1
|
Sharahi M, Bahrami SH, Karimi A. A comprehensive review on guar gum and its modified biopolymers: Their potential applications in tissue engineering. Carbohydr Polym 2025; 347:122739. [PMID: 39486968 DOI: 10.1016/j.carbpol.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Guar gum (GG), as a non-exudate gum, is extracted from the seed's embryos of Cyamopsis tetragonoloba (a member of Leguminosae family). Recently, this biopolymer has received extensive attention due to its low cost, notable properties, non-toxic biodegradation, ease of availability, and biocompatibility. However, disadvantages such as uncontrolled hydration rate and susceptibility to microbial attack have led many researchers to further modification of guar gum. Further modifications of guar gum heteropolysaccharide have been performed to improve properties and explore and expand its potential. The favorable biostability, improved solubility, and swelling, increased pH sensitivity, and good antibacterial and antioxidant properties indicate the significant advantages of the modified gum structures with different functional groups. In this review, the rapid growth in research on GG derivatives-based materials has been discovered. Besides, the production methods of GG and its derivatives have been discussed in tissue engineering and regenerative medical. Consequently, this review highlights the advances in the production of guar-based products to outline a promising future for this biopolymer by changing its properties and expanding its applications in potential targets.
Collapse
Affiliation(s)
- Melika Sharahi
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Afzal Karimi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Manna S, Karmakar S, Sen O, Sinha P, Jana S, Jana S. Recent updates on guar gum derivatives in colon specific drug delivery. Carbohydr Polym 2024; 334:122009. [PMID: 38553200 DOI: 10.1016/j.carbpol.2024.122009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Sandip Karmakar
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Durgapur, West Bengal 713212, India
| | - Olivia Sen
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata-700091, West Bengal, India.
| |
Collapse
|
3
|
Akpo E, Colin C, Perrin A, Cambedouzou J, Cornu D. Encapsulation of Active Substances in Natural Polymer Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2774. [PMID: 38894037 PMCID: PMC11173946 DOI: 10.3390/ma17112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Already used in the food, pharmaceutical, cosmetic, and agrochemical industries, encapsulation is a strategy used to protect active ingredients from external degradation factors and to control their release kinetics. Various encapsulation techniques have been studied, both to optimise the level of protection with respect to the nature of the aggressor and to favour a release mechanism between diffusion of the active compounds and degradation of the barrier material. Biopolymers are of particular interest as wall materials because of their biocompatibility, biodegradability, and non-toxicity. By forming a stable hydrogel around the drug, they provide a 'smart' barrier whose behaviour can change in response to environmental conditions. After a comprehensive description of the concept of encapsulation and the main technologies used to achieve encapsulation, including micro- and nano-gels, the mechanisms of controlled release of active compounds are presented. A panorama of natural polymers as wall materials is then presented, highlighting the main results associated with each polymer and attempting to identify the most cost-effective and suitable methods in terms of the encapsulated drug.
Collapse
Affiliation(s)
| | | | | | - Julien Cambedouzou
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - David Cornu
- IEM, Université de Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| |
Collapse
|
4
|
Patel H, Bains A, Sridhar K, Ali N, Najda A, Tosif MM, Dhull SB, Chawla P, Sharma M, Goksen G. An approach to manufacturing well-being milk chocolate in partial replacement of lecithin by the functional plant-based combination. Food Sci Nutr 2024; 12:3920-3934. [PMID: 38873482 PMCID: PMC11167183 DOI: 10.1002/fsn3.4051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 06/15/2024] Open
Abstract
Lecithin is constituted of a glycerophospholipid mixture and is abundantly used as an emulsifying agent in various food applications including chocolate production. However, overconsumption of lecithin may create an adverse effect on human health. Thus, this study aims to replace the lecithin with plant-based gums. Different ratios of guar and arabic gum (25%-75%) and their blend (25%-75%) were employed as partial replacement of lecithin. Milk chocolate prepared using 40% guar gum (60GGL [guar gum, lecithin]), 25% arabic gum (75AGL [arabic gum, lecithin]), and a blend of 15 arabic gum and 10 guar gum (65AGGL [arabic gum, guar gum, lecithin]) showed similar rheological behavior as compared to control chocolate (100% lecithin). The fat content of 65AGGL (37.85%) was significantly lower than that of the control sample (43.37%). Rheological behavior exhibited shear-thinning behavior and samples (60GGL-75GGL-80GGL, 65AGL-75AGL, and 65AGGL-75AGGL) showed similar rheological properties as compared to control. The chocolate samples (60GGL and 65AGGL) showed significantly (p < .05) higher hardness values (86.01 and 83.55 N) than the control (79.95 N). As well, gum-added chocolates exhibited higher thermal stability up to 660°C as compared to the control sample. The Fourier transform infrared spectroscopy (FTIR) analysis revealed predominant β-(1 → 4) and β-(1 → 6) glycosidic linkages of the gums and lecithin. Sensory evaluation revealed a comparable score of gum-added milk chocolate in comparison to control samples in terms of taste, texture, color, and overall acceptance. Thus, plant exudate gums could be an excellent alternative to lecithin in milk chocolate, which can enhance the textural properties and shelf life.
Collapse
Affiliation(s)
- Harshvardhan Patel
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraIndia
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University)CoimbatoreIndia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal CropsUniversity of Life Science in LublinLublinPoland
| | - Mansuri M. Tosif
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Sanju Bala Dhull
- Department of Food Science and TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Minaxi Sharma
- Department of Applied BiologyUniversity of Science and Technology MeghalayaBariduaIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| |
Collapse
|
5
|
Kesharwani P, Alexander A, Shukla R, Jain S, Bisht A, Kumari K, Verma K, Sharma S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int J Biol Macromol 2024; 271:132280. [PMID: 38744364 DOI: 10.1016/j.ijbiomac.2024.132280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The successful tissue engineering depends on the development of biologically active scaffolds that possess optimal characteristics to effectively support cellular functions, maintain structural integrity and aid in tissue regeneration. Hydrogels have emerged as promising candidates in tissue regeneration due to their resemblance to the natural extracellular matrix and their ability to support cell survival and proliferation. The integration of hydrogel scaffold into the polymer has a variable impact on the pseudo extracellular environment, fostering cell growth/repair. The modification in size, shape, surface morphology and porosity of hydrogel scaffolds has consequently paved the way for addressing diverse challenges in the tissue engineering process such as tissue architecture, vascularization and simultaneous seeding of multiple cells. The present review provides a comprehensive update on hydrogel production using natural and synthetic biomaterials and their underlying mechanisms. Furthermore, it delves into the application of hydrogel scaffolds in tissue engineering for cardiac tissues, cartilage tissue, adipose tissue, nerve tissue and bone tissue. Besides, the present article also highlights various clinical studies, patents, and the limitations associated with hydrogel-based scaffolds in recent times.
Collapse
Affiliation(s)
- Payal Kesharwani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India; Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education Greater Noida, India
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
6
|
Kulbat-Warycha K, Nawrocka J, Kozłowska L, Żyżelewicz D. Effect of Light Conditions, Trichoderma Fungi and Food Polymers on Growth and Profile of Biologically Active Compounds in Thymus vulgaris and Thymus serpyllum. Int J Mol Sci 2024; 25:4846. [PMID: 38732065 PMCID: PMC11084565 DOI: 10.3390/ijms25094846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/21/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.
Collapse
Affiliation(s)
- Kamila Kulbat-Warycha
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10 St., 90-924 Lodz, Poland
| | - Justyna Nawrocka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 St., 90-237 Lodz, Poland; (J.N.); (L.K.)
| | - Liliana Kozłowska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 St., 90-237 Lodz, Poland; (J.N.); (L.K.)
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10 St., 90-924 Lodz, Poland
| |
Collapse
|
7
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
8
|
Mandal S, Chi H, Moss RE, Dhital P, Babatunde EO, Gurav R, Hwang S. Seed gum-based polysaccharides hydrogels for sustainable agriculture: A review. Int J Biol Macromol 2024; 263:130339. [PMID: 38387640 DOI: 10.1016/j.ijbiomac.2024.130339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Globally, water scarcity in arid and semiarid regions has become one of the critical issues that hinder sustainable agriculture. Agriculture, being a major water consumer, presents several challenges that affect water availability. Hydrogels derived from polysaccharides seed gums are hydrophilic polymers capable of retaining substantial moisture in their three-dimensional network and releasing it back into the soil during drought conditions. Implementation of hydrogels in the agricultural sectors enhances soil health, plant growth, and crop yield. Furthermore, the soil permeability, density, structure, texture, and rate of evaporation and percolation of water are modified by hydrogel. In this review, hydrogels based on natural plant seed gum like guar, fenugreek, Tara and locust beans have been discussed in terms of their occurrence, properties, chemical structure, method of synthesis, and swelling behavior. The focus extends to recent applications of modified seed gum-based natural hydrogels in agriculture, serving as soil conditioners and facilitating nutrient delivery to growing plants. The swelling behavior and inherent structure of these hydrogels can help researchers unravel their maximum possibilities to promote sustainable agriculture and attenuate the obstacles propounded by our dynamic nature. The current review also examines market growth, prospects, and challenges of eco-friendly hydrogels in recent times.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
| | - Hyemein Chi
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Rhiannon E Moss
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Prabin Dhital
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Eunice O Babatunde
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Ranjit Gurav
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sangchul Hwang
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
9
|
Sharma R, Dhamodharan R. Tannic acid crosslinked chitosan-guar gum composite films for packaging application. Int J Biol Macromol 2024; 260:129317. [PMID: 38211923 DOI: 10.1016/j.ijbiomac.2024.129317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Chitosan (CH)-guar gum (GG) composite films crosslinked with tannic acid (TnA) were prepared by solution casting method. The films were then immersed in 5 % aqueous NH3 and dried again. They were characterized by IR spectroscopy, wide angle x-ray diffraction and thermogravimetric analysis. All the films were studied for physicochemical properties such as moisture content, swelling, solubility in water, water contact angle, water vapor permeability, opacity, tensile strength and antioxidant activity. The physicochemical and mechanical properties of films changed significantly when compared to CH as reflected by an increase in the amorphous domains of the films, a decrease in moisture content, swelling and solubility in water. The films turned hydrophobic with concomitant decrease in moisture content, swelling, water-solubility and exhibited improved UV absorption as well as mechanical strength, which in turn was dependent on the tannic acid concentration. These results along with enhanced antioxidant properties, UV absorption with no significant change in water vapor permeation compared to CH suggested that the films could find application in packaging applications.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - R Dhamodharan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
10
|
Amjed N, Zeshan M, Farooq A, Naz S. Applications of guar gum polysaccharide for pharmaceutical drug delivery: A review. Int J Biol Macromol 2024; 257:128390. [PMID: 38043657 DOI: 10.1016/j.ijbiomac.2023.128390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Bio-based materials are rapidly replacing synthetic materials owing to their significant biomedical applications, easy availability, nontoxicity, biodegradability and biocompatibility. Guar gum (GG) is a plant-derived biocompatible and biodegradable polymeric compound found abundantly in nature. It is a non-ionic, hydrophilic carbohydrate and is a cost-effective hydrocolloid polysaccharide considered as a wonderful representative of the new generation of plant gums. Various composites of guar gum with other polymers have been reported in last few decades and they are extensively used in different industries like food, textile, mining, petrochemical, paper and explosives etc. Easy availability, non-toxicity, eco-friendly and biodegradable nature of GG has made it ideal candidate for for drug delivery (DD) applications. GG based hydrogels, films, scaffolds and nanoparticles have been explored widely for their DD applications. These non-toxic DD carriers can be used for targeted drug delivery. This review article directs the current efforts and improvements on GG and GG-based materials to be used in DD.
Collapse
Affiliation(s)
- Nyla Amjed
- Department of Chemistry, The University of Lahore, Pakistan.
| | - Muhammad Zeshan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan.
| | - Ariba Farooq
- Department of Chemistry, The University of Lahore, Pakistan.
| | - Sadaf Naz
- Department of Chemistry, The University of Lahore, Pakistan.
| |
Collapse
|
11
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
12
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
13
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
14
|
Geng X, Xue R, Teng S, Fan W, Wang G, Li J, Liu Y, Huang Z, Yang W. Guar gum-enhanced emission of gold nanoclusters for α-glucosidase activity detection and anti-diabetic agents screening in plant extracts. Anal Chim Acta 2023; 1267:341393. [PMID: 37257966 DOI: 10.1016/j.aca.2023.341393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
The development of efficient fluorescent methods for α-glucosidase (α-Glu) detection and α-Glu inhibitor screening plays a critical role in the therapy of type 2 diabetes (T2D). Herein, guar gum (GG), a high-abundant and non-toxic natural polymer originated from the seeds of a drought-tolerant plant, Cyamposis tetragonolobus, was found to be able to enhance the fluorescence emission of gold nanoclusters (AuNCs) probe. The emission enhancement effect was achieved by using GG at very low concentrations (<1.0 wt%) and presented in a viscosity-dependent manner through increasing solvent reorientation time and inhibiting intramolecular motions of AuNCs. Furthermore, the enhanced emission of the AuNCs was quenched by Fe3+via dynamic quenching and then restored by α-Glu. Accordingly, a fluorimetric method was proposed for the determination of α-Glu. Owing to the fluorescence enhancement effect of GG on the AuNCs probe, the detection limit of the approach was 0.13 U L-1 and the detection range was up to 5 orders of magnitude from 0.2 to 4000 U L-1, which was much better than most current α-Glu detection methods. The approach was further applied to α-Glu inhibitors screening from natural plant extracts, providing great prospects for the prevention and treatment of T2D.
Collapse
Affiliation(s)
- Xiaoyu Geng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruisong Xue
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shiyong Teng
- Department of Anesthesiology, First Hospital, Jilin University, Changchun, 130021, China
| | - Weiqiang Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guanhua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jinshuo Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yanmei Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun, 130012, China; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Mondal A, Nayak AK, Chakraborty P, Banerjee S, Nandy BC. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. Pharmaceutics 2023; 15:2064. [PMID: 37631276 PMCID: PMC10459560 DOI: 10.3390/pharmaceutics15082064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751 003, India;
| | - Prithviraj Chakraborty
- Department of Pharmaceutics, Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781 035, India;
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India;
| | - Bankim Chandra Nandy
- Department of Pharmaceutics, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India;
| |
Collapse
|
16
|
Lomartire S, Gonçalves AMM. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar Drugs 2023; 21:384. [PMID: 37504914 PMCID: PMC10381318 DOI: 10.3390/md21070384] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
George A, Shrivastav PS. Preparation and optimization of tetraethyl orthosilicate cross-linked chitosan-guar gum-poly(vinyl alcohol) composites reinforced with montmorillonite for sustained release of sitagliptin. Int J Biol Macromol 2023; 229:51-61. [PMID: 36587636 DOI: 10.1016/j.ijbiomac.2022.12.302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Development of efficient drug carriers has become an integral part of advanced drug delivery systems. This work aims at developing composites by adopting an economically viable method for sustained release of anti-diabetic drug sitagliptin - a potent and selective dipeptidyl peptidase-IV inhibitor. To combat the harsh environment of gastrointestinal tract, the composite (F13) was prepared using biodegradable polymers namely chitosan, guar gum and poly(vinyl alcohol) with montmorillonite clay as nano-filler and tetraethyl orthosilicate as the cross linker. The composites were characterized using FT-IR, XRD, DSC and SEM techniques. Physical properties such as thickness, swelling capacity, folding endurance and water solubility were studied. In vitro analysis of composites (F17, F19 and F20) in simulated gastric medium showed <14 % cumulative release in 2 h while a sustained release was observed in simulated intestinal medium. Drug release kinetics was investigated using five mathematical models namely zero order, first order, Higuchi, Hixon-Crowell and Korsemeyer-Peppas wherein the latter was the best fit model (R2, 0.969). Antimicrobial studies of drug free composite (F13) revealed good activity against bacteria as well as fungi. The results implied that the composites were pH sensitive and could serve as a potential choice for sustained release of drugs.
Collapse
Affiliation(s)
- Archana George
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Pranav S Shrivastav
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
18
|
Froelich A, Jakubowska E, Jadach B, Gadziński P, Osmałek T. Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics 2023; 15:pharmaceutics15030759. [PMID: 36986620 PMCID: PMC10059891 DOI: 10.3390/pharmaceutics15030759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential drug carriers. In order to obtain properties differing from the original compounds, blends with other polymers and chemical modifications are usually applied. Gums and gum-derived compounds can be applied in the form of macroscopic hydrogels or can be formulated into particulate systems that can deliver the drugs via different administration routes. In this review, we present and summarize the most recent studies regarding micro- and nanoparticles obtained with the use of gums extensively investigated in pharmaceutical technology, their derivatives and blends with other polymers. This review focuses on the most important aspects of micro- and nanoparticulate systems formulation and their application as drug carriers, as well as the challenges related to these formulations.
Collapse
|
19
|
Tuteja M, Nagpal K. Recent Advances and Prospects for Plant Gum-Based Drug Delivery Systems: A Comprehensive Review. Crit Rev Ther Drug Carrier Syst 2023; 40:83-124. [PMID: 36734914 DOI: 10.1615/critrevtherdrugcarriersyst.2022042252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work is an effort to first introduce plant-based gums and discussing their drug delivery applications. The composition of these plant gums and their major characteristics, which make them suitable as pharmaceutical excipients are also described in detail. The various modifications methods such as physical and chemical modifications of gums and polysaccharides have been discussed along with their applications in different fields. Consequently, plant-based gums modification such as etherification and grafting is attracting much scientific attention to satisfy industrial demand. The evaluation tests to characterize gum-based drug delivery systems have been summarized. The release behavior of drug from plant-gum-based drug delivery is being discussed. Thus, this review is an attempt to critically summarize different aspect of plant-gum-based polysaccharides to be utilized in drug delivery systems having potential industrial applications.
Collapse
Affiliation(s)
- Minkal Tuteja
- Gurugram Global College of Pharmacy, Farrukhnagar, Gurugram, Haryana, 122506, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
20
|
Mandal S, Hwang S, Shi SQ. Guar gum, a low-cost sustainable biopolymer, for wastewater treatment: A review. Int J Biol Macromol 2023; 226:368-382. [PMID: 36513177 DOI: 10.1016/j.ijbiomac.2022.12.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Rapid population growth and the resultant pollution of freshwater resources have created a water stress condition reducing the availability of safe and affordable water. Guar gum, a biocompatible macromolecule obtained from the endosperm of the seeds of Cyamopsis tetragonolobus, is a fascinating raw material for multifunctional adsorbents. This review assembled the work conducted by various researchers over the past few decades and discussed the structure, properties, and different modifications methods employed to develop versatile guar gum-based adsorbent. The paper also summarized the recent progress of guar gum-based nanocomposites for the remediation of multiple hazardous substances such as organic dyes, toxic heavy metal ions, oil-water separation as well as inhibiting the growth of bacterial pathogens. Thus, the important contribution of guar gum composites to safeguard the water quality is highlighted which will overcome the limitations and streamline the future course of innovative research.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sangchul Hwang
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
21
|
George A, Shrivastav PS. Plant polysaccharides as excipients in oral drug delivery. PLANT POLYSACCHARIDES AS PHARMACEUTICAL EXCIPIENTS 2023:215-247. [DOI: 10.1016/b978-0-323-90780-4.00021-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Le TA, Huynh TP. Current advances in the Chemical functionalization and Potential applications of Guar gum and its derivatives. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Jíménez-Arias D, Morales-Sierra S, Silva P, Carrêlo H, Gonçalves A, Ganança JFT, Nunes N, Gouveia CSS, Alves S, Borges JP, Pinheiro de Carvalho MÂA. Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010055. [PMID: 36616183 PMCID: PMC9823467 DOI: 10.3390/plants12010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 05/28/2023]
Abstract
Encapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in this field. Encapsulation of biostimulants could indeed be an excellent means of counteracting the problems posed by their nature: they are easily biodegradable, and most of them run off through the soil, losing most of the compounds, thus becoming inaccessible to plants. In this respect, encapsulation seems to be a practical and profitable way to increase the stability and durability of biostimulants under field conditions. This review paper aims to provide researchers working on plant biostimulants with a quick overview of how to get started with encapsulation. Here we describe different techniques and offer protocols and suggestions for introduction to polymer science to improve the properties of biostimulants for future agricultural applications.
Collapse
Affiliation(s)
- David Jíménez-Arias
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sarai Morales-Sierra
- Grupo de Biología Vegetal Aplicada, Departamento de Botánica, Ecología y Fisiología Vegetal-Facultad de Farmacia, Universidad de La Laguna, Avenida, Astrofísico Francisco Sánchez s/n, 38071 La Laguna, Spain
| | - Patrícia Silva
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Henrique Carrêlo
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Adriana Gonçalves
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - José Filipe Teixeira Ganança
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nuno Nunes
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Carla S. S. Gouveia
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Sónia Alves
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - João Paulo Borges
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Miguel Â. A. Pinheiro de Carvalho
- ISOPlexis, Center for Sustainable Agriculture and Food Technology, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- CiTAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Faculty of Life Sciences, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
24
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Henrique Marcondes Sari M, Mota Ferreira L, Cruz L. The use of natural gums to produce nano-based hydrogels and films for topical application. Int J Pharm 2022; 626:122166. [PMID: 36075522 DOI: 10.1016/j.ijpharm.2022.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Natural gums are a source of biopolymeric materials with a wide range of applications for multiple purposes. These polysaccharides are extensively explored due to their low toxicity, gelling and thickening properties, and bioadhesive potential, which have sparked interest in researchers given their use in producing pharmaceutic dosage forms compared to synthetic agents. Hence, gums can be used as gelling and film-forming agents, which are suitable platforms for topical drug administration. Additionally, recent studies have demonstrated the possibility of obtaining nanocomposite materials formed by a polymeric matrix of gums associated with nanoscale carriers that have shown superior drug delivery performance and compatibility with multiple administration routes compared to starting components. In this sense, research on topical natural gum-based form preparation containing drug-loaded nanocarriers was detailed and discussed herein. A special focus was devoted to the advantages achieved regarding physicochemical and mechanical features, drug delivery capacity, permeability through topical barriers, and biocompatibility of the hydrogels and polymeric films.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
26
|
Assessing effects of guar gum viscosity on the growth, intestinal flora, and intestinal health of Micropterus salmoides. Int J Biol Macromol 2022; 222:1037-1047. [PMID: 36181882 DOI: 10.1016/j.ijbiomac.2022.09.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022]
Abstract
A 56-day feeding trial was conducted to assess the effects of different viscous guar gum on the growth, intestinal flora, and intestinal health of Micropterus salmoides. Four practical diets with 42.5 % crude protein and 13.7 % crude lipid were formulated to contain 8 % cellulose and three different viscosities (2500, 5200, and 6000 mPa·s) of guar gum. Dietary guar gum inhibits fish growth and feed utilization, decreases the α-diversity of the intestinal flora, and negatively alters the intestinal flora structure and metabolite composition. High viscous guar gum down-regulated the intestinal tight junction, anti-inflammatory, and anti-apoptotic related gene's expression, decreased digesta butyrate/histamine ratio; and increased the abundance of Plesiomonas shigelloides. These results suggest that dietary guar gum adversely affects intestinal health by disrupting intestinal flora structure and metabolite composition, and that viscosity should be considered when using guar gum as a binder in aquafeeds.
Collapse
|
27
|
Liu Y, Zhang Y, Fan J, Zhou H, Huang H, Cao Y, Jiang W, Zhang W, Deng J, Tan B. Effects of Different Viscous Guar Gums on Growth, Apparent Nutrient Digestibility, Intestinal Development and Morphology in Juvenile Largemouth Bass, Micropterus salmoides. Front Physiol 2022; 13:927819. [PMID: 35991192 PMCID: PMC9388778 DOI: 10.3389/fphys.2022.927819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
An 8-week feeding trial was conducted to investigate the effects of different viscous guar gums on the growth performance, apparent nutrient digestibility, intestinal development and morphology of juvenile largemouth bass. Four isoproteic and isolipidic diets (crude protein 42.5%, crude lipid 13.7%) were formulated to contain 8% cellulose (Control group), 8% low viscous guar gum with 2,500 mPa s (Lvs-GG group), 8% medium viscous guar gum with 5,200 mPa s (Mvs-GG group) and 8% high viscous guar gum with 6,000 mPa s (Hvs-GG group), respectively. Each diet was fed to quadruplicate groups of 40 fish (6.00 ± 0.01 g) per repetition. Dietary guar gum inclusion significantly decreased the weight gain rate, specific growth rate, protein efficiency ratio, protein productive value and lipid deposition rate, and these parameters decreased considerably with increasing guar gum viscous and were lowest in the Hvs-GG group. Dietary guar gum inclusion significantly decreased the apparent digestibility of dry matter, crude protein and crude lipid, and these parameters decreased considerably with increasing guar gum viscous and were lowest in the Hvs-GG group. Intestinal protease, lipase and creatine kinase activities in the guar gum groups were significantly lower than those in the control group, and intestinal protease and lipase activities decreased considerably with increased guar gum viscous. Intestinal alkaline phosphatase activity in the Hvs-GG group and intestinal Na+/K+-ATPase activity in the Mvs-GG and Hvs-GG groups were significantly lower than those in the Lvs-GG and control groups. Serum high-density lipoprotein, total cholesterol and triglyceride concentrations and superoxide dismutase activity in the guar gum groups were significantly lower than those in the control group. Intestinal villus height and muscular thickness in the guar gum groups were considerably higher than those in the control group, whereas the goblet cell relative number in the Mvs-GG and Hvs-GG groups and the microvillus height in the Lvs-GG and Hvs-GG groups were significantly lower than those in the control group. The expression level of IGF-1 in the guar gum groups and the expression level of GLP-2 in the Mvs-GG and Hvs-GG groups were significantly higher than those in the control group. These results indicated that guar gum diets adversely affected intestinal morphology, decreased intestinal digestive and absorptive enzyme activities, and caused poor nutrient digestibility and growth performance in juvenile largemouth bass. Moreover, the adverse effects of guar gum are closely related to its viscous, and high viscous guar gum produces more extreme negative impacts on juvenile largemouth bass.
Collapse
Affiliation(s)
- Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Yumeng Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Yixiong Cao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Wen Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Wei Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- *Correspondence: Junming Deng, ; Beiping Tan,
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- *Correspondence: Junming Deng, ; Beiping Tan,
| |
Collapse
|
28
|
Do MH, Lee HHL, Lee JE, Park M, Oh MJ, Lee HB, Park JH, Jhun H, Kim JH, Kang CH, Park HY. Gellan gum prevents non-alcoholic fatty liver disease by modulating the gut microbiota and metabolites. Food Chem 2022; 400:134038. [DOI: 10.1016/j.foodchem.2022.134038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 10/15/2022]
|
29
|
Chaudhary V, Jangra S, Yadav NR. In silico Identification of miRNAs and Their Targets in Cluster Bean for Their Role in Development and Physiological Responses. Front Genet 2022; 13:930113. [PMID: 35846150 PMCID: PMC9280363 DOI: 10.3389/fgene.2022.930113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cluster bean popularly known as “guar” is a drought-tolerant, annual legume that has recently emerged as an economically important crop, owing to its high protein and gum content. The guar gum has wide range of applications in food, pharma, and mining industries. India is the leading exporter of various cluster bean-based products all across the globe. Non-coding RNAs (miRNAs) are involved in regulating the expression of the target genes leading to variations in the associated pathways or final protein concentrations. The understanding of miRNAs and their associated targets in cluster bean is yet to be used to its full potential. In the present study, cluster bean EST (Expressed Sequence Tags) database was exploited to identify the miRNA and their predicted targets associated with metabolic and biological processes especially response to diverse biotic and abiotic stimuli using in silico approach. Computational analysis based on cluster bean ESTs led to the identification of 57 miRNAs along with their targets. To the best of our knowledge, this is the first report on identification of miRNAs and their targets using ESTs in cluster bean. The miRNA related to gum metabolism was also identified. Most abundant miRNA families predicted in our study were miR156, miR172, and miR2606. The length of most of the mature miRNAs was found to be 21nt long and the range of minimal folding energy (MFE) was 5.8–177.3 (−kcal/mol) with an average value of 25.4 (−kcal/mol). The identification of cluster bean miRNAs and their targets is predicted to hasten the miRNA discovery, resulting in better knowledge of the role of miRNAs in cluster bean development, physiology, and stress responses.
Collapse
|
30
|
Roy A, Guha Ray P, Bose A, Dhara S, Pal S. pH-Responsive Copolymeric Network Gel Using Methacrylated β-Cyclodextrin for Controlled Codelivery of Hydrophilic and Hydrophobic Drugs. ACS APPLIED BIO MATERIALS 2022; 5:3530-3543. [PMID: 35734869 DOI: 10.1021/acsabm.2c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In medical science, sometimes two drugs with different solubilities are simultaneously required in combination to treat various diseases. Herein, a pH-responsive, copolymeric, antioxidant, biocompatible, and chemically crosslinked network gel is prepared to explore its capability as a matrix for controlled release of both hydrophobic [ibuprofen (IB)] and hydrophilic [tetracycline hydrochloride (TCH)] drugs, simultaneously. This three-dimensional β-CD-Meth-cl-(PHPMA-co-PAAc) network hydrogel is synthesized via two steps: (I) methacrylation of β-cyclodextrin and (II) grafting of poly(hydroxypropyl methacrylate) and poly(acrylic acid), followed by crosslinking of poly(ethylene glycol) diacrylate onto the backbone of methacrylated β-cyclodextrin (β-CD-Meth). The successful synthesis of the hydrogel is confirmed using several physiochemical characterizations. The β-CD-Meth-cl-(PHPMA-co-PAAc) hydrogel has an excellent network-like surface morphology. The potential pH-responsive high swelling behavior and excellent shrinking features suggest the reversible nature of the synthesized gel. Besides, rheological analyses affirm its excellent viscoelastic nature. This network gel is biodegradable and its non-cytotoxic nature toward human dermal fibroblast cells is demonstrated. Moreover, the dual drug release pattern from the copolymer under both in vitro and in vivo conditions portrays that this hydrogel has superior ability to be used as a controlled release matrix for both hydrophobic and hydrophilic drugs (TCH and IB) with varying solubilities concurrently.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | | | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sagar Pal
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
| |
Collapse
|
31
|
Zhang S, Shah SAUM, Basharat K, Qamar SA, Raza A, Mohamed A, Bilal M, Iqbal HM. Silk-based nano-hydrogels for futuristic biomedical applications. J Drug Deliv Sci Technol 2022; 72:103385. [DOI: 10.1016/j.jddst.2022.103385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Development of Bigels Based on Date Palm-Derived Cellulose Nanocrystal-Reinforced Guar Gum Hydrogel and Sesame Oil/Candelilla Wax Oleogel as Delivery Vehicles for Moxifloxacin. Gels 2022; 8:gels8060330. [PMID: 35735674 PMCID: PMC9222693 DOI: 10.3390/gels8060330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Bigels are biphasic semisolid systems that have been explored as delivery vehicles in the food and pharmaceutical industries. These formulations are highly stable and have a longer shelf-life than emulsions. Similarly, cellulose-based hydrogels are considered to be ideal for these formulations due to their biocompatibility and flexibility to mold into various shapes. Accordingly, in the present study, the properties of an optimized guar gum hydrogel and sesame oil/candelilla wax oleogel-based bigel were tailored using date palm-derived cellulose nanocrystals (dp-CNC). These bigels were then explored as carriers for the bioactive molecule moxifloxacin hydrochloride (MH). The preparation of the bigels was achieved by mixing guar gum hydrogel and sesame oil/candelilla wax oleogel. Polarizing microscopy suggested the formation of the hydrogel-in-oleogel type of bigels. An alteration in the dp-CNC content affected the size distribution of the hydrogel phase within the oleogel phase. The colorimetry studies revealed the yellowish-white color of the samples. There were no significant changes in the FTIR functional group positions even after the addition of dp-CNC. In general, the incorporation of dp-CNC resulted in a decrease in the impedance values, except BG3 that had 15 mg dp-CNC in 20 g bigel. The BG3 formulation showed the highest firmness and fluidity. The release of MH from the bigels was quasi-Fickian diffusion mediated. BG3 showed the highest release of the drug. In summary, dp-CNC can be used as a novel reinforcing agent for bigels.
Collapse
|
33
|
Green synthesis of polyacrylamide grafted Neem Gum for gastro retentive floating drug delivery of Ciprofloxacin Hydrochloride: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Liu S, Fang Z, Ng K. Recent development in fabrication and evaluation of phenolic-dietary fiber composites for potential treatment of colonic diseases. Crit Rev Food Sci Nutr 2022; 63:6860-6884. [PMID: 35225102 DOI: 10.1080/10408398.2022.2043236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phenolics have been shown by in vitro and animal studies to have multiple pharmacological effects against various colonic diseases. However, their efficacy against colonic diseases, such as inflammatory bowel diseases, Crohn's disease, and colorectal cancer, is significantly compromised due to their chemical instability and susceptibility to modification along the gastrointestinal tract (GIT) before reaching the colonic site. Dietary fibers are promising candidates that can form phenolic-dietary fiber composites (PDC) to carry phenolics to the colon, as they are natural polysaccharides that are non-digestible in the upper intestinal tract but can be partially or fully degradable by gut microbiota in the colon, triggering the release at this targeted site. In addition, soluble and fermentable dietary fibers confer additional health benefits as prebiotics when used in the PDC fabrication, and the possibility of synergistic relationship between phenolics and fibers in alleviating the disease conditions. The functionalities of PDC need to be characterized in terms of their particle characteristics, molecular interactions, release profiles in simulated digestion and colonic fermentation to fully understand the metabolic fate and health benefits. This review examines recent advancements regarding the approaches for fabrication, characterization, and evaluation of PDC in in vitro conditions.
Collapse
Affiliation(s)
- Siyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
35
|
Le TA, Zouheir M, Nikiforow K, Khatib M, Zohar O, Haick H, Huynh TP. Synthesis, characterization, and humidity-responsiveness of guar gum xanthate and its nanocomposite with copper sulfide covellite. Int J Biol Macromol 2022; 206:105-114. [PMID: 35219779 DOI: 10.1016/j.ijbiomac.2022.02.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/05/2022]
Abstract
A novel conjugation of guar gum with xanthate groups via facile aqueous xanthation reaction has been reported. Density of grafted xanthate on guar gum product (GG-X) is as high as 4.4%, thus GG-X is conceivably characterized and confirmed by various spectrometric, electrochemical, thermogravimetric, and microscopic methods. Complexation of GG-X with numerous borderline and soft metal ions (e.g. Fe2+, Co2+, Ni2+, Cu2+, Pb2+, Pt2+ and Cd2+) yields hydrophilic gel-like materials and shows good agreement with hard and soft acid and base (HSAB) theory. This indicates tremendous potential of GG-X in metal ion extraction, removal and hydrogel cross-linking. GG-X is also employed to formulate an aqueous colloidal dispersion of copper sulfide covellite (GG-X/CuS) nanocomposites. GG-X therefore behaves as a surfactant, allowing formation of electronically conductive nanocomposites. XRD indicates apparent beneficial effects of GG-X in the synthesis of CuS with a crystallite size of 15.6 nm. This novel nanocomposite is a promising material for humidity sensing, showing reversible linear responses to relative humidity changes within 10 to 80% range. The interaction between GG-X and water might cause changes in electrical permittivity of GG-X/CuS nanocomposite and/or electrical hopping conductivity between CuS nanoparticles.
Collapse
Affiliation(s)
- Trung-Anh Le
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Morad Zouheir
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland; Laboratoire de Matériaux, Procédés, Catalyse et Environnement (LMPCE), Université Sidi Mohammed Ben Abdellah, Fès, Route d'Imouzzer, BP 2427 Fès, Morocco
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka, 01-224 Warsaw, Poland
| | - Muhammad Khatib
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Orr Zohar
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland.
| |
Collapse
|
36
|
Patole S, Cheng L, Yang Z. Impact of incorporations of various polysaccharides on rheological and microstructural characteristics of heat-induced quinoa protein isolate gels. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09720-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThis study aimed to investigate the properties of heat-induced gels (85 °C for 30 min) of quinoa protein isolate (QPI) in the presence and absence of various polysaccharides including guar gum (GG), locust bean gum (LBG), and xanthan gum (XG) at pH 7. For this purpose, samples with three gum concentrations (0.05, 0.1, and 0.2 wt%) at a fixed QPI concentration (10 wt%) and a fixed ionic strength (50 mM NaCl) were studied in terms of their gelation behaviour, small and large deformation rheological properties, water holding capabilities, and microstructural characteristics. Rheological measurements revealed that all polysaccharides incorporation could improve gel strength (complex modulus, G*) and breaking stress, accelerate gel formations, and more stiffer gels were obtained at greater polysaccharide concentrations. The XG exhibited the most gel strengthening effect followed by LBG and GG. Incorporation of 0.2 wt% XG led to a 15 folds increase in G* compared to the control. Confocal laser scanning microscopy observation revealed that the polysaccharides also altered gel microstructures, with the gels containing XG showing the most compact gel structures. The findings of this study may provide useful information for the fabrication of novel QPI based food gel products with improved texture.
Collapse
|
37
|
Čanji-Panić J, Todorović N, Stjepanović A, Lalić-Popović M. The potential of natural products use in fused deposition modeling 3D printing of pharmaceutical dosage forms. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-40155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, the interest in 3D printing of medicines has increased due to many advantages of this technology, such as flexibility of the dose and dosage form of the printed product. Fused deposition modeling (FDM) is one of the most popular 3D printing technologies in the pharmaceutical field, due to its low cost and simplicity. The subject of this review is the potential use of natural products as biodegradable and biocompatible materials with good safety profiles in FDM 3D printing of pharmaceuticals. Natural products such as alginate, chitosan and starch have already been employed as excipients in FDM 3D printed pharmaceutical dosage forms, while others like shellac and zein show the potential, but haven't yet been part of 3D printed pharmaceutical formulations. These excipients have different roles in the formulation of filaments for FDM 3D printing, for example as fillers, matrix carriers or drug-release modifiers. In addition, the possibility of incorporating active pharmaceutical ingredients of natural origin in filaments for FDM 3D printing was reviewed. High printing temperatures limit the use of natural products in FDM 3D printing. However, adequate selection of thermoplastic material and printing parameters can widen the use of natural products in FDM 3D printing of pharmaceutical dosage forms.
Collapse
|
38
|
Le TA, Guo Y, Zhou JN, Yan J, Zhang H, Huynh TP. Synthesis, characterization and biocompatibility of guar gum-benzoic acid. Int J Biol Macromol 2022; 194:110-116. [PMID: 34861275 DOI: 10.1016/j.ijbiomac.2021.11.180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
A novel chemical functionalization of guar gum (GG) by benzoic acid (BA) via nucleophilic substitution reaction in aqueous solution has been reported. BA moieties are chosen due to coordination chemistry of carboxylic acid moieties, hydrophobicity and intermolecular interaction of aromatic rings. The presence of conjugated BA on guar gum-benzoic acid (GG-BA) with grafting density of 5.5% is confirmed by 1H NMR. Amorphous GG-BA with irregular morphology has been studied by UV-Vis, FTIR, XRD, SEM, TEM, TGA, computational chemistry and contact angle measurement. GG-BA in a concentration range from 0 to 4000 μg mL-1 has good biocompatibility to mouse embryonic fibroblasts (MEF), human mammary epithelial cells (MCF-10A) after 48 and 72 h of treatment using WST-1 assay. GG-BA shows great potential for the development of biomaterials such as bioadhesives, hydrogels, and coacervates.
Collapse
Affiliation(s)
- Trung-Anh Le
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - Yong Guo
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3-5, 20500 Turku, Finland,; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Endocrinology, Key Laboratory of National Health & Family Planning Commission for Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Jun-Nian Zhou
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3-5, 20500 Turku, Finland,; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jiaqi Yan
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3-5, 20500 Turku, Finland,; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3-5, 20500 Turku, Finland,; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland.
| |
Collapse
|
39
|
Silva JSFD, Oliveira ACDJ, Soares MFDLR, Soares-Sobrinho JL. Recent advances of Sterculia gums uses in drug delivery systems. Int J Biol Macromol 2021; 193:481-490. [PMID: 34710475 DOI: 10.1016/j.ijbiomac.2021.10.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Trees of the genus Sterculia produce polysaccharide-rich exudates, such as karaya gum (Sterculia urens), chicha gum (Sterculia striata), and Sterculia foetida gum. These anionic biomaterials are biodegradable, with high viscosity, low toxicity, and gelling properties in aqueous media. According to these properties, they show promising applications as a polymer matrix for use in drug delivery systems. For this application, both the chemically modified and the unmodified polysaccharide are used. This review focuses on analyzing the state of the art of recent studies on the use of Sterculia gums in a variety of pharmaceutical forms, such as tablets, hydrogels, micro/nanoparticles, and mucoadhesive films. Sterculia gums-based delivery systems have potential to be explored for new drug delivery systems.
Collapse
Affiliation(s)
- Júlia Samara Ferreira da Silva
- Quality Control Core of Medicines and Correlates, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates, Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
40
|
Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Synthesis of interpenetrating network (IPN) hydrogels based on acrylic acid (AAc) and guar gum and its application as drug delivery for pyridoxine hydrochloride (vitamin B6). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Dehghani Soltani M, Meftahizadeh H, Barani M, Rahdar A, Hosseinikhah SM, Hatami M, Ghorbanpour M. Guar (Cyamopsis tetragonoloba L.) plant gum: From biological applications to advanced nanomedicine. Int J Biol Macromol 2021; 193:1972-1985. [PMID: 34748787 DOI: 10.1016/j.ijbiomac.2021.11.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Natural polymers are an efficient class of eco-friendly and biodegradable polymers, because they are readily available, come from natural sources, inexpensive and can be chemically modified with the correct reagents. Guar gum (GG) is a natural polymer with great potential to be used in pharmaceutical formulations due to its unique composition and lack of toxicity. GG can be designed to suit the needs of the biological and medical engineering sectors. In the development of innovative drug delivery systems, GG is commonly utilized as a rate-controlling excipient. In this review, different properties of GG including chemical composition, extraction methods and its usefulness in diabetes, cholesterol lowering, weight control, tablet formulations as well as its food application were discussed. The other purpose of this study is to evaluate potential use of GG and its derivatives for advanced nanomedicine such as drug delivery, tissue engineering and nanosensing. It should be noted that some applicable patents in medical area have also been included in the rest of this survey to extend knowledge about guar gum and its polymeric nature.
Collapse
Affiliation(s)
| | - Heidar Meftahizadeh
- Department of Horticultural Sciences, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran.
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| |
Collapse
|
43
|
Ghauri ZH, Islam A, Qadir MA, Gull N, Haider B, Khan RU, Riaz T. Development and evaluation of pH-sensitive biodegradable ternary blended hydrogel films (chitosan/guar gum/PVP) for drug delivery application. Sci Rep 2021; 11:21255. [PMID: 34711866 PMCID: PMC8553746 DOI: 10.1038/s41598-021-00452-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/13/2021] [Indexed: 11/26/2022] Open
Abstract
pH responsive hydrogels have gained much attraction in biomedical fields. We have formulated ternary hydrogel films as a new carrier of drug. Polyelectrolyte complex of chitosan/guar gum/polyvinyl pyrrolidone cross-linked via sodium tripolyphosphate was developed by solution casting method. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis were conducted to examine the interactions between the polymeric chains, surface morphology and thermal stability, respectively. The swelling tests resulted that the swelling was reduced with the increase in the concentration of crosslinker due to the more entangled arrangement and less availability of pores in hydrogels. Ciprofloxacin hydrochloride was used as a model drug and its release in simulated gastric fluid, simulated intestinal fluid and phosphate buffer saline solution was studied. pH responsive behaviour of the hydrogels have subjected these hydrogels for drug release applications.
Collapse
Affiliation(s)
- Zunaira Huma Ghauri
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan.
| | | | - Nafisa Gull
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Bilal Haider
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, 54590, Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Tabinda Riaz
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
44
|
Khan MUA, Iqbal I, Ansari MNM, Razak SIA, Raza MA, Sajjad A, Jabeen F, Riduan Mohamad M, Jusoh N. Development of Antibacterial, Degradable and pH-Responsive Chitosan/Guar Gum/Polyvinyl Alcohol Blended Hydrogels for Wound Dressing. Molecules 2021; 26:5937. [PMID: 34641480 PMCID: PMC8513038 DOI: 10.3390/molecules26195937] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022] Open
Abstract
The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia; (S.I.A.R.); (M.R.M.); (N.J.)
- Institute for Personalized Medicine, School of Biomedical Engineering, Med-X Institute, Shanghai Jiao Tong University, Shanghai 200030, China
- National Center for Physics, Nanoscience and Technology Department (NS & TD), Quaid-e-Azam University, Islamabad 44000, Pakistan
| | - Iqra Iqbal
- Institute of Metallurgy and Materials Engineering, Faculty of Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (I.I.); (M.A.R.)
| | | | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia; (S.I.A.R.); (M.R.M.); (N.J.)
- Centre of Advanced Composite Materials, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| | - Mohsin Ali Raza
- Institute of Metallurgy and Materials Engineering, Faculty of Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (I.I.); (M.A.R.)
| | - Amna Sajjad
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan;
| | - Faiza Jabeen
- Department of Zoology, University of Education, Lahore 54770, Pakistan;
| | - Mohd Riduan Mohamad
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia; (S.I.A.R.); (M.R.M.); (N.J.)
| | - Norhana Jusoh
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia; (S.I.A.R.); (M.R.M.); (N.J.)
| |
Collapse
|
45
|
Pandit AH, Nisar S, Imtiyaz K, Nadeem M, Mazumdar N, Rizvi MMA, Ahmad S. Injectable, Self-Healing, and Biocompatible N, O-Carboxymethyl Chitosan/Multialdehyde Guar Gum Hydrogels for Sustained Anticancer Drug Delivery. Biomacromolecules 2021; 22:3731-3745. [PMID: 34436877 DOI: 10.1021/acs.biomac.1c00537] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Local delivery of anticancer agents via injectable hydrogels could be a promising method for achieving spatiotemporal control on drug release as well as minimizing the disadvantages related to the systemic mode of drug delivery. Keeping this in mind, we report the development of N,O-carboxymethyl chitosan (N,O-CMCS)-guar gum-based injectable hydrogels for the sustained delivery of anticancer drugs. The hydrogels were synthesized by chemical crosslinking of multialdehyde guar gum (MAGG) and N,O-CMCS through dynamic Schiff base linkages, without requiring any external crosslinker. Fabrication of injectable hydrogels, involving N,O-CMCS and MAGG via Schiff base crosslinking, is being reported for the first time. The hydrogels exhibited pH-responsive swelling behavior and good mechanical properties with a storage modulus of about 1625 Pa. Due to the reversible nature of Schiff base linkages, hydrogels displayed excellent self-healing and thixotropic properties. Doxorubicin (Dox), an anticancer agent, was loaded onto these hydrogels and its release studies were conducted at pH 7.4 (physiological) and pH 5.5 (tumoral). A sustained release of about 67.06% Dox was observed from the hydrogel after 5 days at pH 5.5 and about 32.13% at pH 7.4. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay on the human embryonic kidney cell line (HEK-293) and the hemolytic assay demonstrated the biocompatible nature of the hydrogels. The Dox-loaded hydrogel exhibited a significant killing effect against breast cancer cells (MCF-7) with a cytotoxicity of about 72.13%. All the data presented support the efficiency of the synthesized N,O-CMCS/MAGG hydrogel as a biomaterial that may find promising applications in anticancer drug delivery.
Collapse
Affiliation(s)
- Ashiq Hussain Pandit
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Safiya Nisar
- Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201303, India
| | - Khalid Imtiyaz
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Masood Nadeem
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Nasreen Mazumdar
- Material (Polymer) Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sharif Ahmad
- Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India
| |
Collapse
|
46
|
Li P, Wang T, He J, Jiang J, Lei F. Diffusion of water and protein drug in 1,4-butanediol diglycidyl ether crosslinked galactomannan hydrogels and its correlation with the physicochemical properties. Int J Biol Macromol 2021; 183:1987-2000. [PMID: 34087302 DOI: 10.1016/j.ijbiomac.2021.05.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to obtain a better and safer galactomannan-based material for drug release applications. A novel epoxy-crosslinked galactomannan hydrogel (EGH) was prepared from guar gum using 1,4-butanediol diglycidyl ether as a crosslinking agent. The diffusion rate constant of water molecules in freeze-dried EGH positively correlated with water uptake/equilibrium swelling rate (WU/ESR), and the water molecules participated in Fickian diffusion. The ESR, WU/ESR, and bovine serum albumin (BSA) loading capacity of a customized EGH with a crosslinking density of 48.9% were 48.7 ± 0.15 g/g, 95.3%, and 56.4 mg/g, respectively. The release of BSA from freeze-dried EGH was affected by the WU/ESR and the pH; the release equilibrium time was ~40 h at pH 1.2, decreasing to ~24 h at pH 7.4. Furthermore, the cumulative release rate increased from 63.5% to 80.7% and the t50 decreased from 59 to 41 min upon changing from the acidic to basic pH. The release process conformed to the Ritger-Peppas and Hixson-Crowell models, and represented Fickian diffusion and chain relaxation. The EGH showed no cytotoxicity toward HeLa cells. Together, these results demonstrate the properties of a novel galactomannan-based hydrogel that can potentially be employed as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Jing He
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
47
|
Passos AAC, Teixeira Sá DMA, Andrade PL, Barreto JJS, dos Santos NL, das Chagas RMM, de Brito Alves T, Chaves MJL, da Silva Maciel J, do Egito AS, de Azevedo Moreira R, Braga RC. Partially hydrolyzed galactomannan from Adenanthera pavonina seeds used as stabilizer, fat substitute, and food fiber source for mousses. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Pal RR, Kumar D, Raj V, Rajpal V, Maurya P, Singh S, Mishra N, Singh N, Singh P, Tiwari N, Saraf SA. Synthesis of pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) for the delivery of thymoquinone against inflammation. Int J Biol Macromol 2021; 182:1218-1228. [PMID: 33991556 DOI: 10.1016/j.ijbiomac.2021.05.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022]
Abstract
The present work aims to synthesize the pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) [guar-g-(AA-co-ACN)] via microwave-assisted technique for the sustained release of thymoquinone. The synthesized material [guar-g-(AA-co-ACN)] was optimized by varying synthetic parameters viz. monomer concentration, reaction time, and microwave power to obtain the maximum yield of the crosslinked guar gum grafted product as well as maximum encapsulation of thymoquinone. The synthesized material [guar-g-poly(AA-co-ACN)] was characterized by FT-IR, SEM, XRD, NMR, zeta potential, and thermal techniques. This synthesized material was used to encapsulate thymoquinone (TQ) for effective nanotherapeutic delivery. In-vitro thymoquinone release behavior of guar-g-poly(AA-co-ACN) based nanoparticles (NpTGG) was investigated. The maximum thymoquinone release (78%) was achieved at pH 7.4 and time (6 h). The NpTGG also exhibited better antioxidant activity and hemocompatibility as compared to thymoquinone. Cytotoxicity of uar-g-(AA-co-ACN) and NpTGG was also evaluated against the human kidney VERO cell line and found to be nontoxic. Current research provides a cost-effective and green approach for the synthesis of guar-g-(AA-co-ACN) and NpTGG for sustained release of thymoquinone.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Deepak Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Vasundhara Rajpal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India
| | - Nidhi Tiwari
- Centre of Biomedical Research, SGPGIMS Campus, Raibarelly Road, U.P., Lucknow 226014, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, U.P. 226025, India.
| |
Collapse
|
49
|
Wang C, Wu L, Li W, Fei J, Xu J, Chen S, Yan S, Wang X. An injectable double-crosslinking iodinated composite hydrogel as a potential radioprotective spacer with durable imaging function. J Mater Chem B 2021; 9:3346-3356. [PMID: 33881426 DOI: 10.1039/d0tb02953j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the leading causes of cancer incidence among males worldwide. Radiotherapy can achieve similar oncological outcomes to those of radical prostatectomy. One concern is, however, radiation damage to the rectum because of the extreme proximity between the two organs. Inserting a biomaterial to separate the prostate and rectum is a promising strategy, and an injectable hydrogel is regarded to be the preferred spacer after screening of various materials. Nevertheless, there exist shortcomings for the currently available injectable hydrogel that cannot fully meet the unique requirements in clinical practice. In this work, a novel injectable hydrogel spacer based on carboxymethyl chitosan (CMC), aldehyde guar gum (AG), and aldehyde iohexol (DHQ) with an imaging function is fabricated. Contrast agent DHQ is chemically attached to CMC-AG network to form a double-crosslinking network to obtain a controlled degradation rate and high strength as well as durable CT imaging function. The hydrogel is injected subcutaneously into rats, where rapid gelation occurs and it serves as a hydrogel spacer. During the month-long in vivo studies, the spacer exhibits remarkable radiation dose attenuation and sustainable imaging function, as well as excellent toxicity profiles. This novel hydrogel shows excellent potential in the protection of critical organs during prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Cheng Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ng S, Kurisawa M. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater 2021; 124:108-129. [PMID: 33472103 DOI: 10.1016/j.actbio.2021.01.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cultured meat has recently achieved mainstream prominence due to the emergence of societal and industrial interest. In contrast to animal-based production of traditional meat, the cultured meat approach entails laboratory cultivation of engineered muscle tissue. However, bioengineers have hitherto engineered tissues to fulfil biomedical endpoints, and have had limited experience in engineering muscle tissue for its post-mortem traits, which broadly govern consumer definitions of meat quality. Furthermore, existing tissue engineering approaches face fundamental challenges in technical feasibility and industrial scalability for cultured meat production. This review discusses how animal-based meat production variables influence meat properties at both the molecular and functional level, and whether current cultured meat approaches recapitulate these properties. In addition, this review considers how conventional meat producers employ exogenous biopolymer-based meat ingredients and processing techniques to mimic desirable meat properties in meat products. Finally, current biomaterial strategies for engineering muscle and adipose tissue are surveyed in the context of emerging constraints that pertain to cultured meat production, such as edibility, sustainability and scalability, and potential areas for integrating biomaterials and food biopolymer approaches to address these constraints are discussed. STATEMENT OF SIGNIFICANCE: Laboratory-grown or cultured meat has gained increasing interest from industry and the public, but currently faces significant impediment to market feasibility. This is due to fundamental knowledge gaps in producing realistic meat tissues via conventional tissue engineering approaches, as well as translational challenges in scaling up these approaches in an efficient, sustainable and high-volume manner. By defining the molecular basis for desirable meat quality attributes, such as taste and texture, and introducing the fundamental roles of food biopolymers in mimicking these properties in conventional meat products, this review aims to bridge the historically disparate fields of meat science and biomaterials engineering in order to inspire potentially synergistic strategies that address some of these challenges.
Collapse
|