1
|
Hennessy MR, Creed SM, Gutridge AM, Rusali LE, Luo D, Sepehri B, Rhoda ES, Villegas JA, van Rijn RM, Riley AP. Discovery of Potent Kappa Opioid Receptor Agonists Derived from Akuammicine. J Med Chem 2024; 67:20842-20857. [PMID: 39565354 DOI: 10.1021/acs.jmedchem.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Akuammicine (1), an alkaloid isolated from Picralima nitida, is an agonist of the kappa opioid receptor (κOR). To establish structure-activity relationships (SARs) for this structurally unique κOR ligand, a collection of semisynthetic derivatives was synthesized. Evaluating these derivatives for their ability to activate the κOR and mu opioid receptor (μOR) revealed key SAR trends and identified derivatives with enhanced κOR potency. Most notably, substitutions to the C10 position of the aryl ring led to a > 200-fold improvement in κOR potency and nearly complete selectivity for the κOR. A selection of the most potent ligands was shown to possess differing abilities recruitment of β-Arrestin-2 to the κOR, indicating they have distinct signaling properties from each other and existing κOR ligands. The discovery of these κOR agonists underscores the potential of using natural products to identify new classes of potent and selective ligands and provides new tools to probe the κOR.
Collapse
Affiliation(s)
- Madeline R Hennessy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Simone M Creed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lisa E Rusali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bakhtyar Sepehri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Elizabeth S Rhoda
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - José A Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Goode-Romero G, Dominguez L. Descriptive molecular pharmacology of the δ opioid receptor (DOR): A computational study with structural approach. PLoS One 2024; 19:e0304068. [PMID: 38991032 PMCID: PMC11239112 DOI: 10.1371/journal.pone.0304068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
This work focuses on the δ receptor (DOR), a G protein-coupled receptor (GPCR) belonging to the opioid receptor group. DOR is expressed in numerous tissues, particularly within the nervous system. Our study explores computationally the receptor's interactions with various ligands, including opiates and opioid peptides. It elucidates how these interactions influence the δ receptor response, relevant in a wide range of health and pathological processes. Thus, our investigation aims to explore the significance of DOR as an incoming drug target for pain relief and neurodegenerative diseases and as a source for novel opioid non-narcotic analgesic alternatives. We analyze the receptor's structural properties and interactions using Molecular Dynamics (MD) simulations and Gaussian-accelerated MD across different functional states. To thoroughly assess the primary differences in the structural and conformational ensembles across our different simulated systems, we initiated our study with 1 μs of conventional Molecular Dynamics. The strategy was chosen to encompass the full activation cycle of GPCRs, as activation processes typically occur within this microsecond range. Following the cMD, we extended our study with an additional 100 ns of Gaussian accelerated Molecular Dynamics (GaMD) to enhance the sampling of conformational states. This simulation approach allowed us to capture a comprehensive range of dynamic interactions and conformational changes that are crucial for GPCR activation as influenced by different ligands. Our study includes comparing agonist and antagonist complexes to uncover the collective patterns of their functional states, regarding activation, blocking, and inactivation of DOR, starting from experimental data. In addition, we also explored interactions between agonist and antagonist molecules from opiate and opioid classifications to establish robust structure-activity relationships. These interactions have been systematically quantified using a Quantitative Structure-Activity Relationships (QSAR) model. This research significantly contributes to our understanding of this significant pharmacological target, which is emerging as an attractive subject for drug development.
Collapse
Affiliation(s)
- Guillermo Goode-Romero
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Meqbil YJ, Aguilar J, Blaine AT, Chen L, Cassell RJ, Pradhan AA, van Rijn RM. Identification of 1,3,8-Triazaspiro[4.5]Decane-2,4-Dione Derivatives as a Novel δ Opioid Receptor-Selective Agonist Chemotype. J Pharmacol Exp Ther 2024; 389:301-309. [PMID: 38621994 PMCID: PMC11125782 DOI: 10.1124/jpet.123.001735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
δ opioid receptors (DORs) hold potential as a target for neurologic and psychiatric disorders, yet no DOR agonist has proven efficacious in critical phase II clinical trials. The exact reasons for the failure to produce quality drug candidates for the DOR are unclear. However, it is known that certain DOR agonists can induce seizures and exhibit tachyphylaxis. Several studies have suggested that those adverse effects are more prevalent in delta agonists that share the (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)/4-[(αR*)-α-((2S*,5R*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl]-N,N-diethylbenzamide chemotype. There is a need to find novel lead candidates for drug development that have improved pharmacological properties to differentiate them from the current failed delta agonists. Our objective in this study was to identify novel DOR agonists. We used a β-arrestin assay to screen a small G-protein coupled receptors (GPCR)-focused chemical library. We identified a novel chemotype of DOR agonists that appears to bind to the orthosteric site based of docking and molecular dynamic simulation. The most potent agonist hit compound is selective for the DOR over a panel of 167 other GPCRs, is slightly biased toward G-protein signaling and has anti-allodynic efficacy in a complete Freund's adjuvant model of inflammatory pain in C57BL/6 male and female mice. The newly discovered chemotype contrasts with molecules like SNC80 that are highly efficacious β-arrestin recruiters and may suggest this novel class of DOR agonists could be expanded on to develop a clinical candidate drug. SIGNIFICANCE STATEMENT: δ opioid receptors are a clinical target for various neurological disorders, including migraine and chronic pain. Many of the clinically tested delta opioid agonists share a single chemotype, which carries risks during drug development. Through a small-scale high-throughput screening assay, this study identified a novel δ opioid receptor agonist chemotype, which may serve as alternative for the current analgesic clinical candidates.
Collapse
Affiliation(s)
- Yazan J Meqbil
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Jhoan Aguilar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Arryn T Blaine
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Lan Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Robert J Cassell
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Amynah A Pradhan
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| | - Richard M van Rijn
- Borch Department of Medicinal Chemistry and Molecular Pharmacology (Y.J.M., A.T.B., R.J.C., R.M.v.R.), Computational Interdisciplinary Graduate Programs, Computational Life Sciences (Y.J.M.), and Interdisciplinary Life Science-PULSe (A.T.B.), Purdue University, West Lafayette, Indiana; Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana (R.M.v.R.); Purdue Institute for Drug Discovery, West Lafayette, Indiana (L.C., R.M.v.R.); Septerna Inc., South San Francisco, California (R.M.v.R.); and Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (J.A., A.A.P.)
| |
Collapse
|
4
|
Perlikowska R, Silva J, Alves C, Susano P, Zakłos-Szyda M, Skibska A, Adamska-Bartłomiejczyk A, Wtorek K, do Rego JC, do Rego JL, Kluczyk A, Pedrosa R. Neuroprotective and Anti-inflammatory Effects of Rubiscolin-6 Analogs with Proline Surrogates in Position 2. Neurochem Res 2024; 49:895-918. [PMID: 38117448 PMCID: PMC10901950 DOI: 10.1007/s11064-023-04070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/27/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Naturally occurring peptides, such as rubiscolins derived from spinach leaves, have been shown to possess some interesting activities. They exerted central effects, such as antinociception, memory consolidation and anxiolytic-like activity. The fact that rubiscolins are potent even when given orally makes them very promising drug candidates. The present work tested whether rubiscolin-6 (R-6, Tyr-Pro-Leu-Asp-Leu-Phe) analogs have neuroprotective and anti-inflammatory effects. These hypotheses were tested in the 6-hydroxydopamine (6-OHDA) injury model of human neuroblastoma SH-SY5Y and lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The determination of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), Caspase-3 activity, lipid peroxidation and nitric oxide (NO) production allowed us to determine the effects of peptides on hallmarks related to Parkinson's Disease (PD) and inflammation. Additionally, we investigated the impact of R-6 analogs on serine-threonine kinase (also known as protein kinase B, AKT) and mammalian target of rapamycin (mTOR) activation. The treatment with analogs 3 (Tyr-Inp-Leu-Asp-Leu-Phe-OH), 5 (Dmt-Inp-Leu-Asp-Leu-Phe-OH) and 7 (Tyr-Inp-Leu-Asp-Leu-Phe-NH2) most effectively prevented neuronal death via attenuation of ROS, mitochondrial dysfunction and Caspase-3 activity. Peptides 5 and 7 significantly increased the protein expression of the phosphorylated-AKT (p-AKT) and phosphorylated-mTOR (p-mTOR). Additionally, selected analogs could also ameliorate LPS-mediated inflammation in macrophages via inhibition of intracellular generation of ROS and NO production. Our findings suggest that R-6 analogs exert protective effects, possibly related to an anti-oxidation mechanism in in vitro model of PD. The data shows that the most potent peptides can inhibit 6-OHDA injury by activating the PI3-K/AKT/mTOR pathway, thus playing a neuroprotective role and may provide a rational and robust approach in the design of new therapeutics or even functional foods.
Collapse
Affiliation(s)
- Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Politécnico de Leiria, 2520-630, Peniche, Portugal
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-614, Peniche, Portugal
| | - Patricia Susano
- MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Politécnico de Leiria, 2520-630, Peniche, Portugal
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Agnieszka Skibska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Karol Wtorek
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Jean-Claude do Rego
- Platform of Behavioural Analysis (SCAC), Inserm US51 - CNRS UAR2026 HeRaCLes, Institute For Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Rouen, France
| | - Jean-Luc do Rego
- Platform of Behavioural Analysis (SCAC), Inserm US51 - CNRS UAR2026 HeRaCLes, Institute For Research and Innovation in Biomedicine (IRIB), University of Rouen Normandy, Rouen, France
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, 50-383, Wroclaw, Poland
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-614, Peniche, Portugal
| |
Collapse
|
5
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
6
|
Hennessy MR, Gutridge AM, French AR, Rhoda ES, Meqbil YJ, Gill M, Kashyap Y, Appourchaux K, Paul B, Wang ZJ, van Rijn RM, Riley AP. Modified Akuamma Alkaloids with Increased Potency at the Mu-opioid Receptor. J Med Chem 2023; 66:3312-3326. [PMID: 36827198 PMCID: PMC10037270 DOI: 10.1021/acs.jmedchem.2c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Akuammine (1) and pseudoakuammigine (2) are indole alkaloids found in the seeds of the akuamma tree (Picralima nitida). Both alkaloids are weak agonists of the mu opioid receptor (μOR); however, they produce minimal effects in animal models of antinociception. To probe the interactions of 1 and 2 at the opioid receptors, we have prepared a collection of 22 semisynthetic derivatives. Evaluation of this collection at the μOR and kappa opioid receptor (κOR) revealed structural-activity relationship trends and derivatives with improved potency at the μOR. Most notably, the introduction of a phenethyl moiety to the N1 of 2 produces a 70-fold increase in potency and a 7-fold increase in selectivity for the μOR. The in vitro potency of this compound resulted in increased efficacy in the tail-flick and hot-plate assays of antinociception. The improved potency of these derivatives highlights the promise of exploring natural product scaffolds to probe the opioid receptors.
Collapse
Affiliation(s)
- Madeline R Hennessy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 USA
| | - Alexander R French
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 USA
- Departments of Neurology and Bioengineering, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Elizabeth S Rhoda
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 USA
| | - Yazan J. Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 USA
| | - Meghna Gill
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Yavnika Kashyap
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Barnali Paul
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Zaijie Jim Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
- Departments of Neurology and Bioengineering, University of Illinois Chicago, Chicago, IL 60612 USA
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907 USA
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907 USA
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907 USA
- Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907 USA
| | - Andrew P. Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612 USA
| |
Collapse
|
7
|
O’Brien EA, Sharma KK, Byerly-Duke J, Camacho LA, VanVeller B. A General Strategy to Install Amidine Functional Groups Along the Peptide Backbone. J Am Chem Soc 2022; 144:22397-22402. [PMID: 36469014 PMCID: PMC9886086 DOI: 10.1021/jacs.2c09085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amidines are a structural surrogate for peptide bonds, yet have received considerably little attention in peptides due to limitations in existing methods to access them. The synthetic strategy developed in this study represents the first robust and general procedure for the introduction of amidines into the peptide backbone. We exploit and further develop the utility and efficiency of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. This work is significant because it describes a generally applicable path to access unexplored peptide designs and architectures for new therapeutics made possible by the unique properties of amidines.
Collapse
|
8
|
Blaine AT, Miao Y, Yuan J, Palant S, Liu RJ, Zhang ZY, van Rijn RM. Exploration of beta-arrestin isoform signaling pathways in delta opioid receptor agonist-induced convulsions. Front Pharmacol 2022; 13:914651. [PMID: 36059958 PMCID: PMC9428791 DOI: 10.3389/fphar.2022.914651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The δ-opioid receptor (δOR) has been considered as a therapeutic target in multiple neurological and neuropsychiatric disorders particularly as δOR agonists are deemed safer alternatives relative to the more abuse-liable µ-opioid receptor drugs. Clinical development of δOR agonists, however, has been challenging in part due to the seizure-inducing effects of certain δOR agonists. Especially agonists that resemble the δOR-selective agonist SNC80 have well-established convulsive activity. Close inspection suggests that many of those seizurogenic δOR agonists efficaciously recruit β-arrestin, yet surprisingly, SNC80 displays enhanced seizure activity in β-arrestin 1 knockout mice. This finding led us to hypothesize that perhaps β-arrestin 1 is protective against, whereas β-arrestin 2 is detrimental for δOR-agonist-induced seizures. To investigate our hypothesis, we characterized three different δOR agonists (SNC80, ADL5859, ARM390) in cellular assays and in vivo in wild-type and β-arrestin 1 and β-arrestin 2 knockout mice for seizure activity. We also investigated downstream kinases associated with β-arrestin-dependent signal transduction. We discovered that δOR agonist-induced seizure activity strongly and positively correlates with β-arrestin 2 efficacy for the agonist, but that indirect inhibition of ERK activation using the MEK inhibitor SL327 did not inhibit seizure potency and duration. Inhibition of the PI3K/AKT/mTOR signaling with honokiol but not PQR530, attenuated SNC80 seizure duration in β-arrestin 1 knockout, but honokiol did not reduce SNC80-induced seizures in wild-type mice. Ultimately, our results indicate that β-arrestin 2 is correlated with δOR agonist-induced seizure intensity, but that global β-arrestin 1 knockout mice are a poor model system to investigate their mechanism of action.
Collapse
Affiliation(s)
- Arryn T. Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN, United States
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Jinling Yuan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Sophia Palant
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Rebecca J. Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, West Lafayette, IN, United States
- Purdue University Cancer Center, West Lafayette, IN, United States
| | - Richard. M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, West Lafayette, IN, United States
- Purdue University Cancer Center, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
- *Correspondence: Richard. M. van Rijn,
| |
Collapse
|
9
|
Meqbil YJ, van Rijn RM. Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals (Basel) 2022; 15:873. [PMID: 35890173 PMCID: PMC9324648 DOI: 10.3390/ph15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression pattern both in the central nervous system and the body. The receptor has been investigated as a potential target for a multitude of significant diseases including migraine, alcohol use disorder, ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be optimized and selected for clinical trials. Here, we highlight recent developments involving the delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area of the GPCR drug discovery research. We focus on the validity and utility of the available delta opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta opioid modulators potentially with unique pharmacological properties, such as biased signaling.
Collapse
Affiliation(s)
- Yazan J. Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, Computational Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN 47907, USA;
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue Institute for Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Septerna Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
10
|
Opioids and Their Receptors: Present and Emerging Concepts in Opioid Drug Discovery II. Molecules 2022; 27:molecules27103140. [PMID: 35630616 PMCID: PMC9143373 DOI: 10.3390/molecules27103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
|
11
|
Identification of a Novel Delta Opioid Receptor Agonist Chemotype with Potential Negative Allosteric Modulator Capabilities. Molecules 2021; 26:molecules26237236. [PMID: 34885825 PMCID: PMC8659279 DOI: 10.3390/molecules26237236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious β-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit β-arrestin, as it has been suggested that compounds that efficaciously recruit β-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a ‘NAM-agonist’ in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.
Collapse
|
12
|
Gutridge AM, Chakraborty S, Varga BR, Rhoda ES, French AR, Blaine AT, Royer QH, Cui H, Yuan J, Cassell RJ, Szabó M, Majumdar S, van Rijn RM. Evaluation of Kratom Opioid Derivatives as Potential Treatment Option for Alcohol Use Disorder. Front Pharmacol 2021; 12:764885. [PMID: 34803709 PMCID: PMC8596301 DOI: 10.3389/fphar.2021.764885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose:Mitragyna speciosa extract and kratom alkaloids decrease alcohol consumption in mice at least in part through actions at the δ-opioid receptor (δOR). However, the most potent opioidergic kratom alkaloid, 7-hydroxymitragynine, exhibits rewarding properties and hyperlocomotion presumably due to preferred affinity for the mu opioid receptor (µOR). We hypothesized that opioidergic kratom alkaloids like paynantheine and speciogynine with reduced µOR potency could provide a starting point for developing opioids with an improved therapeutic window to treat alcohol use disorder. Experimental Approach: We characterized paynantheine, speciociliatine, and four novel kratom-derived analogs for their ability to bind and activate δOR, µOR, and κOR. Select opioids were assessed in behavioral assays in male C57BL/6N WT and δOR knockout mice. Key Results: Paynantheine (10 mg∙kg−1, i.p.) produced aversion in a limited conditioned place preference (CPP) paradigm but did not produce CPP with additional conditioning sessions. Paynantheine did not produce robust antinociception but did block morphine-induced antinociception and hyperlocomotion. Yet, at 10 and 30 mg∙kg−1 doses (i.p.), paynantheine did not counteract morphine CPP. 7-hydroxypaynantheine and 7-hydroxyspeciogynine displayed potency at δOR but limited µOR potency relative to 7-hydroxymitragynine in vitro, and dose-dependently decreased voluntary alcohol consumption in WT but not δOR in KO mice. 7-hydroxyspeciogynine has a maximally tolerated dose of at least 10 mg∙kg−1 (s.c.) at which it did not produce significant CPP neither alter general locomotion nor induce noticeable seizures. Conclusion and Implications: Derivatizing kratom alkaloids with the goal of enhancing δOR potency and reducing off-target effects could provide a pathway to develop novel lead compounds to treat alcohol use disorder with an improved therapeutic window.
Collapse
Affiliation(s)
- Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Soumen Chakraborty
- Center for Clinical Pharmacology, University of Heath Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, United States
| | - Balazs R Varga
- Center for Clinical Pharmacology, University of Heath Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, United States
| | - Elizabeth S Rhoda
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Alexander R French
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| | - Arryn T Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Quinten H Royer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Haoyue Cui
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Jinling Yuan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States
| | | | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Heath Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States
| |
Collapse
|
13
|
Sharma KK, Cassell RJ, Meqbil YJ, Su H, Blaine AT, Cummins BR, Mores KL, Johnson DK, van Rijn RM, Altman RA. Modulating β-arrestin 2 recruitment at the δ- and μ-opioid receptors using peptidomimetic ligands. RSC Med Chem 2021; 12:1958-1967. [PMID: 34825191 DOI: 10.1039/d1md00025j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
μ-Opioid receptor agonists provide potent and effective acute analgesia; however, their therapeutic window narrows considerably upon repeated administration, such as required for treating chronic pain. In contrast, bifunctional μ/δ opioid agonists, such as the endogenous enkephalins, have potential for treating both acute and chronic pain. However, enkephalins recruit β-arrestins, which correlate with certain adverse effects at μ- and δ-opioid receptors. Herein, we identify the C-terminus of Tyr-ψ[(Z)CF[double bond, length as m-dash]CH]-Gly-Leu-enkephalin, a stable enkephalin derivative, as a key site to regulate bias of both δ- and μ-opioid receptors. Using in vitro assays, substitution of the Leu5 carboxylate with amides (NHEt, NMe2, NCyPr) reduced β-arrestin recruitment efficacy through both the δ-opioid and μ-opioid, while retaining affinity and cAMP potency. For this series, computational studies suggest key ligand-receptor interactions that might influence bias. These findings should enable the discovery of a range of tool compounds with previously unexplored biased μ/δ opioid agonist pharmacological profiles.
Collapse
Affiliation(s)
- Krishna K Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University USA
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - Yazan J Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Computational Interdisciplinary Graduate Program (CIGP), Purdue University USA
| | - Hongyu Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - Arryn T Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Purdue Interdisciplinary Life Science Graduate Program, Purdue University USA
| | | | - Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA
| | - David K Johnson
- Computational Chemical Biology Core and Molecular Graphics and Modeling Laboratory, The University of Kansas USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Purdue Institute for Drug Discovery, Purdue University USA.,Purdue Institute for Integrative Neuroscience, Purdue University USA
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University USA .,Department of Chemistry, Purdue University USA
| |
Collapse
|
14
|
Yuan D, Zou Z, Li X, Cheng N, Guo N, Sun G, Liu D. A new side-effect of sufentanil: increased monocyte-endothelial adhesion. BMC Anesthesiol 2021; 21:267. [PMID: 34732147 PMCID: PMC8565079 DOI: 10.1186/s12871-021-01487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opioids have been identified by the World Health Organization to be 'indispensable for the relief of pain and suffering'. Side-effects, such as nausea, vomiting, postoperative delirium, and effects on breathing, of opioids have been well investigated; however, the influence of opioids on monocyte-endothelial adherence has never been reported. Therefore, we explored the effects of representative opioids, fentanyl, sufentanil, and remifentanil, on monocyte-endothelial adherence and the underlying mechanisms. METHODS We built a cell adhesion model with U937 monocytes and human umbilical vein endothelial cells (HUVECs). Two kinds of connexin43 (Cx43) channel inhibitors, 18-α-GA and Gap 27, were used to alter Cx43 channel function in U937 monocytes and HUVECs, respectively, to determine the effects of Cx43 channels on U937-HUVEC adhesion. Subsequently, the effects of fentanyl, sufentanil and remifentanil on Cx43 channel function and U937-HUVEC adhesion were explored. RESULTS When fentanyl, sufentanil and remifentanil acted on monocytes or endothelial cells, their effects on monocyte-endothelial adherence differed. When acting on U937 monocytes, sufentanil significantly increased U937-HUVEC adhesion which was associated with reduced release of ATP from Cx43 channels, while fentanyl and remifentanil did not have these influences. Although sufentanil could also inhibit Cx43 channel function in HUVECs, it had no effect on ATP release from HUVECs or U937-HUVECs adhesion. CONCLUSIONS We demonstrated that sufentanil application increases monocyte-endothelial adherence which was associated with reduced release of ATP from Cx43 channels in monocytes. This side-effect of sufentanil should be considered seriously by clinicians.
Collapse
Affiliation(s)
- Dongdong Yuan
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China.
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianlong Li
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China
| | - Nan Cheng
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China
| | - Na Guo
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China
| | - Guoliang Sun
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China.
| | - Dezhao Liu
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
15
|
Karasawa Y, Miyano K, Fujii H, Mizuguchi T, Kuroda Y, Nonaka M, Komatsu A, Ohshima K, Yamaguchi M, Yamaguchi K, Iseki M, Uezono Y, Hayashida M. In Vitro Analyses of Spinach-Derived Opioid Peptides, Rubiscolins: Receptor Selectivity and Intracellular Activities through G Protein- and β-Arrestin-Mediated Pathways. Molecules 2021; 26:molecules26196079. [PMID: 34641621 PMCID: PMC8513079 DOI: 10.3390/molecules26196079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the β-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® β-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® β-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., 5-11-2, Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Yui Kuroda
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Akane Komatsu
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaori Ohshima
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Correspondence:
| | - Masakazu Hayashida
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
16
|
Chakraborty S, DiBerto JF, Faouzi A, Bernhard SM, Gutridge AM, Ramsey S, Zhou Y, Provasi D, Nuthikattu N, Jilakara R, Nelson MNF, Asher WB, Eans SO, Wilson LL, Chintala SM, Filizola M, van Rijn RM, Margolis EB, Roth BL, McLaughlin JP, Che T, Sames D, Javitch JA, Majumdar S. A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. J Med Chem 2021; 64:13873-13892. [PMID: 34505767 PMCID: PMC8530377 DOI: 10.1021/acs.jmedchem.1c01273] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitragynine and 7-hydroxymitragynine (7OH) are the major alkaloids mediating the biological actions of the psychoactive plant kratom. To investigate the structure-activity relationships of mitragynine/7OH templates, we diversified the aromatic ring of the indole at the C9, C10, and C12 positions and investigated their G-protein and arrestin signaling mediated by mu opioid receptors (MOR). Three synthesized lead C9 analogs replacing the 9-OCH3 group with phenyl (4), methyl (5), or 3'-furanyl [6 (SC13)] substituents demonstrated partial agonism with a lower efficacy than DAMGO or morphine in heterologous G-protein assays and synaptic physiology. In assays limiting MOR reserve, the G-protein efficacy of all three was comparable to buprenorphine. 6 (SC13) showed MOR-dependent analgesia with potency similar to morphine without respiratory depression, hyperlocomotion, constipation, or place conditioning in mice. These results suggest the possibility of activating MOR minimally (G-protein Emax ≈ 10%) in cell lines while yet attaining maximal antinociception in vivo with reduced opioid liabilities.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Male
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Structure
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Secologanin Tryptamine Alkaloids/adverse effects
- Secologanin Tryptamine Alkaloids/chemical synthesis
- Secologanin Tryptamine Alkaloids/metabolism
- Secologanin Tryptamine Alkaloids/pharmacology
- Structure-Activity Relationship
- Mice
- Rats
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Abdelfattah Faouzi
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Sarah M. Bernhard
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Anna M. Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology,
College of Pharmacy, Purdue University, West Lafayette, Indiana 47907,
United States
| | - Steven Ramsey
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Yuchen Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Melissa N. F. Nelson
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Wesley B. Asher
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Shainnel O. Eans
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Lisa L. Wilson
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Satyanarayana M. Chintala
- Department of Anesthesiology, Washington University School of
Medicine, St. Louis, Missouri 63110, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology,
College of Pharmacy, Purdue University, West Lafayette, Indiana 47907,
United States
| | - Elyssa B. Margolis
- Department of Neurology, UCSF Weill Institute for Neurosciences,
University of California San Francisco, San Francisco, California 94158,
United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States; Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York 10027,
United States
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| |
Collapse
|
17
|
Woodford KB. Casomorphins and Gliadorphins Have Diverse Systemic Effects Spanning Gut, Brain and Internal Organs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157911. [PMID: 34360205 PMCID: PMC8345738 DOI: 10.3390/ijerph18157911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Food-derived opioid peptides include digestive products derived from cereal and dairy diets. If these opioid peptides breach the intestinal barrier, typically linked to permeability and constrained biosynthesis of dipeptidyl peptidase-4 (DPP4), they can attach to opioid receptors. The widespread presence of opioid receptors spanning gut, brain, and internal organs is fundamental to the diverse and systemic effects of food-derived opioids, with effects being evidential across many health conditions. However, manifestation delays following low-intensity long-term exposure create major challenges for clinical trials. Accordingly, it has been easiest to demonstrate causal relationships in digestion-based research where some impacts occur rapidly. Within this environment, the role of the microbiome is evidential but challenging to further elucidate, with microbiome effects ranging across gut-condition indicators and modulators, and potentially as systemic causal factors. Elucidation requires a systemic framework that acknowledges that public-health effects of food-derived opioids are complex with varying genetic susceptibility and confounding factors, together with system-wide interactions and feedbacks. The specific role of the microbiome within this puzzle remains a medical frontier. The easiest albeit challenging nutritional strategy to modify risk is reduced intake of foods containing embedded opioids. In future, constituent modification within specific foods to reduce embedded opioids may become feasible.
Collapse
|
18
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
19
|
Creed SM, Gutridge AM, Argade MD, Hennessy MR, Friesen JB, Pauli GF, van Rijn RM, Riley AP. Isolation and Pharmacological Characterization of Six Opioidergic Picralima nitida Alkaloids. JOURNAL OF NATURAL PRODUCTS 2021; 84:71-80. [PMID: 33326237 PMCID: PMC7932029 DOI: 10.1021/acs.jnatprod.0c01036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The seeds of the akuamma tree (Picralima nitida) have been used as a traditional treatment for pain and fever. Previous studies have attributed these effects to a series of indole alkaloids found within the seed extracts; however, these pharmacological studies were significantly limited in scope. Herein, an isolation protocol employing pH-zone-refining countercurrent chromatography was developed to provide six of the akuamma alkaloids in high purity and quantities sufficient for more extensive biological evaluation. Five of these alkaloids, akuammine (1), pseudo-akuammigine (3), akuammicine (4), akuammiline (5), and picraline (6), were evaluated against a panel of >40 central nervous system receptors to identify that their primary targets are the opioid receptors. Detailed in vitro investigations revealed 4 to be a potent kappa opioid receptor agonist, and three alkaloids (1-3) were shown to have micromolar activity at the mu opioid receptor. The mu opioid receptor agonists were further evaluated for analgesic properties but demonstrated limited efficacy in assays of thermal nociception. These findings contradict previous reports of the antinociceptive properties of the P. nitida alkaloids and the traditional use of akuamma seeds as analgesics. Nevertheless, their opioid-preferring activity does suggest the akuamma alkaloids provide distinct scaffolds from which novel opioids with unique pharmacologic properties and therapeutic utility can be developed.
Collapse
Affiliation(s)
- Simone M Creed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Malaika D Argade
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Madeline R Hennessy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - J Brent Friesen
- Department of Pharmaceutical Sciences and Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guido F Pauli
- Department of Pharmaceutical Sciences and Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Institute for Drug Discovery, Purdue Institute for Integrative Neuroscience, Purdue Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew P Riley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
20
|
Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: Pharmacokinetic properties and biological activity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Sobolczyk M, Perlikowska R. Rubiscolins: Biologically active peptides of plant origin. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.1413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two food-derived opioid peptides with high δ-opioid receptor affinity and selectivity, rubiscolin-5 and rubiscolin-6, were isolated from spinach leaves in 2001. Ribulose 1,5-bisphosphate carboxylase/oxygenase [EC 4.1.1.39 (RuBisCO)], digested by pepsin, is known as a precursor for them. The most important advantage of rubiscolins is their oral bioavailability. Both peptides produced analgesia not only after intracerebroventricular administration, but also orally. Moreover, rubiscolin-6 enhanced memory consolidation, influenced the processes of learning and memory, and reduced anxiety. In an animal model of acute stress, rubiscolin-6 induced an antidepressive-like effect. Moreover, this peptide regulated food intake, stimulated appetite in mice fed a balanced diet and suppressed food intake in case of high-fat diet. This review summarizes various biological activities of rubiscolins and recent developments on the structure-activity relationship of rubiscolin analogs, aimed at improving their pharmacological properties. Naturally occurring opioids, such as rubiscolins, can serve as the basis of new therapeutics or functional foods.
Collapse
Affiliation(s)
- Marta Sobolczyk
- Zakład Chemii Biomolekularnej, Wydział Lekarski, Uniwersytet Medyczny w Łodzi
| | - Renata Perlikowska
- Zakład Chemii Biomolekularnej, Wydział Lekarski, Uniwersytet Medyczny w Łodzi
| |
Collapse
|
22
|
Gutridge AM, Robins MT, Cassell RJ, Uprety R, Mores KL, Ko MJ, Pasternak GW, Majumdar S, van Rijn RM. G protein-biased kratom-alkaloids and synthetic carfentanil-amide opioids as potential treatments for alcohol use disorder. Br J Pharmacol 2020; 177:1497-1513. [PMID: 31705528 PMCID: PMC7060366 DOI: 10.1111/bph.14913] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Mitragyna speciosa, more commonly known as kratom, is a plant that contains opioidergic alkaloids but is unregulated in most countries. Kratom is used in the self-medication of chronic pain and to reduce illicit and prescription opioid dependence. Kratom may be less dangerous than typical opioids because of the stronger preference of kratom alkaloids to induce receptor interaction with G proteins over β-arrestin proteins. We hypothesized that kratom (alkaloids) can also reduce alcohol intake. EXPERIMENTAL APPROACH We pharmacologically characterized kratom extracts, kratom alkaloids (mitragynine, 7-hydroxymitragynine, paynantheine, and speciogynine) and synthetic carfentanil-amide opioids for their ability to interact with G proteins and β-arrestin at μ, δ, and κ opioid receptors in vitro. We used C57BL/6 mice to assess to which degree these opioids could reduce alcohol intake and whether they had rewarding properties. KEY RESULTS Kratom alkaloids were strongly G protein-biased at all three opioid receptors and reduced alcohol intake, but kratom and 7-hydroxymitragynine were rewarding. Several results indicated a key role for δ opioid receptors, including that the synthetic carfentanil-amide opioid MP102-a G protein-biased agonist with modest selectivity for δ opioid receptors-reduced alcohol intake, whereas the G protein-biased μ opioid agonist TRV130 did not. CONCLUSION AND IMPLICATIONS Our results suggest that kratom extracts can decrease alcohol intake but still carry significant risk upon prolonged use. Development of more δ opioid-selective synthetic opioids may provide a safer option than kratom to treat alcohol use disorder with fewer side effects.
Collapse
Affiliation(s)
- Anna M. Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Meridith T. Robins
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Robert J. Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Rajendra Uprety
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Kendall L. Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Mee Jung Ko
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
- Purdue Interdisciplinary Life Sciences Graduate ProgramPurdue UniversityWest LafayetteIndiana
| | - Gavril W. Pasternak
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Susruta Majumdar
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Center for Clinical PharmacologySt. Louis College of Pharmacy and Washington University School of MedicineSt. LouisMissouri
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
- Purdue Institute for Drug DiscoveryPurdue UniversityWest LafayetteIndiana
- Purdue Institute for Integrative NeurosciencePurdue UniversityWest LafayetteIndiana
- Purdue Interdisciplinary Life Sciences Graduate ProgramPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
23
|
Cassell RJ, Sharma KK, Su H, Cummins BR, Cui H, Mores KL, Blaine AT, Altman RA, van Rijn RM. The Meta-Position of Phe 4 in Leu-Enkephalin Regulates Potency, Selectivity, Functional Activity, and Signaling Bias at the Delta and Mu Opioid Receptors. Molecules 2019; 24:molecules24244542. [PMID: 31842282 PMCID: PMC6943441 DOI: 10.3390/molecules24244542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
As tool compounds to study cardiac ischemia, the endogenous δ-opioid receptors (δOR) agonist Leu5-enkephalin and the more metabolically stable synthetic peptide (d-Ala2, d-Leu5)-enkephalin are frequently employed. However, both peptides have similar pharmacological profiles that restrict detailed investigation of the cellular mechanism of the δOR’s protective role during ischemic events. Thus, a need remains for δOR peptides with improved selectivity and unique signaling properties for investigating the specific roles for δOR signaling in cardiac ischemia. To this end, we explored substitution at the Phe4 position of Leu5-enkephalin for its ability to modulate receptor function and selectivity. Peptides were assessed for their affinity to bind to δORs and µ-opioid receptors (µORs) and potency to inhibit cAMP signaling and to recruit β-arrestin 2. Additionally, peptide stability was measured in rat plasma. Substitution of the meta-position of Phe4 of Leu5-enkephalin provided high-affinity ligands with varying levels of selectivity and bias at both the δOR and µOR and improved peptide stability, while substitution with picoline derivatives produced lower-affinity ligands with G protein biases at both receptors. Overall, these favorable substitutions at the meta-position of Phe4 may be combined with other modifications to Leu5-enkephalin to deliver improved agonists with finely tuned potency, selectivity, bias and drug-like properties.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cricetulus
- Enkephalin, Leucine/genetics
- Enkephalin, Leucine/pharmacology
- Humans
- Phenylalanine
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Robert J. Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Krishna K. Sharma
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
| | - Hongyu Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | | | - Haoyue Cui
- College of Wuya, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Kendall L. Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Arryn T. Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Ryan A. Altman
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
- Correspondence: (R.A.A.); (R.M.v.R.)
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (R.A.A.); (R.M.v.R.)
| |
Collapse
|
24
|
Cai B, Kim D, Akhand S, Sun Y, Cassell RJ, Alpsoy A, Dykhuizen EC, Van Rijn RM, Wendt MK, Krusemark CJ. Selection of DNA-Encoded Libraries to Protein Targets within and on Living Cells. J Am Chem Soc 2019; 141:17057-17061. [PMID: 31613623 DOI: 10.1021/jacs.9b08085] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the selection of DNA-encoded small molecule libraries against protein targets within the cytosol and on the surface of live cells. The approach relies on generation of a covalent linkage of the DNA to protein targets by affinity labeling. This cross-linking event enables subsequent copurification by a tag on the recombinant protein. To access targets within cells, a cyclic cell-penetrating peptide is appended to DNA-encoded libraries for delivery across the cell membrane. As this approach assesses binding of DELs to targets in live cells, it provides a strategy for selection of DELs against challenging targets that cannot be expressed and purified as active.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Dongwook Kim
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Saeed Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yixing Sun
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Richard M Van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology , Purdue Center for Cancer Research, Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
25
|
Turnaturi R, Chiechio S, Salerno L, Rescifina A, Pittalà V, Cantarella G, Tomarchio E, Parenti C, Pasquinucci L. Progress in the development of more effective and safer analgesics for pain management. Eur J Med Chem 2019; 183:111701. [PMID: 31550662 DOI: 10.1016/j.ejmech.2019.111701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Opioid analgesics have been used for thousands of years in the treatment of pain and related disorders, and have become among the most widely prescribed medications. Among opioid analgesics, mu opioid receptor (MOR) agonists are the most commonly used and are indicated for acute and chronic pain management. However, their use results in a plethora of well-described side-effects. From selective delta opioid receptor (DOR) and kappa opioid receptor (KOR) agonists to multitarget MOR/DOR and MOR/KOR ligands, medicinal chemistry provided different approaches aimed at the development of opioid analgesics with an improved pharmacological and tolerability fingerprint. The emergent medicinal chemistry strategy to develop ameliorated opioid analgesics is based upon the concept that functional selectivity for G-protein signalling is necessary for the therapeutic effect, whether β-arrestin recruitment is mainly responsible for the manifestation of side effects, including the development of tolerance after repeated administrations. This review summarises most relevant biased MOR, DOR, KOR and multitarget MOR/DOR ligands synthesised in the last decade and their pharmacological profile in "in vitro" and "in vivo" studies. Such biased ligands could have a significant impact on modern drug discovery and represent a new strategy for the development of better-tolerated drug candidates.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Santina Chiechio
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Loredana Salerno
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, Chemistry Section, University of Catania, Viale A. Doria, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Pharmacology Section, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
26
|
Mack SM, Gomes I, Devi LA. Neuropeptide PEN and Its Receptor GPR83: Distribution, Signaling, and Regulation. ACS Chem Neurosci 2019; 10:1884-1891. [PMID: 30726666 DOI: 10.1021/acschemneuro.8b00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides are chemical messengers that act to regulate a number of physiological processes, including feeding, reward, pain, and memory, among others. PEN is one of the most abundant hypothalamic neuropeptides; however, until recently, its target receptor remained unknown. In this Review, we summarize recent developments in research focusing on PEN and its receptor GPR83. We describe the studies leading to the deorphanization of GPR83 as the receptor for PEN. We also describe the signaling mediated by the PEN-GPR83 system, as well as the physiological roles in which PEN-GPR83 has been implicated. As studies have suggested a role for the PEN-GPR83 system in food intake and body weight regulation, as well as in drug addiction and reward disorders, a thorough understanding of this novel neuropeptide-receptor system will help identify novel therapeutic targets to treat pathophysiological conditions involving PEN-GPR83.
Collapse
Affiliation(s)
- Seshat M. Mack
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|