1
|
Vike NL, Bari S, Stefanopoulos L, Lalvani S, Kim BW, Maglaveras N, Block M, Breiter HC, Katsaggelos AK. Predicting COVID-19 Vaccination Uptake Using a Small and Interpretable Set of Judgment and Demographic Variables: Cross-Sectional Cognitive Science Study. JMIR Public Health Surveill 2024; 10:e47979. [PMID: 38315620 PMCID: PMC10953811 DOI: 10.2196/47979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Despite COVID-19 vaccine mandates, many chose to forgo vaccination, raising questions about the psychology underlying how judgment affects these choices. Research shows that reward and aversion judgments are important for vaccination choice; however, no studies have integrated such cognitive science with machine learning to predict COVID-19 vaccine uptake. OBJECTIVE This study aims to determine the predictive power of a small but interpretable set of judgment variables using 3 machine learning algorithms to predict COVID-19 vaccine uptake and interpret what profile of judgment variables was important for prediction. METHODS We surveyed 3476 adults across the United States in December 2021. Participants answered demographic, COVID-19 vaccine uptake (ie, whether participants were fully vaccinated), and COVID-19 precaution questions. Participants also completed a picture-rating task using images from the International Affective Picture System. Images were rated on a Likert-type scale to calibrate the degree of liking and disliking. Ratings were computationally modeled using relative preference theory to produce a set of graphs for each participant (minimum R2>0.8). In total, 15 judgment features were extracted from these graphs, 2 being analogous to risk and loss aversion from behavioral economics. These judgment variables, along with demographics, were compared between those who were fully vaccinated and those who were not. In total, 3 machine learning approaches (random forest, balanced random forest [BRF], and logistic regression) were used to test how well judgment, demographic, and COVID-19 precaution variables predicted vaccine uptake. Mediation and moderation were implemented to assess statistical mechanisms underlying successful prediction. RESULTS Age, income, marital status, employment status, ethnicity, educational level, and sex differed by vaccine uptake (Wilcoxon rank sum and chi-square P<.001). Most judgment variables also differed by vaccine uptake (Wilcoxon rank sum P<.05). A similar area under the receiver operating characteristic curve (AUROC) was achieved by the 3 machine learning frameworks, although random forest and logistic regression produced specificities between 30% and 38% (vs 74.2% for BRF), indicating a lower performance in predicting unvaccinated participants. BRF achieved high precision (87.8%) and AUROC (79%) with moderate to high accuracy (70.8%) and balanced recall (69.6%) and specificity (74.2%). It should be noted that, for BRF, the negative predictive value was <50% despite good specificity. For BRF and random forest, 63% to 75% of the feature importance came from the 15 judgment variables. Furthermore, age, income, and educational level mediated relationships between judgment variables and vaccine uptake. CONCLUSIONS The findings demonstrate the underlying importance of judgment variables for vaccine choice and uptake, suggesting that vaccine education and messaging might target varying judgment profiles to improve uptake. These methods could also be used to aid vaccine rollouts and health care preparedness by providing location-specific details (eg, identifying areas that may experience low vaccination and high hospitalization).
Collapse
Affiliation(s)
- Nicole L Vike
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Sumra Bari
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Leandros Stefanopoulos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Shamal Lalvani
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Byoung Woo Kim
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Nicos Maglaveras
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martin Block
- Integrated Marketing Communications, Medill School, Northwestern University, Evanston, IL, United States
| | - Hans C Breiter
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA, United States
| | - Aggelos K Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
- Department of Computer Science, Northwestern University, Evanston, IL, United States
- Department of Radiology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
2
|
Michely J, Eldar E, Erdman A, Martin IM, Dolan RJ. Serotonin modulates asymmetric learning from reward and punishment in healthy human volunteers. Commun Biol 2022; 5:812. [PMID: 35962142 PMCID: PMC9374781 DOI: 10.1038/s42003-022-03690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Instrumental learning is driven by a history of outcome success and failure. Here, we examined the impact of serotonin on learning from positive and negative outcomes. Healthy human volunteers were assessed twice, once after acute (single-dose), and once after prolonged (week-long) daily administration of the SSRI citalopram or placebo. Using computational modelling, we show that prolonged boosting of serotonin enhances learning from punishment and reduces learning from reward. This valence-dependent learning asymmetry increases subjects' tendency to avoid actions as a function of cumulative failure without leading to detrimental, or advantageous, outcomes. By contrast, no significant modulation of learning was observed following acute SSRI administration. However, differences between the effects of acute and prolonged administration were not significant. Overall, these findings may help explain how serotonergic agents impact on mood disorders.
Collapse
Affiliation(s)
- Jochen Michely
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Charité Clinician Scientist Program, Berlin, Germany.
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Eran Eldar
- Psychology and Cognitive Sciences Departments, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alon Erdman
- Psychology and Cognitive Sciences Departments, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ingrid M Martin
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
3
|
Bellucci G, Münte TF, Park SQ. Influences of social uncertainty and serotonin on gambling decisions. Sci Rep 2022; 12:10220. [PMID: 35715450 PMCID: PMC9205937 DOI: 10.1038/s41598-022-13778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
In many instances in life, our decisions’ outcomes hinge on someone else’s choices (i.e., under social uncertainty). Behavioral and pharmacological work has previously focused on different types of uncertainty, such as risk and ambiguity, but not so much on risk behaviors under social uncertainty. Here, in two different studies using a double-blind, placebo-controlled, within-subject design, we administrated citalopram (a selective-serotonin-reuptake inhibitor) to male participants and investigated decisions in a gambling task under social and nonsocial uncertainty. In the social condition, gamble outcomes were determined by another participant. In the nonsocial condition, gamble outcomes were determined by a coin toss. We observed increased gamble acceptance under social uncertainty, especially for gambles with lower gains and higher losses, which might be indicative of a positivity bias in social expectations in conditions of high uncertainty about others’ behaviors. A similar effect was found for citalopram, which increased overall acceptance behavior for gambles irrespective of the source of uncertainty (social/nonsocial). These results provide insights into the cognitive and neurochemical processes underlying decisions under social uncertainty, with implications for research in risk-taking behaviors in healthy and clinical populations.
Collapse
Affiliation(s)
- Gabriele Bellucci
- Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany. .,Department of Psychology I, University of Lübeck, Lübeck, Germany. .,Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany.
| | - Thomas F Münte
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.,Department of Psychology II, University of Lübeck, Lübeck, Germany
| | - Soyoung Q Park
- Department of Psychology I, University of Lübeck, Lübeck, Germany. .,Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany. .,Neuroscience Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany. .,Deutsches Zentrum für Diabetes, Neuherberg, Germany.
| |
Collapse
|
4
|
Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev 2021; 128:282-293. [PMID: 34139249 PMCID: PMC8335358 DOI: 10.1016/j.neubiorev.2021.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Serotonin is a critical neuromodulator involved in development and behavior. Its role in reward is however still debated. Here, we first review classical studies involving electrical stimulation protocols and pharmacological approaches. Contradictory results on the serotonergic' involvement in reward emerge from these studies. These differences might be ascribable to either the diversity of cellular types within the raphe nuclei or/and the specific projection pathways of serotonergic neurons. We continue to review more recent work, using optogenetic approaches to activate serotonergic cells in the Raphe to VTA pathway. From these studies, it appears that activation of this pathway can lead to reinforcement learning mediated through the excitation of dopaminergic neurons by serotonergic neurons co-transmitting glutamate. Finally, given the importance of serotonin during development on adult emotion, the effect of abnormal early-life levels of serotonin on the dopaminergic system will also be discussed. Understanding the interaction between the serotonergic and dopaminergic systems during development and adulthood is critical to gain insight into the specific facets of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, UMR 5292- INSERM U1028- Université Lyon 1, 69675 Bron Cedex, France
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
5
|
Livermore JJA, Holmes CL, Cutler J, Levstek M, Moga G, Brittain JRC, Campbell-Meiklejohn D. Selective effects of serotonin on choices to gather more information. J Psychopharmacol 2021; 35:631-640. [PMID: 33601931 PMCID: PMC8278551 DOI: 10.1177/0269881121991571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Gathering and evaluating information leads to better decisions, but often at cost. The balance between information seeking and exploitation features in neurodevelopmental, mood, psychotic and substance-related disorders. Serotonin's role has been highlighted by experimental reduction of its precursor, tryptophan. AIMS We tested the boundaries and applicability of this role by asking whether changes to information sampling would be observed following acute doses of serotonergic and catecholaminergic clinical treatments. We used a variant of the Information Sampling Task (IST) to measure how much information a person requires before they make a decision. This task allows participants to sample information until satisfied to make a choice. METHODS In separate double-blind placebo-controlled experiments, we tested 27 healthy participants on/off 20 mg of the serotonin reuptake inhibitor (SRI) citalopram, and 22 participants on/off 40 mg of the noradrenergic reuptake inhibitor atomoxetine. The IST variant minimised effects of temporal impulsivity and loss aversion. Analyses used a variety of participant prior expectations of sampling spaces in the IST, including a new prior that accounts for learning of likely states across trials. We analysed behaviour by a new method that also accounts for baseline individual differences of risk preference. RESULTS Baseline preferences demonstrated risk aversion. Citalopram decreased the expected utility of choices and probability of being correct based on informational content of samples collected, suggesting participants collected less useful information before making a choice. Atomoxetine did not influence information seeking. CONCLUSION Acute changes of serotonin activity by way of a single SRI dose alter information-seeking behaviour.
Collapse
Affiliation(s)
- James JA Livermore
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Clare L Holmes
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
| | - Jo Cutler
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Maruša Levstek
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
| | - Gyorgy Moga
- Sussex Neuroscience/School of Psychology, University of Sussex, Brighton, UK
| | - James RC Brittain
- Brighton and Sussex Medical School, Brighton, UK
- Chelsea and Westminster Hospital, London, UK
| | | |
Collapse
|
6
|
Lewis CA, Mueller K, Zsido RG, Reinelt J, Regenthal R, Okon-Singer H, Forbes EE, Villringer A, Sacher J. A single dose of escitalopram blunts the neural response in the thalamus and caudate during monetary loss. J Psychiatry Neurosci 2021; 46:E319-E327. [PMID: 33904667 PMCID: PMC8327975 DOI: 10.1503/jpn.200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) show acute effects on the neural processes associated with negative affective bias in healthy people and people with depression. However, whether and how SSRIs also affect reward and punishment processing on a similarly rapid time scale remains unclear. METHODS We investigated the effects of an acute and clinically relevant dose (20 mg) of the SSRI escitalopram on brain response during reward and punishment processing in 19 healthy participants. In a doubleblind, placebo-controlled study using functional MRI, participants performed a well-established monetary reward task at 3 time points: at baseline; after receiving placebo or escitalopram; and after receiving placebo or escitalopram following an 8-week washout period. RESULTS Acute escitalopram administration reduced blood-oxygen-level-dependent (BOLD) response during punishment feedback in the right thalamus (family-wise error corrected [FWE] p = 0.013 at peak level) and the right caudate head (pFWE = 0.011 at peak level) compared to placebo. We did not detect any significant BOLD changes during reward feedback. LIMITATIONS We included only healthy participants, so interpretation of findings are limited to the healthy human brain and require future testing in patient populations. The paradigm we used was based on monetary stimuli, and results may not be generalizable to other forms of reward. CONCLUSION Our findings extend theories of rapid SSRI action on the neural processing of rewarding and aversive stimuli and suggest a specific and acute effect of escitalopram in the punishment neurocircuitry.
Collapse
Affiliation(s)
- Carolin A Lewis
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Karsten Mueller
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Rachel G Zsido
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Janis Reinelt
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Ralf Regenthal
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Hadas Okon-Singer
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Erika E Forbes
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Arno Villringer
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Julia Sacher
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| |
Collapse
|
7
|
Brandt IM, Köhler-Forsberg K, Ganz M, Ozenne B, Jorgensen MB, Poulsen A, Knudsen GM, Frokjaer VG, Fisher PM. Reward processing in major depressive disorder and prediction of treatment response - Neuropharm study. Eur Neuropsychopharmacol 2021; 44:23-33. [PMID: 33455816 DOI: 10.1016/j.euroneuro.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022]
Abstract
Major depressive disorder (MDD) is a prevalent brain disorder for which anhedonia is a core symptom, indicating aberrations in the neural processing of reward. The striatum, medial prefrontal cortex (mPFC) and anterior insula (AI) are core reward processing regions. Here we used a reward-related, card-guessing functional magnetic resonance imaging (fMRI) paradigm to assay brain responses to reward in 90 MDD individuals and 58 healthy controls. We evaluated group differences in task-responsive, reward-related striatal, mPFC, and AI reactivity and whether baseline reactivity predicted an eight-week escitalopram antidepressant treatment response in MDD individuals. Thirty-eight MDD individuals also completed the reward paradigm after treatment and we evaluated antidepressant effects on reward reactivity estimates. Multivariate statistical analysis of task-responsive striatum, mPFC and AI brain responses did not reveal statistically significant differences between MDD and HC individuals (puncorrected>0.23). Logistic regression models (five-fold cross-validation, statistical significance assessed with permutation testing) also did not support that baseline reward-related brain responses significantly predicted antidepressant treatment response (puncorrected>0.39). Finally, reward-related brain responses were not statistically significantly changed over the course of treatment (puncorrected>0.27). Our findings in a comparatively large MDD cohort do not support that these reward-related fMRI brain responses are informative biomarkers of MDD or antidepressant treatment response to escitalopram.
Collapse
Affiliation(s)
- Ida Marie Brandt
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Faculty of Science, University of Copenhagen, Copenhagen, DK
| | - Kristin Köhler-Forsberg
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Center Copenhagen, Rigshospitalet, 2100 Copenhagen O, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark; Department of Public Health, Section of Biostatistics, University of Copenhagen, 1014 Copenhagen K, Denmark
| | - Martin B Jorgensen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Center Copenhagen, Rigshospitalet, 2100 Copenhagen O, Denmark
| | - Asbjorn Poulsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Center Copenhagen, Rigshospitalet, 2100 Copenhagen O, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O, Denmark.
| |
Collapse
|
8
|
Aquili L. The Role of Tryptophan and Tyrosine in Executive Function and Reward Processing. Int J Tryptophan Res 2020; 13:1178646920964825. [PMID: 33149600 PMCID: PMC7586026 DOI: 10.1177/1178646920964825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/31/2023] Open
Abstract
The serotonergic precursor tryptophan and the dopaminergic precursor tyrosine have been shown to be important modulators of mood, behaviour and cognition. Specifically, research on the function of tryptophan has characterised this molecule as particularly relevant in the context of pathological disorders such as depression. Moreover, a large body of evidence has now been accumulated to suggest that tryptophan may also be involved in executive function and reward processing. Despite some clear differentiation with tryptophan, the data reviewed in this paper illustrates that tyrosine shares similar functions with tryptophan in the regulation of executive function and reward, and that these processes in turn, rather than acting in isolation, causally influence each other.
Collapse
Affiliation(s)
- Luca Aquili
- College of Health & Human Sciences, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
9
|
Cui RS, Ruan H, Liu LY, Li XW. Involvement of noradrenergic and serotonergic systems in risk-based decisions between options of equivalent expected value in rats. Neurobiol Learn Mem 2020; 175:107310. [PMID: 32890758 DOI: 10.1016/j.nlm.2020.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022]
Abstract
Risk perception is an important factor that may mediate risk-based decision-making processes regulated by noradrenergic (NA) and serotonergic (5-HT) systems. Most risk-based decision-making models involve complex factors, such as risk perception or reward value, such that the final decision is the result of the interactions among these factors. However, the contribution of risk perception per se in risk decisions has remained unclear. Therefore, in the present study, we made some modifications to the classical probabilistic discounting task (PDT) to focus on the impact of risk perception and noradrenergic/serotonergic systems on decision-making behavior. Meanwhile, we conducted an elevated plus-maze (EPM) test to detect the correlation between anxiety and choice behavior. In the current study, rats had to choose between a "certain" lever that delivered a certain number of pellets and a "risky" lever that delivered eight pellets in a probabilistic manner (descending: 50%, 25%, 12.5% or ascending 12.5%, 25%, 50% of the time). The long-term rewarding values of the two levers were always identical in each block within each session. According to their baseline performances in choosing the risky lever, rats were divided into the risk-prefer group and risk-averse group. The results showed that there was a significant correlation between open arm time in EPM and risky choice for both descending order and ascending order, indicating that highly anxious rats more often preferred the safe option under risk. Pharmacological stimulation of α2-adrenergic receptors via dexmedetomidine (0.01 mg/kg) decreased the preference of probabilistic rewards in the risk-prefer group, while blocking α2 receptors by atipamezole (0.3 mg/kg) also reduced risky choices. The NA reuptake inhibitor, atomoxetine, increased the preference for risky choices in the risk-prefer group, the effect of which was attained via multiple superimposed doses. Administration of the 5-HT2A receptor agonist, DOI (0.1 mg/kg), increased risk-taking behavior in the risk-prefer group. Taken together, these results suggest that NA may be more inclined to process negative information such as loss or uncertainty in the regulation of risk-related decision making, whereas 5-HT may function primarily to increase risk-taking behavior. Our findings may help to further elucidate how noradrenergic and serotonergic systems differentially affect individuals with different risk preferences in terms of regulating risk perception in risk-related decision making.
Collapse
Affiliation(s)
- Rui-Si Cui
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China
| | - Heng Ruan
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China
| | - Li-Yuan Liu
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China
| | - Xin-Wang Li
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China.
| |
Collapse
|
10
|
Moreira PS, Macoveanu J, Marques P, Coelho A, Magalhães R, Siebner HR, Soares JM, Sousa N, Morgado P. Altered response to risky decisions and reward in patients with obsessive–compulsive disorder. J Psychiatry Neurosci 2020; 45:98-107. [PMID: 31509362 PMCID: PMC7828903 DOI: 10.1503/jpn.180226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Patients with obsessive–compulsive disorder (OCD) employ ritualistic behaviours to reduce or even neutralize the anxiety provoked by their obsessions. The presence of excessive rumination and indecision has motivated the view of OCD as a disorder of decision-making. Most studies have focused on the “cold,” cognitive aspects of decision-making. This study expands current understanding of OCD by characterizing the abnormalities associated with affective, or “hot” decision-making. METHODS We performed a functional MRI study in a sample of 34 patients with OCD and 33 sex- and age-matched healthy controls, during which participants made 2-choice gambles taking varying levels of risk. RESULTS During risky decisions, patients showed significantly reduced task-related activation in the posterior cingulum, lingual gyrus and anterior cingulate cortex. We identified significant group × risk interactions in the calcarine cortex, precuneus, amygdala and anterior cingulate cortex. During the outcome phase, patients with OCD showed stronger activation of the orbitofrontal cortex, anterior cingulate cortex and putamen in response to unexpected losses. LIMITATIONS The group of patients not receiving medication was very small (n = 5), which precluded us from assessing the effect of medication on risk-taking behaviour in these patients. CONCLUSION Obsessive–compulsive disorder is associated with abnormal brain activity patterns during risky decision-making in a set of brain regions that have been consistently implicated in the processing of reward prediction errors. Alterations in affective “hot” processes implicated in decision-making may contribute to increased indecisiveness and intolerance to uncertainty in patients with OCD.
Collapse
Affiliation(s)
- Pedro Silva Moreira
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Julian Macoveanu
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Paulo Marques
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Ana Coelho
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Ricardo Magalhães
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Hartwig R. Siebner
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - José Miguel Soares
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Nuno Sousa
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| | - Pedro Morgado
- From the Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the ICVS/3Bs, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Clinical Academic Centre, Braga, 4710-057 Braga, Portugal (Moreira, Marques, Coelho, Magalhães, Soares, Sousa, Morgado); the Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark (Macoveanu); the Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark (Macoveanu, Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København, Denmark (Siebner); and the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark (Siebner)
| |
Collapse
|
11
|
Wolke SA, Mehta MA, O'Daly O, Zelaya F, Zahreddine N, Keren H, O'Callaghan G, Young AH, Leibenluft E, Pine DS, Stringaris A. Modulation of anterior cingulate cortex reward and penalty signalling in medication-naive young-adult subjects with depressive symptoms following acute dose lurasidone. Psychol Med 2019; 49:1365-1377. [PMID: 30606271 PMCID: PMC6518385 DOI: 10.1017/s0033291718003306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Aberrations in reward and penalty processing are implicated in depression and putatively reflect altered dopamine signalling. This study exploits the advantages of a placebo-controlled design to examine how a novel D2 antagonist with adjunctive antidepressant properties modifies activity in the brain's reward network in depression. METHODS We recruited 43 medication-naïve subjects across the range of depression severity (Beck's Depression Inventory-II score range: 0-43), including healthy volunteers, as well as people meeting full-criteria for major depressive disorder. In a double-blind placebo-controlled cross-over design, all subjects received either placebo or lurasidone (20 mg) across two visits separated by 1 week. Functional magnetic resonance imaging with the Monetary Incentive Delay (MID) task assessed reward functions via neural responses during anticipation and receipt of gains and losses. Arterial spin labelling measured cerebral blood flow (CBF) at rest. RESULTS Lurasidone altered fronto-striatal activity during anticipation and outcome phases of the MID task. A significant three-way Medication-by-Depression severity-by-Outcome interaction emerged in the anterior cingulate cortex (ACC) after correction for multiple comparisons. Follow-up analyses revealed significantly higher ACC activation to losses in high- v. low depression participants in the placebo condition, with a normalisation by lurasidone. This effect could not be accounted for by shifts in resting CBF. CONCLUSIONS Lurasidone acutely normalises reward processing signals in individuals with depressive symptoms. Lurasidone's antidepressant effects may arise from reducing responses to penalty outcomes in individuals with depressive symptoms.
Collapse
Affiliation(s)
- Selina A. Wolke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Nada Zahreddine
- Department of Psychiatry, Saint-Joseph University, Beirut, Lebanon
| | - Hanna Keren
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| | - Georgia O'Callaghan
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| | - Allan H. Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| | - Daniel S. Pine
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, MD, USA
| | - Argyris Stringaris
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, MD, USA
| |
Collapse
|
12
|
Cui R, Wang L, Liu L, Ruan H, Li X. Effects of noradrenergic and serotonergic systems on risk-based decision-making and center arena activity in open field in rats. Eur J Pharmacol 2018; 841:57-66. [DOI: 10.1016/j.ejphar.2018.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
13
|
Fujino J, Kawada R, Tsurumi K, Takeuchi H, Murao T, Takemura A, Tei S, Murai T, Takahashi H. An fMRI study of decision-making under sunk costs in gambling disorder. Eur Neuropsychopharmacol 2018; 28:1371-1381. [PMID: 30243683 DOI: 10.1016/j.euroneuro.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/24/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022]
Abstract
The sunk cost effect is the tendency to continue an investment, or take an action, even though it has higher future costs than benefits, if costs of time, money, or effort were previously incurred. This type of decision bias is pervasive in real life and has been studied in various disciplines. Previous studies and clinical observations suggest that decision-making under sunk costs is altered in gambling disorder (GD). However, the neural mechanisms of decision-making under sunk costs in GD remain largely unknown, and so is their association with the clinical characteristics of this patient group. Here, by combining functional magnetic resonance imaging and the task that demonstrated a clear example of the sunk cost effect, we investigated the neural correlates during decision-making under sunk costs in GD. We found no significant differences in the strength of the sunk cost effect between the GD and healthy control (HC) groups. However, the strength of the sunk cost effect in patients with GD showed a significant negative correlation with abstinence period and a marginally significant positive correlation with the duration of illness. We also found a reduction in the neural activation in the dorsal medial prefrontal cortex during decision-making under sunk costs for the GD group compared with the HC group. Furthermore, in patients with GD, the levels of activation in this area negatively correlated with the duration of illness. These findings have important clinical implications. This study will contribute to a better understanding of the mechanisms underlying altered decision-making abilities in GD.
Collapse
Affiliation(s)
- Junya Fujino
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan; Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, Tokyo 157-8577, Japan
| | - Ryosaku Kawada
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kosuke Tsurumi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideaki Takeuchi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuro Murao
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ariyoshi Takemura
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan; Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, Tokyo 157-8577, Japan; Institute of Applied Brain Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan; School of Human and Social Sciences, Tokyo International University, 2509 Matoba, Kawagoe, Saitama 350-1198, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan; Medical Institute of Developmental Disabilities Research, Showa University Karasuyama Hospital, Tokyo 157-8577, Japan.
| |
Collapse
|
14
|
Amaravathi E, Ramarao NH, Raghuram N, Pradhan B. Yoga-Based Postoperative Cardiac Rehabilitation Program for Improving Quality of Life and Stress Levels: Fifth-Year Follow-up through a Randomized Controlled Trial. Int J Yoga 2018; 11:44-52. [PMID: 29343930 PMCID: PMC5769198 DOI: 10.4103/ijoy.ijoy_57_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives: This study was aimed to assess the efficacy of yoga-based lifestyle program (YLSP) in improving quality of life (QOL) and stress levels in patients after 5 years of coronary artery bypass graft (CABG). Methodology: Three hundred patients posted for elective CABG in Narayana Hrudayalaya Super Speciality Hospital, Bengaluru, were randomized into two groups: YLSP and conventional lifestyle program (CLSP), and follow-up was done for 5 years. Intervention: In YLSP group, all practices of integrative approach of yoga therapy such as yama, niyama, asana, pranayama, and meditation were used as an add-on to conventional cardiac rehabilitation. The control group (CLSP) continued conventional cardiac rehabilitation only. Outcome Measures: World Health Organization (WHO)-QOL BREF Questionnaire, Perceived Stress Scale, Positive and Negative Affect Scale (PANAS), and Hospital Anxiety and Depression Scale (HADS) were assessed before surgery and at the end of the 5th year after CABG. As data were not normally distributed, Mann–Whitney U-test was used for between-group comparisons and Wilcoxon's signed-rank test was used for within-group comparisons. Results: At the end of 5 years, mental health (P = 0.05), perceived stress (P = 0.01), and negative affect (NA) (P = 0.05) have shown significant improvements. WHO-QOL BREF score has shown improvements in physical health (P = 0.046), environmental health (P = 0.04), perceived stress (P = 0.001), and NA (P = 0.02) in YLSP than CLSP. Positive affect has significantly improved in CLSP than YLSP. Other domains of WHO-QOL-BREF, PANAS, and HADS did not reveal any significant between-group differences. Conclusion: Addition of long-term YLSP to conventional cardiac rehabilitation brings better improvements in QOL and reduction in stress levels at the end of 5 years after CABG.
Collapse
Affiliation(s)
- Eraballi Amaravathi
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana University, Bengaluru, Karnataka, India
| | - Nagendra Hongasandra Ramarao
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana University, Bengaluru, Karnataka, India
| | - Nagarathna Raghuram
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana University, Bengaluru, Karnataka, India
| | - Balaram Pradhan
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana University, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Macoveanu J, Fisher PM, Madsen MK, Mc Mahon B, Knudsen GM, Siebner HR. Bright-light intervention induces a dose-dependent increase in striatal response to risk in healthy volunteers. Neuroimage 2016; 139:37-43. [PMID: 27318214 DOI: 10.1016/j.neuroimage.2016.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/01/2023] Open
Abstract
Bright-light interventions have successfully been used to reduce depression symptoms in patients with seasonal affective disorder, a depressive disorder most frequently occurring during seasons with reduced daylight availability. Yet, little is known about how light exposure impacts human brain function, for instance on risk taking, a process affected in depressive disorders. Here we examined the modulatory effects of bright-light exposure on brain activity during a risk-taking task. Thirty-two healthy male volunteers living in the greater Copenhagen area received 3weeks of bright-light intervention during the winter season. Adopting a double-blinded dose-response design, bright-light was applied for 30minutes continuously every morning. The individual dose varied between 100 and 11.000lx. Whole-brain functional MRI was performed before and after bright-light intervention to probe how the intervention modifies risk-taking related neural activity during a two-choice gambling task. We also assessed whether inter-individual differences in the serotonin transporter-linked polymorphic region (5-HTTLPR) genotype influenced the effects of bright-light intervention on risk processing. Bright-light intervention led to a dose-dependent increase in risk-taking in the LA/LA group relative to the non-LA/LA group. Further, bright-light intervention enhanced risk-related activity in ventral striatum and head of caudate nucleus in proportion with the individual bright-light dose. The augmentation effect of light exposure on striatal risk processing was not influenced by the 5-HTTLPR-genotype. This study provides novel evidence that in healthy non-depressive individuals bright-light intervention increases striatal processing to risk in a dose-dependent fashion. The findings provide converging evidence that risk processing is sensitive to bright-light exposure during winter.
Collapse
Affiliation(s)
- Julian Macoveanu
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark; Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Patrick M Fisher
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Martin K Madsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Brenda Mc Mahon
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Gitte M Knudsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
16
|
Valence-dependent influence of serotonin depletion on model-based choice strategy. Mol Psychiatry 2016; 21:624-9. [PMID: 25869808 PMCID: PMC4519524 DOI: 10.1038/mp.2015.46] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 03/01/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022]
Abstract
Human decision-making arises from both reflective and reflexive mechanisms, which underpin goal-directed and habitual behavioural control. Computationally, these two systems of behavioural control have been described by different learning algorithms, model-based and model-free learning, respectively. Here, we investigated the effect of diminished serotonin (5-hydroxytryptamine) neurotransmission using dietary tryptophan depletion (TD) in healthy volunteers on the performance of a two-stage decision-making task, which allows discrimination between model-free and model-based behavioural strategies. A novel version of the task was used, which not only examined choice balance for monetary reward but also for punishment (monetary loss). TD impaired goal-directed (model-based) behaviour in the reward condition, but promoted it under punishment. This effect on appetitive and aversive goal-directed behaviour is likely mediated by alteration of the average reward representation produced by TD, which is consistent with previous studies. Overall, the major implication of this study is that serotonin differentially affects goal-directed learning as a function of affective valence. These findings are relevant for a further understanding of psychiatric disorders associated with breakdown of goal-directed behavioural control such as obsessive-compulsive disorders or addictions.
Collapse
|
17
|
Macoveanu J, Henningsson S, Pinborg A, Jensen P, Knudsen GM, Frokjaer VG, Siebner HR. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward. Neuropsychopharmacology 2016; 41:1057-65. [PMID: 26245498 PMCID: PMC4748430 DOI: 10.1038/npp.2015.236] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022]
Abstract
Mood disorders are twice as frequent in women than in men. Risk mechanisms for major depression include adverse responses to acute changes in sex-steroid hormone levels, eg, postpartum in women. Such adverse responses may involve an altered processing of rewards. Here, we examine how women's vulnerability for mood disorders is linked to sex-steroid dynamics by investigating the effects of a pharmacologically induced fluctuation in ovarian sex steroids on the brain response to monetary rewards. In a double-blinded placebo controlled study, healthy women were randomized to receive either placebo or the gonadotropin-releasing hormone agonist (GnRHa) goserelin, which causes a net decrease in sex-steroid levels. Fifty-eight women performed a gambling task while undergoing functional MRI at baseline, during the mid-follicular phase, and again following the intervention. The gambling task enabled us to map regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to high monetary rewards. There was a positive association between the individual changes in testosterone and changes in bilateral insula response to monetary rewards. Our data provide evidence for the involvement of sex-steroid hormones in reward processing. A blunted amygdala response to rewarding stimuli following a rapid decline in sex-steroid hormones may reflect a reduced engagement in positive experiences. Abnormal reward processing may constitute a neurobiological mechanism by which sex-steroid fluctuations provoke mood disorders in susceptible women.
Collapse
Affiliation(s)
- Julian Macoveanu
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark,Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, Hvidovre DK-2650, Denmark, Tel: +0045 3195 3196, E-mail:
| | - Susanne Henningsson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark,Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anja Pinborg
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Fertility Clinic, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Gynecology and Obstetrics, Copenhagen University Hospital, Hvidovre, Denmark
| | - Peter Jensen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibe G Frokjaer
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark,Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
18
|
Individual behavioral and neurochemical markers of unadapted decision-making processes in healthy inbred mice. Brain Struct Funct 2016; 221:4615-4629. [PMID: 26860089 PMCID: PMC5102946 DOI: 10.1007/s00429-016-1192-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
One of the hallmarks of decision-making processes is the inter-individual variability between healthy subjects. These behavioral patterns could constitute risk factors for the development of psychiatric disorders. Therefore, finding predictive markers of safe or risky decision-making is an important challenge for psychiatry research. We set up a mouse gambling task (MGT)-adapted from the human Iowa gambling task with uncertain contingencies between response and outcome that furthermore enables the emergence of inter-individual differences. Mice (n = 54) were further individually characterized for locomotive, emotional and cognitive behavior. Individual basal rates of monoamines and brain activation after the MGT were assessed in brain regions related to reward, emotion or cognition. In a large healthy mice population, 44 % showed a balanced strategy with limited risk-taking and flexible choices, 29 % showed a safe but rigid strategy, while 27 % adopted risky behavior. Risky mice took also more risks in other apparatus behavioral devices and were less sensitive to reward. No difference existed between groups regarding anxiety, working memory, locomotion and impulsivity. Safe/rigid mice exhibited a hypoactivation of prefrontal subareas, a high level of serotonin in the orbitofrontal cortex combined with a low level of dopamine in the putamen that predicted the emergence of rigid behavior. By contrast, high levels of dopamine, serotonin and noradrenalin in the hippocampus predicted the emergence of more exploratory and risky behaviors. The coping of C57bl/6J mice in MGT enables the determination of extreme patterns of choices either safe/rigid or risky/flexible, related to specific neurochemical and behavioral markers.
Collapse
|
19
|
Macoveanu J, Miskowiak K, Kessing LV, Vinberg M, Siebner HR. Healthy co-twins of patients with affective disorders show reduced risk-related activation of the insula during a monetary gambling task. J Psychiatry Neurosci 2016; 41:38-47. [PMID: 26395812 PMCID: PMC4688027 DOI: 10.1503/jpn.140220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Healthy first-degree relatives of patients with affective disorders are at increased risk for affective disorders and express discrete structural and functional abnormalities in the brain reward system. However, value-based decision making is not well understood in these at-risk individuals. METHODS We investigated healthy monozygotic and dizygotic twins with or without a co-twin history of affective disorders (high-risk and low-risk groups, respectively) using functional MRI during a gambling task. We assessed group differences in activity related to gambling risk over the entire brain. RESULTS We included 30 monozygotic and 37 dizygotic twins in our analysis. Neural activity in the anterior insula and ventral striatum increased linearly with the amount of gambling risk in the entire cohort. Individual neuroticism scores were positively correlated with the neural response in the ventral striatum to increasing gambling risk and negatively correlated with individual risk-taking behaviour. Compared with low-risk twins, the high-risk twins showed a bilateral reduction of risk-related activity in the middle insula extending into the temporal cortex with increasing gambling risk. Post hoc analyses revealed that this effect was strongest in dizygotic twins. LIMITATIONS The relatively old average age of the mono- and dizygotic twin cohort (49.2 yr) may indicate an increased resilience to affective disorders. The size of the monozygotic high-risk group was relatively small (n = 13). CONCLUSION The reduced processing of risk magnitude in the middle insula may indicate a deficient integration of exteroceptive information related to risk-related cues with interoceptive states in individuals at familial risk for affective disorders. Impaired risk processing might contribute to increased vulnerability to affective disorders.
Collapse
Affiliation(s)
- Julian Macoveanu
- Correspondence to: J. Macoveanu, Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark;
| | | | | | | | | |
Collapse
|
20
|
Qi X, Du X, Yang Y, Du G, Gao P, Zhang Y, Qin W, Li X, Zhang Q. Decreased modulation by the risk level on the brain activation during decision making in adolescents with internet gaming disorder. Front Behav Neurosci 2015; 9:296. [PMID: 26578922 PMCID: PMC4630310 DOI: 10.3389/fnbeh.2015.00296] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
Greater impulse and risk-taking and reduced decision-making ability were reported as the main behavioral impairments in individuals with internet gaming disorder (IGD), which has become a serious mental health issue worldwide. However, it is not clear to date how the risk level modulates brain activity during the decision-making process in IGD individuals. In this study, 23 adolescents with IGD and 24 healthy controls (HCs) without IGD were recruited, and the balloon analog risk task (BART) was used in a functional magnetic resonance imaging experiment to evaluate the modulation of the risk level (the probability of balloon explosion) on brain activity during risky decision making in IGD adolescents. Reduced modulation of the risk level on the activation of the right dorsolateral prefrontal cortex (DLPFC) during the active BART was found in IGD group compared to the HCs. In the IGD group, there was a significant negative correlation between the risk-related DLPFC activation during the active BART and the Barratt impulsivity scale (BIS-11) scores, which were significantly higher in IGD group compared with the HCs. Our study demonstrated that, as a critical decision-making-related brain region, the right DLPFC is less sensitive to risk in IGD adolescents compared with the HCs, which may contribute to the higher impulsivity level in IGD adolescents.
Collapse
Affiliation(s)
- Xin Qi
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin, China
| | - Xin Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin, China
| | - Yongxin Yang
- Department of Psychology, Linyi Fourth People's Hospital Linyi, China
| | - Guijin Du
- Department of Radiology, Linyi People's Hospital Linyi, China
| | - Peihong Gao
- Department of Radiology, Linyi People's Hospital Linyi, China
| | - Yang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin, China
| | - Xiaodong Li
- Department of Radiology, Linyi People's Hospital Linyi, China
| | - Quan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital Tianjin, China
| |
Collapse
|
21
|
Ma Y, Li B, Wang C, Zhang W, Rao Y, Han S. Allelic variation in 5-HTTLPR and the effects of citalopram on the emotional neural network. Br J Psychiatry 2015; 206:385-92. [PMID: 25745133 DOI: 10.1192/bjp.bp.114.150128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/15/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs), such as citalopram, which selectively block serotonin transporter (5-HTT) activity, are widely used in the treatment of depression and anxiety disorders. Numerous neuroimaging studies have examined the effects of SSRIs on emotional processes. However, there are considerable inter-individual differences in SSRI effect, and a recent meta-analysis further revealed discrepant effects of acute SSRI administration on neural responses to negative emotions in healthy adults. AIMS We examined how a variant of the serotonin-transporter polymorphism (5-HTTLPR), which affects the expression and function of 5-HTT, influenced the acute effects of an SSRI (citalopram) on emotion-related brain activity in healthy adults. METHOD Combining genetic neuroimaging, pharmacological technique and a psychological paradigm of emotion recognition, we scanned the short/short (s/s) and long/long (l/l) variants of 5-HTTLPR during perception of fearful, happy and neutral facial expressions after the acute administration of an SSRI (i.e. 30 mg citalopram administered orally) or placebo administration. RESULTS We found that 5-HTTLPR modulated the acute effects of citalopram on neural responses to negative emotions. Specifically, relative to placebo, citalopram increased amygdala and insula activity in l/l but not s/s homozygotes during perception of fearful faces. Similar analyses of brain activity in response to happy faces did not show any significant effects. CONCLUSIONS Our combined pharmacogenetic and functional imaging results provide a neurogenetic mechanism for discrepant acute effects of SSRIs.
Collapse
Affiliation(s)
- Yina Ma
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Bingfeng Li
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Chenbo Wang
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Wenxia Zhang
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yi Rao
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Shihui Han
- Yina Ma, PhD, Department of Psychology, Peking University, China, and Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, USA; Bingfeng Li, BS, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Chenbo Wang, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Wenxia Zhang, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Yi Rao, PhD, Peking-Tsinghua Center for Life Sciences at School of Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China; Shihui Han, PhD, Department of Psychology and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
22
|
Knudsen GM, Jensen PS, Erritzoe D, Baaré WFC, Ettrup A, Fisher PM, Gillings N, Hansen HD, Hansen LK, Hasselbalch SG, Henningsson S, Herth MM, Holst KK, Iversen P, Kessing LV, Macoveanu J, Madsen KS, Mortensen EL, Nielsen FÅ, Paulson OB, Siebner HR, Stenbæk DS, Svarer C, Jernigan TL, Strother SC, Frokjaer VG. The Center for Integrated Molecular Brain Imaging (Cimbi) database. Neuroimage 2015; 124:1213-1219. [PMID: 25891375 DOI: 10.1016/j.neuroimage.2015.04.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/07/2023] Open
Abstract
We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions related to the serotonergic transmitter system with its normative data on the serotonergic subtype receptors 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 and the 5-HT transporter (5-HTT), but can easily serve other purposes. The Cimbi database and Cimbi biobank were formally established in 2008 with the purpose to store the wealth of Cimbi-acquired data in a highly structured and standardized manner in accordance with the regulations issued by the Danish Data Protection Agency as well as to provide a quality-controlled resource for future hypothesis-generating and hypothesis-driven studies. The Cimbi database currently comprises a total of 1100 PET and 1000 structural and functional MRI scans and it holds a multitude of additional data, such as genetic and biochemical data, and scores from 17 self-reported questionnaires and from 11 neuropsychological paper/computer tests. The database associated Cimbi biobank currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank.
Collapse
Affiliation(s)
- Gitte M Knudsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Peter S Jensen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - David Erritzoe
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - William F C Baaré
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark
| | - Anders Ettrup
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Patrick M Fisher
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Nic Gillings
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; PET and Cyclotron Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Hanne D Hansen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Lars Kai Hansen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Steen G Hasselbalch
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Susanne Henningsson
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark
| | - Matthias M Herth
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; PET and Cyclotron Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Klaus K Holst
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Department of Biostatistics, University of Copenhagen, DK-1014 Copenhagen, Denmark
| | - Pernille Iversen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark
| | - Lars V Kessing
- Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Julian Macoveanu
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark; Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark
| | - Erik L Mortensen
- Department of Public Health and Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Finn Årup Nielsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Olaf B Paulson
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Hartwig R Siebner
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, DK-2400 Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, DK-2400 Copenhagen, Denmark
| | - Dea S Stenbæk
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Claus Svarer
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Terry L Jernigan
- Center for Human Development, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen C Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Vibe G Frokjaer
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; Psychiatric Center Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
23
|
Shao R, Zhang HJ, Lee TM. The neural basis of social risky decision making in females with major depressive disorder. Neuropsychologia 2015; 67:100-10. [DOI: 10.1016/j.neuropsychologia.2014.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/29/2014] [Accepted: 12/07/2014] [Indexed: 11/28/2022]
|
24
|
The role of serotonin in reward, punishment and behavioural inhibition in humans: insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev 2014; 46 Pt 3:365-78. [PMID: 25195164 DOI: 10.1016/j.neubiorev.2014.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 01/06/2023]
Abstract
Deakin and Graeff proposed that forebrain 5-hydroxytryptamine (5-HT) projections are activated by aversive events and mediate anticipatory coping responses including avoidance learning and suppression of the fight-flight escape/panic response. Other theories proposed 5-HT mediates aspects of behavioural inhibition or reward. Most of the evidence comes from rodent studies. We review 36 experimental studies in humans in which the technique of acute tryptophan depletion (ATD) was used to explicitly address the role of 5-HT in response inhibition, punishment and reward. ATD did not cause disinhibition of responding in the absence of rewards or punishments (9 studies). A major role for 5-HT in reward processing is unlikely but further tests are warranted by some ATD findings. Remarkably, ATD lessened the ability of punishments (losing points or notional money) to restrain behaviour without affecting reward processing in 7 studies. Two of these studies strongly indicate that ATD blocks 5-HT mediated aversively conditioned Pavlovian inhibition and this can explain a number of the behavioural effects of ATD.
Collapse
|
25
|
Cuomo I, Kotzalidis GD, Caccia F, Danese E, Manfredi G, Girardi P. Citalopram-associated gambling: a case report. J Gambl Stud 2014; 30:467-73. [PMID: 23385394 DOI: 10.1007/s10899-013-9360-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pathological gambling behaviour is a side effect of dopaminergic drugs used in Parkinson's disease, but has seldom been reported with selective serotonin reuptake inhibitors. A 58-years-old woman with somatisation disorder since the age of 20 and recent-onset major depression (at 54 years) received 40 mg/day intravenous citalopram, thereafter switching to the same dose of oral citalopram to treat her comorbid psychiatric disorders after showing poor response to paroxetine for one year. Her anxious and depressive symptoms were moderately reduced after 7 months of oral citalopram, but simultaneously, the patient admitted gambling. We gradually discontinued citalopram and introduced pregabalin and alprazolam; this was followed by a reduction of gambling compulsions, but the somatisation and depressive symptoms did not further improve. Pathological gambling may be mediated by an interplay of 5-HT1A serotonergic and D2 dopaminergic mechanisms. Citalopram affects both these mechanisms in areas that were shown to be involved in gambling behaviour, but while dopaminergic effects of citalopram appear to be consistent with the induction of gambling, its serotonergic mechanisms are rather inconsistent. In our patient, mood destabilisation induced by citalopram may have contributed to the first onset of pathological gambling.
Collapse
Affiliation(s)
- Ilaria Cuomo
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Unit of Psychiatry, School of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University, Via di Grottarossa 1035-1039, 00189, Rome, Italy,
| | | | | | | | | | | |
Collapse
|
26
|
Simonsen A, Scheel-Krüger J, Jensen M, Roepstorff A, Møller A, Frith CD, Campbell-Meiklejohn D. Serotoninergic effects on judgments and social learning of trustworthiness. Psychopharmacology (Berl) 2014; 231:2759-69. [PMID: 24464530 DOI: 10.1007/s00213-014-3444-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE Certain disorders, such as depression and anxiety, to which serotonin dysfunction is historically associated, are also associated with lower assessments of other people's trustworthiness. Serotonergic changes are known to alter cognitive responses to threatening stimuli. This effect may manifest socially as reduced apparent trustworthiness of others. Trustworthiness judgments can emerge from either direct observation or references provided by third parties. OBJECTIVE We assessed whether explicit judgments of trustworthiness and social influences on those judgments are altered by changes within serotonergic systems. METHODS We implemented a double-blind between-subject design where 20 healthy female volunteers received a single dose of the selective serotonin reuptake inhibitor (SSRI) citalopram (2 × 20 mg), while 20 control subjects (matched on age, intelligence, and years of education) received a placebo. Subjects performed a face-rating task assessing how trustworthy they found 153 unfamiliar others (targets). After each rating, the subjects were told how other subjects, on average, rated the same target. The subjects then performed 30 min of distractor tasks before, unexpectedly, being asked to rate all 153 faces again, in a random order. RESULTS Compared to subjects receiving a placebo, subjects receiving citalopram rated targets as less trustworthy. They also conformed more to opinions of others, when others rated targets to be even less trustworthy than subjects had initially indicated. The two effects were independent of negative effects of citalopram on subjective state. CONCLUSIONS This is evidence that serotonin systems can mediate explicit assessment and social learning of the trustworthiness of others.
Collapse
Affiliation(s)
- Arndis Simonsen
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
27
|
Rygula R, Clarke HF, Cardinal RN, Cockcroft GJ, Xia J, Dalley JW, Robbins TW, Roberts AC. Role of Central Serotonin in Anticipation of Rewarding and Punishing Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion. Cereb Cortex 2014; 25:3064-76. [PMID: 24879752 PMCID: PMC4537445 DOI: 10.1093/cercor/bhu102] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Understanding the role of serotonin (or 5-hydroxytryptamine, 5-HT) in aversive processing has been hampered by the contradictory findings, across studies, of increased sensitivity to punishment in terms of subsequent response choice but decreased sensitivity to punishment-induced response suppression following gross depletion of central 5-HT. To address this apparent discrepancy, the present study determined whether both effects could be found in the same animals by performing localized 5-HT depletions in the amygdala or orbitofrontal cortex (OFC) of a New World monkey, the common marmoset. 5-HT depletion in the amygdala impaired response choice on a probabilistic visual discrimination task by increasing the effectiveness of misleading, or false, punishment and reward, and decreased response suppression in a variable interval test of punishment sensitivity that employed the same reward and punisher. 5-HT depletion in the OFC also disrupted probabilistic discrimination learning and decreased response suppression. Computational modeling of behavior on the discrimination task showed that the lesions reduced reinforcement sensitivity. A novel, unitary account of the findings in terms of the causal role of 5-HT in the anticipation of both negative and positive motivational outcomes is proposed and discussed in relation to current theories of 5-HT function and our understanding of mood and anxiety disorders.
Collapse
Affiliation(s)
- Rafal Rygula
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Current Address: Affective Cognitive Neuroscience Laboratory, Department of Behavioral Neurobiology and Drug Development, Institute of Pharmacology Polish Academy of Sciences, ul Smetna 12, 31-343 Krakow, Poland
| | - Hannah F Clarke
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Psychiatry, University of Cambridge, School of Clinical Medicine, Cambridge CB2 0QQ, UK Liaison Psychiatry Service, Cambridgeshire and Peterborough NHS Foundation Trust, Box 190, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Gemma J Cockcroft
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jeff W Dalley
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Angela C Roberts
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
28
|
Herz DM, Haagensen BN, Christensen MS, Madsen KH, Rowe JB, Løkkegaard A, Siebner HR. The acute brain response to levodopa heralds dyskinesias in Parkinson disease. Ann Neurol 2014; 75:829-36. [PMID: 24889498 PMCID: PMC4112717 DOI: 10.1002/ana.24138] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 11/15/2022]
Abstract
Objective In Parkinson disease (PD), long‐term treatment with the dopamine precursor levodopa gradually induces involuntary “dyskinesia” movements. The neural mechanisms underlying the emergence of levodopa‐induced dyskinesias in vivo are still poorly understood. Here, we applied functional magnetic resonance imaging (fMRI) to map the emergence of peak‐of‐dose dyskinesias in patients with PD. Methods Thirteen PD patients with dyskinesias and 13 PD patients without dyskinesias received 200mg fast‐acting oral levodopa following prolonged withdrawal from their normal dopaminergic medication. Immediately before and after levodopa intake, we performed fMRI, while patients produced a mouse click with the right or left hand or no action (No‐Go) contingent on 3 arbitrary cues. The scan was continued for 45 minutes after levodopa intake or until dyskinesias emerged. Results During No‐Go trials, PD patients who would later develop dyskinesias showed an abnormal gradual increase of activity in the presupplementary motor area (preSMA) and the bilateral putamen. This hyperactivity emerged during the first 20 minutes after levodopa intake. At the individual level, the excessive No‐Go activity in the predyskinesia period predicted whether an individual patient would subsequently develop dyskinesias (p < 0.001) as well as severity of their day‐to‐day symptomatic dyskinesias (p < 0.001). Interpretation PD patients with dyskinesias display an immediate hypersensitivity of preSMA and putamen to levodopa, which heralds the failure of neural networks to suppress involuntary dyskinetic movements. Ann Neurol 2014;75:829–836
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Center for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Macoveanu J, Fisher PM, Haahr ME, Frokjaer VG, Knudsen GM, Siebner HR. Effects of selective serotonin reuptake inhibition on neural activity related to risky decisions and monetary rewards in healthy males. Neuroimage 2014; 99:434-42. [PMID: 24857827 DOI: 10.1016/j.neuroimage.2014.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/15/2014] [Indexed: 12/16/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are commonly prescribed antidepressant drugs targeting the dysfunctional serotonin (5-HT) system, yet little is known about the functional effects of prolonged serotonin reuptake inhibition in healthy individuals. Here we used functional MRI (fMRI) to investigate how a three-week fluoxetine intervention influences neural activity related to risk taking and reward processing. Employing a double-blinded parallel-group design, 29 healthy young males were randomly assigned to receive 3 weeks of a daily dose of 40 mg fluoxetine or placebo. Participants underwent task-related fMRI prior to and after the three-week intervention while performing a card gambling task. The task required participants to choose between two decks of cards. Choices were associated with different risk levels and potential reward magnitudes. Relative to placebo, the SSRI intervention did not alter individual risk-choice preferences, but modified neural activity during decision-making and reward processing: During the choice phase, SSRI reduced the neural response to increasing risk in lateral orbitofrontal cortex, a key structure for value-based decision-making. During the outcome phase, a midbrain region showed an independent decrease in the responsiveness to rewarding outcomes. This midbrain cluster included the raphe nuclei from which serotonergic modulatory projections originate to both cortical and subcortical regions. The findings corroborate the involvement of the normally functioning 5HT-system in decision-making under risk and processing of monetary rewards. The data suggest that prolonged SSRI treatment might reduce emotional engagement by reducing the impact of risk during decision-making or the impact of reward during outcome evaluation.
Collapse
Affiliation(s)
- Julian Macoveanu
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark.
| | - Patrick M Fisher
- Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mette E Haahr
- Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibe G Frokjaer
- Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark
| |
Collapse
|
30
|
Serotonergic modulation of reward and punishment: Evidence from pharmacological fMRI studies. Brain Res 2014; 1556:19-27. [DOI: 10.1016/j.brainres.2014.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/16/2014] [Accepted: 02/01/2014] [Indexed: 01/23/2023]
|
31
|
Nombela C, Rittman T, Robbins TW, Rowe JB. Multiple modes of impulsivity in Parkinson's disease. PLoS One 2014; 9:e85747. [PMID: 24465678 PMCID: PMC3897514 DOI: 10.1371/journal.pone.0085747] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/01/2013] [Indexed: 11/21/2022] Open
Abstract
Cognitive problems are a major factor determining quality of life of patients with Parkinson's disease. These include deficits in inhibitory control, ranging from subclinical alterations in decision-making to severe impulse control disorders. Based on preclinical studies, we proposed that Parkinson's disease does not cause a unified disorder of inhibitory control, but rather a set of impulsivity factors with distinct psychological profiles, anatomy and pharmacology. We assessed a broad set of measures of the cognitive, behavioural and temperamental/trait aspects of impulsivity. Sixty adults, including 30 idiopathic Parkinson's disease patients (Hoehn and Yahr stage I–III) and 30 healthy controls, completed a neuropsychological battery, objective behavioural measures and self-report questionnaires. Univariate analyses of variance confirmed group differences in nine out of eleven metrics. We then used factor analysis (principal components method) to identify the structure of impulsivity in Parkinson's disease. Four principal factors were identified, consistent with four different mechanisms of impulsivity, explaining 60% of variance. The factors were related to (1) tests of response conflict, interference and self assessment of impulsive behaviours on the Barrett Impulsivity Scale, (2) tests of motor inhibitory control, and the self-report behavioural approach system, (3) time estimation and delay aversion, and (4) reflection in hypothetical scenarios including temporal discounting. The different test profiles of these four factors were consistent with human and comparative studies of the pharmacology and functional anatomy of impulsivity. Relationships between each factor and clinical and demographic features were examined by regression against factor loadings. Levodopa dose equivalent was associated only with factors (2) and (3). The results confirm that impulsivity is common in Parkinson's disease, even in the absence of impulse control disorders, and that it is not a unitary phenomenon. A better understanding of the structure of impulsivity in Parkinson's disease will support more evidence-based and effective strategies to treat impulsivity.
Collapse
Affiliation(s)
- Cristina Nombela
- Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom
- * E-mail:
| | - Timothy Rittman
- Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Department of Psychology, Cambridge University, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, Cambridge, United Kingdom
| | - James B. Rowe
- Department of Clinical Neurosciences, Cambridge University, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, Cambridge, United Kingdom
- Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, United Kingdom
| |
Collapse
|
32
|
Pleger B, Draganski B, Schwenkreis P, Lenz M, Nicolas V, Maier C, Tegenthoff M. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex. PLoS One 2014; 9:e85372. [PMID: 24416397 PMCID: PMC3887056 DOI: 10.1371/journal.pone.0085372] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.
Collapse
Affiliation(s)
- Burkhard Pleger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| | - Bogdan Draganski
- Laboratoire de Recherche en Neuroimagerie – LREN, Departement des neurosciences cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Peter Schwenkreis
- Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - Volkmar Nicolas
- Department of Radiology, University Hospital Bergmannsheil, Bochum, Germany
| | - Christoph Maier
- Department of Pain Treatment, University Hospital Bergmannsheil, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
33
|
Macoveanu J, Rowe JB, Hornboll B, Elliott R, Paulson OB, Knudsen GM, Siebner HR. Serotonin 2A receptors contribute to the regulation of risk-averse decisions. Neuroimage 2013; 83:35-44. [PMID: 23810974 PMCID: PMC4330549 DOI: 10.1016/j.neuroimage.2013.06.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/22/2013] [Accepted: 06/20/2013] [Indexed: 02/02/2023] Open
Abstract
Pharmacological studies point to a role of the neurotransmitter serotonin (5-HT) in regulating the preference for risky decisions, yet the functional contribution of specific 5-HT receptors remains to be clarified. We used pharmacological fMRI to investigate the role of the 5-HT2A receptors in processing negative outcomes and regulating risk-averse behavior. During fMRI, twenty healthy volunteers performed a gambling task under two conditions: with or without blocking the 5-HT2A receptors. The volunteers repeatedly chose between small, likely rewards and large, unlikely rewards. Choices were balanced in terms of expected utility and potential loss. Acute blockade of the 5-HT2A receptors with ketanserin made participants more risk-averse. Ketanserin selectively reduced the neural response of the frontopolar cortex to negative outcomes that were caused by low-risk choices and were associated with large missed rewards. In the context of normal 5-HT2A receptor function, ventral striatum displayed a stronger response to low-risk negative outcomes in risk-taking as opposed to risk-averse individuals. This (negative) correlation between the striatal response to low-risk negative outcomes and risk-averse choice behavior was abolished by 5-HT2A receptor blockade. The results provide the first evidence for a critical role of 5-HT2A receptor function in regulating risk-averse behavior. We suggest that the 5-HT2A receptor system facilitates risk-taking behavior by modulating the outcome evaluation of "missed" reward. These results have implications for understanding the neural basis of abnormal risk-taking behavior, for instance in pathological gamblers.
Collapse
Affiliation(s)
- Julian Macoveanu
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark; Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Copenhagen, Denmark.
| | - James B Rowe
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Bettina Hornboll
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark,Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - Olaf B Paulson
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark,Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Copenhagen, Denmark,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Copenhagen, Denmark,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark,Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|