5
|
Marchese S, Cancelmo L, Diab O, Cahn L, Aaronson C, Daskalakis NP, Schaffer J, Horn SR, Johnson JS, Schechter C, Desarnaud F, Bierer LM, Makotkine I, Flory JD, Crane M, Moline JM, Udasin IG, Harrison DJ, Roussos P, Charney DS, Koenen KC, Southwick SM, Yehuda R, Pietrzak RH, Huckins LM, Feder A. Altered gene expression and PTSD symptom dimensions in World Trade Center responders. Mol Psychiatry 2022; 27:2225-2246. [PMID: 35177824 DOI: 10.1038/s41380-022-01457-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/16/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Abstract
Despite experiencing a significant trauma, only a subset of World Trade Center (WTC) rescue and recovery workers developed posttraumatic stress disorder (PTSD). Identification of biomarkers is critical to the development of targeted interventions for treating disaster responders and potentially preventing the development of PTSD in this population. Analysis of gene expression from these individuals can help in identifying biomarkers of PTSD. We established a well-phenotyped sample of 371 WTC responders, recruited from a longitudinal WTC responder cohort using stratified random sampling, by obtaining blood, self-reported and clinical interview data. Using bulk RNA-sequencing from whole blood, we examined the association between gene expression and WTC-related PTSD symptom severity on (i) highest lifetime Clinician-Administered PTSD Scale (CAPS) score, (ii) past-month CAPS score, and (iii) PTSD symptom dimensions using a 5-factor model of re-experiencing, avoidance, emotional numbing, dysphoric arousal and anxious arousal symptoms. We corrected for sex, age, genotype-derived principal components and surrogate variables. Finally, we performed a meta-analysis with existing PTSD studies (total N = 1016), using case/control status as the predictor and correcting for these variables. We identified 66 genes significantly associated with total highest lifetime CAPS score (FDR-corrected p < 0.05), and 31 genes associated with total past-month CAPS score. Our more granular analyses of PTSD symptom dimensions identified additional genes that did not reach statistical significance in our analyses with total CAPS scores. In particular, we identified 82 genes significantly associated with lifetime anxious arousal symptoms. Several genes significantly associated with multiple PTSD symptom dimensions and total lifetime CAPS score (SERPINA1, RPS6KA1, and STAT3) have been previously associated with PTSD. Geneset enrichment of these findings has identified pathways significant in metabolism, immune signaling, other psychiatric disorders, neurological signaling, and cellular structure. Our meta-analysis revealed 10 genes that reached genome-wide significance, all of which were downregulated in cases compared to controls (CIRBP, TMSB10, FCGRT, CLIC1, RPS6KB2, HNRNPUL1, ALDOA, NACA, ZNF429 and COPE). Additionally, cellular deconvolution highlighted an enrichment in CD4 T cells and eosinophils in responders with PTSD compared to controls. The distinction in significant genes between total lifetime CAPS score and the anxious arousal symptom dimension of PTSD highlights a potential biological difference in the mechanism underlying the heterogeneity of the PTSD phenotype. Future studies should be clear about methods used to analyze PTSD status, as phenotypes based on PTSD symptom dimensions may yield different gene sets than combined CAPS score analysis. Potential biomarkers implicated from our meta-analysis may help improve therapeutic target development for PTSD.
Collapse
Affiliation(s)
- Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leo Cancelmo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Olivia Diab
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leah Cahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cindy Aaronson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jamie Schaffer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah R Horn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica S Johnson
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Clyde Schechter
- Department of Family and Social Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank Desarnaud
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Linda M Bierer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Iouri Makotkine
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Janine D Flory
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Michael Crane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacqueline M Moline
- Department of Occupational Medicine, Epidemiology and Prevention, Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Iris G Udasin
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Denise J Harrison
- Department of Medicine, Division of Pulmonary Critical Care and Sleep Medicine, NYU School of Medicine, New York, NY, USA
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 14068, USA
| | - Dennis S Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karestan C Koenen
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA.,Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA.,Harvard School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Steven M Southwick
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 14068, USA. .,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Adriana Feder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Lasconi C, Pahl MC, Cousminer DL, Doege CA, Chesi A, Hodge KM, Leonard ME, Lu S, Johnson ME, Su C, Hammond RK, Pippin JA, Terry NA, Ghanem LR, Leibel RL, Wells AD, Grant SFA. Variant-to-Gene-Mapping Analyses Reveal a Role for the Hypothalamus in Genetic Susceptibility to Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2020; 11:667-682. [PMID: 33069917 PMCID: PMC7843407 DOI: 10.1016/j.jcmgh.2020.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a polygenic disorder characterized principally by dysregulated inflammation impacting the gastrointestinal tract. However, there also is increasing evidence for a clinical association with stress and depression. Given the role of the hypothalamus in stress responses and in the pathogenesis of depression, useful insights could be gleaned from understanding its genetic role in IBD. METHODS We conducted genetic correlation analyses on publicly available genome-wide association study summary statistics for depression and IBD traits to identify genetic commonalities. We used partitioned linkage disequilibrium score regression, leveraging our ATAC sequencing and promoter-focused Capture C data, to measure enrichment of IBD single-nucleotide polymorphisms within promoter-interacting open chromatin regions of human embryonic stem cell-derived hypothalamic-like neurons (HNs). Using the same data sets, we performed variant-to-gene mapping to implicate putative IBD effector genes in HNs. To contrast these results, we similarly analyzed 3-dimensional genomic data generated in epithelium-derived colonoids from rectal biopsy specimens from donors without pathologic disease noted at the time of colonoscopy. Finally, we conducted enrichment pathway analyses on the implicated genes to identify putative IBD dysfunctional pathways. RESULTS We found significant genetic correlations (rg) of 0.122 with an adjusted P (Padj) = 1.4 × 10-4 for IBD: rg = 0.122; Padj = 2.5 × 10-3 for ulcerative colitis and genetic correlation (rg) = 0.094; Padj = 2.5 × 10-3 for Crohn's disease, and significant approximately 4-fold (P = .005) and approximately 7-fold (P = .03) enrichment of IBD single-nucleotide polymorphisms in HNs and colonoids, respectively. We implicated 25 associated genes in HNs, among which CREM, CNTF, and RHOA encode key regulators of stress. Seven genes also additionally were implicated in the colonoids. We observed an overall enrichment for immune and hormonal signaling pathways, and a colonoid-specific enrichment for microbiota-relevant terms. CONCLUSIONS Our results suggest that the hypothalamus warrants further study in the context of IBD pathogenesis.
Collapse
Affiliation(s)
- Chiara Lasconi
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Diana L Cousminer
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Claudia A Doege
- Division of Molecular Genetics (Pediatrics), Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Chun Su
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - Reza K Hammond
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | - James A Pippin
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania
| | | | | | - Rudolph L Leibel
- Division of Molecular Genetics (Pediatrics), Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Department of Pathology, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Philadelphia, Pennsylvania; Division of Human Genetics, Philadelphia, Pennsylvania; Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|