1
|
Lee S, Edwards S. Alcohol and Cannabis Use for Pain Management: Translational Findings of Relative Risks, Benefits, and Interactions. Physiol Behav 2025:114867. [PMID: 40023207 DOI: 10.1016/j.physbeh.2025.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Chronic pain affects over 20% of the global population and contributes to the vast burden of psychiatric illness. While effective treatments for chronic pain remain limited, both alcohol and cannabis have been used for centuries to manage pain and closely associated negative affective symptoms. However, persistent misuse of alcohol and/or cannabis in such a negative reinforcement fashion is hypothesized to increase the risk of severity of substance use disorders (SUDs). The current review describes neurobiological evidence for the analgesic efficacy of alcohol and primary cannabis constituents and how use or co-use of these substances may influence SUD risk.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Li Z, Li J, Wei Y, Zou W, Vidjro OE, Wang J, Zhou L, Zhu Y, Ma T. Anterior and Posterior Basolateral Amygdala Projections of Cell Type-Specific D1-Expressing Neurons From the Medial Prefrontal Cortex Differentially Control Alcohol-Seeking Behavior. Biol Psychiatry 2024; 95:963-973. [PMID: 37952812 DOI: 10.1016/j.biopsych.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Alcohol use disorder is characterized by compulsive alcohol-seeking behavior, which is associated with dysregulation of afferent projections from the medial prefrontal cortex to the basolateral amygdala (BLA). However, the contribution of the cell type-specific mechanism in this neuronal circuit to alcohol-seeking behavior remains unclear. METHODS Mice were trained with 2-bottle choice and operant alcohol self-administration procedures. Anterograde and retrograde viral methods traced the connection between dopamine type 1 receptor (D1R) neurons and BLA neurons. Electrophysiology and in vivo optogenetic techniques were used to test the function of neural circuits in alcohol-seeking behavior. RESULTS Chronic alcohol consumption preferentially changed the activity of posterior BLA (pBLA) neurons but not anterior BLA (aBLA) neurons and overexcited D1R neurons in the medial prefrontal cortex. Interestingly, we found that 2 populations of D1R neurons, anterior and posterior (pD1R) neurons, separately targeted the aBLA and pBLA, respectively, and only a few D1R neurons innervated both aBLA and pBLA neurons. Furthermore, pD1R neurons exhibited more excitability than anterior D1R neurons in alcohol-drinking mice. Moreover, we observed enhanced glutamatergic transmission and an increased NMDA/AMPA receptor ratio in the medial prefrontal cortex inputs from pD1R neurons to the pBLA. Optogenetic long-term depression induction of the pD1R-pBLA circuit reduced alcohol-seeking behavior, while optogenetic long-term depression or long-term potentiation induction of the anterior D1R-aBLA circuit produced no change in alcohol intake. CONCLUSIONS The pD1R-pBLA circuit mediates chronic alcohol consumption, which may suggest a cell type-specific neuronal mechanism underlying reward-seeking behavior in alcohol use disorder.
Collapse
Affiliation(s)
- Ziyi Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxin Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanxia Wei
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanying Zou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Olivia Ewi Vidjro
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Department of Toxicology, the Key laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Zhou
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongsheng Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi'an Jiaotong University, Xi'an, China.
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Toxicology, the Key laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Duratkar A, Patel R, Jain NS. Neuronal nicotinic acetylcholine receptor of the central amygdala modulates the ethanol-induced tolerance to anxiolysis and withdrawal-induced anxiety in male rats. Behav Pharmacol 2024; 35:132-146. [PMID: 38451025 DOI: 10.1097/fbp.0000000000000770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The nicotine acetylcholinergic receptor (nAchR) in the central nucleus of the amygdala (CeA) is known to modulate anxiety traits as well as ethanol-induced behavioral effects. Therefore, the present study investigated the role of CeA nAChR in the tolerance to ethanol anxiolysis and withdrawal-induced anxiety-related effects in rats on elevated plus maze (EPM). To develop ethanol dependence, rats were given free access to an ethanol-containing liquid diet for 10 days. To assess the development of tolerance, separate groups of rats were challenged with ethanol (2 g/kg, i.p.) on days 1, 3, 5, 7 and 10 during the period of ethanol exposure, followed by an EPM assessment. Moreover, expression of ethanol withdrawal was induced after switching ethanol-dependent rats to a liquid diet on day 11, and withdrawal-induced anxiety-like behavior was noted at different post-withdrawal time points using the EPM test. The ethanol-dependent rats were pretreated with intra-CeA (i.CeA) (bilateral) injections of nicotine (0.25 µg/rat) or mecamylamine (MEC) (5 ng/rat) before the challenge dose of ethanol on subthreshold tolerance on the 5th day or on peak tolerance day, that is, 7th or 10th, and before assessment of postwithdrawal anxiety on the 11th day on EPM. Bilateral i.CeA preadministration of nicotine before the challenge dose of ethanol on days 5, 7 and 10 exhibited enhanced tolerance, while injection of MEC, completely mitigated the tolerance to the ethanol-induced antianxiety effect. On the other hand, ethanol-withdrawn rats pretreated i.CeA with nicotine exacerbated while pretreatment with MEC, alleviated the ethanol withdrawal-induced anxiety on all time points. Thus, the present investigation indicates that stimulation of nAChR in CeA negatively modulates the ethanol-induced chronic behavioral effects on anxiety in rats. It is proposed that nAChR antagonists might be useful in the treatment of alcohol use disorder and ethanol withdrawal-related anxiety-like behavior.
Collapse
Affiliation(s)
- Antariksha Duratkar
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Albrechet‐Souza L, Kasten CR, Bertagna NB, Wills TA. Sex-specific negative affect-like behaviour and parabrachial nucleus activation induced by BNST stimulation in adult mice with adolescent alcohol history. Addict Biol 2024; 29:e13366. [PMID: 38380710 PMCID: PMC10883599 DOI: 10.1111/adb.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 02/22/2024]
Abstract
Adolescent alcohol use is a strong predictor for the subsequent development of alcohol use disorders later in life. Additionally, adolescence is a critical period for the onset of affective disorders, which can contribute to problematic drinking behaviours and relapse, particularly in females. Previous studies from our laboratory have shown that exposure to adolescent intermittent ethanol (AIE) vapour alters glutamatergic transmission in the bed nucleus of the stria terminalis (BNST) and, when combined with adult stress, elicits sex-specific changes in glutamatergic plasticity and negative affect-like behaviours in mice. Building on these findings, the current work investigated whether BNST stimulation could substitute for stress exposure to increase the latency to consume a palatable food in a novel context (hyponeophagia) and promote social avoidance in adult mice with AIE history. Given the dense connections between the BNST and the parabrachial nucleus (PBN), a region involved in mediating threat assessment and feeding behaviours, we hypothesized that increased negative affect-like behaviours would be associated with PBN activation. Our results revealed that the chemogenetic stimulation of the dorsolateral BNST induced hyponeophagia in females with AIE history, but not in female controls or males of either group. Social interaction remained unaffected in both sexes. Notably, this behavioural phenotype was associated with higher activation of calcitonin gene-related peptide and dynorphin cells in the PBN. These findings provide new insights into the neurobiological mechanisms underlying the development of negative affect in females and highlight the potential involvement of the BNST-PBN circuitry in regulating emotional responses to alcohol-related stimuli.
Collapse
Affiliation(s)
- Lucas Albrechet‐Souza
- Department of Cell Biology & Anatomy, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Center of Excellence, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Chelsea R. Kasten
- Department of Cell Biology & Anatomy, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Natalia B. Bertagna
- Department of Cell Biology & Anatomy, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Department of PharmacologyFederal University of São PauloSão PauloSPBrazil
| | - Tiffany A. Wills
- Department of Cell Biology & Anatomy, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Center of Excellence, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Neuroscience Center of Excellence, School of MedicineLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| |
Collapse
|
5
|
Hoffman JL, Faccidomo SP, Taylor SM, DeMiceli KG, May AM, Smith EN, Whindleton CM, Hodge CW. Negative modulation of AMPA receptors bound to transmembrane AMPA receptor regulatory protein γ-8 blunts the positive reinforcing properties of alcohol and sucrose in a brain region-dependent manner in male mice. Psychopharmacology (Berl) 2023; 240:1261-1273. [PMID: 37055596 PMCID: PMC10698495 DOI: 10.1007/s00213-023-06365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
RATIONALE The development and progression of alcohol use disorder (AUD) are widely viewed as maladaptive neuroplasticity. The transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) regulatory protein γ8 (TARP γ-8) is a molecular mechanism of neuroplasticity that has not been evaluated in AUD or other addictions. OBJECTIVE To address this gap in knowledge, we evaluated the mechanistic role of TARP γ-8 bound AMPAR activity in the basolateral amygdala (BLA) and ventral hippocampus (vHPC) in the positive reinforcing effects of alcohol, which drive repetitive alcohol use throughout the course of AUD, in male C57BL/6 J mice. These brain regions were selected because they exhibit high levels of TARP γ-8 expression and send glutamate projections to the nucleus accumbens (NAc), which is a key nucleus in the brain reward pathway. METHODS AND RESULTS Site-specific pharmacological inhibition of AMPARs bound to TARP γ-8 in the BLA via bilateral infusion of the selective negative modulator JNJ-55511118 (0-2 µg/µl/side) significantly decreased operant alcohol self-administration with no effect on sucrose self-administration in behavior-matched controls. Temporal analysis showed that reductions in alcohol-reinforced response rate occurred > 25 min after the onset of responding, consistent with a blunting of the positive reinforcing effects of alcohol in the absence of nonspecific behavioral effects. In contrast, inhibition of TARP γ-8 bound AMPARs in the vHPC selectively decreased sucrose self-administration with no effect on alcohol. CONCLUSIONS This study reveals a novel brain region-specific role of TARP γ-8 bound AMPARs as a molecular mechanism of the positive reinforcing effects of alcohol and non-drug rewards.
Collapse
Affiliation(s)
- Jessica L Hoffman
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Sara P Faccidomo
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Seth M Taylor
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Kristina G DeMiceli
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Ashley M May
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Evan N Smith
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Ciarra M Whindleton
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB#7178, Chapel Hill, NC, 27599, USA.
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Brewton HW, Robinson SL, Thiele TE. Astrocyte expression in the extended amygdala of C57BL/6J mice is sex-dependently affected by chronic intermittent and binge-like ethanol exposure. Alcohol 2023; 108:55-64. [PMID: 36539069 PMCID: PMC10033386 DOI: 10.1016/j.alcohol.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Excessive ethanol drinking is a major problem within the United States, causing alterations in brain plasticity and neurocognitive function. Astrocytes are glial cells that regulate neurosynaptic plasticity, modulate neurochemicals, and monitor other homeostatic roles. Astrocytes have been found to play a part in modulating excessive ethanol consumption. The basolateral amygdala (BLA), central amygdala (CeA), and bed nucleus of the stria terminalis (BNST) are brain regions that process stress, anxiety, and reward; they are also implicated in modulating ethanol intake. Little is understood, however, about how astrocyte expression in each region is modulated by chronic and binge-like ethanol drinking patterns. In the present report, we utilized two separate animal models of excessive drinking: chronic intermittent ethanol (CIE) and "Drinking-in-the-dark" (DID). Following these paradigms, animal brains were processed through immunohistochemistry (IHC) and stained for glial fibrillary acidic protein (GFAP). Collected data illustrated a sex-dependent relationship between ethanol intake and GFAP immunoreactivity (IR) in the BLA and BNST, but not in the CeA. Specifically, CIE and DID ethanol drinking resulted in blunted GFAP-IR (specifically via GFAP-positive cell count) in the BLA and BNST, particularly in males. These findings may implicate sex-dependent ethanol-induced changes in BLA and BNST astrocytes, providing a potential therapeutic target for anxiety and stress disorders.
Collapse
Affiliation(s)
- Honoreé W Brewton
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States
| | - Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina 27599-3270, United States
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, North Carolina, 27599-3270, United States; The Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina 27599-3270, United States.
| |
Collapse
|
7
|
Allen HC, Weafer J, Wesley MJ, Fillmore MT. Heightened motor impairment as a protective factor against heavy drinking in individuals with high alcohol-induced disinhibition. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:414-424. [PMID: 36549890 PMCID: PMC9991985 DOI: 10.1111/acer.15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Behavioral disinhibition and motor impairment are both acutely elevated following alcohol consumption, and individual differences in sensitivity to alcohol-induced increases in these effects are associated with drinking habits. Specifically, high alcohol-induced disinhibition and low motor impairment have been identified as separate markers for alcohol-related problems. This study tested the degree to which alcohol-induced disinhibition and motor impairment jointly predict heavy drinking. We hypothesized that heavier drinkers would exhibit a combination of high sensitivity to alcohol-induced disinhibition and low sensitivity to its motor impairing effect. METHODS Data from three studies were aggregated to comprise a sample of 96 young adults. Participants' motor coordination (grooved pegboard) and behavioral disinhibition (cued go/no-go) were assessed following consumption of 0.65 g/kg alcohol and a placebo during separate sessions. RESULTS As BAC was ascending, alcohol increased motor impairment and disinhibition compared to placebo. Combined effects at this time of alcohol on motor impairment and disinhibition predicted typical drinking habits. Specifically, a combination of high sensitivity to alcohol's disinhibiting effect and low sensitivity to its motor impairing effect was associated with heavy drinking. As BAC was descending, only reduced sensitivity to motor impairment remained as a predictor of heavy drinking. CONCLUSIONS The findings suggest that although motor impairment following alcohol consumption is associated with certain negative outcomes (e.g., increased risk for physical injury and motor vehicle accidents), such heightened motor impairment from alcohol may actually serve as a protective factor against the excessive drinking that can accompany the disinhibiting effect of alcohol.
Collapse
|
8
|
Gerhardt S, Berhe O, Moessnang C, Horning M, Kiefer F, Tost H, Vollstädt-Klein S. Lack of amygdala habituation to negative emotional faces in alcohol use disorder and the relation to adverse childhood experiences. Addict Biol 2023; 28:e13251. [PMID: 36577733 DOI: 10.1111/adb.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Aberrant limbic circuit reactivity to negative stimuli might be related to alterations in emotion processing and regulation in alcohol use disorder (AUD). The current study tested for the first time in AUD the hypothesis of aberrant amygdala habituation to repeated aversive stimuli-a robust and reliable neuroimaging marker for emotion processing. We explored the link between deficits in habituation to adverse childhood experience (ACE), a common risk factor for impaired emotion regulation and AUD. AUD individuals (N = 36) and healthy controls (HC; N = 26) participated in an observational case-control functional magnetic resonance imaging (fMRI) study. An established habituation index was used to investigate processing of aversive emotional faces of the amygdala. AUD individuals showed an overall deficit in amygdala habituation (right: t = 4.26, pFWE = 0.004; left: t = 4.79, pFWE ≤ 0.001). Amygdala habituation was significantly related to increased exposure to ACE in HC (t = 3.88, pFWE = 0.012), whereas this association was not observed in AUD individuals (T = 1.80, pFWE = 0.662). Further, a significant association between higher alcohol consumption and reduced amygdala habituation (right: R2 = -0.356, F = 8.736, p = 0.004; left: R2 = -0.309, F = 6.332, p = 0.015) was observed. We found novel evidence for neural alterations in emotion processing in AUD individuals, indexed by deficient amygdala habituation to negative emotional content. We replicated a prior report on a link between ACE and amygdala habituation, a well-established environmental risk factor for mental disorders and emotion dysregulation, in our control sample. Additionally, deficient amygdala habituation related to the amount of alcohol consumption in the overall sample might indicate a short-term substance effect.
Collapse
Affiliation(s)
- Sarah Gerhardt
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,SRH University Heidelberg, Heidelberg, Germany
| | - Maibritt Horning
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Feuerlein Center on Translational Addiction Medicine, Heidelberg University, Heidelberg, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Tretyak V, Huffman A, Lippard ET. Peer victimization and associated alcohol and substance use: Prospective pathways for negative outcomes. Pharmacol Biochem Behav 2022; 218:173409. [DOI: 10.1016/j.pbb.2022.173409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 01/14/2023]
|
10
|
Synaptic effects of IL-1β and CRF in the central amygdala after protracted alcohol abstinence in male rhesus macaques. Neuropsychopharmacology 2022; 47:847-856. [PMID: 34837077 PMCID: PMC8882167 DOI: 10.1038/s41386-021-01231-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
A major barrier to remission from an alcohol use disorder (AUD) is the continued risk of relapse during abstinence. Assessing the neuroadaptations after chronic alcohol and repeated abstinence is important to identify mechanisms that may contribute to relapse. In this study, we used a rhesus macaque model of long-term alcohol use and repeated abstinence, providing a platform to extend mechanistic findings from rodents to primates. The central amygdala (CeA) displays elevated GABA release following chronic alcohol in rodents and in abstinent male macaques, highlighting this neuroadaptation as a conserved mechanism that may underlie excessive alcohol consumption. Here, we determined circulating interleukin-1β (IL-1β) levels, CeA transcriptomic changes, and the effects of IL-1β and corticotropin releasing factor (CRF) signaling on CeA GABA transmission in male controls and abstinent drinkers. While no significant differences in peripheral IL-1β or the CeA transcriptome were observed, pathway analysis identified several canonical immune-related pathways. We addressed this potential dysregulation of CeA immune signaling in abstient drinkers with an electrophysiological approach. We found that IL-1β decreased CeA GABA release in controls while abstinent drinkers were less sensitive to IL-1β's effects, suggesting adaptations in the neuromodulatory role of IL-1β. In contrast, CRF enhanced CeA GABA release similarly in controls and abstinent drinkers, consistent with rodent studies. Notably, CeA CRF expression was inversely correlated with intoxication, suggesting that CRF levels during abstinence may predict future intoxication. Together, our findings highlight conserved and divergent actions of chronic alcohol on neuroimmune and stress signaling on CeA GABA transmission across rodents and macaques.
Collapse
|
11
|
Phan LG, Manzler CA, Gorka SM. Neural and self-report indices of cognitive reappraisal moderate the association between sensitivity to uncertain threat and problem alcohol use. Int J Psychophysiol 2022; 175:54-60. [DOI: 10.1016/j.ijpsycho.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
12
|
Marino RAM, Girven KS, Figueiredo A, Navarrete J, Doty C, Sparta DR. Binge ethanol drinking associated with sex-dependent plasticity of neurons in the insula that project to the bed nucleus of the stria terminalis. Neuropharmacology 2021; 196:108695. [PMID: 34233202 PMCID: PMC8928450 DOI: 10.1016/j.neuropharm.2021.108695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023]
Abstract
Modifications in brain regions that govern reward-seeking are thought to contribute to persistent behaviors that are heavily associated with alcohol-use disorder (AUD) including binge ethanol drinking. The bed nucleus of the stria terminalis (BNST) is a critical node linked to both alcohol consumption and the onset, maintenance and progression of adaptive anxiety and stress-related disorders. Differences in anatomy, connectivity and receptor subpopulations, make the BNST a sexually dimorphic region. Previous work indicates that the ventral BNST (vBNST) receives input from the insular cortex (IC), a brain region involved in processing the body's internal state. This IC-vBNST projection has also been implicated in emotional and reward-seeking processes. Therefore, we examined the functional properties of vBNST-projecting, IC neurons in male and female mice that have undergone short-term ethanol exposure and abstinence using a voluntary Drinking in the Dark paradigm (DID) paired with whole-cell slice electrophysiology. First we show that IC neurons projected predominantly to the vBNST. Next, our data show that short-term ethanol exposure and abstinence enhanced excitatory synaptic strength onto vBNST-projecting, IC neurons in both sexes. However, we observed diametrically opposing modifications in excitability across sexes. In particular, short-term ethanol exposure resulted in increased intrinsic excitability of vBNST-projecting, IC neurons in females but not in males. Furthermore, in females, abstinence decreased the excitability of these same neurons. Taken together these findings show that short-term ethanol exposure, as well as the abstinence cause sex-related adaptations in BNST-projecting, IC neurons.
Collapse
Affiliation(s)
- Rosa A M Marino
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kasey S Girven
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Antonio Figueiredo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jovana Navarrete
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Carolyn Doty
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Dennis R Sparta
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Smith DM, Torregrossa MM. Valence encoding in the amygdala influences motivated behavior. Behav Brain Res 2021; 411:113370. [PMID: 34051230 DOI: 10.1016/j.bbr.2021.113370] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023]
Abstract
The amygdala is critical for emotional processing and motivated behavior. Its role in these functions is due to its processing of the valence of environmental stimuli. The amygdala receives direct sensory input from sensory thalamus and cortical regions to integrate sensory information from the environment with aversive and/or appetitive outcomes. As many reviews have discussed the amygdala's role in threat processing and fear conditioning, this review will focus on how the amygdala encodes positive valence and the mechanisms that allow it to distinguish between stimuli of positive and negative valence. These findings are also extended to consider how valence encoding populations in the amygdala contribute to local and long-range circuits including those that integrate environmental cues and positive valence. Understanding the complexity of valence encoding in the amygdala is crucial as these mechanisms are implicated in a variety of disease states including anxiety disorders and substance use disorders.
Collapse
Affiliation(s)
- Dana M Smith
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
14
|
Dulman RS, Zhang H, Banerjee R, Krishnan HR, Dong B, Hungund BL, Vinod KY, Pandey SC. CB1 receptor neutral antagonist treatment epigenetically increases neuropeptide Y expression and decreases alcohol drinking. Neuropharmacology 2021; 195:108623. [PMID: 34048869 DOI: 10.1016/j.neuropharm.2021.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Alcohol consumption is mediated by several important neuromodulatory systems, including the endocannabinoid and neuropeptide Y (NPY) systems in the limbic brain circuitry. However, molecular mechanisms through which cannabinoid-1 (CB1) receptors regulate alcohol consumption are still unclear. Here, we investigated the role of the CB1 receptor-mediated downstream regulation of NPY via epigenetic mechanisms in the amygdala. Alcohol drinking behavior was measured in adult male C57BL/6J mice treated with a CB1 receptor neutral antagonist AM4113 using a two-bottle choice paradigm while anxiety-like behavior was assessed in the light-dark box (LDB) test. The CB1 receptor-mediated changes in the protein levels of phosphorylated cAMP-responsive element binding protein (pCREB), CREB binding protein (CBP), H3K9ac, H3K14ac and NPY, and the mRNA levels of Creb1, Cbp, and Npy were measured in amygdaloid brain structures. Npy-specific changes in the levels of acetylated histone (H3K9/14ac) and CBP in the amygdala were also measured. We found that the pharmacological blockade of CB1 receptors with AM4113 reduced alcohol consumption and, in an ethanol-naïve cohort, reduced anxiety-like behavior in the LDB test. Treatment with AM4113 also increased the mRNA levels of Creb1 and Cbp in the amygdala as well as the protein levels of pCREB, CBP, H3K9ac and H3K14ac in the central and medial nucleus of amygdala, but not in the basolateral amygdala. Additionally, AM4113 treatment increased occupancy of CBP and H3K9/14ac at the Npy gene promoter, leading to an increase in both mRNA and protein levels of NPY in the amygdala. These novel findings suggest that CB1 receptor-mediated CREB signaling plays an important role in the modulation of NPY function through an epigenetic mechanism and further support the potential use of CB1 receptor neutral antagonists for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Ritabrata Banerjee
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Harish R Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Bin Dong
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Basalingappa L Hungund
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA; New York State Psychiatric Institute, New York, NY, 10032, USA
| | - K Yaragudri Vinod
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA; Emotional Brain Institute, Orangeburg, NY, 10962, USA; Department of Child and Adolescent Psychiatry, New York School of Medicine, New York, NY, 10016, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
Spectral power and theta-gamma coupling in the basolateral amygdala related with methamphetamine conditioned place preference in mice. Neurosci Lett 2021; 756:135939. [PMID: 33945805 DOI: 10.1016/j.neulet.2021.135939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022]
Abstract
The basolateral amygdala (BLA) plays a crucial role in conditioned place preference (CPP) for addictive drugs. However, neural signaling associated with methamphetamine (METH) craving and seeking remained to be investigated. This study characterized local field potential (LFP) oscillatory patterns in the BLA and conditioned place preference induced by METH-related context. Male Swiss albino ICR mice were deeply anesthetized for LFP intracranial electrode implantation in the BLA. Control and METH groups received sessions to learn to associate saline-paired and METH-paired compartments of the CPP apparatus with saline and METH injections, respectively, for 10 days. LFP signals and exploring behavior were recorded simultaneously during pre- and post-conditioning phases. Time spent in METH-paired compartment was normalized and expressed as CPP scores. Fast Fourier Transform (FFT) algorithm was used to analyze LFP powers of 8 discrete frequency ranges (delta, theta, alpha, beta, gamma I-IV). During post-conditioning phase of METH CPP with METH cues, statistical analysis revealed that METH group significantly increased time spent in METH-paired compartment. Significant suppressions of theta and alpha powers were observed. Phase-amplitude cross frequency coupling analyses confirmed significant increases in maximal modulation index (MI), frequency for phase of slow wave and MI of theta-gamma II coupling. Taken together, LFP oscillation in the BLA was sensitive in association with METH CPP. These research findings might suggest the underlying mechanisms of drug reward learning and adaptive changes in the BLA in acquisition of METH CPP and dependence.
Collapse
|
16
|
Di Lorenzo C, Di Lorenzo G, Coppola G, Parisi V, Grieco GS, Santorelli FM, Pascale E, Pierelli F. Genetics Influences Drug Consumption in Medication Overuse Headache, Not in Migraine: Evidence From Wolframin His611Arg Polymorphism Analysis. Front Neurol 2021; 11:599517. [PMID: 33551959 PMCID: PMC7862332 DOI: 10.3389/fneur.2020.599517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
Background: The Wolframin His611Arg polymorphism can influence drug consumption in psychiatric patients with impulsive addictive behavior. This cross-sectional study aims to assess the prevalence of the Wolframin His611Arg polymorphism in MOH, a secondary headache belonging to the spectrum of addictive disorders, episodic migraine (EM), and healthy subjects (HS), and its influence on drug consumption. Methods: One-hundred and seventy-two EM, 107 MOH, and 83 HS were enrolled and genotyped for the Wolframin His611Arg polymorphism. Subjects were classified as homozygous for allele His (H/H subjects), homozygous for allele Arg (R/R subjects), and heterozygous (H/R subjects), regrouped as R/R and carriers of allele H (non-R/R), and matched for clinical data. Results: There were no differences in allelic distributions between the three groups (p = 0.19). Drug consumption and other clinical characteristics were not influenced by the Wolframin His611Arg polymorphism (p = 0.42; β = 0.04) in the EM group. Among the MOH population, R/R subjects consumed more analgesics (p < 0.0001; β = −0.38), particularly combination drugs (p = 0.0001; d = 2.32). Discussion: The Wolframin His611Arg polymorphism has a similar prevalence between the MOH, EM, and HS groups. The presence of the R/R genotype does not influence symptomatic drug consumption in EM, whereas it determines an increased use of symptomatic drugs in the MOH group, in particular combination drugs (i.e., drugs containing psychoactive compounds). Conclusions: Our findings are consistent with the hypothesis that the Wolframin His611Arg polymorphism plays its effect only in the MOH population, influencing the impulsivity control underlying addictive behavior.
Collapse
Affiliation(s)
- Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Giorgio Di Lorenzo
- Chair of Psychiatry, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Vincenzo Parisi
- IRCCS Fondazione G.B. Bietti per lo Studio e la Ricerca in Oftalmologia, Rome, Italy
| | - Gaetano S Grieco
- Genomic and Post-Genomic Center, IRCCS Fondazione Istituto Neurologico Casimiro Mondino, Pavia, Italy
| | | | - Esterina Pascale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
17
|
Allen HC, Weafer J, Wesley MJ, Fillmore MT. Acute rewarding and disinhibiting effects of alcohol as indicators of drinking habits. Psychopharmacology (Berl) 2021; 238:181-191. [PMID: 33151374 PMCID: PMC7796928 DOI: 10.1007/s00213-020-05667-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Laboratory studies have reliably shown that heightened sensitivity to the rewarding effects of alcohol is associated with heavier drinking patterns. More recently, there has been research to suggest that heightened sensitivity to the disinhibiting effects of alcohol might also contribute to drinking habits. Most research on the acute effects of alcohol has focused on drinking magnitudes averaged across participants with little attention paid to how individual differences influence alcohol abuse potential. In large part, this is due to limited sample sizes in previous laboratory studies. OBJECTIVES This study overcomes previous limitations by testing the degree to which individual differences in acute sensitivity and tolerance to the rewarding and disinhibiting effects of alcohol relate to drinking behavior in a large sample size. METHODS Data from six laboratory studies were aggregated to comprise a sample of 181 adults. Participants' level of "liking" (the effects of alcohol) and disinhibition were assessed following 0.65 g/kg alcohol once during the ascending limb of the blood alcohol concentration (BAC) curve and again at the same BAC during the descending limb of the curve. The measures were also assessed following placebo. RESULTS Alcohol increased ratings of liking and behavioral disinhibition. Heavier drinking was associated with heightened sensitivity to liking on the ascending limb. Additionally, those who showed reduced acute tolerance to both disinhibition and liking were also heavier drinkers. CONCLUSIONS These data suggest that individual variability in liking the effects of alcohol and persistent disinhibition are key indicators of drinking habits.
Collapse
Affiliation(s)
- Holley C Allen
- Department of Psychology, University of Kentucky, Lexington, KY, 40506-0044, USA
| | - Jessica Weafer
- Department of Psychology, University of Kentucky, Lexington, KY, 40506-0044, USA
| | - Michael J Wesley
- Department of Psychology, University of Kentucky, Lexington, KY, 40506-0044, USA
| | - Mark T Fillmore
- Department of Psychology, University of Kentucky, Lexington, KY, 40506-0044, USA.
| |
Collapse
|
18
|
Abstract
Chronic alcohol consumption results in alcohol use disorder (AUD). Interestingly, however, sudden alcohol withdrawal (AW) after chronic alcohol exposure also leads to a devastating series of symptoms, referred to as alcohol withdrawal syndromes. One key feature of AW syndromes is to produce phenotypes that are opposite to AUD. For example, while the brain is characterized by a hypoactive state in the presence of alcohol, AW induces a hyperactive state, which is manifested as seizure expression. In this review, we discuss the idea that hippocampal neurogenesis and neural circuits play a key role in neuroadaptation and establishment of allostatic states in response to alcohol exposure and AW. The intrinsic properties of dentate granule cells (DGCs), and their contribution to the formation of a potent feedback inhibitory loop, endow the dentate gyrus with a "gate" function, which can limit the entry of excessive excitatory signals from the cortex into the hippocampus. We discuss the possibility that alcohol exposure and withdrawal disrupts structural development and circuitry integration of hippocampal newborn neurons, and that this altered neurogenesis impairs the gate function of the hippocampus. Failure of this gate function is expected to alter the ratio of excitatory to inhibitory (E/I) signals in the hippocampus and to induce seizure expression during AW. Recent functional studies have shown that specific activation and inhibition of hippocampal newborn DGCs are both necessary and sufficient for the expression of AW-associated seizures, further supporting the concept that neurogenesis-induced neuroadaptation is a critical target to understand and treat AUD and AW-associated seizures.
Collapse
Affiliation(s)
- Sreetama Basu
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
19
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
20
|
King CE, Gano A, Becker HC. The role of oxytocin in alcohol and drug abuse. Brain Res 2020; 1736:146761. [PMID: 32142721 PMCID: PMC7137097 DOI: 10.1016/j.brainres.2020.146761] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
The neuropeptide oxytocin (OXT) plays a key role in adaptive processes associated with reward, tolerance, memory and stress responses. Through interactions with brain reward and stress systems, OXT is known to play a role in several neuropsychiatric disorders, particularly those that involve altered social integration, such as alcohol and drug addiction (Heilig et al., 2016). As such, there is growing interest in the oxytocin system as a potential therapeutic target for the treatment of alcohol and substance use disorders. Accumulating preclinical evidence suggests that administration of OXT influences the development of tolerance, sensitization and withdrawal symptoms, and modulates numerous alcohol/drug-seeking and alcohol/drug-taking behaviors. Further, there is some evidence to suggest that OXT may help to reverse neuroadaptations that occur as a result of chronic alcohol or drug exposure. To date, there have been only a handful of clinical studies conducted in alcohol and drug dependent populations. This review summarizes the preclinical and clinical literature on the effects of OXT administration on alcohol- and drug-related behaviors. In addition, we discuss OXT interactions with the hypothalamic-pituitaryadrenal axis and multiple neurotransmitter systems within addiction circuitry.
Collapse
Affiliation(s)
- Courtney E King
- Charleston Alcohol Research Center, Department of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425, United States
| | - Anny Gano
- Charleston Alcohol Research Center, Department of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425, United States
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Neuroscience, Medical University of South Carolina & VAMC, Charleston, SC 29425, United States.
| |
Collapse
|
21
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
22
|
Nennig SE, Fulenwider HD, Eskew JE, Whiting KE, Cotton MR, McGinty GE, Solomon MG, Schank JR. Intermittent Ethanol Access Increases Sensitivity to Social Defeat Stress. Alcohol Clin Exp Res 2020; 44:600-610. [PMID: 31957041 DOI: 10.1111/acer.14278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Comorbidity between alcoholism and depression is extremely common. Recent evidence supports a relationship between alcohol exposure and stress sensitivity, an underlying factor in the development of depression. Our laboratory has recently shown that chronic alcohol gavage increases sensitivity to social defeat stress (SDS). However, the effects of voluntary alcohol consumption, resulting from protocols such as intermittent ethanol access (IEA), on defeat stress sensitivity have yet to be elucidated. METHODS We first assessed the effects of 4 weeks of IEA to 20% alcohol on sensitivity to subthreshold SDS exposure. Next, to examine neuroinflammatory mechanisms, we analyzed gene expression of inhibitor of NFkB (IkB) following IEA or chronic alcohol exposure (10 days of 3.0 g/kg alcohol via intragastric gavage). Then, we quantified NFkB activation via β-galactosidase immunohistochemistry following IEA or chronic alcohol gavage in NFkB-LacZ mice. RESULTS IEA-exposed mice displayed an increase in sensitivity to subthreshold SDS compared to water-drinking controls. We also found that IkB gene expression was decreased in the nucleus accumbens (NAC) and amygdala (AMY) following IEA but was not altered following chronic alcohol gavage. Finally, we observed increased NFkB activity in the central amygdala (CEA), basolateral amygdala (BLA), and medial amygdala (MEA) after IEA, and increased NFkB activity solely in the CEA following chronic alcohol gavage. CONCLUSIONS These findings further corroborate that prior alcohol exposure, in this case intermittent voluntary consumption, can impact development of depressive-like behavior by altering stress sensitivity. Furthermore, our results suggest the CEA as a potential mediator of alcohol's effects on stress sensitivity, as NFkB was activated in this region following both IEA and chronic alcohol gavage. Thus, this study provides novel insight on alterations in the NFkB pathway and identifies specific regions to target in future experiments assessing the functional role of NFkB in these processes.
Collapse
Affiliation(s)
- Sadie E Nennig
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Hannah D Fulenwider
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jacob E Eskew
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Kimberly E Whiting
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Mallory R Cotton
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Gabrielle E McGinty
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Matthew G Solomon
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jesse R Schank
- From the, Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
23
|
Centanni SW, Bedse G, Patel S, Winder DG. Driving the Downward Spiral: Alcohol-Induced Dysregulation of Extended Amygdala Circuits and Negative Affect. Alcohol Clin Exp Res 2019; 43:2000-2013. [PMID: 31403699 PMCID: PMC6779502 DOI: 10.1111/acer.14178] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Alcohol use disorder (AUD) afflicts a large number of individuals, families, and communities globally. Affective disturbances, including stress, depression, and anxiety, are highly comorbid with AUD, contributing in some cases to initial alcohol use and continued use. Negative affect has a particularly strong influence on the withdrawal/abstinence stage of addiction as individuals with AUD frequently report stressful events, depression, and anxiety as key factors for relapse. Treatment options for negative affect associated with AUD are limited and often ineffective, highlighting the pressing need for preclinical studies examining the underlying neural circuitry driving AUD-associated negative affect. The extended amygdala (EA) is a set of brain areas collectively involved in generating and regulating affect, and extensive research has defined a critical role for the EA in all facets of substance use disorder. Here, we review the expansive historical literature examining the effects of ethanol exposure on the EA, with an emphasis on the complex EA neural circuitry driving negative affect in all phases of the alcohol addiction cycle. Specifically, this review focuses on the effects of alcohol exposure on the neural circuitry in 2 key components of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis. Additionally, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and neural circuitry in the EA, with the long-term goal of developing better diagnostic tools and new pharmacological targets aimed at treating negative affect in AUD. The concepts detailed here will serve as the foundation for a companion review focusing on the potential for the endogenous cannabinoid system in the EA as a novel target for treating the stress, anxiety, and negative emotional state driving AUD.
Collapse
Affiliation(s)
- Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | - Gaurav Bedse
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
24
|
Bedse G, Centanni SW, Winder DG, Patel S. Endocannabinoid Signaling in the Central Amygdala and Bed Nucleus of the Stria Terminalis: Implications for the Pathophysiology and Treatment of Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:2014-2027. [PMID: 31373708 PMCID: PMC6779484 DOI: 10.1111/acer.14159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
Abstract
High rates of relapse are a chronic and debilitating obstacle to effective treatment of alcohol use disorder (AUD); however, no effective treatments are available to treat symptoms induced by protracted abstinence. In the first part of this 2-part review series, we examine the literature supporting the effects of alcohol exposure within the extended amygdala (EA) neural circuitry. In Part 2, we focus on a potential way to combat negative affect associated with AUD, by exploring the therapeutic potential of the endogenous cannabinoid (eCB) system. The eCB system is a potent modulator of neural activity in the brain, and its ability to mitigate stress and negative affect has long been an area of interest for developing novel therapeutics. This review details the recent advances in our understanding of eCB signaling in 2 key regions of the EA, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), and their role in regulating negative affect. Despite an established role for EA eCB signaling in reducing negative affect, few studies have examined the potential for eCB-based therapies to treat AUD-associated negative affect. In this review, we present an overview of studies focusing on eCB signaling in EA and cannabinoid modulation on EA synaptic activity. We further discuss studies suggesting dysregulation of eCB signaling in models of AUD and propose that pharmacological augmentation of eCB could be a novel approach to treat aspects of AUD. Lastly, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and the EA eCB system that could yield new pharmacotherapies targeting negative affective symptoms associated with AUD.
Collapse
Affiliation(s)
- Gaurav Bedse
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Center for Addiction Research, Nashville, TN, USA
- Molecular Physiology & Biophysics, the, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- Vanderbilt J.F. Kennedy Center for Research on Human Development, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
25
|
Molecular, Morphological, and Functional Characterization of Corticotropin-Releasing Factor Receptor 1-Expressing Neurons in the Central Nucleus of the Amygdala. eNeuro 2019; 6:ENEURO.0087-19.2019. [PMID: 31167849 PMCID: PMC6584068 DOI: 10.1523/eneuro.0087-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/12/2019] [Accepted: 05/25/2019] [Indexed: 01/28/2023] Open
Abstract
The central nucleus of the amygdala (CeA) is a brain region implicated in anxiety, stress-related disorders and the reinforcing effects of drugs of abuse. Corticotropin-releasing factor (CRF, Crh) acting at cognate type 1 receptors (CRF1, Crhr1) modulates inhibitory and excitatory synaptic transmission in the CeA. Here, we used CRF1:GFP reporter mice to characterize the morphological, neurochemical and electrophysiological properties of CRF1-expressing (CRF1+) and CRF1-non-expressing (CRF1-) neurons in the CeA. We assessed these two neuronal populations for distinctions in the expression of GABAergic subpopulation markers and neuropeptides, dendritic spine density and morphology, and excitatory transmission. We observed that CeA CRF1+ neurons are GABAergic but do not segregate with calbindin (CB), calretinin (CR), parvalbumin (PV), or protein kinase C-δ (PKCδ). Among the neuropeptides analyzed, Penk and Sst had the highest percentage of co-expression with Crhr1 in both the medial and lateral CeA subdivisions. Additionally, CeA CRF1+ neurons had a lower density of dendritic spines, which was offset by a higher proportion of mature spines compared to neighboring CRF1- neurons. Accordingly, there was no difference in basal spontaneous glutamatergic transmission between the two populations. Application of CRF increased overall vesicular glutamate release onto both CRF1+ and CRF1- neurons and does not affect amplitude or kinetics of EPSCs in either population. These novel data highlight important differences in the neurochemical make-up and morphology of CRF1+ compared to CRF1- neurons, which may have important implications for the transduction of CRF signaling in the CeA.
Collapse
|
26
|
de Miguel E, Vekovischeva O, Elsilä LV, Panhelainen A, Kankuri E, Aitta-Aho T, Korpi ER. Conditioned Aversion and Neuroplasticity Induced by a Superagonist of Extrasynaptic GABA A Receptors: Correlation With Activation of the Oval BNST Neurons and CRF Mechanisms. Front Mol Neurosci 2019; 12:130. [PMID: 31178693 PMCID: PMC6543524 DOI: 10.3389/fnmol.2019.00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/03/2019] [Indexed: 11/13/2022] Open
Abstract
THIP (gaboxadol), a superagonist of the δ subunit-containing extrasynaptic GABAA receptors, produces persistent neuroplasticity in dopamine (DA) neurons of the ventral tegmental area (VTA), similarly to rewarding drugs of abuse. However, unlike them THIP lacks abuse potential and induces conditioned place aversion in mice. The mechanism underlying the aversive effects of THIP remains elusive. Here, we show that mild aversive effects of THIP were detected 2 h after administration likely reflecting an anxiety-like state with increased corticosterone release and with central recruitment of corticotropin-releasing factor corticotropin-releasing factor receptor 1 (CRF1) receptors. A detailed immunohistochemical c-Fos expression mapping for THIP-activated brain areas revealed a correlation between the activation of CRF-expressing neurons in the oval nucleus of the bed nuclei of stria terminalis and THIP-induced aversive effects. In addition, the neuroplasticity of mesolimbic DA system (24 h after administration) and conditioned place aversion by THIP after four daily acute sessions were dependent on extrasynaptic GABAA receptors (abolished in δ-GABAA receptor knockout mice) and activation of the CRF1 receptors (abolished in wildtype mice by a CRF1 receptor antagonist). A selective THIP-induced activation of CRF-expressing neurons in the oval part of the bed nucleus of stria terminalis may constitute a novel mechanism for inducing plasticity in a population of VTA DA neurons and aversive behavioral states.
Collapse
Affiliation(s)
- Elena de Miguel
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olga Vekovischeva
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lauri V Elsilä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Teemu Aitta-Aho
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol 2019; 527:2615-2633. [PMID: 30947365 DOI: 10.1002/cne.24695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope® revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.
Collapse
Affiliation(s)
- Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Craig M Smith
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Taksande BG, Khade SD, Aglawe MM, Gujar S, Chopde CT, Kotagale NR. Agmatine Inhibits Behavioral Sensitization to Ethanol Through Imidazoline Receptors. Alcohol Clin Exp Res 2019; 43:747-757. [DOI: 10.1111/acer.13972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Brijesh G. Taksande
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Supriya D. Khade
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Manish M. Aglawe
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Shreyans Gujar
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Chandrabhan T. Chopde
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
| | - Nandkishor R. Kotagale
- Department of Pharmacology Division of Neuroscience Shrimati Kishoritai Bhoyar College of Pharmacy Nagpur India
- Government Colleges of Pharmacy Amravati India
| |
Collapse
|
29
|
Klein AK, Purvis EM, Ayala K, Collins L, Krug JT, Mayes MS, Ettenberg A. Activation of 5-HT 1B receptors in the Lateral Habenula attenuates the anxiogenic effects of cocaine. Behav Brain Res 2019; 357-358:1-8. [PMID: 29660439 PMCID: PMC6186203 DOI: 10.1016/j.bbr.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Abstract
Recent work has implicated the Lateral Habenula (LHb) in the production of anxiogenic and aversive states. It is innervated by all the major monoamine neurotransmitter systems and has projections that have been shown to modulate the activity of both dopaminergic and serotonergic brain regions. Cocaine is a stimulant drug of abuse that potentiates neurotransmission in these monoamine systems and recent research suggests that the drug's behavioral effects may be related in part to its actions within the LHb. The present research was therefore devised to test the hypothesis that alterations in serotonin (5-HT) function within the LHb can affect the behavioral response to cocaine. Male rats were fitted with intracranial guide cannula and trained to traverse a straight alleyway once a day for a 1 mg/kg i.v. injection of cocaine. Intra-LHb pretreatment with the 5-HT1B agonist CP 94,253 (0, 0.1, or 0.25 μg/side) attenuated the development of approach/avoidance "retreat" behaviors known to be a consequence of cocaine's dual rewarding (approach) and anxiogenic (avoidance) properties. This effect was reversed by co-administration of a selective 5-HT1B antagonist, NAS-181 (0.1 μg/side), demonstrating drug specificity at the 5-HT1B receptor. These data suggest that 5-HT1B signaling within the LHb contributes to the anxiogenic effects of cocaine.
Collapse
Affiliation(s)
- Adam K Klein
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA
| | - Erin M Purvis
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA
| | - Kathy Ayala
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA
| | - Lisette Collins
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA
| | - Jacob T Krug
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA
| | - Matthew S Mayes
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA
| | - Aaron Ettenberg
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA.
| |
Collapse
|
30
|
Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse. Brain Struct Funct 2019; 224:1067-1095. [PMID: 30610368 DOI: 10.1007/s00429-018-01825-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022]
Abstract
The central extended amygdala (EAc) is a forebrain macrosystem which has been widely implicated in reward, fear, anxiety, and pain. Its two key structures, the lateral bed nucleus of the stria terminalis (BSTL) and the central nucleus of the amygdala (CeA), share similar mesoscale connectivity. However, it is not known whether they also share similar cell-specific neuronal circuits. We addressed this question using tract-tracing and immunofluorescence to reveal the EAc microcircuits involving two neuronal populations expressing either protein kinase C delta (PKCδ) or somatostatin (SOM). PKCδ and SOM are expressed predominantly in the dorsal BSTL (BSTLD) and in the lateral/capsular parts of CeA (CeL/C). We found that, in both BSTLD and CeL/C, PKCδ+ cells are the main recipient of extra-EAc inputs from the lateral parabrachial nucleus (LPB), while SOM+ cells constitute the main source of long-range projections to extra-EAc targets, including LPB and periaqueductal gray. PKCδ+ cells can also integrate inputs from the basolateral nucleus of the amygdala or insular cortex. Within EAc, PKCδ+, but not SOM+ neurons, serve as the major source of inputs to the ventral BSTL and to the medial part of CeA. However, both cell types can be involved in mutual connections between BSTLD and CeL/C. These results unveil the pivotal positions of PKCδ+ and SOM+ neurons in organizing parallel cell-specific neuronal circuits within CeA and BSTL, but also between them, which further reinforce the notion of EAc as a structural and functional macrosystem.
Collapse
|
31
|
Beayno A, El Hayek S, Noufi P, Tarabay Y, Shamseddeen W. The Role of Epigenetics in Addiction: Clinical Overview and Recent Updates. Methods Mol Biol 2019; 2011:609-631. [PMID: 31273724 DOI: 10.1007/978-1-4939-9554-7_35] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction is an international public health problem. It is a polygenic disorder best understood by accounting for the interplay between genetic and environmental factors. A recent way of perceiving this interaction is through epigenetics, which help grasp the neurobiological changes that occur in addiction and explain its relapsing-remitting nature. It is now known that every cell has a different way of expressing its phenotype, despite a universal DNA sequence. This is particularly true in the central nervous system where environmental factors influence this expression. Three major epigenetic processes have been found to participate in the perpetuation of addiction by changing the state of the chromatin and the degree of gene transcription: histone acetylation and methylation, DNA methylation, and noncoding RNAs. In the animal model literature, substantial evidence exists about the role of these epigenetic changes in the different phases of substance use disorders. This book chapter is a non-systematic literature review of the recent publications tackling the topic of epigenetics in addiction. Even though this evidence remains scarce and relatively poorly systematized, it is a promising foundation for future research of molecules that target specific brain regions and their functions to address core behavioral changes seen in addiction.
Collapse
Affiliation(s)
- Antoine Beayno
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samer El Hayek
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Paul Noufi
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Tarabay
- Faculty of Pedagogy, Lebanese University, New Rawda, Lebanon.,Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon
| | - Wael Shamseddeen
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon. .,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
32
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
33
|
Agoglia AE, Herman MA. The center of the emotional universe: Alcohol, stress, and CRF1 amygdala circuitry. Alcohol 2018; 72:61-73. [PMID: 30220589 PMCID: PMC6165695 DOI: 10.1016/j.alcohol.2018.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
The commonalities between different phases of stress and alcohol use as well as the high comorbidity between alcohol use disorders (AUDs) and anxiety disorders suggest common underlying cellular mechanisms governing the rewarding and aversive aspects of these related conditions. As an integrative center that assigns emotional salience to a wide variety of internal and external stimuli, the amygdala complex plays a major role in how alcohol and stress influence cellular physiology to produce disordered behavior. Previous work has illustrated the broad role of the amygdala in alcohol, stress, and anxiety. However, the challenge of current and future studies is to identify the specific dysregulations that occur within distinct amygdala circuits and subpopulations and the commonalities between these alterations in each disorder, with the long-term goal of identifying potential targets for therapeutic intervention. Specific intra-amygdala circuits and cell type-specific subpopulations are emerging as critical targets for stress- and alcohol-induced plasticity, chief among them the corticotropin releasing factor (CRF) and CRF receptor 1 (CRF1) system. CRF and CRF1 have been implicated in the effects of alcohol in several amygdala nuclei, including the basolateral (BLA) and central amygdala (CeA); however, the precise circuitry involved in these effects and the role of these circuits in stress and anxiety are only beginning to be understood.
Collapse
Affiliation(s)
- Abigail E Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Melissa A Herman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
34
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
35
|
Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, Orr CA, Wager TD, Banich MT, Speer NK, Sutherland MT, Riedel MC, Dick AS, Bjork JM, Thomas KM, Chaarani B, Mejia MH, Hagler DJ, Daniela Cornejo M, Sicat CS, Harms MP, Dosenbach NUF, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni JR, Kuperman JM, Fair DA, Dale AM. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci 2018; 32:43-54. [PMID: 29567376 PMCID: PMC5999559 DOI: 10.1016/j.dcn.2018.03.001] [Citation(s) in RCA: 1172] [Impact Index Per Article: 167.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/29/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022] Open
Abstract
The ABCD study is recruiting and following the brain development and health of over 10,000 9–10 year olds through adolescence. The imaging component of the study was developed by the ABCD Data Analysis and Informatics Center (DAIC) and the ABCD Imaging Acquisition Workgroup. Imaging methods and assessments were selected, optimized and harmonized across all 21 sites to measure brain structure and function relevant to adolescent development and addiction. This article provides an overview of the imaging procedures of the ABCD study, the basis for their selection and preliminary quality assurance and results that provide evidence for the feasibility and age-appropriateness of procedures and generalizability of findings to the existent literature.
Collapse
Affiliation(s)
- B J Casey
- Department of Psychology, Yale University, United States; Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States.
| | | | - May I Conley
- Department of Psychology, Yale University, United States; Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Alexandra O Cohen
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Deanna M Barch
- Departments of Psychological & Brain Sciences and Psychiatry, Washington University, St. Louis, United States
| | - Mary M Heitzeg
- Department of Psychiatry, University of Michigan, United States
| | - Mary E Soules
- Department of Psychiatry, University of Michigan, United States
| | - Theresa Teslovich
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Danielle V Dellarco
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Hugh Garavan
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Catherine A Orr
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Tor D Wager
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Marie T Banich
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Nicole K Speer
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Matthew T Sutherland
- Departments of Physics and Psychology, Florida International University, United States
| | - Michael C Riedel
- Departments of Physics and Psychology, Florida International University, United States
| | - Anthony S Dick
- Departments of Physics and Psychology, Florida International University, United States
| | - James M Bjork
- Department of Psychiatry, Virginia Commonwealth University, United States
| | - Kathleen M Thomas
- Institute of Child Development, University of Minnesota, United States
| | - Bader Chaarani
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Margie H Mejia
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Donald J Hagler
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - M Daniela Cornejo
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Chelsea S Sicat
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Michael P Harms
- Department of Psychiatry, Washington University, St. Louis, United States
| | - Nico U F Dosenbach
- Department of Pediatric Neurology, Washington University, St. Louis, United States
| | | | - Eric Earl
- Behavioral Neuroscience and Psychiatry, Oregon Health State University, United States
| | - Hauke Bartsch
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Richard Watts
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, United States
| | - Joshua M Kuperman
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Damien A Fair
- Behavioral Neuroscience and Psychiatry, Oregon Health State University, United States
| | - Anders M Dale
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | | |
Collapse
|
36
|
Lee KM, Coelho MA, Class MA, Szumlinski KK. mGlu5-dependent modulation of anxiety during early withdrawal from binge-drinking in adult and adolescent male mice. Drug Alcohol Depend 2018; 184:1-11. [PMID: 29324247 PMCID: PMC6371787 DOI: 10.1016/j.drugalcdep.2017.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
Abstract
Binge alcohol-drinking elicits symptoms of negative affect such as anxiety upon cessation, which is a source of negative reinforcement for perpetuating this pattern of alcohol abuse. Binge-induced anxiety during early (24 h) withdrawal is associated with increased expression of metabotropic glutamate receptor 5 (mGlu5) within the nucleus accumbens shell (AcbSh) of adult male mice, but was unchanged in anxiety-resilient adolescents. Herein, we determined the role of mGlu5 signaling in withdrawal-induced anxiety via pharmacological manipulation using the mGlu5 negative allosteric modulator MTEP and the positive allosteric modulator CDPPB. Adult (PND 56) and adolescent (PND 28) male C57BL/6J mice binge-drank for 14 days under 3-bottle-choice procedures for 2 h/day; control animals drank water only. Approximately 24 h following the final alcohol presentation, animals were treated with 30 mg/kg IP MTEP, CDPPB, or vehicle and then tested, thirty minutes later, for behavioral signs of anxiety. Vehicle-treated binge-drinking adults exhibited hyperanxiety in all paradigms, while vehicle-treated binge-drinking adolescents did not exhibit withdrawal-induced anxiety. In adults, 30 mg/kg MTEP decreased alcohol-induced anxiety across paradigms, while 3 mg/kg MTEP was anxiolytic in adult water controls. CDPPB was modestly anxiogenic in both alcohol- and water-drinking mice. Adolescent animals showed minimal response to either CDPPB or MTEP, suggesting that anxiety in adolescence may be mGlu5-independent. These results demonstrate a causal role for mGlu5 in withdrawal-induced anxiety in adults and suggest age-related differences in the behavioral pharmacology of the negative reinforcing properties of alcohol.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - MacKayla A. Class
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106-9625, USA,Corresponding author at: University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA. (K.K. Szumlinski)
| |
Collapse
|
37
|
Yanovich C, Kirby ML, Michaelevski I, Yadid G, Pinhasov A. Social rank-associated stress vulnerability predisposes individuals to cocaine attraction. Sci Rep 2018; 8:1759. [PMID: 29379100 PMCID: PMC5789078 DOI: 10.1038/s41598-018-19816-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Studies of personality have suggested that dissimilarities in ability to cope with stressful situations results in differing tendency to develop addictive behaviors. The present study used selectively bred stress-resilient, socially-dominant (Dom) and stress-vulnerable, socially-submissive (Sub) mice to investigate the interaction between environmental stress and inbred predisposition to develop addictive behavior to cocaine. In a Conditioned Place Preference (CPP) paradigm using cocaine, Sub mice displayed an aversion to drug, whereas Dom mice displayed drug attraction. Following a 4-week regimen of Chronic Mild Stress (CMS), Sub mice in CPP displayed a marked increase (>400%) in cocaine attraction, whereas Dom mice did not differ in attraction from their non-stressed state. Examination of hippocampal gene expression revealed in Sub mice, exposure to external stimuli, stress or cocaine, increased CRH expression (>100%), which was evoked in Dom mice only by cocaine exposure. Further, stress-induced decreases in DRD1 (>60%) and DRD2 (>50%) expression in Sub mice differed markedly from a complete lack of change in Dom mice. From our findings, we propose that social stratification dictates vulnerability to stress-induced attraction that may lead to addiction via differential regulation of hippocampal response to dopaminergic input, which in turn may influence differing tendency to develop addictive behaviors.
Collapse
Affiliation(s)
- Chen Yanovich
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Michael L Kirby
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Gal Yadid
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel.
| |
Collapse
|
38
|
Wen RT, Liang JH, Zhang HT. Targeting Phosphodiesterases in Pharmacotherapy for Substance Dependence. ADVANCES IN NEUROBIOLOGY 2018; 17:413-444. [PMID: 28956341 DOI: 10.1007/978-3-319-58811-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Substance dependence is a chronic relapsing brain disorder associated with adaptational changes in synaptic plasticity and neuronal functions. The high levels of substance consumption and relapse rate suggest more reliable medications are in need to better address the underlying causes of this disease. It has been well established that the intracellular second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) and their signaling systems play an important role in the molecular mechanisms of substance taking behaviors. On this basis, the phosphodiesterase (PDE) superfamily, which crucially controls cyclic nucleotide levels by catalyzing their hydrolysis, has been proposed as a novel class of therapeutic targets for substance use disorders. This chapter reviews the expression patterns of PDEs in the brain with regard to neural structures underlying the dependent process and highlights available evidence for a modulatory role of PDEs in substance dependence.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Jian-Hui Liang
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China.
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
39
|
Bath KG, Russo SJ, Pleil KE, Wohleb ES, Duman RS, Radley JJ. Circuit and synaptic mechanisms of repeated stress: Perspectives from differing contexts, duration, and development. Neurobiol Stress 2017; 7:137-151. [PMID: 29276735 PMCID: PMC5736942 DOI: 10.1016/j.ynstr.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
The current review is meant to synthesize research presented as part of a symposium at the 2016 Neurobiology of Stress workshop in Irvine California. The focus of the symposium was "Stress and the Synapse: New Concepts and Methods" and featured the work of several junior investigators. The presentations focused on the impact of various forms of stress (altered maternal care, binge alcohol drinking, chronic social defeat, and chronic unpredictable stress) on synaptic function, neurodevelopment, and behavioral outcomes. One of the goals of the symposium was to highlight the mechanisms accounting for how the nervous system responds to stress and their impact on outcome measures with converging effects on the development of pathological behavior. Dr. Kevin Bath's presentation focused on the impact of disruptions in early maternal care and its impact on the timing of hippocampus maturation in mice, finding that this form of stress drove accelerated synaptic and behavioral maturation, and contributed to the later emergence of risk for cognitive and emotional disturbance. Dr. Scott Russo highlighted the impact of chronic social defeat stress in adolescent mice on the development and plasticity of reward circuity, with a focus on glutamatergic development in the nucleus accumbens and mesolimbic dopamine system, and the implications of these changes for disruptions in social and hedonic response, key processes disturbed in depressive pathology. Dr. Kristen Pleil described synaptic changes in the bed nuclei of the stria terminalis that underlie the behavioral consequences of allostatic load produced by repeated cycles of alcohol binge drinking and withdrawal. Dr. Eric Wohleb and Dr. Ron Duman provided new data associating decreased mammalian target of rapamycin (mTOR) signaling and neurobiological changes in the synapses in response to chronic unpredictable stress, and highlighted the potential for the novel antidepressant ketamine to rescue synaptic and behavioral effects. In aggregate, these presentations showcased how divergent perspectives provide new insights into the ways in which stress impacts circuit development and function, with implications for understanding emergence of affective pathology.
Collapse
Affiliation(s)
- Kevin G. Bath
- Department of Cognitive Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, United States
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, United States
| | - Eric S. Wohleb
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45237, United States
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Ronald S. Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
40
|
Morud J, Strandberg J, Andrén A, Ericson M, Söderpalm B, Adermark L. Progressive modulation of accumbal neurotransmission and anxiety-like behavior following protracted nicotine withdrawal. Neuropharmacology 2017; 128:86-95. [PMID: 28986279 DOI: 10.1016/j.neuropharm.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 10/01/2017] [Indexed: 12/18/2022]
Abstract
Due to the highly addictive properties of nicotine, a low percentage of users successfully maintain cessation for longer periods of time. This might be linked to neuroadaptations elicited by the drug, and understanding progressive changes in neuronal function might provide critical insight into nicotine addiction. We have previously shown that neurotransmission in the nucleus accumbens (nAc), a key brain region with respect to drug reinforcement and relapse, is suppressed for as long as seven months after a brief period of nicotine treatment. Studies were therefore performed to define the temporal properties of these effects, and to assess behavioral correlates to altered neurotransmission. Ex vivo electrophysiology revealed progressive depression of synaptic efficacy in the nAc of rats previously receiving nicotine. In addition, following three months of nicotine withdrawal, the responses to GABAA receptor modulating drugs were blunted together with downregulation of several GABAA receptor subunits. In correlation to reduced accumbal neurotransmission, a reduced anxiety-like behavior; assessed in the elevated plus-maze and marble burying tests, were identified in animals pre-treated with nicotine. Lastly, to test the causal relationship between suppressed excitability in the nAc and reduced anxiety-like behavior, rats received local administration of diazepam in the nAc while monitoring behavioral effects on the elevated plus-maze. These results show that nicotine produces long-lasting changes in the GABAergic system, which are observed first after extended withdrawal. Our data also suggest that nicotine produces a progressive suppression of accumbal excitability, which could result in behavioral alterations that may have implications for further drug intake.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden.
| | - Joakim Strandberg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Anna Andrén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden
| |
Collapse
|
41
|
Haller J. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neurosci Biobehav Rev 2017; 85:34-43. [PMID: 28918358 DOI: 10.1016/j.neubiorev.2017.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
The involvement of the amygdala in aggression is supported by overwhelming evidence. Frequently, however, the amygdala is studied as a whole, despite its complex internal organization. To reveal the role of various subdivisions, here we review the involvement of the central and medial amygdala in male rivalry aggression, maternal aggression, predatory aggression, and models of abnormal aggression where violent behavior is associated with increased or decreased arousal. We conclude that: (1) rivalry aggression is controlled by the medial amygdala; (2) predatory aggression is controlled by the central amygdala; (3) hypoarousal-associated violent aggression recruits both nuclei, (4) a specific upregulation of the medial amygdala was observed in hyperarousal-driven aggression. These patterns of amygdala activation were used to build four alternative models of the aggression circuitry, each being specific to particular forms of aggression. The separate study of the roles of amygdala subdivisions may not only improve our understanding of aggressive behavior, but also the differential control of aggression and violent behaviors of various types, including those associated with various psychopathologies.
Collapse
Affiliation(s)
- Jozsef Haller
- Institute of Experimental Medicine, Budapest, Hungary; National University of Public Service, Budapest, Hungary.
| |
Collapse
|
42
|
Lee KM, Coehlo MA, Solton NR, Szumlinski KK. Negative Affect and Excessive Alcohol Intake Incubate during Protracted Withdrawal from Binge-Drinking in Adolescent, But Not Adult, Mice. Front Psychol 2017; 8:1128. [PMID: 28729845 PMCID: PMC5499357 DOI: 10.3389/fpsyg.2017.01128] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
Binge-drinking is common in underage alcohol users, yet we know little regarding the biopsychological impact of binge-drinking during early periods of development. Prior work indicated that adolescent male C57BL6/J mice with a 2-week history of binge-drinking (PND28-41) are resilient to the anxiogenic effects of early alcohol withdrawal. Herein, we employed a comparable Drinking-in-the-Dark model to determine how a prior history of binge-drinking during adolescence (EtOHadolescents) influences emotionality (assayed with the light-dark box, marble burying test, and the forced swim test) and the propensity to consume alcohol in later life, compared to animals without prior drinking experience. For additional comparison, adult mice (EtOHadults) with comparable drinking history (PND56-69) were subdivided into groups tested for anxiety/drinking either on PND70 (24 h withdrawal) or PND98 (28 days withdrawal). Tissue from the nucleus accumbens shell (AcbSh) and central nucleus of the amygdala (CeA) was examined by immunoblotting for changes in the expression of glutamate-related proteins. EtOHadults exhibited some signs of hyperanxiety during early withdrawal (PND70), but not during protracted withdrawal (PND98). In contrast, EtOHadolescents exhibited robust signs of anxiety-l and depressive-like behaviors when tested as adults on PND70. While all alcohol-experienced animals subsequently consumed more alcohol than mice drinking for the first time, alcohol intake was greatest in EtOHadolescents. Independent of drinking age, the manifestation of withdrawal-induced hyperanxiety was accompanied by reduced Homer2b expression within the CeA and increased Group1 mGlu receptor expression within the AcbSh. The present data provide novel evidence that binge-drinking during adolescence produces a state characterized by profound negative affect and excessive alcohol consumption that incubates with the passage of time in withdrawal. These data extend our prior studies on the effects of subchronic binge-drinking during adulthood by demonstrating that the increase in alcoholism-related behaviors and glutamate-related proteins observed in early withdrawal dissipate with the passage of time. Our results to date highlight a critical interaction between the age of binge-drinking onset and the duration of alcohol withdrawal in glutamate-related neuroplasticity within the extended amygdala of relevance to the etiology of psychopathology, including pathological drinking, in later life.
Collapse
Affiliation(s)
- Kaziya M Lee
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Michal A Coehlo
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Noah R Solton
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa BarbaraSanta Barbara, CA, United States.,Department of Molecular, Cellular and Developmental Biology and The Neuroscience Research Institute, University of California, Santa Barbara, Santa BarbaraCA, United States
| |
Collapse
|
43
|
Lee KM, Coelho MA, Sern KR, Class MA, Bocz MD, Szumlinski KK. Anxiolytic effects of buspirone and MTEP in the Porsolt Forced Swim Test. CHRONIC STRESS 2017; 1. [PMID: 28884167 PMCID: PMC5584874 DOI: 10.1177/2470547017712985] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditionally, a reduction in floating behavior or immobility in the Porsolt forced swim
test is employed as a predictor of anti-depressant efficacy. However, over the past
several years, our studies of alcohol withdrawal-induced negative affect consistently
indicate the coincidence of increased anxiety-related behaviors on various behavioral
tests with reduced immobility in the forced swim test. Further, this
behavioral profile correlates with increased mGlu5 protein expression within limbic brain
regions. As the role for mGlu5 in anxiety is well established, we hypothesized that the
reduced immobility exhibited by alcohol-withdrawn mice when tested in the forced swim test
might reflect anxiety, possibly a hyper-reactivity to the acute swim stressor. Herein, we
evaluated whether or not the decreased forced swim test immobility during alcohol
withdrawal responds to systemic treatment with a behaviorally effective dose of the
prototypical anxiolytic, buspirone (5 mg/kg). We also determined the functional relevance
of the withdrawal-induced increase in mGlu5 expression for forced swim test behavior by
comparing the effects of buspirone to a behaviorally effective dose of the mGlu5 negative
allosteric modulator MTEP (3 mg/kg). Adult male C57BL/6J mice were subjected to a 14-day,
multi-bottle, binge-drinking protocol that elicits hyper-anxiety and increases
glutamate-related protein expression during early withdrawal. Control animals received
only water. At 24-h withdrawal, animals from each drinking condition were subdivided into
groups and treated with an intraperitoneal injection of buspirone, MTEP, or vehicle,
30 min prior to the forced swim test. Drug effects on general locomotor activity were also
assessed. As we reported previously, alcohol-withdrawn animals exhibited significantly
reduced immobility in the forced swim test compared to water controls. Both buspirone and
MTEP significantly increased immobility in alcohol-withdrawn animals, with a modest
increase also seen in water controls. No significant group differences were observed for
locomotor activity, indicating that neither anxiolytic was sedating. These results provide
predictive validity for increased swimming/reduced immobility in the forced swim test as a
model of anxiety and provide novel evidence in favor of mGlu5 inhibition as an effective
therapeutic strategy for treating hyper-anxiety during alcohol withdrawal.
Collapse
Affiliation(s)
- Kaziya M Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Michal A Coelho
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Kimberly R Sern
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - MacKayla A Class
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Mark D Bocz
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9660.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA, 93106-9625
| |
Collapse
|
44
|
Topiwala A, Allan CL, Valkanova V, Zsoldos E, Filippini N, Sexton C, Mahmood A, Fooks P, Singh-Manoux A, Mackay CE, Kivimäki M, Ebmeier KP. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study. BMJ 2017; 357:j2353. [PMID: 28588063 PMCID: PMC5460586 DOI: 10.1136/bmj.j2353] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives To investigate whether moderate alcohol consumption has a favourable or adverse association or no association with brain structure and function.Design Observational cohort study with weekly alcohol intake and cognitive performance measured repeatedly over 30 years (1985-2015). Multimodal magnetic resonance imaging (MRI) was performed at study endpoint (2012-15).Setting Community dwelling adults enrolled in the Whitehall II cohort based in the UK (the Whitehall II imaging substudy).Participants 550 men and women with mean age 43.0 (SD 5.4) at study baseline, none were "alcohol dependent" according to the CAGE screening questionnaire, and all safe to undergo MRI of the brain at follow-up. Twenty three were excluded because of incomplete or poor quality imaging data or gross structural abnormality (such as a brain cyst) or incomplete alcohol use, sociodemographic, health, or cognitive data.Main outcome measures Structural brain measures included hippocampal atrophy, grey matter density, and white matter microstructure. Functional measures included cognitive decline over the study and cross sectional cognitive performance at the time of scanning.Results Higher alcohol consumption over the 30 year follow-up was associated with increased odds of hippocampal atrophy in a dose dependent fashion. While those consuming over 30 units a week were at the highest risk compared with abstainers (odds ratio 5.8, 95% confidence interval 1.8 to 18.6; P≤0.001), even those drinking moderately (14-21 units/week) had three times the odds of right sided hippocampal atrophy (3.4, 1.4 to 8.1; P=0.007). There was no protective effect of light drinking (1-<7 units/week) over abstinence. Higher alcohol use was also associated with differences in corpus callosum microstructure and faster decline in lexical fluency. No association was found with cross sectional cognitive performance or longitudinal changes in semantic fluency or word recall.Conclusions Alcohol consumption, even at moderate levels, is associated with adverse brain outcomes including hippocampal atrophy. These results support the recent reduction in alcohol guidance in the UK and question the current limits recommended in the US.
Collapse
Affiliation(s)
- Anya Topiwala
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Charlotte L Allan
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Vyara Valkanova
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Enikő Zsoldos
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Nicola Filippini
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Claire Sexton
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Abda Mahmood
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Peggy Fooks
- University of Oxford, Warneford Hospital, Oxford, OX3 9DU, UK
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, University College London, London, WC1E 6BT, UK
| | - Clare E Mackay
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, WC1E 6BT, UK
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| |
Collapse
|
45
|
Berkel TDM, Pandey SC. Emerging Role of Epigenetic Mechanisms in Alcohol Addiction. Alcohol Clin Exp Res 2017; 41:666-680. [PMID: 28111764 DOI: 10.1111/acer.13338] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022]
Abstract
Alcohol use disorder (AUD) is a complex brain disorder with an array of persistent behavioral and neurochemical manifestations. Both genetic and environmental factors are known to contribute to the development of AUD, and recent studies on alcohol exposure and subsequent changes in gene expression suggest the importance of epigenetic mechanisms. In particular, histone modifications and DNA methylation have emerged as important regulators of gene expression and associated phenotypes of AUD. Given the therapeutic potential of epigenetic targets, this review aims to summarize the role of epigenetic regulation in our current understanding of AUD by evaluating known epigenetic signatures of brain regions critical to addictive behaviors in both animal and human studies throughout various stages of AUD. More specifically, the effects of acute and chronic alcohol exposure, tolerance, and postexposure withdrawal on epigenetically induced changes to gene expression and synaptic plasticity within key brain regions and the associated behavioral phenotypes have been discussed. Understanding the contribution of epigenetic regulation to crucial signaling pathways may prove vital for future development of novel biomarkers and treatment agents in ameliorating or preventing AUD.
Collapse
Affiliation(s)
- Tiffani D M Berkel
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
46
|
Attenuation of the anxiogenic effects of cocaine by 5-HT 1B autoreceptor stimulation in the bed nucleus of the stria terminalis of rats. Psychopharmacology (Berl) 2017; 234:485-495. [PMID: 27888284 PMCID: PMC5226880 DOI: 10.1007/s00213-016-4479-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
RATIONALE Cocaine produces significant aversive/anxiogenic actions whose underlying neurobiology remains unclear. A possible substrate contributing to these actions is the serotonergic (5-HT) pathway projecting from the dorsal raphé (DRN) to regions of the extended amygdala, including the bed nucleus of the stria terminalis (BNST) which have been implicated in the production of anxiogenic states. OBJECTIVES The present study examined the contribution of 5-HT signaling within the BNST to the anxiogenic effects of cocaine as measured in a runway model of drug self-administration. METHODS Male Sprague-Dawley rats were fitted with bilateral infusion cannula aimed at the BNST and then trained to traverse a straight alley once a day for a single 1 mg/kg i.v. cocaine infusion delivered upon goal-box entry on each of 16 consecutive days/trials. Intracranial infusions of CP 94,253 (0, 0.25, 0.5, or 1.0 μg/side) were administered to inhibit local 5-HT release via activation of 5-HT1B autoreceptors. To confirm receptor specificity, the effects of this treatment were then challenged by co-administration of the selective 5-HT1B antagonist NAS-181. RESULTS Intra-BNST infusions of the 5-HT1B autoreceptor agonist attenuated the anxiogenic effects of cocaine as reflected by a decrease in runway approach-avoidance conflict behavior. This effect was reversed by the 5-HT1B antagonist. Neither start latencies (a measure of the subject's motivation to seek cocaine) nor spontaneous locomotor activity (an index of motoric capacity) were altered by either treatment. CONCLUSIONS Inhibition of 5-HT1B signaling within the BNST selectively attenuated the anxiogenic effects of cocaine, while leaving unaffected the positive incentive properties of the drug.
Collapse
|
47
|
Lee KM, Coelho MA, McGregor HA, Solton NR, Cohen M, Szumlinski KK. Adolescent Mice Are Resilient to Alcohol Withdrawal-Induced Anxiety and Changes in Indices of Glutamate Function within the Nucleus Accumbens. Front Cell Neurosci 2016; 10:265. [PMID: 27917110 PMCID: PMC5114265 DOI: 10.3389/fncel.2016.00265] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Binge-drinking is the most prevalent form of alcohol abuse and while an early life history of binge-drinking is a significant risk factor for subsequent alcoholism and co-morbid affective disorders, relatively little is known regarding the biobehavioral impact of binge-drinking during the sensitive neurodevelopmental period of adolescence. In adult mice, a month-long history of binge-drinking elicits a hyper-glutamatergic state within the nucleus accumbens (Acb), coinciding with hyper-anxiety. Herein, we employed a murine model of binge-drinking to determine whether or not: (1) withdrawal-induced changes in brain and behavior differ between adult and adolescent bingers; and (2) increased behavioral signs of negative affect and changes in Acb expression of glutamate-related proteins would be apparent in adult mice with less chronic binge-drinking experience (14 days, approximating the duration of mouse adolescence). Adult and adolescent male C57BL/6J mice were subjected to a 14-day binge-drinking protocol (5, 10, 20 and 40% alcohol (v/v) for 2 h/day), while age-matched controls received water. At 24 h withdrawal, half of the animals from each group were assayed for negative affect, while tissue was sampled from the shell (AcbSh) and core (AcbC) subregions of the remaining mice for immunoblotting analyses. Adult bingers exhibited hyper-anxiety when tested for defensive marble burying. Additionally, adult bingers showed increased mGlu1, mGlu5, and GluN2b expression in the AcbSh and PKCε and CAMKII in the AcbC. Compared to adults, adolescent mice exhibited higher alcohol intake and blood alcohol concentrations (BACs); however, adolescent bingers did not show increased anxiety in the marble-burying test. Furthermore, adolescent bingers also failed to exhibit the same alcohol-induced changes in mGlu and kinase protein expression seen in the adult bingers. Irrespective of age, bingers exhibited behavioral hyperactivity in the forced swim test (FST) compared to water drinkers, which was paralleled by an increase in AcbC levels of GluN2b. Thus, a 2-week period of binge-drinking is sufficient to produce a hyper-anxious state and related increases in protein indices of Acb glutamate function. In contrast, adolescents were resilient to many of the effects of early alcohol withdrawal and this attenuated sensitivity to the negative consequences of binge drinking may facilitate greater alcohol intake in adolescent drinkers.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Hadley A. McGregor
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Noah R. Solton
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Matan Cohen
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa BarbaraSanta Barbara, CA, USA
| |
Collapse
|
48
|
Pleil KE, Helms CM, Sobus JR, Daunais JB, Grant KA, Kash TL. Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST. Addict Biol 2016. [PMID: 26223349 DOI: 10.1111/adb.12289] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alterations in hypothalamic-pituitary-adrenal axis function contribute to many of the adverse behavioral effects of chronic voluntary alcohol drinking, including alcohol dependence and mood disorders; limbic brain structures such as the bed nucleus of the stria terminalis (BNST) may be key sites for these effects. Here, we measured circulating levels of several steroid hormones and performed whole-cell electrophysiological recordings from acutely prepared BNST slices of male rhesus monkeys allowed to self-administer alcohol for 12 months or a control solution. Initial comparisons revealed that BNST neurons in alcohol-drinking monkeys had decreased membrane resistance, increased frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with no change in spontaneous excitatory postsynaptic currents (sEPSCs). We then used a combined variable cluster analysis and linear mixed model statistical approach to determine whether specific factors including stress and sex hormones, age and measures of alcohol consumption and intoxication are related to these BNST measures. Modeling results showed that specific measures of alcohol consumption and stress-related hormone levels predicted differences in membrane conductance in BNST neurons. Distinct groups of adrenal stress hormones were negatively associated with the frequency of sIPSCs and sEPSCs, and alcohol drinking measures and basal neuronal membrane properties were additional positive predictors of inhibitory, but not excitatory, PSCs. The amplitude of sEPSCs was highly positively correlated with age, independent of other variables. Together, these results suggest that chronic voluntary alcohol consumption strongly influences limbic function in non-human primates, potentially via interactions with or modulation by other physiological variables, including stress steroid hormones and age.
Collapse
Affiliation(s)
- Kristen E. Pleil
- Bowles Center for Alcohol Studies & Department of Pharmacology, School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Christa M. Helms
- Division of Neuroscience, Oregon National Primate Research Center; Oregon Health & Science University; Beaverton OR USA
| | - Jon R. Sobus
- Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development; U.S. Environmental Protection Agency; Research Triangle Park NC USA
| | - James B. Daunais
- Department of Physiology & Pharmacology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center; Oregon Health & Science University; Beaverton OR USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies & Department of Pharmacology, School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
49
|
Kalon E, Hong JY, Tobin C, Schulte T. Psychological and Neurobiological Correlates of Food Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 129:85-110. [PMID: 27503449 DOI: 10.1016/bs.irn.2016.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Food addiction (FA) is loosely defined as hedonic eating behavior involving the consumption of highly palatable foods (ie, foods high in salt, fat, and sugar) in quantities beyond homeostatic energy requirements. FA shares some common symptomology with other pathological eating disorders, such as binge eating. Current theories suggest that FA shares both behavioral similarities and overlapping neural correlates to other substance addictions. Although preliminary, neuroimaging studies in response to food cues and the consumption of highly palatable food in individuals with FA compared to healthy controls have shown differing activation patterns and connectivity in brain reward circuits including regions such as the striatum, amygdala, orbitofrontal cortex, insula, and nucleus accumbens. Additional effects have been noted in the hypothalamus, a brain area responsible for regulating eating behaviors and peripheral satiety networks. FA is highly impacted by impulsivity and mood. Chronic stress can negatively affect hypothalamic-pituitary-adrenal axis functioning, thus influencing eating behavior and increasing desirability of highly palatable foods. Future work will require clearly defining FA as a distinct diagnosis from other eating disorders.
Collapse
Affiliation(s)
- E Kalon
- Palo Alto University, Palo Alto, CA, United States; SRI International, Menlo Park, CA, United States.
| | - J Y Hong
- SRI International, Menlo Park, CA, United States
| | - C Tobin
- Palo Alto University, Palo Alto, CA, United States; National Center for PTSD, VA Palo Alto Health Care System Menlo Park Division, Menlo Park, CA, United States
| | - T Schulte
- Palo Alto University, Palo Alto, CA, United States; SRI International, Menlo Park, CA, United States
| |
Collapse
|
50
|
Galesi FL, Ayanwuyi LO, Mijares MG, Cippitelli A, Cannella N, Ciccocioppo R, Ubaldi M. Role of Hypothalamic-Pituitary-Adrenal axis and corticotropin-releasing factor stress system on cue-induced relapse to alcohol seeking. Eur J Pharmacol 2016; 788:84-89. [PMID: 27316790 DOI: 10.1016/j.ejphar.2016.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
A large body of evidence has shown that the Corticotropin Releasing Factor (CRF) system, which plays a key role in stress modulation, is deeply involved in relapse to alcohol seeking induced by exposure to stressful events such as foot shock or yohimbine injections. Exposure to environmental cues is also known to be a trigger for alcohol relapse, nevertheless, the relationship between the relapse evoked by the cue-induced model and the CRF stress systems remains unclear. The purpose of this study was to evaluate, in male Wistar rats, the involvement of the CRF system and Hypothalamic-Pituitary-Adrenal (HPA) axis in relapse induced by environmental cues. Antalarmin, a selective CRF1 receptor antagonist, Metyrapone, a corticosterone (CORT) synthesis inhibitor and CORT were evaluated for their effects on the reinstatement test in a cue-induced relapse model. Antalarmin (20mg/kg) blocked relapse to alcohol seeking induced by environmental cues. Metyrapone (50 and 100mg/kg) also blocked relapse in Wistar rats but only at the highest dose (100mg/kg). Corticosterone had no effect on relapse at the doses tested. The results obtained from this study suggest that the CRF stress system and the HPA axis are involved in cue-induced alcohol relapse.
Collapse
Affiliation(s)
- Fernanda L Galesi
- Universidade de São Paulo, Instituto de Psicologia, Departamento de Psicologia Experimental, Sao Paulo, SP, Brazil
| | - Lydia O Ayanwuyi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy
| | - Miriam Garcia Mijares
- Universidade de São Paulo, Instituto de Psicologia, Departamento de Psicologia Experimental, Sao Paulo, SP, Brazil
| | - Andrea Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, MC 62032, Italy.
| |
Collapse
|