the presence of ciprofloxacin in estuarine areas is not without risks, and exposed biota, namely polychaete species, are likely to have their ecological roles affected, thereby compromising the chemical, physical and microbiological stability of sediments, which in turn alters nutrient cycles.
Collapse
Affiliation(s)
- Ana Filipa Nogueira
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
41
|
Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Attademo AM, León EJ, Lajmanovich RC. Morphological and histological abnormalities of the neotropical toad, Rhinella arenarum (Anura: Bufonidae) larvae exposed to dexamethasone. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:41-53. [PMID: 33112724 DOI: 10.1080/03601234.2020.1832410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dexamethasone (DEX) is a glucocorticoid highly effective as an anti-inflammatory, immunosuppressant and decongestant drug. In the present study, a preliminary acute toxicity test was assayed in order to determinate DEX median-lethal, lowest-observed-effect and the no-observed-effect concentrations (LC50, LOEC and NOEC, respectively) on the common toad embryos (Rhinella arenarum). Also, morphological and histological abnormalities from five body larval regions, liver melanomacrophages (MM) and glutathione S-transferase (GST) activity were evaluated in the toad larvae to characterize the chronic sublethal effects of DEX (1-1,000 µg L-L). Results of the acute test showed that the LC50 of DEX at 96 h of exposure for the toad embryos (GS 18-20) was 10.720 mg L-g, and the LOEC was 1 µg L-g. In the chronic assay, the larval development and body length were significantly affected. DEX exposition also induced teratogenic effects. Most frequent external abnormalities observed in DEX-treated larvae included abdominal edema and swollen body, abnormal gut coiling and visceral congestion. Intestinal dysplasia was recurrent in cross-section of all DEX-treated larvae. Neural, conjunctive and renal epithelial cells were also affected. Significant increase in liver MM number and size, and GST activity levels were also registered in DEX treatments with respect to controls. The evaluation of a variety of biomarkers provided clear evidence of toad larvae sensitivity to DEX, and the ecotoxicological risk of these pharmaceuticals, commonly found in different water bodies worldwide on aquatic animals.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Evelina J León
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
42
|
Mehrtens A, Licha T, Broers HP, Burke V. Tracing veterinary antibiotics in the subsurface - A long-term field experiment with spiked manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114930. [PMID: 32544789 DOI: 10.1016/j.envpol.2020.114930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this long-term experiment was on gaining more insights into the environmental behaviour of veterinary antibiotics in the subsurface after application with manure. Therefore, manure spiked with a bromide tracer and eight antibiotics (enrofloxacin, lincomycin, sulfadiazine, sulfamethazine, tetracycline, tiamulin, tilmicosin and tylosin) in concentrations of milligrams per litre were applied at an experimental field site. Their pathway was tracked by continuous extraction of soil pore water at different depths and systematic sampling of groundwater for a period of two years. Seven target compounds were detected in soil pore water of which four leached into groundwater. Concentrations of the detected target compounds were, with few exceptions, in the range of nanograms per litre. It was concluded that a large fraction of the investigated antibiotics sorbed or degraded already within the first meter of the soil. Further, it was inferred from the data that long and warm dry periods cause attenuation of the target compounds through increased degradation or sorption occurring in the soil. In addition, the comprehensive data-set allowed to estimate a retardation factor between 1.1 and 2.0 for sulfamethazine in a Plaggic Anthrosol soil, and to classify the individual compounds by environmental relevance based on transport behaviour and persistence. According to the distribution of resistant genes in the environment, sulfamethazine was found to be the most mobile and persistent substance.
Collapse
Affiliation(s)
- Anne Mehrtens
- Department Hydrogeology and Landscape Hydrology, Institute for Biology and Environmental Science of the Carl-von-Ossietzky University of Oldenburg, Uhlhornsweg 84, 26129, Oldenburg, Germany.
| | - Tobias Licha
- Department Applied Geology, Geoscience Center of the University of Göttingen, Goldschmidtstr. 3, D-37077, Göttingen, Germany; Hydrochemistry Group, Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Hans Peter Broers
- TNO Geological Survey of the Netherlands, P.O. Box 80015, 3508, TA, Utrecht, the Netherlands
| | - Victoria Burke
- Department Hydrogeology and Landscape Hydrology, Institute for Biology and Environmental Science of the Carl-von-Ossietzky University of Oldenburg, Uhlhornsweg 84, 26129, Oldenburg, Germany
| |
Collapse
|
43
|
Chen S, Wang J, Feng H, Shen D, He S, Xu Y. Quantitative study on the fate of antibiotic emissions in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3471-3479. [PMID: 32419089 DOI: 10.1007/s10653-020-00563-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
China, the largest producer and user of antibiotics in the world, discharges excessive amounts of these substances into the environment, without prior treatment. This results in ubiquitous distribution of these substances, as well as increased levels of drug-resistant bacteria, that will eventually cause unimaginable consequences to the environment and to humans. However, most of the research on antibiotics has focused on residue analysis of single medium such as wastewater and landfills. There is paucity of research that systematically investigates the fate of antibiotics after excretion, and specifically of end-treatment processes. In this paper, the fate of antibiotic emissions is systematically calculated. The results show that human and livestock feces account for 57.6% and 42.6% of the discharge of medicinal antibiotics and veterinary antibiotics, respectively. Of these feces types, pig feces accounted for 98.7% of antibiotic residues in livestock feces. The above conclusions can be used to clarify the direction of the tracking and supervision of antibiotic residues and provide new ideas for the treatment of antibiotics, especially their terminal removal.
Collapse
Affiliation(s)
- Shuxin Chen
- Zhejiang Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jing Wang
- Zhejiang Provincial Department of Ecology and Environment, Hangzhou, 310012, China
| | - Huajun Feng
- Zhejiang Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongsheng Shen
- Zhejiang Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Shichong He
- Zhejiang Provincial Department of Ecology and Environment, Hangzhou, 310012, China
| | - Yingfeng Xu
- Zhejiang Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
44
|
Ngqwala NP, Muchesa P. Occurrence of pharmaceuticals in aquatic environments: A review and potential impacts in South Africa. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/5730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The carbon footprint of pharmaceuticals through manufacturing, distribution, the incineration of unwanted pharmaceuticals as well as the packaging of pharmaceutical waste is an emerging and enormous challenge. Pharmaceuticals are major contributors to water pollution in aquatic environments that include surface water and groundwater. These pollutants arise not only from waste products but also from pharmaceutical products that have not been properly disposed of. The continuous exposure to unspecified sub-therapeutic doses of antibiotics presents risks to humans and other animals. Due to their extensive use and incomplete elimination, antibiotics have been detected in various environmental waters. The persistence of antibiotics in the environment and chronic exposure of organisms to these chemical stressors has also proven to have ecotoxicological effects. The prevailing emergence of antimicrobial resistance amongst bacteria is an area of primary concern, especially with regard to the release of antibiotics into the environment. Resistance is the acquired ability of bacterial populations to render an antibiotic ineffective as a result of a change in bacterial DNA which occurs when bacteria are subjected to an antibiotic concentration that will not kill them. A sub-lethal concentration possibly exerts a selective pressure that can result in the development of antimicrobial resistance in bacteria. It is clear that there is a need for extensive research to improve regulations and guidance on pharmaceutical waste management, pharmaceutical take-back programmes and consumer awareness.
Collapse
Affiliation(s)
- Nosiphiwe P. Ngqwala
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Petros Muchesa
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
45
|
Zhou W, Han Y, Tang Y, Shi W, Du X, Sun S, Liu G. Microplastics Aggravate the Bioaccumulation of Two Waterborne Veterinary Antibiotics in an Edible Bivalve Species: Potential Mechanisms and Implications for Human Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8115-8122. [PMID: 32531169 DOI: 10.1021/acs.est.0c01575] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Edible bivalves are one of the major types of seafood and may be subject to antibiotic and microplastics (MPs) coexposure under realistic scenarios. However, the effect of MPs on the bioaccumulation of antibiotics in edible bivalves and subsequent health risks for consumers remain poorly understood. Therefore, the bioaccumulation of two frequently detected veterinary antibiotics, oxytetracycline (OTC) and florfenicol (FLO), with or without the copresence of MPs was investigated in the blood clam. Health risks associated with the consumption of contaminated clams were also assessed. Furthermore, the activity of GST and expression of key detoxification genes were analyzed as well. The bioaccumulation of OTC and FLO in clams was found to be aggravated by MPs. Because the estimated target hazard quotients (THQs) were far less than the critical value, direct toxic effects of consuming contaminated clams are negligible. However, the dietary exposure doses of the human gut microbiota (DEGM) to the antibiotics tested were greater than or similar to corresponding minimum selective concentrations (MSC), indicating a potential antibiotic resistance risk. Moreover, the GST activity and expression of detoxification genes were significantly suppressed by MPs, suggesting that the disruption of detoxification represents one possible explanation for the aggravated bioaccumulation observed here.
Collapse
Affiliation(s)
- Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
46
|
Ghirardi R, Cazenave J, López J, Antoniazzi C, Perotti M. Water mould exposure induces enzymatic antioxidant defences in embryos of the Two-colored Oval Frog (Elachistocleis bicolor) (Anura: Microhylidae). CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water moulds are pathogens of amphibian eggs and embryos. However, little is known about oxidant or antioxidant status of amphibians in response to stress caused by water moulds. We exposed embryo stages of Two-colored Oval Frogs (Elachistocleis bicolor (Guérin-Méneville, 1838)) to a Saprolegnia-like species of water mould to explore homeostatic adjustments by the shifting of oxidative stress markers. We also tested whether water mould infection affected survivorship, hatching time, and morphology of hatching embryos. We found that the Saprolegnia-like species is a genuine stressor and substantially altered the physiological state of E. bicolor embryos. Among antioxidant defences, superoxide dismutase (SOD) and glutathione S-transferase (GST) activities increased in embryos exposed to the Saprolegnia-like species. However, no difference in lipid peroxidation levels was found between treatments, which might indicate that SOD and GST activations could be enough to prevent oxidative damage. Finally, we found higher mortality and number of malformations in the water mould treatment. We showed the stressful effect of water moulds on amphibian embryos, evidenced by the activation of their antioxidant system, and reveal the importance of considering physiological stress markers as key information when studying the potential consequences of disease outbreaks in the ecology and conservation of amphibians.
Collapse
Affiliation(s)
- R. Ghirardi
- Instituto Nacional de Limnología (INALI, UNL, CONICET), Ciudad Universitaria, Paraje El Pozo, CP 3000, Santa Fe, Argentina; Facultad de Ciencias de la Salud (Universidad Católica de Santa Fe), Echagüe 7151, CP 3000, Santa Fe, Argentina
| | - J. Cazenave
- Instituto Nacional de Limnología (INALI, UNL, CONICET), Ciudad Universitaria, Paraje El Pozo, CP 3000, Santa Fe, Argentina; Departamento de Ciencias Naturales (FHUC, UNL), Ciudad Universitaria, Paraje El Pozo, CP 3000 Santa Fe, Argentina
| | - J.A. López
- Instituto Nacional de Limnología (INALI, UNL, CONICET), Ciudad Universitaria, Paraje El Pozo, CP 3000, Santa Fe, Argentina; Departamento de Ciencias Naturales (FHUC, UNL), Ciudad Universitaria, Paraje El Pozo, CP 3000 Santa Fe, Argentina
| | - C.E. Antoniazzi
- Instituto Nacional de Limnología (INALI, UNL, CONICET), Ciudad Universitaria, Paraje El Pozo, CP 3000, Santa Fe, Argentina; Facultad de Ciencias de la Salud (Universidad Católica de Santa Fe), Echagüe 7151, CP 3000, Santa Fe, Argentina
| | - M.G. Perotti
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos (LEBECH), INIBIOMA (UNCOMA–CONICET), Quintral 1250, CP 8400, Río Negro, Argentina
| |
Collapse
|
47
|
Qiu W, Liu X, Yang F, Li R, Xiong Y, Fu C, Li G, Liu S, Zheng C. Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137062. [PMID: 32036144 DOI: 10.1016/j.scitotenv.2020.137062] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 05/24/2023]
Abstract
In China, antibiotics are commonly used for human and veterinary medicine, and they are present in various environmental media. Thus, the toxic effects of antibiotics on organisms have attracted the attention of society and scientists alike. In this study, zebrafish embryos were used to test the single and joint toxicity of four antibiotics, sulfamonomethoxine (SMM), cefotaxime sodium (CFT), tetracycline (TC), enrofloxacin (ENR), and their combinations, combining the results of experimental and omics techniques. Following exposure to antibiotics for 120 h, the body lengths of zebrafish larvae in all 100 μg/L antibiotic groups were significantly shortened, and the reactive oxygen species (ROS) content in the 100 μg/L Mix group was significantly increased. Transcriptome sequencing (RNA-seq) showed that the mRNA level of numerous genes was significantly changed in the five antibiotic treatment groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes revealed a significant enrichment of the steroid biosynthesis and other metabolism pathways. Hub gene analysis highlighted dhcr24, acat1, aldh1a2, aldh8a1, suclg2, hadh, and hsdl2 as the key genes, and hub gene expression changes because of the antibiotic treatment suggested that the metabolic system of the zebrafish larvae was severely disrupted by the interaction with other genes. In conclusion, single or joint exposure to different antibiotics at environmental concentrations affected the early development and metabolic system of zebrafish larvae, and our results provide fundamental evidence for future studies of antibiotic toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xinjie Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Feng Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rongzhen Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ying Xiong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Caixia Fu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Guanrong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
48
|
Fernández LP, Brasca R, Attademo AM, Peltzer PM, Lajmanovich RC, Culzoni MJ. Bioaccumulation and glutathione S-transferase activity on Rhinella arenarum tadpoles after short-term exposure to antiretrovirals. CHEMOSPHERE 2020; 246:125830. [PMID: 31927383 DOI: 10.1016/j.chemosphere.2020.125830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to investigate the bioaccumulation and toxicological effects of four antiretrovirals (lamivudine, stavudine, zidovudine and nevirapine) on Rhinella arenarum tadpoles, after short-term (48 h) exposure to these drugs at sublethal concentrations. The analytical procedure involved a simple extraction method followed by ultra-high performance liquid chromatography with diode array detection and chemometric analysis for data processing. Under the conditions studied, the analytes investigated, particularly nevirapine, showed possible bioaccumulation in tadpoles. Besides, an increase in the bioaccumulation was observed when increasing the exposure concentration. In addition, the enzymatic biomarkers measured to evaluate the toxicological effects showed that acethylcholinesterase activity was similar to that of the control group, while glutathione S-transferase activity was increased, indicating potential oxidative stress damage. Our results also allowed demonstrating the usefulness of chemometric algorithms to quantitate analytes in complex matrices, such as those absorbed by tadpoles in aquatic ecosystems. The results also evidenced the short-term antiretroviral bioaccumulation in tadpoles and the alteration of antioxidant systems, highlighting the need of environmental studies to elucidate the ecotoxicological risk of antiretrovirals in humans and wildlife.
Collapse
Affiliation(s)
- Lesly Paradina Fernández
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Romina Brasca
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Teglia CM, Perez FA, Michlig N, Repetti MR, Goicoechea HC, Culzoni MJ. Occurrence, Distribution, and Ecological Risk of Fluoroquinolones in Rivers and Wastewaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2305-2313. [PMID: 31291022 DOI: 10.1002/etc.4532] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
The use of fluoroquinolones for the treatment of infections in humans and animals has increased in Argentina, and they can be found in large amounts in water bodies. The present study investigated the occurrence and associated ecological risk of 5 fluoroquinolones in rivers and farm wastewaters of San Luis, Santa Fe, Córdoba, Entre Ríos, and Buenos Aires provinces of Argentina by high-performance liquid chromatography coupled to fast-scanning fluorescence detection and ultra-high-performance liquid chromatography coupled to triple quadrupole mass spectrometry detection. The maximum concentrations of ciprofloxacin, enrofloxacin, ofloxacin, enoxacin, and difloxacin found in wastewater were 1.14, 11.9, 1.78, 22.1, and 14.2 μg L-1 , respectively. In the case of river samples, only enrofloxacin was found, at a concentration of 0.97 μg L-1 . The individual risk of aquatic organisms associated with water pollution due to fluoroquinolones was higher in bacteria, cyanobacteria, algae, plants, and anurans than in crustaceae and fish, with, in some cases, risk quotients >1. The proportion of samples classified as high risk was 87.5% for ofloxacin, 63.5% for enrofloxacin, 57.1% for ciprofloxacin, and 25% for enoxacin. Our results suggest that the prevalence of fluoroquinolones in water could be potentially risky for the aquatic ecosystem, and harmful to biodiversity. Environ Toxicol Chem 2019;38:2305-2313. © 2019 SETAC.
Collapse
Affiliation(s)
- Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Florencia A Perez
- Laboratorio de Desarrollo Analítico y Quimiometría, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Nicolás Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
50
|
Peltzer PM, Lajmanovich RC, Martinuzzi C, Attademo AM, Curi LM, Sandoval MT. Biotoxicity of diclofenac on two larval amphibians: Assessment of development, growth, cardiac function and rhythm, behavior and antioxidant system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:624-637. [PMID: 31150883 DOI: 10.1016/j.scitotenv.2019.05.275] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
The non-steroidal anti-inflammatory drug diclofenac (DCF) threatens the health of aquatic animals and ecosystems. In the present study, different biological endpoints (mortality, development and growth, abnormalities, cardiotoxicity, neurotoxicity and antioxidant system) were used to characterize the acute and chronic effects of DCF (at concentrations ranging between 125 and 4000 μg L-1) on two amphibian species from Argentina (Trachycephalus typhonius and Physalaemus albonotatus). Results showed that the larval developmental, growth rates, and body condition of DCF-exposed individuals of both species were significantly reduced. DCF-exposed individuals also showed several morphological abnormalities, including significantly altered body axis, chondrocranium and hyobranchial skeleton, and organ and visceral abnormalities including cardiac hypoplasia, malrotated guts, asymmetrically inverted guts, and cholecystitis. DCF also had a significant effect on the swimming performance of both species: at low concentrations (125 and 250 μg L-1), swimming distance, velocity and global activity decreased, whereas, at high concentrations (1000 and 2000 μg L-1), these behavioral responses increased. Regarding cardiac function and rhythm, at DCF concentrations higher than 1000 μg L-1, the heart frequency and ventricular systole interval of both species were significantly reduced. Regarding the antioxidant system, the activity of acetylcholinesterase indicated that DCF is neurotoxic and thus related to the changes in behavioral performance. The DCF concentrations studied produced a biochemical imbalance between radical oxygen species production and antioxidant systems. The sensitivities to sublethal and chronic DCF exposure in both anuran species were similar, thus indicating the inherent complexity involved in understanding the biotoxic effects of DCF.
Collapse
Affiliation(s)
- Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucila M Curi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María T Sandoval
- Catedra de Embriología Animal, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| |
Collapse
|