1
|
Ali HM, Attia MH, Ramadan KMA, Rashed EN, Bendary ES. Improving stabilization of α-tocopherol and α-tocopheryl acetate against oxidation, light and UV radiation by complexation with β-cyclodextrin and starch. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:75-87. [PMID: 39867622 PMCID: PMC11754563 DOI: 10.1007/s13197-024-06011-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 01/28/2025]
Abstract
Despite the remarkably high antioxidant activity of tocopherols, their applications in the food industry are limited because of their instability under various conditions. Complexes of α-tocopherol (α-TQ) or α-tocopheryl acetate (α-TQA) with β-cyclodextrin (β-CD) or starch were prepared and characterized by UV-vis, IR and thermal analysis. Oxidative stability of α-TQ and α-TQA against H2O2 was 74.7 and 88.8% respectively (576 h). However, stability increased to 82.9 and 100% for β-CD and 99.2 and 99.4% for starch complexes respectively, which indicates that starch is an excellent stabilizing host in addition to being an economic material. Stability of α-TQ and α-TQA under light conditions was dependent on their physical state; it was 55.3 and 82.9% (oil) but stability was lowered to 19.4 and 76.5% in solution (2.21 mM). In addition, exposure to UV irradiation decreased their stability to 39.2 and 85.0% as oil and 61.2 and 89.1% in solution respectively. However, the stability of all complexes remained > 99.0% under light and UV conditions. Accordingly, α-TQ, the natural and biologically active form, can be used as complex rather than α-TQA often used because of its higher stability. Docking revealed that both forms fit in β-CD with the side chain taking "U" conformation. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06011-2.
Collapse
Affiliation(s)
- Hussein M. Ali
- Agricultural Biochemistry Department, Faculty of Agriculture, Ain-Shams University, P.O. Box 68, Hadayek Shoubra, Cairo 11241 Egypt
| | - Mohamed H. Attia
- Agricultural Biochemistry Department, Faculty of Agriculture, Ain-Shams University, P.O. Box 68, Hadayek Shoubra, Cairo 11241 Egypt
| | - Khaled M. A. Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Ain-Shams University, P.O. Box 68, Hadayek Shoubra, Cairo 11241 Egypt
- Central Laboratories, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
| | - Eman N. Rashed
- Agricultural Biochemistry Department, Faculty of Agriculture, Ain-Shams University, P.O. Box 68, Hadayek Shoubra, Cairo 11241 Egypt
| | - Eslam S. Bendary
- Agricultural Biochemistry Department, Faculty of Agriculture, Ain-Shams University, P.O. Box 68, Hadayek Shoubra, Cairo 11241 Egypt
| |
Collapse
|
2
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Rivera P, Torres A, Romero J, Rodríguez F, Arrieta MP, Olea F, Silva T, Maldonado P, Quijada-Maldonado E, Tapia A. Experimental and theoretical characterization of the release kinetic of carvacrol as inclusion complexes with β-cyclodextrin in poly(lactic acid) and Mater-Bi® processed by supercritical impregnation. Int J Biol Macromol 2024; 278:133946. [PMID: 39029825 DOI: 10.1016/j.ijbiomac.2024.133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The incorporation of active compounds into polymeric matrices using traditional methods has several drawbacks mainly due to the high volatility and thermal sensitivity of these substances. A solution to this problem could be the incorporation of bioactive compounds forming inclusion complexes as a strategy to improve the chemical stability, bioactivity and achieve controlled release. In this work, β-cyclodextrin/carvacrol inclusion complex was prepared by spray drying to be incorporated into poly(lactic acid) (PLA) and Mater-Bi® films by supercritical CO2 impregnation. The impregnation process was carried out at pressures of 10, 15 and 20 MPa and at 40 °C. Both polymers showed the highest amount of incorporated inclusion complex at 15 MPa, where the percentage of impregnation varied from 0.6 % to 7.1 % in Mater-Bi® and PLA, respectively. Release tests for PLA films impregnated with inclusion complex showed a slow release of the active compound, which did not reach equilibrium after 350 h under the experimental conditions. This prolonged release was not observed in Mater-Bi® due to the lower incorporation of the inclusion complex. The release rate was described herein by a comprehensive phenomenological model considering the decomplexation kinetics combined with the equilibrium and mass transfer expressions.
Collapse
Affiliation(s)
- Patricia Rivera
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocess, Engineering Faculty, University of Santiago de Chile, Santiago, Chile; Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Alejandra Torres
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocess, Engineering Faculty, University of Santiago de Chile, Santiago, Chile.
| | - Francisco Rodríguez
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Marina P Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Felipe Olea
- Laboratory of Separation Process Intensification (SPI), Department of Chemical Engineering and Bioprocess, University of Santiago de Chile, Santiago, Chile
| | - Tannia Silva
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Paola Maldonado
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Esteban Quijada-Maldonado
- Laboratory of Separation Process Intensification (SPI), Department of Chemical Engineering and Bioprocess, University of Santiago de Chile, Santiago, Chile
| | - Andrea Tapia
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
4
|
Blaj DA, Peptu CA, Danu M, Harabagiu V, Peptu C, Bujor A, Ochiuz L, Tuchiluș CG. Enrofloxacin Pharmaceutical Formulations through the Polymer-Free Electrospinning of β-Cyclodextrin-oligolactide Derivatives. Pharmaceutics 2024; 16:903. [PMID: 39065598 PMCID: PMC11279624 DOI: 10.3390/pharmaceutics16070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Enrofloxacin (ENR), a member of the fluoroquinolone class of antibiotics, is widely used in veterinary medicine to treat bacterial infections. Like many antibiotics, ENR has limited water solubility and low bioavailability. To address these challenges, drug formulations using solid dispersions, nanosuspensions, surfactants, cocrystal/salt formation, and inclusion complexes with cyclodextrins may be employed. The approach described herein proposes the development of ENR formulations by co-electrospinning ENR with custom-prepared cyclodextrin-oligolactide (CDLA) derivatives. This method benefits from the high solubility of these derivatives, enabling polymer-free electrospinning. The electrospinning parameters were optimized to incorporate significant amounts of ENR into the CDLA nanofibrous webs, reaching up to 15.6% by weight. The obtained formulations were characterized by FTIR and NMR spectroscopy methods and evaluated for their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This study indicates that the presence of CDLA derivative does not inhibit the antibacterial activity of ENR, recommending these formulations for further development.
Collapse
Affiliation(s)
- Diana-Andreea Blaj
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Cătălina Anișoara Peptu
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Maricel Danu
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (C.A.P.); (M.D.)
| | - Valeria Harabagiu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (V.H.)
| | - Alexandra Bujor
- Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Lăcrămioara Ochiuz
- Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | | |
Collapse
|
5
|
Kaboudi N, Asl SG, Nourani N, Shayanfar A. Solubilization of drugs using beta-cyclodextrin: Experimental data and modeling. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:663-672. [PMID: 38340807 DOI: 10.1016/j.pharma.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Many drug candidates fail to complete the entire drug development process because of poor physicochemical properties. Solubility is an important physicochemical property which plays a vital role in various stages of drug discovery and development. Several methods have been proposed to enhance the solubility of drugs, and complex formation with cyclodextrins is among them. Beta-cyclodextrin (βCD) is a common excipient for solubilization of drugs. The aim of this study is to develop the mechanistic QSPR models to predict the solubility enhancement of a drug in the presence of βCD. In this study, the solubility enhancement of some drugs in the presence of 10mM βCD at 25°C was experimentally determined or collected from the literature. Two different models to predict the solubilization by βCD were developed by binary logistic regression using structural properties of drugs with more than 80% accuracy. Polar surface area and excess molar refraction are the main parameters for estimating solubilization by βCD. Moreover, other descriptors related to hydrophobicity and the capability of hydrogen bonding formation of molecules could improve the accuracy of the established models.
Collapse
Affiliation(s)
- Navid Kaboudi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghasemi Asl
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Nourani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Augis L, Nerbø Reiten I, Førde JL, Casas-Solvas JM, Sizun C, Bizien T, Rajkovic I, Larquet E, Michelet A, Collot M, Lesieur S, Herfindal L, Legrand FX. Development of nanoparticles based on amphiphilic cyclodextrins for the delivery of active substances. Int J Pharm 2024; 651:123723. [PMID: 38110013 PMCID: PMC11641101 DOI: 10.1016/j.ijpharm.2023.123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/20/2023]
Abstract
Although amphiphilic cyclodextrin derivatives (ACDs) serve as valuable building blocks for nanomedicine formulations, their widespread production still encounters various challenges, limiting large-scale manufacturing. This work focuses on a robust alternative pathway using mineral base catalysis to transesterify β-cyclodextrin with long-chain vinyl esters, yielding ACD with modular and controlled hydrocarbon chain grafting. ACDs with a wide range of degrees of substitution (DS) were reliably synthesized, as indicated by extensive physicochemical characterization, including MALDI-TOF mass spectrometry. The influence of various factors, including the type of catalyst and the length of the hydrocarbon moiety of the vinyl ester, was studied in detail. ACDs were assessed for their ability to form colloidal suspensions by nanoprecipitation, with or without PEGylated phospholipid. Small-angle X-ray scattering and cryo-electron microscopy revealed the formation of nanoparticles with distinct ultrastructures depending on the DS: an onion-like structure for low and very high DS, and reversed hexagonal organization for DS between 4.5 and 6.1. We confirmed the furtivity of the PEGylated versions of the nanoparticles through complement activation experiments and that they were well tolerated in-vivo on a zebrafish larvae model after intravenous injection. Furthermore, a biodistribution experiment showed that the nanoparticles left the bloodstream within 10 h after injection and were phagocytosed by macrophages.
Collapse
Affiliation(s)
- Luc Augis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Ingeborg Nerbø Reiten
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Internal Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Juan M Casas-Solvas
- Department of Chemistry and Physics, University of Almería, Ctra de Sacramento s/n, E-04120 Almería, Spain
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Thomas Bizien
- Université Paris-Saclay, Synchrotron Soleil, 91190 Saint-Aubin, France
| | - Ivan Rajkovic
- SSRL, SLAC National Accelerator Lab, Menlo Park, CA, USA
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Alexandre Michelet
- Applications Development Lab France, PerkinElmer, Villebon-sur-Yvette, France
| | - Mayeul Collot
- Faculté de Pharmacie, Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Illkirch, France
| | - Sylviane Lesieur
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
7
|
Iyigundogdu Z, Petek BS, Capkin Yurtsever M, Ceylan S. Melissa officinalisessential oil loaded polycaprolactone membranes: evaluation of antimicrobial activities and cytocompatibility for tissue engineering applications. Biomed Mater 2023; 18:065012. [PMID: 37741274 DOI: 10.1088/1748-605x/acfc9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Antimicrobial biomaterials play important role in tissue engineering applications to protect damaged tissue from infections. The aim of this study is producing antimicrobial polycaprolactone (PCL) membranes by using a plant based antimicrobial agent. Therefore,Melissa officinalisessential oil (MEO) was investigated against ten types of microorganisms and remarkable antimicrobial activity was demonstrated. PCL:MEO membranes were prepared by solvent casting method by mixing MEO into PCL in various ratios (PCL:0M, PCL:0.25M, PCL:0.5M, and PCL:1M w/w). Water contact angle measurements showed that hydrophilicity of the membranes increased with increasing concentrations of MEO from 103.44° to 83.36° for PCL:0M and PCL:1M, respectively. It was determined that there was an inverse relationship between the MEO concentration and the mechanical properties. Notable antioxidant activity of PCL/MEO membranes was exhibited by the inhibition percent of 2,2-diphenyl-1-picrylhydrazyl (DPPH) which was increased from 24.74% to 44.79% for PCL:0M and PCL:1M, respectively. The antimicrobial activity of MEO was also highly maintained in PCL membranes. For PCL/MEO membranes, at least 99.9% of microorganisms were inhibited. Cytocompatibility of the membranes were investigated by resazurin assay, scanning electron microscopy analysis and 4',6-diamidino-2-phenylindole (DAPI) staining. PCL:0.25M and PCL:0.5M membranes supported the viability of L929 cells more than 87% when compared to PCL:0M membranes on day 6. However, the viability of L929 cells on PCL:1M membranes was about 43% indicating significant decrease on cellular activity. In conclusion, PCL:0.25M and PCL:0.5M membranes with their high antimicrobial activity, acceptable mechanical properties and cytocompatible properties, they can be considered as an alternative biomaterial for tissue engineering applications.
Collapse
Affiliation(s)
- Zeynep Iyigundogdu
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Betül Sena Petek
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Merve Capkin Yurtsever
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Türkiye
| |
Collapse
|
8
|
Cirri M, Mura P, Benedetti S, Buratti S. Development of a Hydroxypropyl-β-Cyclodextrin-Based Liquid Formulation for the Oral Administration of Propranolol in Pediatric Therapy. Pharmaceutics 2023; 15:2217. [PMID: 37765186 PMCID: PMC10534794 DOI: 10.3390/pharmaceutics15092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Propranolol (PPN) is widely used in children to treat various cardiovascular diseases. The availability of a suitable PPN solution should avoid recourse to extemporaneous preparations of unknown/limited stability, as commonly made in hospital pharmacies. However, the development of pediatric PPN solutions is hindered by their instability to light and stability at pH ≈ 3, bitter taste, and the need to improve palatability and avoid co-solvents, flavoring agents, or preservatives that are potentially toxic. In this study, cyclodextrin (CD) complexation has been exploited to develop a safe, stable, and palatable oral pediatric solution of PPN. An initial screening among various CDs allowed us to select HPβCD for its good complexing ability and no toxicity. Drug-HPβCD physical mixtures or co-ground systems (1:1 or 1:2 mol:mol) were used to prepare 0.2% w/v drug solutions. Photo stability studies evidenced the protective effect of HPβCD, revealing a reduction of up to 75% in the drug degradation rate after 1 h of exposure to UV radiation. Storage stability studies showed unchanged physical-chemical properties and almost constant drug concentration after 6 months and under accelerated conditions (40 °C), despite the less aggressive pH (≈5.5) of the solution. The electronic tongue test proved that the HPβCD taste-masking properties improved the formulation palatability, with a 30% reduction in drug bitterness.
Collapse
Affiliation(s)
- Marzia Cirri
- Department of Chemistry Ugo Schiff (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Paola Mura
- Department of Chemistry Ugo Schiff (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Simona Benedetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (S.B.); (S.B.)
| | - Susanna Buratti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (S.B.); (S.B.)
| |
Collapse
|
9
|
Lin Z, Chen H, Li S, Li X, Wang J, Xu S. Electrospun Food Polysaccharides Loaded with Bioactive Compounds: Fabrication, Release, and Applications. Polymers (Basel) 2023; 15:polym15102318. [PMID: 37242893 DOI: 10.3390/polym15102318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Food polysaccharides are well acclaimed in the field of delivery systems due to their natural safety, biocompatibility with the human body, and capability of incorporating/releasing various bioactive compounds. Electrospinning, a straightforward atomization technique that has been attracting researchers worldwide, is also versatile for coupling food polysaccharides and bioactive compounds. In this review, several popular food polysaccharides including starch, cyclodextrin, chitosan, alginate, and hyaluronic acid are selected to discuss their basic characteristics, electrospinning conditions, bioactive compound release characteristics, and more. Data revealed that the selected polysaccharides are capable of releasing bioactive compounds from as rapidly as 5 s to as prolonged as 15 days. In addition, a series of frequently studied physical/chemical/biomedical applications utilizing electrospun food polysaccharides with bioactive compounds are also selected and discussed. These promising applications include but are not limited to active packaging with 4-log reduction against E. coli, L. innocua, and S. aureus; removal of 95% of particulate matter (PM) 2.5 and volatile organic compounds (VOCs); heavy metal ion removal; increasing enzyme heat/pH stability; wound healing acceleration and enhanced blood coagulation, etc. The broad potentials of electrospun food polysaccharides loaded with bioactive compounds are demonstrated in this review.
Collapse
Affiliation(s)
- Zhenyu Lin
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shengmei Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaolu Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Khan N, Singh AK, Saneja A. Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP- β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers. Foods 2023; 12:foods12071363. [PMID: 37048184 PMCID: PMC10093489 DOI: 10.3390/foods12071363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
L-Ascorbic acid (LAA) is a key vitamin, implicated in a variety of physiological processes in humans. Due to its free radical scavenging activity, it is extensively employed as an excipient in pharmaceutical products and food supplements. However, its application is greatly impeded by poor thermal and aqueous stability. Herein, to improve the stability and inhibit oxidative degradation, we prepared LAA-cyclodextrin inclusion complex-incorporated nanofibers (NFs). The continuous variation method (Job plot) demonstrated that LAA forms inclusions with hydroxypropyl-β-cyclodextrin (HP-β-CD) at a 2:1 molar stoichiometric ratio. The NFs were prepared via the single step electrospinning technique, without using any polymer matrix. The solid-state characterizations of LAA/HP-β-CD-NF via powder x-ray diffractometry (PXRD), Fourier-transform infrared (FT-IR) analysis, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and nuclear magnetic resonance (1H NMR and 2D-NOESY) spectroscopy, reveal the effective encapsulation of the LAA (guest molecule) inside the HP-β-CD (host) cavity. The SEM micrograph reveals an average fiber diameter of ~339 nm. The outcomes of the thermal investigations demonstrated that encapsulation of LAA within HP-β-CD cavities provides improved thermal stability of LAA (by increasing the thermal degradation temperature). The radical scavenging assay demonstrated the enhanced antioxidant potential of LAA/HP-β-CD-NF, as compared to native LAA. Overall, the study shows that cyclodextrin inclusion complex-incorporated NFs, are an effective approach for improving the limitations associated with LAA, and provide promising avenues in its therapeutic and food applications.
Collapse
Affiliation(s)
- Nabab Khan
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Singh
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Oh H, Lee JS, Sung D, Yang S, Choi WI. Size-Controllable Prussian Blue Nanoparticles Using Pluronic Series for Improved Antioxidant Activity and Anti-Inflammatory Efficacy. Antioxidants (Basel) 2022; 11:antiox11122392. [PMID: 36552600 PMCID: PMC9774457 DOI: 10.3390/antiox11122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Prussian blue (PB) is a metal cluster nanoparticle (NP) of cyanide-bridged iron(II)-iron(III) and exhibits a characteristic blue color. Its peroxidase-, catalase-, and superoxide-dismutase-like activities effectively remove excess reactive oxygen species that induce inflammation and tumorigenesis. However, the dispersion of PB NPs is not sufficiently stable for their application in the biomedical field. In this study, we developed Pluronic-stabilized Prussian blue nanoparticles (PB/Plu NPs) using a series of Pluronic triblock copolymers as a template material for PB NPs. Considering the hydrophilic-lipophilic balance (HLB) values of the Pluronic series, including F68, F127, L35, P123, and L81, the diameters of the PB/Plu NPs decreased from 294 to 112 nm with decreasing HLB values. The smallest PB NP stabilized with Pluronic P123 (PB/PP123 NP) showed the strongest antioxidant and anti-inflammatory activities and wound-healing efficacy because of its large surface area. These results indicated that the spatial distribution of PB NPs in the micelles of Pluronic greatly improved the stability and reactive oxygen species scavenging activity of these NPs. Therefore, PB/Plu NPs using U.S.-FDA-approved Pluronic polymers show potential as biocompatible materials for various biomedical applications, including the treatment of inflammatory diseases in the clinic.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
- Correspondence: ; Tel.: +82-43-913-1513
| |
Collapse
|
12
|
Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem 2022; 391:133239. [DOI: 10.1016/j.foodchem.2022.133239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
|
13
|
Rajaram R, Angaiah S, Lee YR. Polymer supported electrospun nanofibers with supramolecular materials for biological applications – a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2075871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rajamohan Rajaram
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| | - Subramania Angaiah
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| |
Collapse
|
14
|
Guan T, Li N, Zhang G, Xue P. Characterization and evaluation of sodium alginate-based edible films by incorporation of star anise ethanol extract/hydroxypropyl-β-cyclodextrin inclusion complex. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Han WH, Li X, Yu GF, Wang BC, Huang LP, Wang J, Long YZ. Recent Advances in the Food Application of Electrospun Nanofibers. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Photoinstability in active pharmaceutical ingredients: Crystal engineering as a mitigating measure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Ogawa S, Katsuragi H, Iuchi K, Hara S. Clarification of the Complexation Behaviour of 2,6-di-O-Methylated β-Cyclodextrin and Vitamin E and Radical Scavenging Ability of the Complex in Aqueous Solution. J Oleo Sci 2021; 70:1461-1467. [PMID: 34497177 DOI: 10.5650/jos.ess21064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The precise understanding of the behaviour of vitamin E (α-tocopherol; Toc) complexed with cyclodextrin (CD) additives in aqueous solution is a fundamental issue for further development of their aqua-related biological applications. In this study, the solubilisation and complexation behaviours of Toc with methyl-substituted CD derivatives and the radical scavenging ability of the resulting complexes were precisely investigated in water media. Several problems were encountered upon pre-dissolving Toc in an organic solvent prior to the addition to the water media, such as enhancement of the dispersibility and decrease in the complexation capacity. Additionally, dispersions were obtained in some cases when mixing CD and Toc even in the absence of an organic solvent; therefore, to perform the measurements, a transparent solution was prepared via filtration with a nanopore filter. Consequently, unexpectedly, the addition of certain CD methylated derivatives did not always enhance the solubility of Toc significantly. However, 2,6-di-O-methylated β-CD (2,6-DMCD) formed a water-soluble inclusion complex with Toc, effectively enhancing its solubility. A phase solubility study indicated the formation of 1:2 or 1:3 Toc/CD inclusion complexes, and the interaction of 2,6-DMCD with both the chromanol head and the phytol chain of Toc was revealed by 2D ROESY nuclear magnetic resonance analysis. The interaction between 2,6-DMCD and the chromanol head was also confirmed for a 2,6-DMCD-2,2,5,7,8-pentamethyl-6-chromanol inclusion complex. Additionally, a rapid scavenging effect for molecularly dissolved Toc was demonstrated even in a system comprising a chromanol head directly encapsulated by CD. Hence, this work elucidated the precise complexation and radical scavenging ability of 2,6-DMCD-Toc in an aqueous solution, which paves the way for its biological applications.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Haruka Katsuragi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Setsuko Hara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| |
Collapse
|
18
|
Ogawa S, Shinkawa M, Hirase R, Tsubomura T, Iuchi K, Hara S. Development of Water-Insoluble Vehicle Comprising Natural Cyclodextrin-Vitamin E Complex. Antioxidants (Basel) 2021; 10:490. [PMID: 33804761 PMCID: PMC8003986 DOI: 10.3390/antiox10030490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Development of a novel antioxidant-delivery vehicle exerting biosafety has been attracting a great deal of interest. In this study, a vehicle comprising a natural composite consisting of vitamin E (α-tocopherol; Toc) and cyclodextrin (CD) additives was developed, directed toward aqua-related biological applications. Not only β-CD, but also γ-CD, tended to form a water-insoluble aggregate with Toc in aqueous media. The aggregated vehicle, in particular the γ-CD-added system, showed a remarkable sustained effect because of slow dynamics. Furthermore, a prominent cytoprotective effect by the γ-CD-Toc vehicle under the oxidative stress condition was confirmed. Thus, the novel vitamin E vehicle motif using γ-CD as a stabilizer was proposed, widening the usability of Toc for biological applications.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| | - Mai Shinkawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| | - Ryuji Hirase
- Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira-cho, Suma, Kobe 654-0037, Japan;
| | - Taro Tsubomura
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| | - Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| | - Setsuko Hara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| |
Collapse
|
19
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
20
|
Coban O, Aytac Z, Yildiz ZI, Uyar T. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids Surf B Biointerfaces 2020; 197:111391. [PMID: 33129100 DOI: 10.1016/j.colsurfb.2020.111391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 01/06/2023]
Abstract
Electrospun nanofibers incorporated with inclusion complex (IC) of niclosamide (NIC) and hydroxypropyl-beta-cyclodextrin (HPβCD) (NIC-HPβCD-IC) was produced from pH-responsive polymer (Eudragit® L100, EUD), which disintegrates at pH values higher than 6, (EUD-NIC-HPβCD-IC-NF) for targeted delivery of NIC to the colon. Pristine EUD nanofibers (EUD-NF), only NIC loaded (EUD-NIC-NF) and physical mixture of NIC and HPβCD loaded EUD nanofibers (EUD-NIC-HPβCD-NF) were also produced as reference. SEM images revealed the bead-free and uniform morphology of nanofibers. XRD, TGA, and DSC were also performed for both NIC-HPβCD-IC and electrospun nanofibers and it was seen that there are some NIC molecules, which cannot make IC. Dissolution studies were carried out for 240 min at pH 1.2 and pH 7 simulating stomach and colon, respectively. EUD-NIC-NF released almost 53 % of NIC in 120 min, whereas EUD-NIC-HPβCD-NF (15 %) and EUD-NIC-HPβCD-IC-NF (8 %) released at most 15 % of NIC in 120 min. Then, remained NIC in the nanofibers released into the colon for the next 120 min. The slight difference in the release of NIC into stomach from EUD-NIC-HPβCD-NF and EUD-NIC-HPβCD-IC-NF might be due to the uncomplexed NIC molecules in EUD-NIC-HPβCD-IC-NF. More importantly, EUD-NIC-HPβCD-IC-NF was quite effective for preventing the release of NIC in the stomach in contrast to EUD-NIC-NF, which has already released more than half amount of NIC in 120 min. In conclusion, this study might open new areas for developing targeted delivery systems by the combination of nanofibers and CD-ICs for hydrophobic drugs such as NIC.
Collapse
Affiliation(s)
- Ozlem Coban
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Kinali‐Demirci S, Idil O, Disli A, Demirci S. Adenine Derivatives for Regenerable Antibacterial Surface Applications Based on A−T Base Pairing. ChemistrySelect 2020. [DOI: 10.1002/slct.202002238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Selin Kinali‐Demirci
- Dr. S. Kinali-Demirci Dr. S. Demirci Department of Chemistry Amasya University Ipekkoy Amasya 05100 Turkey
- Department of Biotechnology Amasya University Ipekkoy Amasya 05100 Turkey
| | - Onder Idil
- Department of Basic Education Amasya University Merkez Amasya 05000 Turkey
| | - Ali Disli
- Department of Chemistry Gazi University Teknikokullar Ankara 06500 Turkey
| | - Serkan Demirci
- Dr. S. Kinali-Demirci Dr. S. Demirci Department of Chemistry Amasya University Ipekkoy Amasya 05100 Turkey
- Department of Biotechnology Amasya University Ipekkoy Amasya 05100 Turkey
| |
Collapse
|
22
|
Ribeiro JS, Daghrery A, Dubey N, Li C, Mei L, Fenno JC, Schwendeman A, Aytac Z, Bottino MC. Hybrid Antimicrobial Hydrogel as Injectable Therapeutics for Oral Infection Ablation. Biomacromolecules 2020; 21:3945-3956. [PMID: 32786527 DOI: 10.1021/acs.biomac.0c01131] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral bacterial infection represents the leading cause of the gradual destruction of tooth and periodontal structures anchoring the teeth. Lately, injectable hydrogels have gained increased attention as a promising minimally invasive platform for localized delivery of personalized therapeutics. Here, an injectable and photocrosslinkable gelatin methacryloyl (GelMA) hydrogel is successfully engineered with ciprofloxacin (CIP)-eluting short nanofibers for oral infection ablation. For this purpose, CIP or its β-cyclodextrin (β-CD)-inclusion complex (CIP/β-CD-IC) has been incorporated into polymeric electrospun fibers, which were subsequently cut into short nanofibers, and then embedded in GelMA to obtain an injectable hybrid antimicrobial hydrogel. Thanks to the solubility enhancement of CIP by β-CD-IC and the tunable degradation profile of GelMA, the hydrogels promote localized, sustained, and yet effective cell-friendly antibiotic doses, as measured by a series of bacterial assays that demonstrated efficacy in attenuating the growth of Gram-positive Enterococcus faecalis. Altogether, we foresee significant potential in translating this innovative hybrid hydrogel as an injectable platform technology that may have broad applications in oral infection ablation, such as periodontal disease and pulpal pathology.
Collapse
Affiliation(s)
- Juliana S Ribeiro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Christina Li
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Ling Mei
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zeynep Aytac
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Rodríguez-Sánchez IJ, Vergara-Villa NF, Clavijo-Grimaldo D, Fuenmayor CA, Zuluaga-Domínguez CM. Ultrathin single and multiple layer electrospun fibrous membranes of polycaprolactone and polysaccharides. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520944422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrospinning was used to produce fibrous membranes, in single and multiple layers, from poly(ε-caprolactone), pullulan, and from mixtures of poly(ε-caprolactone) with potato modified starch and β-glucan. It was possible to obtain single-layer membranes from solutions of pullulan in water, poly(ε-caprolactone) in chloroform, and from mixtures of poly(ε-caprolactone)/β-glucan and poly(ε-caprolactone)/potato modified starch in chloroform. Scanning electron microscopy images showed the formation of ultrathin homogeneous fibers from electrospun poly(ε-caprolactone) and pullulan, whereas the fibers obtained from mixtures of poly(ε-caprolactone)/ β -glucan and poly(ε-caprolactone)/potato modified starch had different sizes and morphologies, as well as irregular microstructures, characterized by the presence of beads. Contact angle analyses showed that pullulan membranes were extremely hydrophilic, while poly(ε-caprolactone) membranes were predominantly hydrophobic. Subsequently, poly(ε-caprolactone)-pullulan-poly(ε-caprolactone) multilayer membranes, with intermediate wettability, were prepared by successive electrospinning steps. Infrared spectroscopy and calorimetric analyses showed the presence of both polymers and the absence of changes in their structure and stability due to electrospinning, indicating adequate compatibility between the two polymers. We foresee that the polyester-polysaccharide multilayer membrane might be used as a biodegradable vehicle for active agents with different hydrophobicity, with applications as food packaging and biocompatible scaffold materials.
Collapse
Affiliation(s)
| | | | - Dianney Clavijo-Grimaldo
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| | - Carlos Mario Zuluaga-Domínguez
- Departamento de Desarrollo Rural y Agroalimentario, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá D.C, Colombia
| |
Collapse
|
24
|
Kost B, Brzeziński M, Socka M, Baśko M, Biela T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020; 25:E3404. [PMID: 32731371 PMCID: PMC7435941 DOI: 10.3390/molecules25153404] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclodextrins (CD) are a group of cyclic oligosaccharides with a cavity/specific structure that enables to form inclusion complexes (IC) with a variety of molecules through non-covalent host-guest interactions. By an elegant combination of CD with biocompatible, synthetic and natural polymers, different types of universal drug delivery systems with dynamic/reversible properties have been generated. This review presents the design of nano- and micro-carriers, hydrogels, and fibres based on the polymer/CD supramolecular systems highlighting their possible biomedical applications. Application of the most prominent hydrophobic aliphatic polyesters that exhibit biodegradability, represented by polylactide and polycaprolactone, is described first. Subsequently, particular attention is focused on materials obtained from hydrophilic polyethylene oxide. Moreover, examples are also presented for grafting of CD on polysaccharides. In summary, we show the application of host-guest interactions in multi-component functional biomaterials for controlled drug delivery.
Collapse
Affiliation(s)
- Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | | | | | | |
Collapse
|
25
|
Du F, Pan T, Ji X, Hu J, Ren T. Study on the preparation of geranyl acetone and β-cyclodextrin inclusion complex and its application in cigarette flavoring. Sci Rep 2020; 10:12375. [PMID: 32704066 PMCID: PMC7378071 DOI: 10.1038/s41598-020-69323-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/08/2020] [Indexed: 11/18/2022] Open
Abstract
β-Cyclodextrin (β-CD) inclusion complex containing geranyl acetone as a guest was prepared by saturated water solution method. Furthermore, the structure and properties of the inclusion complex were studied. The formation of the inclusion complex was demonstrated by. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The thermodynamic analysis of the inclusion complex showed that the inclusion reaction is an endothermic spontaneous reaction. The average of △H, △S and △G is 11.66 kJ mol-1, 0.082 kJ mol-1 and - 14.49 kJ mol-1, respectively. Moreover, the kinetic analysis of thermal decomposition of the inclusion compound showed that the thermal decomposition reaction is a first-order reaction (the inclusion ratio is 1:1), the average activation energy of the reaction is 180.90 kJ mol-1, and the binding force in the inclusion compound is mainly Van der Waals force. The flavor test of cigarettes showed that the inclusion compound improved the stability of geranyl acetone and the sensory quality of cigarettes. This study improves the solubility and thermal stability of geranyl acetone, and provides theoretical support and technical guidance for expanding the application of geranyl acetone.
Collapse
Affiliation(s)
- Fu Du
- College of Tobacco Science, Henan Agricultural University/Henan Province Flavors & Perfumes Engineering Research Center, Zhengzhou, 450002 China
| | - Tingting Pan
- Hubei China Tobacco Industry Limited Company, Wuhan, 430030 China
| | - Xiaoming Ji
- College of Tobacco Science, Henan Agricultural University/Henan Province Flavors & Perfumes Engineering Research Center, Zhengzhou, 450002 China
| | - Jingyan Hu
- College of Tobacco Science, Henan Agricultural University/Henan Province Flavors & Perfumes Engineering Research Center, Zhengzhou, 450002 China
| | - Tianbao Ren
- College of Tobacco Science, Henan Agricultural University/Henan Province Flavors & Perfumes Engineering Research Center, Zhengzhou, 450002 China
| |
Collapse
|
26
|
Gonçalves OH, Moreira TFM, de Oliveira A, Bracht L, Ineu RP, Leimann FV. Antioxidant Activity of Encapsulated Extracts and Bioactives from Natural Sources. Curr Pharm Des 2020; 26:3847-3861. [PMID: 32634076 DOI: 10.2174/1381612826666200707131500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
The low water solubility and low bioavailability of natural bioactive substances such as polyphenols and flavonoids, either in pure form or extracts, are a major concern in the pharmaceutical field and even on the food development sector. Although encapsulation has demonstrated success in addressing these drawbacks, it is important to evaluate the antioxidant activity of the encapsulated compounds. This article reviews the encapsulation of bioactive compounds from natural sources focusing their antioxidant activity after encapsulation. Attention is given to the methods and wall materials used, and the antioxidant activity methodologies (classical in vitro techniques such as DPPH, ORAC, FRAP and others, as well as in vivo/ex vivo tests to evaluate endogenous antioxidant enzymes or oxidative stress) applied to assess the antioxidant capacity are also comprehensively summarized.
Collapse
Affiliation(s)
- Odinei H Gonçalves
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Thaysa F M Moreira
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Anielle de Oliveira
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Lívia Bracht
- Departamento de Bioquimica, Universidade Estadual de Maringa, Av. Colombo, 5790, CEP 87020-270, Maringa, Parana, Brazil
| | - Rafael P Ineu
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Fernanda V Leimann
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| |
Collapse
|
27
|
Hyaluronic-acid-based β-cyclodextrin grafted copolymers as biocompatible supramolecular hosts to enhance the water solubility of tocopherol. Int J Pharm 2020; 586:119542. [PMID: 32553494 DOI: 10.1016/j.ijpharm.2020.119542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Hyaluronic acid (HA), a common biopolymer found in the extracellular fluid, was grafted with β-cyclodextrin (β-CD) to form a composite polymer that could form inclusion complexes with tocopherol (VE), enhancing its water-solubility and serving as a model drug delivery system. Herein, different copolymers were prepared with varying HA:β-CD ratios and characterized. VE loading capacity was directly correlated with increased β-CD composition in the polymers and morphological changes were observed upon VE binding. The host materials and their VE inclusion complexes are not cytotoxic, and are thus useful for VE and drug delivery.
Collapse
|
28
|
Rostamabadi H, Assadpour E, Tabarestani HS, Falsafi SR, Jafari SM. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Biswal AK, Saha S. Controllable fabrication of biodegradable Janus and multi-layered particles with hierarchically porous structure. J Colloid Interface Sci 2020; 566:120-134. [DOI: 10.1016/j.jcis.2020.01.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
|
30
|
Topuz F, Uyar T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res Int 2020; 130:108927. [DOI: 10.1016/j.foodres.2019.108927] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
31
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
32
|
Yang TS, Liu TT, Liu HI. Nanostructured lipid carriers complexed with mesoporous silica nanoparticles in encapsulating lipid-insoluble functional substances or volatile compounds. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Vilchez A, Acevedo F, Cea M, Seeger M, Navia R. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E175. [PMID: 31968539 PMCID: PMC7022755 DOI: 10.3390/nano10010175] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/27/2023]
Abstract
Antioxidants can be encapsulated to enhance their solubility or bioavailability or to protect them from external factors. Electrospinning has proven to be an excellent option for applications in nanotechnology, as electrospun nanofibers can provide the necessary environment for antioxidant encapsulation. Forty-nine papers related to antioxidants loaded onto electrospun nanofibers were categorized and reviewed to identify applications and new trends. Medical and food fields were commonly proposed for the newly obtained composites. Among the polymers used as a matrix for the electrospinning process, synthetic poly (lactic acid) and polycaprolactone were the most widely used. In addition, natural compounds and extracts were identified as antioxidants that help to inhibit free radical and oxidative damage in tissues and foods. The most recurrent active compounds used were tannic acid (polyphenol), quercetin (flavonoid), curcumin (polyphenol), and vitamin B6 (pyridoxine). The incorporation of active compounds in nanofibers often improves their bioavailability, giving them increased stability, changing the mechanical properties of polymers, enhancing nanofiber biocompatibility, and offering novel properties for the required field. Although most of the polymers used were synthetic, natural polymers such as silk fibroin, chitosan, cellulose, pullulan, polyhydroxybutyrate, and zein have proven to be proper matrices for this purpose.
Collapse
Affiliation(s)
- Ariel Vilchez
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
| | - Mara Cea
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología (CBDAL), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Rodrigo Navia
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile;
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
- Centre for Biotechnology and Bioengineering (CeBiB), Faculty of Engineering and Sciences, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| |
Collapse
|
34
|
Dogan YE, Satilmis B, Uyar T. Crosslinked PolyCyclodextrin/PolyBenzoxazine electrospun microfibers for selective removal of methylene blue from an aqueous system. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Omrani Z, Dadkhah Tehrani A. New cyclodextrin-based supramolecular nanocapsule for codelivery of curcumin and gallic acid. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02845-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Nanni G, Heredia-Guerrero JA, Paul UC, Dante S, Caputo G, Canale C, Athanassiou A, Fragouli D, Bayer IS. Poly(furfuryl alcohol)-Polycaprolactone Blends. Polymers (Basel) 2019; 11:E1069. [PMID: 31226802 PMCID: PMC6630956 DOI: 10.3390/polym11061069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
Poly(furfuryl alcohol) (PFA) is a bioresin synthesized from furfuryl alcohol (FA) that is derived from renewable saccharide-rich biomass. In this study, we compounded this bioresin with polycaprolactone (PCL) for the first time, introducing new functional polymer blends. Although PCL is biodegradable, its production relies on petroleum precursors such as cyclohexanone oils. With the method proposed herein, this dependence on petroleum-derived precursors/monomers is reduced by using PFA without significantly modifying some important properties of the PCL. Polymer blend films were produced by simple solvent casting. The blends were characterized in terms of surface topography by atomic force microscopy (AFM), chemical interactions between PCL and PFA by attenuated total reflection-Fourier transform infrared (ATR-FTIR), crystallinity by XRD, thermal properties by differential scanning calorimetry (DSC), and mechanical properties by tensile tests and biocompatibility by direct and indirect toxicity tests. PFA was found to improve the gas barrier properties of PCL without compromising its mechanical properties, and it demonstrated sustained antioxidant effect with excellent biocompatibility. Our results indicate that these new blends can be potentially used in diverse applications ranging from food packing to biomedical devices.
Collapse
Affiliation(s)
- Gabriele Nanni
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | | | - Uttam C Paul
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Silvia Dante
- Nanoscopy & Nikon Imaging Center, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Gianvito Caputo
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Claudio Canale
- Department of Physics, Università degli studi di Genova, 16146 Genova, Italy.
| | | | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
37
|
Aytac Z, Ipek S, Erol I, Durgun E, Uyar T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloids Surf B Biointerfaces 2019; 178:129-136. [DOI: 10.1016/j.colsurfb.2019.02.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/02/2019] [Accepted: 02/28/2019] [Indexed: 11/24/2022]
|
38
|
Inoue Y, Osada M, Murata I, Kobata K, Kanamoto I. Evaluation of Solubility Characteristics of a Hybrid Complex of Components of Soy. ACS OMEGA 2019; 4:8632-8640. [PMID: 31459952 PMCID: PMC6648504 DOI: 10.1021/acsomega.9b00733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/07/2019] [Indexed: 05/26/2023]
Abstract
The purpose of this study was to evaluate the solubilities and physicochemical properties of solid dispersions of daidzein (DDZ) and genistein (GST) (the major isoflavones in soybeans) in γ-cyclodextrin (γCD). Dispersions were prepared in distilled water using a three-dimensional ball mill (3DGMw). Phase solubility diagrams confirmed that DDZ/γCD and GST/γCD formed AL type inclusion complexes with a molar ratio of 1:1. A new peak due to inclusion complexes was observed in the results of powder X-ray diffraction (3DGMw(DDZ/γCD = 1:1) and 3DGMw(GST/γCD = 1:1)). Dissolution tests using distilled water found that solubilities of 3DGMw(DDZ/γCD = 1:1) and 3DGMw(GST/γCD = 1:1) were approximately 37- and 51-fold higher, respectively, than the solubilities of pure DDZ and GST. These observations are expected to expand the usefulness of cogrinding of DDZ or GST with γCD using a three-dimensional ball mill.
Collapse
Affiliation(s)
- Yutaka Inoue
- Laboratory
of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical
Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 3500295, Japan
| | - Mai Osada
- Laboratory
of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical
Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 3500295, Japan
| | - Isamu Murata
- Laboratory
of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical
Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 3500295, Japan
| | - Kenji Kobata
- Laboratory
of Functional Food Science, Faculty of Pharmacy and Pharmaceutical
Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 3500295, Japan
| | - Ikuo Kanamoto
- Laboratory
of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical
Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 3500295, Japan
| |
Collapse
|
39
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
40
|
Chen C, Liu F, Zhang X, Zhao Z, Liu S. Fabrication, characterization and adsorption properties of cucurbit[7]uril-functionalized polycaprolactone electrospun nanofibrous membranes. Beilstein J Org Chem 2019; 15:992-999. [PMID: 31164937 PMCID: PMC6541341 DOI: 10.3762/bjoc.15.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
The fabrication of electrospun nanofibers comprising cucurbit[7]uril (CB[7]) and poly(ε-caprolactone) (PCL) is reported. Various techniques such as SEM, FTIR, XRD, DSC and TG were utilized to characterize the morphology, composition and properties of the nanofibers. Uniform bead-free electrospun nanofibers were obtained from PCL/CB[7] mixed solutions and the average fiber diameter of the nanofibers increases with the increase of CB[7] content. The nanofibers are composed of a physical mixture of PCL and CB[7], and CB[7] itself is present in the PCL fiber matrix in an uncomplexed state. The static adsorption behavior of the PCL/CB[7] nanofibers towards methylene blue (MB) was also preliminary investigated. The results indicate that the adsorption of MB onto the nanofibrous membranes fits the second-order kinetic model and Langmuir isotherm model.
Collapse
Affiliation(s)
- Changzhong Chen
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- School of Chemistry, Biology and Environmental Engineering, Xiangnan University, Chenzhou 423000, China
| | - Fengbo Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiongzhi Zhang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
41
|
Physicochemical, Antioxidant and Antimicrobial Properties of Electrospun Poly(ε-caprolactone) Films Containing a Solid Dispersion of Sage ( Salvia officinalis L.) Extract. NANOMATERIALS 2019; 9:nano9020270. [PMID: 30781390 PMCID: PMC6409596 DOI: 10.3390/nano9020270] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/31/2023]
Abstract
In this study, novel active films made of poly(ε-caprolactone) (PCL) containing a solid dispersion of sage extract (SE) were developed by means of the electrospinning technique and subsequent annealing treatment. Initially, the antioxidant and antimicrobial potential of SE was confirmed. Thereafter, the effect of SE incorporation at different loading contents (5%, 10%, and 20%) on the physicochemical and functional properties of the films was evaluated. The films were characterized in terms of morphology, transparency, water contact angle, thermal stability, tensile properties, water vapor, and aroma barrier performances, as well as antioxidant and antimicrobial activities. Thin, hydrophobic films with good contact transparency were produced by annealing of the ultrathin electrospun fibers. Interestingly, the effect of SE addition on tensile properties and thermal stability of the films was negligible. In general, the water vapor and aroma permeability of the PCL-based films increased by adding SE to the polymer. Nevertheless, a strong 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free radical scavenging ability, and a strong activity against foodborne pathogens Staphylococcus aureus and Escherichia coli were achieved by SE incorporation into PCL matrix. Overall, the obtained results suggest great potential of the here-developed PCL-based films containing SE in active food packaging applications with the role of preventing oxidation processes and microbial growth.
Collapse
|
42
|
Biswal AK, Saha S. Prolonging food shelf-life by dual actives release from multi-layered polymer particles. Colloids Surf B Biointerfaces 2018; 175:281-290. [PMID: 30551015 DOI: 10.1016/j.colsurfb.2018.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/27/2023]
Abstract
Biodegradable polymer based 'controlled release packaging' technology has ability to release packaging actives in controlled manner to prolong the food shelf-life. Currently available systems are not sufficiently capable of releasing multiple actives in sustainable fashion. Hence, the purpose of this study was to develop dual actives (antioxidant and antibacterial) loaded multilayered microparticles in one step and to release them at rates suitable for long-term inhibition of bacterial growth as well as lipid oxidation in food. In order to achieve this goal, 2 kinds of multilayered polymer particles made up of PLLA (Poly(l-lactic acid)) and PLGA (Poly(dl-lactic-co-glycolic acid) with varying viscosity were developed using emulsion solvent evaporation method. Surprisingly, low viscous PLGA resulted tri-layered particles (PLGA/PLLA/PLGA: shell/middle/core) instead of bi-layered (PLGA/PLLA: shell/core) particles as observed for high viscous PLGA. The mechanism of formation of tri-layered particles was investigated in detail. The outermost layer consisted of relatively more hydrophilic polymer PLGA along with benzoic acid (antibacterial) and the inner core comprised of hydrophobic polymer PLLA and tocopherol (antioxidant). Release study demonstrated that release rate of dual actives were significantly accelerated from tri-layered particles in comparison to bi-layered one and their release profiles can be well explained with the help of Ridger-Peppas model. Both sets of particles exhibited long-term antibacterial (against both Escherichia coli and Staphylococcus aureus) as well as antioxidant effect over a period of 60 days. The results show for the first time the feasibility of using multilayered microparticles to prolong the food shelf-life by simultaneous release of multiple actives.
Collapse
Affiliation(s)
- Agni Kumar Biswal
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
43
|
Sharif N, Golmakani MT, Niakousari M, Hosseini SMH, Ghorani B, Lopez-Rubio A. Active Food Packaging Coatings Based on Hybrid Electrospun Gliadin Nanofibers Containing Ferulic Acid/Hydroxypropyl-Beta-Cyclodextrin Inclusion Complexes. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E919. [PMID: 30405064 PMCID: PMC6266051 DOI: 10.3390/nano8110919] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022]
Abstract
In this work, hybrid gliadin electrospun fibers containing inclusion complexes of ferulic acid (FA) with hydroxypropyl-beta-cyclodextrins (FA/HP-β-CD-IC) were prepared as a strategy to increase the stability and solubility of the antioxidant FA. Inclusion complex formation between FA and HP-β-CD was confirmed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), and X-ray diffraction (XRD). After adjusting the electrospinning conditions, beaded-free fibers of gliadin incorporating FA/HP-β-CD-IC with average fiber diameters ranging from 269.91 ± 73.53 to 271.68 ± 72.76 nm were obtained. Control gliadin fibers containing free FA were also produced for comparison purposes. The incorporation of FA within the cyclodextrin molecules resulted in increased thermal stability of the antioxidant compound. Moreover, formation of the inclusion complexes also enhanced the FA photostability, as after exposing the electrospun fibers to UV light during 60 min, photodegradation of the compound was reduced in more than 30%. Moreover, a slower degradation rate was also observed when compared to the fibers containing the free FA. Results from the release into two food simulants (ethanol 10% and acetic acid 3%) and PBS also demonstrated that the formation of the inclusion complexes successfully resulted in improved solubility, as reflected from the faster and greater release of the compounds in the three assayed media. Moreover, in both types of hybrid fibers, the antioxidant capacity of FA was kept, thus confirming the suitability of electrospinning for the encapsulation of sensitive compounds, giving raise to nanostructures with potential as active packaging structures or delivery systems of use in pharmaceutical or biomedical applications.
Collapse
Affiliation(s)
- Niloufar Sharif
- Department of Food Science and Technology, School of Agriculture, Shiraz University, km 12 Shiraz-Esfahan Highway, 71441-65186 Shiraz, Iran.
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, km 12 Shiraz-Esfahan Highway, 71441-65186 Shiraz, Iran.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, km 12 Shiraz-Esfahan Highway, 71441-65186 Shiraz, Iran.
| | - Seyed Mohammad Hashem Hosseini
- Department of Food Science and Technology, School of Agriculture, Shiraz University, km 12 Shiraz-Esfahan Highway, 71441-65186 Shiraz, Iran.
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), km 12 Mashhad-Quchan Highway, 91895/157/356 Mashhad, Iran.
| | - Amparo Lopez-Rubio
- Food Quality and Preservation Department, IATA-CSIC, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
44
|
Narayanan G, Shen J, Boy R, Gupta BS, Tonelli AE. Aliphatic Polyester Nanofibers Functionalized with Cyclodextrins and Cyclodextrin-Guest Inclusion Complexes. Polymers (Basel) 2018; 10:E428. [PMID: 30966463 PMCID: PMC6415270 DOI: 10.3390/polym10040428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
The fabrication of nanofibers by electrospinning has gained popularity in the past two decades; however, only in this decade, have polymeric nanofibers been functionalized using cyclodextrins (CDs) or their inclusion complexes (ICs). By combining electrospinning of polymers with free CDs, nanofibers can be fabricated that are capable of capturing small molecules, such as wound odors or environmental toxins in water and air. Likewise, combining polymers with cyclodextrin-inclusion complexes (CD-ICs), has shown promise in enhancing or controlling the delivery of small molecule guests, by minor tweaking in the technique utilized in fabricating these nanofibers, for example, by forming core⁻shell or multilayered structures and conventional electrospinning, for controlled and rapid delivery, respectively. In addition to small molecule delivery, the thermomechanical properties of the polymers can be significantly improved, as our group has shown recently, by adding non-stoichiometric inclusion complexes to the polymeric nanofibers. We recently reported and thoroughly characterized the fabrication of polypseudorotaxane (PpR) nanofibers without a polymeric carrier. These PpR nanofibers show unusual rheological and thermomechanical properties, even when the coverage of those polymer chains is relatively sparse (~3%). A key advantage of these PpR nanofibers is the presence of relatively stable hydroxyl groups on the outer surface of the nanofibers, which can subsequently be taken advantage of for bioconjugation, making them suitable for biomedical applications. Although the number of studies in this area is limited, initial results suggest significant potential for bone tissue engineering, and with additional bioconjugation in other areas of tissue engineering. In addition, the behaviors and uses of aliphatic polyester nanofibers functionalized with CDs and CD-ICs are briefly described and summarized. Based on these observations, we attempt to draw conclusions for each of these combinations, and the relationships that exist between their presence and the functional behaviors of their nanofibers.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jialong Shen
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695, USA.
| | - Ramiz Boy
- Department of Textile Engineering, Namık Kemal University, Corlu/Tekirdag 59860, Turkey.
| | - Bhupender S Gupta
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695, USA.
- Department of Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC 27695, USA.
| | - Alan E Tonelli
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, NC 27695, USA.
- Department of Textile Engineering Chemistry and Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
45
|
Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Fundamentals and Applications of Cyclodextrins. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76159-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9161-9179. [PMID: 28949530 DOI: 10.1021/acs.jafc.7b02956] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrospinning is a simple and versatile encapsulation technology. Since electrospinning does not involve severe conditions of temperature or pressure or the use of harsh chemicals, it has great potential for effectively entrapping and delivering bioactive compounds. Recently, electrospinning has been used in the food industry to encapsulate bioactive compounds into different biopolymers (carbohydrates and proteins), protecting them from adverse environmental conditions, maintaining the health-promoting properties, and achieving their controlled release. Electrospinning opens a new horizon in food technology with possible commercialization in the near future. This review summarizes the principles and the types of electrospinning processes. The electrospinning of biopolymers and their application in encapsulating of bioactive compounds are highlighted. The existing scope, limitations, and future prospects of electrospinning bioactive compounds are also presented.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Yan Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, China
| |
Collapse
|
48
|
Shiozawa R, Inoue Y, Murata I, Kanamoto I. Effect of antioxidant activity of caffeic acid with cyclodextrins using ground mixture method. Asian J Pharm Sci 2017; 13:24-33. [PMID: 32104375 PMCID: PMC7032159 DOI: 10.1016/j.ajps.2017.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
In the current study, we prepared a ground mixture (GM) of caffeic acid (CA) with α-cyclodextrin (αCD) and with β-cyclodextrin (βCD), and then comparatively assessed the physicochemical properties and antioxidant capacities of these GMs. Phase solubility diagrams indicated that both CA/αCD and CA/βCD formed a complex at a molar ratio of 1/1. In addition, stability constants suggested that CA was more stable inside the cavity of αCD than inside the cavity of βCD. Results of powder X-ray diffraction (PXRD) indicated that the characteristic diffraction peaks of CA and CD disappeared and a halo pattern was produced by the GMs of CA/αCD and CA/βCD (molar ratios = 1/1). Dissolution testing revealed that both GMs had a higher rate of dissolution than CA alone did. Based on the 1H-1H NOESY NMR spectra for the GM of CA/αCD, the vinylene group of the CA molecule appeared to be included from the wider to the narrower rim of the αCD ring. Based on spectra for the GM of CA/βCD, the aromatic ring of the CA molecule appeared to be included from the wider to the narrower rim of the βCD ring. This suggests that the structures of the CA inclusion complexes differed between those involving αCD rings and those involving βCD rings. Results of a DPPH radical-scavenging activity test indicated that the GM of CA/αCD had a higher antioxidant capacity than that of the GM of CA/βCD. The differences in the antioxidant capacities of the GMs of CA/αCD and CA/βCD are presumably due to differences in stability constants and structures of the inclusion complexes.
Collapse
Affiliation(s)
| | - Yutaka Inoue
- Corresponding author. Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 350-0295, Japan. Tel.: +81 49 271 7317; Mobile: +81 90 6921 9565.
| | | | | |
Collapse
|
49
|
Gim SY, Jung JY, Kwon YJ, Kim M, Kim GH, Lee JH. Application of β‐cyclodextrin, chitosan, and collagen on the stability of tocopherols and the oxidative stability in heated oils. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Seo Yeong Gim
- Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonRepublic of Korea
| | - Jin Yeong Jung
- Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonRepublic of Korea
| | - Yong Jun Kwon
- Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonRepublic of Korea
| | - Mi‐Ja Kim
- Department of Food and NutritionKangwon National UniversitySamcheokRepublic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronic EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Jae Hwan Lee
- Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
50
|
Deng L, Kang X, Liu Y, Feng F, Zhang H. Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem 2017; 231:70-77. [DOI: 10.1016/j.foodchem.2017.03.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
|