1
|
Boychev N, Yeung V, Yang M, Kanu LN, Ross AE, Kuang L, Chen L, Ciolino JB. Ocular tear fluid biomarkers collected by contact lenses. Biochem Biophys Res Commun 2024; 734:150744. [PMID: 39340927 DOI: 10.1016/j.bbrc.2024.150744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE To collect tear fluid biomarkers from contact lenses (CLs) and determine the impact of CL wear duration. METHODS Rabbits were fitted with commercial etafilcon A CLs, which were collected after 1 min, 4 and 8 h (n = 4/time point). Tear fluid proteins and cytokines were extracted from the CLs and quantified. An exploratory comparison was performed between CLs and Schirmer Strips (SS) for a 1 min duration. RESULTS The concentration of MUC5AC was significantly higher after 4 h of CL wear. The expression of all investigated cytokines (IL-1α, IL-1β, IL-8, IL-17A, IL-21, Leptin, MIP-1β, MMP-9, NCAM-1, and TNF-α) was detectable after 1 min of CL wear, and over time, all showed significant variations throughout the 8-h CL wear period. Notably, IL-1α significantly increased by 8 h of CL wear, while MMP-9 decreased. Albumin and lysozyme did not show significant variations with CL wear. Differences between CLs and SS after 1 min were statistically significant for albumin, Leptin, TNF-α, IL-1α, IL-1β, and IL-8. CONCLUSIONS The duration of CL wear significantly affects the collection of some tear fluid biomarkers. Albumin, MUC5AC, and cytokines may have individual and synergistic diagnostic or prognostic potential. CLs and SS were similar for lysozyme and MUC5AC but differed in the collection of albumin and some cytokines. CLs are a viable tear fluid collection method for biomarker analyses and can be immediately added as a routine clinical test by being FDA-approved medical devices.
Collapse
Affiliation(s)
- Nikolay Boychev
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA.
| | - Vincent Yeung
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Menglu Yang
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Levi N Kanu
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Amy E Ross
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Liangju Kuang
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| | - Lin Chen
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Joseph B Ciolino
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, USA
| |
Collapse
|
2
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
3
|
Peng J, Feinstein D, DeSimone S, Gentile P. A Review of the Tear Film Biomarkers Used to Diagnose Sjogren's Syndrome. Int J Mol Sci 2024; 25:10380. [PMID: 39408709 PMCID: PMC11476667 DOI: 10.3390/ijms251910380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
This literature review looks at Sjogren's Syndrome (SS), a chronic autoimmune disorder affecting exocrine glands, particularly the lacrimal and salivary glands. SS manifests as ocular and oral dryness, with severe complications like visual dysfunction and corneal perforation, as well as systemic implications, such as interstitial lung disease and lymphoma. This review explores the use of tear film biomarkers to diagnose SS, emphasizing the significance of their identification in aiding clinical diagnosis and differentiation from other diseases. This study identified and analyzed 15 papers, encompassing 1142 patients and employing various tear sample collection methods. Tear biomarkers were categorized by function and explored in-depth. Categories include (1) antimicrobials, antivirals, and antifungals; (2) components of immune regulation; (3) components that regulate metabolic processes; and (4) inflammatory markers. Noteworthy findings include the potential diagnostic values of tear lysozyme, lactoferrin, dinucleoside polyphosphates, cathepsin, defensin, antibodies, epidermal fatty acid-binding protein, HLA-DR, ADAM10, aquaporin 5, and various miRNAs and mRNAs. Overall, our understanding of SS tear film composition is enhanced, providing valuable insights into the pathogenesis of SS and offering a foundation for future diagnostic and therapeutic advancements in autoimmune conditions affecting the ocular surface.
Collapse
Affiliation(s)
- Jason Peng
- Cooper Medical School of Rowan University, Camden, NJ 08103, USA;
| | - David Feinstein
- Department of Rheumatology, Cooper University Hospital, Camden, NJ 08103, USA; (D.F.); (P.G.)
| | - Salvatore DeSimone
- Department of Ophthalmology, Cooper University Hospital, Camden, NJ 08103, USA
| | - Pietro Gentile
- Department of Rheumatology, Cooper University Hospital, Camden, NJ 08103, USA; (D.F.); (P.G.)
| |
Collapse
|
4
|
Anbuselvam B, Gunasekaran BM, Srinivasan S, Ezhilan M, Rajagopal V, Nesakumar N. Wearable biosensors in cardiovascular disease. Clin Chim Acta 2024; 561:119766. [PMID: 38857672 DOI: 10.1016/j.cca.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
This review provides a comprehensive overview of the latest advancements in wearable biosensors, emphasizing their applications in cardiovascular disease monitoring. Initially, the key sensing signals and biomarkers crucial for cardiovascular health, such as electrocardiogram, phonocardiography, pulse wave velocity, blood pressure, and specific biomarkers, are highlighted. Following this, advanced sensing techniques for cardiovascular disease monitoring are examined, including wearable electrophysiology devices, optical fibers, electrochemical sensors, and implantable cardiac devices. The review also delves into hydrogel-based wearable electrochemical biosensors, which detect biomarkers in sweat, interstitial fluids, saliva, and tears. Further attention is given to flexible electronics-based biosensors, including resistive, capacitive, and piezoelectric force sensors, as well as resistive and pyroelectric temperature sensors, flexible biochemical sensors, and sensor arrays. Moreover, the discussion extends to polymer-based wearable sensors, focusing on innovations in contact lens, textile-type, patch-type, and tattoo-type sensors. Finally, the review addresses the challenges associated with recent wearable biosensing technologies and explores future perspectives, highlighting potential groundbreaking avenues for transforming wearable sensing devices into advanced diagnostic tools with multifunctional capabilities for cardiovascular disease monitoring and other healthcare applications.
Collapse
Affiliation(s)
- Bhavadharani Anbuselvam
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Mechanical Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Madeshwari Ezhilan
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India.
| | - Venkatachalam Rajagopal
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
5
|
Harkness BM, Chen S, Kim K, Reddy AP, McFarland TJ, Hegarty DM, Everist SJ, Saugstad JA, Lapidus J, Galor A, Aicher SA. Tear Proteins Altered in Patients with Persistent Eye Pain after Refractive Surgery: Biomarker Candidate Discovery. J Proteome Res 2024; 23:2629-2640. [PMID: 38885176 DOI: 10.1021/acs.jproteome.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Some patients develop persistent eye pain after refractive surgery, but factors that cause or sustain pain are unknown. We tested whether tear proteins of patients with pain 3 months after surgery differ from those of patients without pain. Patients undergoing refractive surgery (laser in situ keratomileusis or photorefractive keratectomy ) were recruited from 2 clinics, and tears were collected 3 months after surgery. Participants rated their eye pain using a numerical rating scale (NRS, 0-10; no pain-worst pain) at baseline, 1 day, and 3 months after surgery. Using tandem mass tag proteomic analysis, we examined tears from patients with pain [NRS ≥ 3 at 3 months (n = 16)] and patients with no pain [NRS ≤ 1 at 3 months (n = 32)] after surgery. A subset of proteins (83 of 2748 detected, 3.0%) were associated with pain 3 months after surgery. High-dimensional statistical models showed that the magnitude of differential expression was not the only important factor in classifying tear samples from pain patients. Models utilizing 3 or 4 proteins had better classification performance than single proteins and represented differences in both directions (higher or lower in pain). Thus, patterns of protein differences may serve as biomarkers of postsurgical eye pain as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Brooke M Harkness
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Siting Chen
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, Oregon 97239-4197, United States
- Biostatistics & Design Program, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Kilsun Kim
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Trevor J McFarland
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Deborah M Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Steven J Everist
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Julie A Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Jodi Lapidus
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, Oregon 97239-4197, United States
- Biostatistics & Design Program, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, Florida 33146, United States
- Miami Veterans Affairs Hospital, Miami, Florida 33125-1624, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-4197, United States
| |
Collapse
|
6
|
Gary AA, Prislovsky A, Tovar A, Locatelli E, Felix ER, Stephenson D, Chalfant CE, Lai J, Kim C, Mandal N, Galor A. Lipids from ocular meibum and tears may serve as biomarkers for depression and post-traumatic stress disorder. Clin Exp Ophthalmol 2024; 52:516-527. [PMID: 38146655 PMCID: PMC11199378 DOI: 10.1111/ceo.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND There is a need to develop biomarkers for diagnosis and prediction of treatment responses in depression and post-traumatic stress disorder (PTSD). METHODS Cross-sectional study examining correlations between tear inflammatory proteins, meibum and tear sphingolipids, and symptoms of depression and PTSD-associated anxiety. Ninety individuals filled depression (Patient Health Questionnaire 9, PHQ-9) and PTSD-associated anxiety (PTSD Checklist-Military Version, PCL-M) questionnaires. In 40 patients, a multiplex assay system was used to quantify 23 inflammatory proteins in tears. In a separate group of 50 individuals, liquid chromatography-mass spectrometry was performed on meibum and tears to quantify 34 species of sphingolipids, encompassing ceramides, monohexosyl ceramides and sphingomyelins. RESULTS The mean age of the population was 59.4 ± 11.0 years; 89.0% self-identified as male, 34.4% as White, 64.4% as Black, and 16.7% as Hispanic. The mean PHQ-9 score was 11.1 ± 7.6, and the mean PCL-M score was 44.3 ± 19.1. Symptoms of depression and PTSD-associated anxiety were highly correlated (ρ =0.75, p < 0.001). Both PHQ9 and PCL-M scores negatively correlated with multiple sphingolipid species in meibum and tears. In multivariable models, meibum Monohexosyl Ceramide 26:0 (pmol), tear Ceramide 16:0 (mol%), meibum Monohexosyl Ceramide 16:0 (mol%), and tear Ceramide 26:1 (mol%) remained associated with depression and meibum Monohexosyl Ceramide 16:0 (mol%), meibum Monohexosyl Ceramide 26:0 (pmol), tear Sphingomyelin 20:0 (mol%), and tear Sphingosine-1-Phosphate (mol%) remained associated with PTSD-associated anxiety. CONCLUSIONS Certain meibum and tear sphingolipid species were related to mental health indices. These interactions present opportunities for innovative diagnostic and therapeutic approaches for mental health disorders.
Collapse
Affiliation(s)
- Ashlyn A. Gary
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Arianna Tovar
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Elyana Locatelli
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Elizabeth R. Felix
- Research Service, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Department of Physical Medicine & Rehabilitation, University of Miami, Miami, FL, USA
| | - Daniel Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Charles E. Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - James Lai
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Colin Kim
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nawajes Mandal
- Memphis VA Medical Center, Memphis, TN, USA
- Depts. of Ophthalmology, Anatomy and Neurobiology and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Hamilton Eye Institute, Memphis, TN, USA
| | - Anat Galor
- Surgical Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
7
|
Guo Z, Ma M, Lu S, Ma Y, Yu Y, Guo Q. Applications of Raman spectroscopy in ocular biofluid detection. Front Chem 2024; 12:1407754. [PMID: 38915903 PMCID: PMC11194368 DOI: 10.3389/fchem.2024.1407754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Ophthalmic and many systemic diseases may damage the eyes, resulting in changes in the composition and content of biomolecules in ocular biofluids such as aqueous humor and tear. Therefore, the biomolecules in biofluids are potential biomarkers to reveal pathological processes and diagnose diseases. Raman spectroscopy is a non-invasive, label-free, and cost-effective technique to provide chemical bond information of biomolecules and shows great potential in the detection of ocular biofluids. This review demonstrates the applications of Raman spectroscopy technology in detecting biochemical components in aqueous humor and tear, then summarizes the current problems encountered for clinical applications of Raman spectroscopy and looks forward to possible approaches to overcome technical bottlenecks. This work may provide a reference for wider applications of Raman spectroscopy in biofluid detection and inspire new ideas for the diagnosis of diseases using ocular biofluids.
Collapse
Affiliation(s)
- Zhijun Guo
- Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Academy of Safety Engineering and Technology, Beijing, China
| | - Miaoli Ma
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Sichao Lu
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Ying Ma
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yansuo Yu
- Beijing Institute of Petrochemical Technology, Beijing, China
| | - Qianjin Guo
- Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
8
|
Thomas KM, Ajithaprasad S, N M, Pavithran M S, Chidangil S, Lukose J. Raman spectroscopy assisted tear analysis: A label free, optical approach for noninvasive disease diagnostics. Exp Eye Res 2024; 243:109913. [PMID: 38679225 DOI: 10.1016/j.exer.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
In recent times, tear fluid analysis has garnered considerable attention in the field of biomarker-based diagnostics due to its noninvasive sample collection method. Tears encompass a reservoir of biomarkers that assist in diagnosing not only ocular disorders but also a diverse list of systemic diseases. This highlights the necessity for sensitive and dependable screening methods to employ tear fluid as a potential noninvasive diagnostic specimen in clinical environments. Considerable research has been conducted to investigate the potential of Raman spectroscopy-based investigations for tear analysis in various diagnostic applications. Raman Spectroscopy (RS) is a highly sensitive and label free spectroscopic technique which aids in investigating the molecular structure of samples by evaluating the vibrational frequencies of molecular bonds. Due to the distinct chemical compositions of different samples, it is possible to obtain a sample-specific spectral fingerprint. The distinctive spectral fingerprints obtained from Raman spectroscopy enable researchers to identify specific compounds or functional groups present in a sample, aiding in diverse biomedical applications. Its sensitivity to changes in molecular structure or environment provides invaluable insights into subtle alterations associated with various diseases. Thus, Raman Spectroscopy has the potential to assist in diagnosis and treatment as well as prognostic evaluation. Raman spectroscopy possesses several advantages, such as the non-destructive examination of samples, remarkable sensitivity to structural variations, minimal prerequisites for sample preparation, negligible interference from water, and the aptness for real-time investigation of tear samples. The purpose of this review is to highlight the potential of Raman spectroscopic technique in facilitating the clinical diagnosis of various ophthalmic and systemic disorders through non-invasive tear analysis. Additionally, the review delves into the advancements made in Raman spectroscopy with regards to paper-based sensing substrates and tear analysis methods integrated into contact lenses. Furthermore, the review also addresses the obstacles and future possibilities associated with implementing Raman spectroscopy as a routine diagnostic tool based on tear analysis in clinical settings.
Collapse
Affiliation(s)
- Keziah Mary Thomas
- Dr. Agarwal's Eye Hospital and Eye Research Centre, Chennai, Tamil Nadu, India
| | - Sreeprasad Ajithaprasad
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanoop Pavithran M
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
9
|
Boychev N, Lee S, Yeung V, Ross AE, Kuang L, Chen L, Dana R, Ciolino JB. Contact lenses as novel tear fluid sampling vehicles for total RNA isolation, precipitation, and amplification. Sci Rep 2024; 14:11727. [PMID: 38778161 PMCID: PMC11111455 DOI: 10.1038/s41598-024-62215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The tear fluid is a readily accessible, potential source for biomarkers of disease and could be used to monitor the ocular response to contact lens (CL) wear or ophthalmic pathologies treated by therapeutic CLs. However, the tear fluid remains largely unexplored as a biomarker source for RNA-based molecular analyses. Using a rabbit model, this study sought to determine whether RNA could be collected from commercial CLs and whether the duration of CL wear would impact RNA recovery. The results were referenced to standardized strips of filtered paper (e.g., Shirmer Strips) placed in the inferior fornix. By performing total RNA isolation, precipitation, and amplification with commercial kits and RT-PCR methods, CLs were found to have no significant differences in RNA concentration and purity compared to Schirmer Strips. The study also identified genes that could be used to normalize RNA levels between tear samples. Of the potential control genes or housekeeping genes, GAPDH was the most stable. This study, which to our knowledge has never been done before, provides a methodology for the detection of RNA and gene expression changes from tear fluid that could be used to monitor or study eye diseases.
Collapse
Affiliation(s)
- Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA.
| | - Seokjoo Lee
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Amy E Ross
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Lin Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Reza Dana
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| |
Collapse
|
10
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
11
|
Liao J, Yu X, Huang Z, He Q, Yang J, Zhang Y, Chen J, Song W, Luo J, Tao Q. Chemokines and lymphocyte homing in Sjögren's syndrome. Front Immunol 2024; 15:1345381. [PMID: 38736890 PMCID: PMC11082322 DOI: 10.3389/fimmu.2024.1345381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4β7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-β, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-β receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.
Collapse
Affiliation(s)
- Jiahe Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xinbo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Ziwei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jianying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Weijiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
13
|
Liu X, Ye Y, Ge Y, Qu J, Liedberg B, Zhang Q, Wang Y. Smart Contact Lenses for Healthcare Monitoring and Therapy. ACS NANO 2024; 18:6817-6844. [PMID: 38407063 DOI: 10.1021/acsnano.3c12072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The eye contains a wealth of physiological information and offers a suitable environment for noninvasive monitoring of diseases via smart contact lens sensors. Although extensive research efforts recently have been undertaken to develop smart contact lens sensors, they are still in an early stage of being utilized as an intelligent wearable sensing platform for monitoring various biophysical/chemical conditions. In this review, we provide a general introduction to smart contact lenses that have been developed for disease monitoring and therapy. First, different disease biomarkers available from the ocular environment are summarized, including both physical and chemical biomarkers, followed by the commonly used materials, manufacturing processes, and characteristics of contact lenses. Smart contact lenses for eye-drug delivery with advancing technologies to achieve more efficient treatments are then introduced as well as the latest developments for disease diagnosis. Finally, sensor communication technologies and smart contact lenses for antimicrobial and other emerging bioapplications are also discussed as well as the challenges and prospects of the future development of smart contact lenses.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Ying Ye
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Yuancai Ge
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qingwen Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325001, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
14
|
Krok M, Wróblewska-Czajka E, Łach-Wojnarowicz O, Bronikowska J, Czuba ZP, Wylęgała E, Dobrowolski D. Analysis of Cytokine and Chemokine Level in Tear Film in Keratoconus Patients before and after Corneal Cross-Linking (CXL) Treatment. Int J Mol Sci 2024; 25:1052. [PMID: 38256126 PMCID: PMC10816198 DOI: 10.3390/ijms25021052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Keratoconus (KC) is a degenerative corneal disorder whose aetiology remains unknown. The aim of our study was to analyse the expressions of cytokines and chemokines in KC patients before and after specified time intervals after corneal cross-linking (CXL) treatment to better understand the molecular mechanisms occurring before and after CXL in KC patients process of corneal regeneration.; Tear samples were gathered from 52 participants immediately after the CXL procedure and during the 12-month follow-up period. All patients underwent a detailed ophthalmological examination and tear samples were collected before and after CXL at regular intervals: 1 day before and after the surgery, at the day 7 visit, and at 1, 3, 6, 9, and 12 months after CXL. The control group consisted of 20 healthy people. 10 patients were women (50%) and 10 were men (50%). The mean age was 30 ± 3 years of age. Tear analysis was performed using the Bio-Plex 3D Suspension Array System. Corneal topography parameters measured by Scheimpflug Camera included: keratometry values (Ks, Kf), PI-Apex, PI-Thinnest, Cylinder.; All the 12 months post-op values of the KC patients' topographic measurements were significantly lower than the pre-op. As for the tear cytokine levels comparison between the patient and control groups, cytokine levels of TNF-α, IL-6, and CXCL-10, among others, were detected in lower amounts in the KC group. The pre-op level of IL-6 exhibited a significant increase the day after CXL, whereas comparing the day after the procedure to 12 months after CXL, this showed a significant decrease. Both TNF-α and IL-1 showed a significant decrease compared to the day before and after CXL. We observed significantly higher levels of IL-1β, IL-10, IFN-γ and TNF-α in moderate and severe keratoconus than in mild keratoconus (p < 0.05). We also demonstrated a statistically significant positive correlation between both pre-op and 12 months after CXL TNF-α, IFN-γ, IL-6 and Ks and Kf values (p < 0.05, r > 0); Alterations of inflammatory mediators in tear fluid after CXL link with topographic changes and may contribute to the development and progression of KC.
Collapse
Affiliation(s)
- Magdalena Krok
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
- Ophthalmology of Department, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Ewa Wróblewska-Czajka
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
- Ophthalmology of Department, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Olga Łach-Wojnarowicz
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
| | - Joanna Bronikowska
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.B.); (Z.P.C.)
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.B.); (Z.P.C.)
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
- Ophthalmology of Department, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Dariusz Dobrowolski
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65 Street, 40-760 Katowice, Poland (E.W.-C.); (E.W.); (D.D.)
- Ophthalmology of Department, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| |
Collapse
|
15
|
Feng J, Liu Y, Ren Y, Shi W, Kang H, Tan Y, Wu R, Zhang G, He Y. Evaluation of Dry Eye Severity and Ocular Surface Inflammation in Patients with Pemphigus and Pemphigoid. Ocul Immunol Inflamm 2024; 32:62-70. [PMID: 36637982 DOI: 10.1080/09273948.2022.2154680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE To evaluate ocular surface involvement, tear cytokine levels, and histopathological changes in pemphigus and pemphigoid patients. METHODS A total of 22 patients (15 pemphigus and 7 pemphigoids) and 21 non-diseased controls were enrolled in our study. All participants underwent ocular surface evaluation, which included ocular surface disease index test, slit lamp observation, dry eye-related examination, tear multicytokine analysis, and conjunctival impression cytology. RESULTS Pemphigus and pemphigoid patients presented much more severe conjunctivochalasis, corneal epithelial defects, corneal opacity, symblepharon and dry eye. Severe ocular surface squamous metaplasia and a significant increase of tear macrophage inflammatory protein-1beta, tumor necrosis factor-alpha, interleukin (IL)-1β, IL -6, and IL-8 occurred in pemphigus and pemphigoid patients. CONCLUSIONS Our results revealed that ocular surface inflammation and dry eye persist in most pemphigus and pemphigoid patients, and do not occur in parallel with the systemic course. Regular ophthalmological examinations and local anti-inflammatory should be provided for pemphigus and pemphigoid patients.
Collapse
Affiliation(s)
- Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi Province, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruifang Wu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiying Zhang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
16
|
Lamas M. Epigenetic mechanisms of non-retinal components of the aging eye and novel therapeutic strategies. Exp Eye Res 2023; 236:109673. [PMID: 37802281 DOI: 10.1016/j.exer.2023.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The eye is a complex organ composed of various cell types, each serving a unique purpose. However, aging brings about structural and functional changes in these cells, leading to discomfort and potential pathology. Alterations in gene expression, influenced by aging and environmental factors, significantly affect cell structure and function. Epigenetics, a field focused on understanding the correlation between changes in gene expression, cell function, and environmental factors, plays a crucial role in unraveling the molecular events responsible for age-related eye changes. This prompts the possibility of developing epigenetic strategies to intervene in these changes or reinstate proper molecular activities. Indeed, research has demonstrated that epigenetic modifications, including DNA methylation, histone modification, and non-coding RNAs, are closely associated with age-related alterations in gene expression and cell function. This review aims to compile and synthesize the most recent body of evidence supporting the role of epigenetics in age-related alterations observed in various components of the eye. Specifically, it focuses on the impact of epigenetic changes in the ocular surface, tear film, aqueous humor, vitreous humor, and lens. Furthermore, it highlights the significant advancements that have been made in the field of epigenetic-based experimental therapies, specifically focusing on their potential for treating pathological conditions in the aging eye.
Collapse
Affiliation(s)
- Monica Lamas
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, Centro de Investigación sobre el Envejecimiento, CINVESTAV Sede Sur, Calzada de los Tenorios 235, CDMX, Mexico.
| |
Collapse
|
17
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
18
|
Guntermann A, Fatoba O, Kronenberg M, Reinehr S, Grotegut P, Schargus M, Tsai T, Ivanova S, Serschnitzki B, Kumowski N, Maier C, Marcus K, Dick HB, Joachim SC, May C. Investigation of Inter- and Intra-Day Variability of Tear Fluid Regarding Flow Rate, Protein Concentration as well as Protein Composition. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37815507 PMCID: PMC10573576 DOI: 10.1167/iovs.64.13.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/21/2023] [Indexed: 10/11/2023] Open
Abstract
Purpose The purpose of this study was to present the determination of inter- and intra-day variations in tear flow rate, and tear fluid protein concentration, as well as protein composition regarding their impact for future biomarker studies. Methods Tear fluid was collected noninvasively from 18 healthy subjects by performing Schirmer tests at 4 different time points repetitive in a period of 2 days. The tear flow rate on the Schirmer test strips was measured. Proteins were extracted from strips and quantified using amino acid analysis. Protein composition was analyzed by the strips data-independent (DIA) based mass spectrometry. To exclude any impairments to health, volunteers underwent a detailed neurological as well as an ophthalmological examination. Results Whether tear fluid was collected from oculus sinister or oculus dexter did not affect the tear flow rate (P ≈ 0.63) or protein concentration (P ≈ 0.97) of individual subjects. Moreover, protein concentration was independent from the tear volume, so that a change in volume may only influence the total protein amount. When the examination days were compared, investigation of tear flow rate (P ≈ 0.001) and protein concentration (P ≈ 0.0003) indicated significant differences. Further, mass spectrometric analysis of tear fluid revealed 11 differentially regulated proteins when comparing both examination days. Conclusions Our findings provide evidence of inter-day variation in tear flow rate, tear proteome concentration, and composition in healthy subjects, suggesting that inter-day variation needs to be taken into consideration in biomarker research of tear fluid. Identified proteins were assigned to functions in the immune response, oxidative and reducing processes, as well as mannose metabolism.
Collapse
Affiliation(s)
- Annika Guntermann
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - Oluwaseun Fatoba
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - Marc Kronenberg
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Marc Schargus
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
- Asklepios Eye Hospital Nord-Heidberg, Hamburg, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Svetlana Ivanova
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Bettina Serschnitzki
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - Nina Kumowski
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr-University Bochum, Bochum, Germany
- Medical Clinic I - Cardiology, Angiology and Internal Intensive Care Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Christoph Maier
- University Children's Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Katrin Marcus
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Caroline May
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| |
Collapse
|
19
|
Lépine M, Zambito O, Sleno L. Targeted Workflow Investigating Variations in the Tear Proteome by Liquid Chromatography Tandem Mass Spectrometry. ACS OMEGA 2023; 8:31168-31177. [PMID: 37663498 PMCID: PMC10468840 DOI: 10.1021/acsomega.3c03186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Proteins in tears have an important role in eye health and have been shown as a promising source of disease biomarkers. The goal of this study was to develop a robust, sensitive, and targeted method for profiling tear proteins to examine the variability within a group of healthy volunteers over three days. Inter-individual and inter-day variabilities were examined to contribute to understanding the normal variations in the tear proteome, as well as to establish which proteins may be better candidates as eventual biomarkers of specific diseases. Tear samples collected on Schirmer strips were subjected to bottom-up proteomics, and resulting peptides were analyzed using an optimized targeted method measuring 226 proteins by liquid chromatography-scheduled multiple reaction monitoring. This method was developed using an in-house database of identified proteins from tears compiled from high-resolution data-dependent liquid chromatography tandem mass spectrometry data. The measurement of unique peptide signals can help better understand the dynamics of each of these proteins in tears. Some interesting trends were seen in specific pathways or protein classes, including higher variabilities for those involved in glycolysis, glutathione metabolism, and cytoskeleton proteins and lower variation for those involving the degradation of the extracellular matrix. The overall aim of this study was to contribute to the field of tear proteomics with the development of a novel and targeted method that is highly amenable to the clinical laboratory using high flow LC and commonly used triple quadrupole mass spectrometry while ensuring that protein quantitation was reported based on unique peptides for each protein and robust peak areas with data normalization. These results report on variabilities on over 200 proteins that are robustly detected in tear samples from healthy volunteers with a simple sample preparation procedure.
Collapse
Affiliation(s)
- Maggy Lépine
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Oriana Zambito
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, PO Box 8888 Downtown Station, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
20
|
Pur DR, Krance SH, Pucchio A, Miranda RN, Felfeli T. Current uses of artificial intelligence in the analysis of biofluid markers involved in corneal and ocular surface diseases: a systematic review. Eye (Lond) 2023; 37:2007-2019. [PMID: 36380089 PMCID: PMC10333344 DOI: 10.1038/s41433-022-02307-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Corneal and ocular surface diseases (OSDs) carry significant psychosocial and economic burden worldwide. We set out to review the literature on the application of artificial intelligence (AI) and bioinformatics for analysis of biofluid biomarkers in corneal and OSDs and evaluate their utility in clinical decision making. MEDLINE, EMBASE, Cochrane and Web of Science were systematically queried for articles using AI or bioinformatics methodology in corneal and OSDs and examining biofluids from inception to August 2021. In total, 10,264 articles were screened, and 23 articles consisting of 1058 individuals were included. Using various AI/bioinformatics tools, changes in certain tear film cytokines that are proinflammatory such as increased expression of apolipoprotein, haptoglobin, annexin 1, S100A8, S100A9, Glutathione S-transferase, and decreased expression of supportive tear film components such as lipocalin-1, prolactin inducible protein, lysozyme C, lactotransferrin, cystatin S, and mammaglobin-b, proline rich protein, were found to be correlated with pathogenesis and/or treatment outcomes of dry eye, keratoconus, meibomian gland dysfunction, and Sjögren's. Overall, most AI/bioinformatics tools were used to classify biofluids into diseases subgroups, distinguish between OSD, identify risk factors, or make predictions about treatment response, and/or prognosis. To conclude, AI models such as artificial neural networks, hierarchical clustering, random forest, etc., in conjunction with proteomic or metabolomic profiling using bioinformatics tools such as Gene Ontology or Kyoto Encylopedia of Genes and Genomes pathway analysis, were found to inform biomarker discovery, distinguish between OSDs, help define subgroups with OSDs and make predictions about treatment response in a clinical setting.
Collapse
Affiliation(s)
- Daiana Roxana Pur
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Saffire H Krance
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Aidan Pucchio
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Rafael N Miranda
- Toronto Health Economics and Technology Assessment Collaborative, Toronto, ON, Canada
- The Institute of Health Policy, Management and Evaluation (IHPME), Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tina Felfeli
- Toronto Health Economics and Technology Assessment Collaborative, Toronto, ON, Canada.
- The Institute of Health Policy, Management and Evaluation (IHPME), Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Tear levels of IL-7, IL-1α, and IL-1β may differentiate between IgG4-related disease and Sjögren's syndrome. Clin Rheumatol 2023; 42:1101-1105. [PMID: 36627528 DOI: 10.1007/s10067-023-06501-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
We aim to assess and compare a cytokine and chemokine profile in tears from patients with IgG4-related disease (IgG4-RD) and Sjögren's syndrome (SS), and to see if this profile could aid in differentiating these two diseases. We included 10 patients with IgG4-RD who met the Comprehensive Diagnostic Criteria for IgG4-RD and 17 patients who met the AECG criteria for primary SS. The Schirmer-I test was carried out using two standardized sterile tear strips, which were then immediately frozen at - 86 °C until assayed. The tears were extracted from the strips after they had been defrosted using a buffer containing 0.5 M NaCl and 0.5% Tween-20. The amounts (pg/ml) of the following cytokines and chemokines were then measured using luminometry: IFN-γ, TNF-α, G-CSF, IL-1-α, IL-1β, IL-4, IL-7, IL-12p40, IL-12p70, IL-13, IL-17A, CCL2, CCL3, CCL4, CCL11, and CXCL10. In the IgG4-RD group, seven patients had lacrimal gland involvement, five had dry eye symptoms, and six had a positive Schirmer-I test. In the SS group, 16 (94.1%) had dry eyes and all had a positive Schirmer-I test. We were able to differentiate between both diseases using levels of IL-7, IL-1α, and IL-1β; in particular, the IL-7/IL-1α and IL-7/IL-1β ratios had the best discriminatory potential, with cut-off values of 0.32 (AUC: 0.93, sensitivity: 94%, specificity: 80%, p = 0.0003) and 12.55 (AUC: 0.96, sensitivity: 94%, specificity: 90%, p = 0.0001), respectively. Our results suggest that IL-7, IL-1α, and IL-1β tear levels could help differentiate IgG4-RD from SS. Key Points • The lacrimal gland is frequently involved in IgG4-RD and SS. This characteristic makes both diseases mimics of one another. • Patients with IgG4-RD and SS have different profiles of tear cytokines and chemokines. • Tear IL-7, IL-1α, and IL-1β levels may serve as helpful biomarkers in separating IgG4-RD from SS.
Collapse
|
22
|
Vergouwen DPC, Schotting AJ, Endermann T, van de Werken HJG, Grashof DGB, Arumugam S, Nuijts RMMA, Ten Berge JC, Rothova A, Schreurs MWJ, Gijs M. Evaluation of pre-processing methods for tear fluid proteomics using proximity extension assays. Sci Rep 2023; 13:4433. [PMID: 36932139 PMCID: PMC10023677 DOI: 10.1038/s41598-023-31227-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Tear fluid forms a potential source for biomarker identification, and can be minimal invasively collected via Schirmer strips. The lack of knowledge on the processing of Schirmer strips however complicates the analysis and between-study comparisons. We studied two different pre-processing methods, specifically the use of punches of the strip versus elution of the strip in a buffer. Tear fluid filled Schirmer strips were collected from 5 healthy participants, and divided into two halves over the length of the strip. In either part, punches or eluates were obtained from 4 different locations, from the first part touching the eye (head) to the end, to assess the protein distribution along the strips. The levels of 92 inflammatory proteins were measured in the punches/eluates using proximity extension assays. The punch method yielded higher protein detectability compared to the elution method (76% vs 66%; p ≤ 0.001). Protein expression level was found to be slightly higher in the head of the strip, however, 3 out of 5 punches from the head failed quality control. Protein expression levels over the remaining parts of the strips were similar. Our study showed beneficial use of punches of any part of the strip except the head in future biomarker research.
Collapse
Affiliation(s)
- Daphne P C Vergouwen
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Amber J Schotting
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Harmen J G van de Werken
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sinthuja Arumugam
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Josianne C Ten Berge
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aniki Rothova
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco W J Schreurs
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marlies Gijs
- University Eye Clinic Maastricht, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Regueiro U, López-López M, Varela-Fernández R, Otero-Espinar FJ, Lema I. Biomedical Applications of Lactoferrin on the Ocular Surface. Pharmaceutics 2023; 15:pharmaceutics15030865. [PMID: 36986726 PMCID: PMC10052036 DOI: 10.3390/pharmaceutics15030865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Lactoferrin (LF) is a first-line defense protein with a pleiotropic functional pattern that includes anti-inflammatory, immunomodulatory, antiviral, antibacterial, and antitumoral properties. Remarkably, this iron-binding glycoprotein promotes iron retention, restricting free radical production and avoiding oxidative damage and inflammation. On the ocular surface, LF is released from corneal epithelial cells and lacrimal glands, representing a significant percentage of the total tear fluid proteins. Due to its multifunctionality, the availability of LF may be limited in several ocular disorders. Consequently, to reinforce the action of this highly beneficial glycoprotein on the ocular surface, LF has been proposed for the treatment of different conditions such as dry eye, keratoconus, conjunctivitis, and viral or bacterial ocular infections, among others. In this review, we outline the structure and the biological functions of LF, its relevant role at the ocular surface, its implication in LF-related ocular surface disorders, and its potential for biomedical applications.
Collapse
Affiliation(s)
- Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain
- Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, 15706 Santiago de Compostela, Spain
- Correspondence: (F.J.O.-E.); (I.L.)
| |
Collapse
|
24
|
Recent Advances in Hydrogels for the Diagnosis and Treatment of Dry Eye Disease. Gels 2022; 8:gels8120816. [PMID: 36547340 PMCID: PMC9778550 DOI: 10.3390/gels8120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye disease (DED) is the most common clinical ocular surface disease. Given its multifactorial etiology, no consensus has been reached on the diagnosis criteria for dry eye disease. Topical drug administration remains the mainstay of treatment but is limited to the rapid clearance from the eye surface. To address these problems, hydrogel-based materials were designed to detect biomarkers or act as drug delivery systems by taking advantage of their good biocompatibility, excellent physical and mechanical properties, and long-term implant stability. Biosensors prepared using biocompatible hydrogels can be sensitive in diagnosing DED, and the designed hydrogels can also improve the drug bioavailability and retention time for more effective and long-term treatment. This review summarizes recent advances in the use of hydrogels for diagnosing and treating dry eye, aiming to provide a novel reference for the eventual clinical translation of hydrogels in the context of dry eye disease.
Collapse
|
25
|
Tear Proteomics Approach to Distinguishing Primary from Secondary Sjögren's Syndrome for Dry Eye Patients with Long-Term Instillation of Eyedrops. Int J Mol Sci 2022; 23:ijms232315239. [PMID: 36499565 PMCID: PMC9737549 DOI: 10.3390/ijms232315239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The diagnosis and monitoring of Sjögren syndrome (SS) is often difficult, requiring a multidisciplinary approach with invasive procedures. Our aim is to elucidate the tear protein alterations of dry eye disease (DED) with primary SS (pSS) and secondary SS (sSS) with the long-term instillation of eyedrops. We collected clinical demographics and tear fluid (TF) samples from DED patients with no autoimmune diseases (non-SS-DED), pSS-DED, and sSS-DED patients, followed by TF screening with tandem mass tagging-labeling gel-free proteomics assay. Bioinformatic analysis via Ingenuity Pathway Analysis was used to identify functional pathways and interacting networks. Validation of candidate proteins with enzyme-linked immunosorbent assay on the tear samples was done. The top functional pathways of the two comparisons (sSS-DED vs. pSS-DED and sSS-DED vs. non-SS-DED) were both associated with inflammation and stress-related signaling. After constructing an interaction network model with the selected candidate proteins, five proteins were identified. A Disintegrin and Metalloproteinase domain-containing protein 10 (ADAM10) was found to be an important candidate biomarker in all groups, followed by epidermal growth factor (EGF) in TF. This study revealed novel DED markers, ADAM10 and EGF, in differentiating between primary and secondary SS patients from tears by in-depth proteomic analysis.
Collapse
|
26
|
Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms232314759. [PMID: 36499086 PMCID: PMC9735888 DOI: 10.3390/ijms232314759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common ocular disease characterized by degeneration of the central area of the retina in the elderly population. Progression and response to treatment are influenced by genetic and non-genetic factors. Proteomics is a powerful tool to study, at the molecular level, the mechanisms underlying the progression of the disease, to identify new therapeutic targets and to establish biomarkers to monitor progression and treatment effectiveness. In this work, we systematically review the use of proteomics-based approaches for the study of the molecular mechanisms underlying the development of AMD, as well as the progression of the disease and on-treatment patient monitoring. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines were followed. Proteomic approaches have identified key players in the onset of the disease, such as complement components and proteins involved in lipid metabolism and oxidative stress, but also in the progression to advanced stages, including factors related to extracellular matrix integrity and angiogenesis. Although anti-vascular endothelial growth factor (anti-VEGF)-based therapy has been crucial in the treatment of neovascular AMD, it is necessary to deepen our understanding of the underlying disease mechanisms to move forward to next-generation therapies for later-stage forms of this multifactorial disease.
Collapse
|
27
|
Daily A, Ravishankar P, Wang W, Krone R, Harms S, Klimberg VS. Development and validation of a short-term breast health measure as a supplement to screening mammography. Biomark Res 2022; 10:76. [PMID: 36284356 PMCID: PMC9594920 DOI: 10.1186/s40364-022-00420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is a growing body of evidence to support tears as a non-traditional biological fluid in clinical laboratory testing. In addition to the simplicity of tear fluid processing, the ability to access key cancer biomarkers in high concentrations quickly and inexpensively is significantly enhanced. Tear fluid is a dynamic environment rich in both proteomic and genomic information, making it an ideal medium for exploring the potential for biological testing modalities. Methods All protocols involving human subjects were reviewed and approved by the University of Arkansas IRB committee (13-11-289) prior to sample collection. Study enrollment was open to women ages 18 and over from October 30, 2017-June 19, 2019 at The Breast Center, Fayetteville, AR and Bentonville, AR. Convenience sampling was used and samples were age/sex matched, with enrollment open to individuals at any point of the breast health continuum of care. Tear samples were collected using the Schirmer strip method from 847 women. Concentration of selected tear proteins were evaluated using standard sandwich ELISA techniques and the resulting data, combined with demographic and clinical covariates, was analyzed using logistic regression analysis to build a model for classification of samples. Results Logistic regression analysis produced three models, which were then evaluated on cases and controls at two diagnostic thresholds and resulted in sensitivity ranging from 52 to 90% and specificity from 31 to 79%. Sensitivity and specificity variation is dependent on the model being evaluated as well as the selected diagnostic threshold providing avenues for assay optimization. Conclusions and relevance The work presented here builds on previous studies focused on biomarker identification in tear samples. Here we show successful early classification of samples using two proteins and minimal clinical covariates. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00420-1.
Collapse
Affiliation(s)
| | | | | | | | - Steve Harms
- The Breast Center-Medical Associates of Northwest Arkansas, Fayetteville, AR USA
| | - V. Suzanne Klimberg
- grid.176731.50000 0001 1547 9964Department of Surgery, University of Texas Medical Branch, Galveston, TX USA ,grid.240145.60000 0001 2291 4776Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
28
|
Ozdalgic B, Gul M, Uygun ZO, Atçeken N, Tasoglu S. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. BIOSENSORS 2022; 12:827. [PMID: 36290964 PMCID: PMC9599721 DOI: 10.3390/bios12100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Human tear film, with a flow rate of 1-3 µL/min, is a rich bodily fluid that transmits a variety of metabolites and hormones containing proteins, lipids and electrolytes that provide clues about ocular and systemic diseases. Analysis of disease biomarkers such as proteins, mRNA, enzymes and cytokines in the tear film, collected by noninvasive methods, can provide significant results for sustaining a predictive, preventive and personalized medicine regarding various diseases such as glaucoma, diabetic retinopathy, keratoconus, dry eye, cancer, Alzheimer's disease, Parkinson's disease and COVID-19. Electrochemical impedance spectroscopy (EIS) offers a powerful technique for analyzing these biomarkers. EIS detects electrical equivalent circuit parameters related to biorecognition of receptor-analyte interactions on the electrode surface. This method is advantageous as it performs a label-free detection and allows the detection of non-electroactive compounds that cannot be detected by direct electron transfer, such as hormones and some proteins. Here, we review the opportunities regarding the integration of EIS into tear fluid sampling approaches.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Division of Optometry, School of Med Services & Techniques, Dogus University, Istanbul 34775, Türkiye
| | - Munire Gul
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Zihni Onur Uygun
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Türkiye
| | - Nazente Atçeken
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
29
|
Crooke A, Martínez-Alberquilla I, Madrid-Costa D, Ruiz-Alcocer J. Presbyopia: An outstanding and global opportunity for early detection of pre-frailty and frailty states. Front Med (Lausanne) 2022; 9:968262. [PMID: 36267611 PMCID: PMC9576860 DOI: 10.3389/fmed.2022.968262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Almudena Crooke
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain,Clinical and Experimental Eye Research Group, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain,*Correspondence: Almudena Crooke
| | - Irene Martínez-Alberquilla
- Clinical and Experimental Eye Research Group, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain,Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - David Madrid-Costa
- Clinical and Experimental Eye Research Group, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain,Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Ruiz-Alcocer
- Clinical and Experimental Eye Research Group, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain,Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Girshevitz O, Cohen-Sinai N, Zahavi A, Vardizer Y, Fixler D, Goldenberg-Cohen N. Trace Elements in Tears: Comparison of Rural and Urban Populations Using Particle Induced X-ray Emission. J Pers Med 2022; 12:jpm12101633. [PMID: 36294772 PMCID: PMC9605629 DOI: 10.3390/jpm12101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
We aimed to evaluate the types and concentrations of trace elements in tears of individuals living in urban and rural environments using particle induced X-ray emission (PIXE) and the possible association with exposure to air pollution and suggest a novel method for tear-based biomonitoring studies. This cross-sectional pilot study comprised 42 healthy subjects, 28 living in a rural area and 14 in an industrial city. Tears were collected with Schirmer paper and characterized by PIXE. Trace element concentrations from both eyes were averaged together with environmental pollution data. Main outcome measures were between-group differences in types and concentrations of trace elements in tears and comparison to environmental data. The rural group included 12/28 men, mean age 45.2 ± 14.8 years. The urban group consisted of 11/14 men of mean age 27 ± 5.9 years. Six rural and all urban were active smokers. Air pollution data showed more toxic elements in the rural environment. On PIXE analysis, chlorine, sodium, and potassium were found in similar concentrations in all samples. Normalizing to chlorine yielded higher values of aluminum, iron, copper, and titanium in the rural group; aluminum was found only in the rural group. The higher levels of certain trace elements in the rural group may, in part, be a consequence of exposure to specific environmental conditions. No direct association was found with air pollution data. PIXE is useful to analyze trace elements in tears, which might serve as a marker for individual exposure to environmental pollutants in biomonitoring studies.
Collapse
Affiliation(s)
- Olga Girshevitz
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noa Cohen-Sinai
- Department of Ophthalmology, Bnai-Zion Medical Center, Haifa 339419, Israel
| | - Alon Zahavi
- Department of Ophthalmology, Rabin Medical Center—Beilinson Hospital, Petach Tikva 4941492, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoav Vardizer
- Department of Ophthalmology, Bnai-Zion Medical Center, Haifa 339419, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Nitza Goldenberg-Cohen
- Department of Ophthalmology, Bnai-Zion Medical Center, Haifa 339419, Israel
- The Krieger Eye Research Laboratory, Bruce and Ruth Rapaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: ; Tel.: +972-4-8359554
| |
Collapse
|
31
|
Zhou X, Wei R, Wang R. Characterization of human tear proteome reveals differentially abundance proteins in thyroid-associated ophthalmopathy. PeerJ 2022; 10:e13701. [PMID: 35846879 PMCID: PMC9285480 DOI: 10.7717/peerj.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Background Thyroid-associated ophthalmopathy (TAO) is a common orbital inflammatory disease, but the abnormal expression of proteins in tears of TAO patients has not been systematically studied. The purpose of this study is to compare and analyze the total tear protein profile of TAO patients and to provide protein cues for TAO pathogenesis. Methods Tear samples were isolated from 30 TAO patients with obvious ocular surface damage and 30 healthy control subjects. Tear samples from 30 individuals were mixed and divided into three sample pools. Easy nano-scale LC-MS/MS based on labeling-free quantitative technology was utilized to profile tear proteome. Results Here, electrospray ionization mass spectra and SDS-PAGE results confirmed the good parallelisms among samples. A total of 313 proteins were obtained from six tear pools, among them, 103 differential abundance proteins (DAPs) were identified, including 99 up-regulated DAPs (including APOA1, HV103, IGH, and Transferrin variant) and four down-regulated DAPs (including FABA, VCC1, NUCB2, and E-cadherin) in the TAO group compared with the control group. GO analysis showed that up-regulated DAPs were mainly enriched in lipid metabolism and platelet molecular function, and down-regulated DAPs were involved in binding, cell junction, and cellular process. KEGG results indicated that DAPs were involved in 117 kinds of signal transduction pathways, among which the immune-related pathway of complement and coagulation cascades had the greatest relevance. Conclusion In conclusion, label-free LC-MS/MS is an effective strategy for profiling tear proteins component. Our study provides proteins and pathways altered in TAO and provides protein cues for further study on the precise mechanism of TAO pathogenesis.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, Shanghai, China
| | - Ruili Wei
- Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, Shanghai, China
| | - Rui Wang
- Proteome Research Cente, Shanghai Applied Protein Technology, Shanghai, Shanghai, China
| |
Collapse
|
32
|
Mariño-López A, Alvarez-Puebla RA, Vaz B, Correa-Duarte MA, Pérez-Lorenzo M. SERS optical accumulators as unified nanoplatforms for tear sampling and sensing in soft contact lenses. NANOSCALE 2022; 14:7991-7999. [PMID: 35467676 DOI: 10.1039/d2nr00531j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tear analysis has become an invaluable asset in clinical research in order to identify and quantify novel biomarkers for a wide array of conditions. The present work is intended to take this area of study one step further by implementing an innovative sensing platform through which exploration of low-molecular-weight compounds is conducted outperforming traditional analytical technologies. With this aim, carefully engineered plasmonic nanoassemblies have been synergistically combined with molecular-sieving materials giving rise to size-selective samplers with SERS detection capabilities. These architectures have been then integrated onto hydrogel-based contact lenses and tested in simulated tear fluids in order to evidence their operational features. Through this approach, a prolonged analyte accumulation can be realized, thus providing a competitive advantage in those scenarios where concentration of biomarkers is typically low or minimum sample volumes are not met. Additionally, quenching of metabolic flux and analyte extraction protocols can be circumvented, hence preventing the intrinsic physical and chemical interferences stemming from these procedures. The obtained results render these sensing platforms as promising medical devices, and constitute a great opportunity in order to expand the clinical toolkit in tear analysis.
Collapse
Affiliation(s)
- Andrea Mariño-López
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- ICREA, Passeig de Lluís Companys 23, Barcelona, 08010, Spain
| | - Belén Vaz
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310 Vigo, Spain.
| | - Miguel A Correa-Duarte
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| |
Collapse
|
33
|
Amorim M, Martins B, Caramelo F, Gonçalves C, Trindade G, Simão J, Barreto P, Marques I, Leal EC, Carvalho E, Reis F, Ribeiro-Rodrigues T, Girão H, Rodrigues-Santos P, Farinha C, Ambrósio AF, Silva R, Fernandes R. Putative Biomarkers in Tears for Diabetic Retinopathy Diagnosis. Front Med (Lausanne) 2022; 9:873483. [PMID: 35692536 PMCID: PMC9174990 DOI: 10.3389/fmed.2022.873483] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Tear fluid biomarkers may offer a non-invasive strategy for detecting diabetic patients with increased risk of developing diabetic retinopathy (DR) or increased disease progression, thus helping both improving diagnostic accuracy and understanding the pathophysiology of the disease. Here, we assessed the tear fluid of nondiabetic individuals, diabetic patients with no DR, and diabetic patients with nonproliferative DR (NPDR) or with proliferative DR (PDR) to find putative biomarkers for the diagnosis and staging of DR. Methods Tear fluid samples were collected using Schirmer test strips from a cohort with 12 controls and 54 Type 2 Diabetes (T2D) patients, and then analyzed using mass spectrometry (MS)-based shotgun proteomics and bead-based multiplex assay. Tear fluid-derived small extracellular vesicles (EVs) were analyzed by transmission electron microscopy, Western Blotting, and nano tracking. Results Proteomics analysis revealed that among the 682 reliably quantified proteins in tear fluid, 42 and 26 were differentially expressed in NPDR and PDR, respectively, comparing to the control group. Data are available via ProteomeXchange with identifier PXD033101. By multicomparison analyses, we also found significant changes in 32 proteins. Gene ontology (GO) annotations showed that most of these proteins are associated with oxidative stress and small EVs. Indeed, we also found that tear fluid is particularly enriched in small EVs. T2D patients with NPDR have higher IL-2/-5/-18, TNF, MMP-2/-3/-9 concentrations than the controls. In the PDR group, IL-5/-18 and MMP-3/-9 concentrations were significantly higher, whereas IL-13 was lower, compared to the controls. Conclusions Overall, the results show alterations in tear fluid proteins profile in diabetic patients with retinopathy. Promising candidate biomarkers identified need to be validated in a large sample cohort.
Collapse
Affiliation(s)
- Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | | | | | - Jorge Simão
- Coimbra University Hospital, Coimbra, Portugal
| | - Patrícia Barreto
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Inês Marques
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Ermelindo Carreira Leal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Eugénia Carvalho
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Cláudia Farinha
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra University Hospital, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Rufino Silva
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Coimbra University Hospital, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra, Coimbra, Portugal
- *Correspondence: Rosa Fernandes
| |
Collapse
|
34
|
Kim W, Kim S, Han J, Kim TG, Bang A, Choi HW, Min GE, Shin JH, Moon SW, Choi S. An excitation wavelength-optimized, stable SERS biosensing nanoplatform for analyzing adenoviral and AstraZeneca COVID-19 vaccination efficacy status using tear samples of vaccinated individuals. Biosens Bioelectron 2022; 204:114079. [PMID: 35151942 PMCID: PMC8824302 DOI: 10.1016/j.bios.2022.114079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
We introduce a label-free surface-enhanced Raman scattering (SERS) biosensing platform equipped with metallic nanostructures that can identify the efficacy of Oxford-AstraZeneca (AZD1222) vaccine in vaccinated individuals using non-invasive tear samples. We confirmed the hypothesis that the tears of people who receive the AZD1222 vaccine may be similar to those of adenovirus epidemic keratoconjunctivitis patients since the Oxford-AstraZeneca vaccine is derived from a replication-deficient ChAdOx1 vector of chimpanzee adenovirus. Additionally, we confirmed the potential of the three markers for estimating the vaccination status via analyzing the signals emanating from antibodies or immunoglobulin G by-product using our label-free, SERS biosensing technique with a high reproducibility (<3% relative standard deviation), femtomole-scale limit of detection (1 × 10-14 M), and high SERS response of >108. Therefore, our label-free SERS biosensing nanoplatforms with long-term storage and robust stability will enable rapid and robust monitoring of the vaccine presence in vaccinated individuals.
Collapse
Affiliation(s)
- Wansun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soogeun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jisang Han
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Tae Gi Kim
- Department of Ophthalmology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ayoung Bang
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyung Woo Choi
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Gyeong Eun Min
- Department of Urology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Ho Shin
- Department of Ophthalmology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Sang Woong Moon
- Department of Ophthalmology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Samjin Choi
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
35
|
Biochemistry of human tear film: A review. Exp Eye Res 2022; 220:109101. [DOI: 10.1016/j.exer.2022.109101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
|
36
|
Singh SK, Srinivasan A, Mitra S, Gooh Pattader PS. Carbon dots and Methylene blue facilitated photometric quantification of Hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120906. [PMID: 35077978 DOI: 10.1016/j.saa.2022.120906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Early detection and monitoring of any abnormality of Hemoglobin (Hb) concentration in whole blood samples are important as this may be related to anemia, leukemia, dengue, etc. To facilitate quantitative detection and to monitor the hemoglobin level in the blood, we attempt to develop a low-cost, portable point of care (POC) device based on the spectrophotometric principle. Optical sensitivities of carbon quantum dots (CDs) are found to be highly responsive, while there is a selective reaction between Hb and reduced form of Methylene Blue (MBred). The interaction of Hb, MBred, and CDs is delineated using UV-Visible (UV-Vis) spectroscopy. CDs have a characteristic UV-Vis peak at ∼ 347 nm, and it shows a gradual increase in intensity with a slight red shift (∼355 nm) on the progressive increase in Hb concentration. Simultaneously, the colorless MBred is oxidized to its blue oxidized form MBox and its characteristic peak starts reappearing at ∼ 663 nm. These responses are exploited to quantify Hb concentration with a limit of detection (LOD) as low as ∼ 2 g dL-1 in a developed POC device, and the results are validated with the clinical data obtained from a local hospital with reasonably good agreement. This photometric detection approach can be adopted for other quantitative biosensors.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aishwarya Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Partho Sarathi Gooh Pattader
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India; School of Health Science and Technology, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
37
|
Syed NH, Shahidan WNS, Shatriah I, Zunaina E. MicroRNA Profiling of the Tears of Children With Vernal Keratoconjunctivitis. Front Genet 2022; 13:847168. [PMID: 35495169 PMCID: PMC9039132 DOI: 10.3389/fgene.2022.847168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Vernal Keratoconjunctivitis (VKC) is a chronic conjunctival inflammatory condition that typically affects children. Extracellular microRNAs (miRNAs) are small noncoding RNA molecules, the expression of which is reported to regulate cellular processes implicated in several eye diseases. The aim of this preliminary study is to identify the miRNA expression profile in the tears of children with VKC vis-à-vis controls, and to statistically evaluate these miRNAs as potential diagnostic biomarkers of VKC. The study involved a VKC group and a control group. Tear specimens were collected using Schirmer’s strips. RNA was isolated using miRNeasy Micro kit and quantification was performed using an Agilent Bioanalyzer RNA 6000 Nano kit and Small RNA kit. miRNA profiling was performed using the Agilent microarray technique. A total of 51 miRNAs (48 upregulated and three downregulated) were differentially expressed in the tears of children with VKC and controls. The three most significantly upregulated miRNAs were hsa-miR-1229-5p, hsa-miR-6821-5p, and hsa-miR-6800-5p, and the three most significantly downregulated miRNAs were hsa-miR-7975, hsa-miR-7977, and hsa-miR-1260a. All the upregulated miRNAs are potential diagnostic biomarkers of VKC pending validation due to their larger discriminatory area under the curve (AUC) values. miRNA target prediction analysis revealed multiple overlapping genes that are known to play a role in conjunctival inflammation. We identified a set of differentially expressed miRNAs in the tears of children with VKC that may play a role in VKC pathogenesis. This study serves as the platform study for future miRNA studies that will provide a deeper understanding of the pathophysiology of VKC.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Nazatul Shima Shahidan
- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ismail Shatriah
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Ophthalmology Clinic, Hospital USM, Kubang Kerian, Malaysia
- *Correspondence: Ismail Shatriah,
| | - Embong Zunaina
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Ophthalmology Clinic, Hospital USM, Kubang Kerian, Malaysia
| |
Collapse
|
38
|
Valencia E, García M, Fernández-Vega B, Pereiro R, Lobo L, González-Iglesias H. Targeted Analysis of Tears Revealed Specific Altered Metal Homeostasis in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:10. [PMID: 35426907 PMCID: PMC9034717 DOI: 10.1167/iovs.63.4.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Specific altered metal homeostasis has been investigated in the tear film of age-related macular degeneration (AMD) patients considering that metal dyshomeostasis contributes to the production of free radicals, inflammation, and apoptosis and results in conformational changes of proteins. Methods A multitargeted approach based on spectrophotometry and mass spectrometry techniques has been implemented to the multiplexed quantitation of lactoferrin (LF), S100 calcium binding protein A6 (S100A6), metallothionein 1A (MT1A), complement factor H (CFH), clusterin (CLU), amyloid precursor protein (APP), Mg, P, Na, Fe, Cu, Zn, and Ca, in the tear film from 60 subjects, 31 patients diagnosed with the dry form of AMD, and 29 healthy individuals Results Significant up-regulations of MT1A (1.9-fold) and S100A6 (1.4-fold) and down-regulations of LF (0.7-fold), Fe (0.6-fold), Mg (0.7-fold), and Cu (0.7-fold) were observed in AMD patients, when compared to control subjects. Of all the studied variables, only APP showed negative correlation with age in the AMD group. Also, positive correlations were observed for the variables Mg and Na, Cu and Mg, and P and Mg in both the AMD and control groups, whereas positive correlations were exclusively determined in the AMD group for Cu and LF, Na and Ca, and Mg and Ca. The panel constituted of MT1A, Na, and Mg predicts AMD disease in 73% of cases. Conclusions The different levels of target metals and (metallo-)proteins in the tear film suggest altered metal homeostasis in AMD patients. These observed pathophysiological changes may be related with the anomalous protein aggregation in the macula.
Collapse
Affiliation(s)
- Eva Valencia
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Montserrat García
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| | - Beatriz Fernández-Vega
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| | - Rosario Pereiro
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Lara Lobo
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Héctor González-Iglesias
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| |
Collapse
|
39
|
Kim YJ, Yeon Y, Lee WJ, Shin YU, Cho H, Lim HW, Kang MH. Analysis of MicroRNA Expression in Tears of Patients with Herpes Epithelial Keratitis: A Preliminary Study. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35475887 PMCID: PMC9055549 DOI: 10.1167/iovs.63.4.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Herpes epithelial keratitis (HEK) is the most common form of herpes simplex virus (HSV) eye involvement, and understanding the molecular mechanisms underlying HEK is important. We investigated the expression of microRNAs (miRNAs) in the tears of patients with HEK. Methods Tear samples from eight patients with HEK and seven age-matched controls were evaluated. Clinical ophthalmologic evaluation was performed, and an anterior segment photograph was obtained after fluorescence staining. Dendritic or geographic ulcer areas were measured using ImageJ software. The expression of 43 different miRNAs in tears was measured using real-time polymerase chain reaction and compared between patients with HEK and controls. Differences in miRNA expression between the dendritic and geographic ulcer groups and correlations involving miRNA expression and ulcer area were evaluated. Results Of the 43 miRNAs, 23 were upregulated in patients with HEK compared to normal controls. MiR-15b-5p, miR-16-5p, miR-20b-5p, miR-21-5p, miR-23b-3p, miR-25-3p, miR-29a-3p, miR-30a-3p, miR-30d-5p, miR-92a-3p, miR-124-3p, miR-127-3p, miR-132-3p, miR-142-3p, miR-145-5p, miR-146a-5p, miR-146b-5p, miR-155-5p, miR-182-5p, miR-183-5p, miR-221-3p, miR-223-3p, and miR-338-5p were significantly upregulated in patients with HEK. MiR-29a-3p exhibited significant differences between the dendritic and geographic ulcer groups. All 23 miRNAs with significant differences between patients with HEK and the control group were not significantly correlated with ulcer area. Conclusions Twenty-three miRNAs were significantly upregulated in the tears of patients with HEK, and the expression of miRNAs may play important roles in herpes infection in relation to host immunity.
Collapse
Affiliation(s)
- Yu Jeong Kim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yeji Yeon
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Won June Lee
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yong Un Shin
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Han Woong Lim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Min Ho Kang
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Insua Pereira E, Sampaio AP, Lira M. Effects of contact lens wear on tear inflammatory biomarkers. Cont Lens Anterior Eye 2022; 45:101600. [DOI: 10.1016/j.clae.2022.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022]
|
41
|
Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples. Metabolites 2022; 12:metabo12030272. [PMID: 35323715 PMCID: PMC8949038 DOI: 10.3390/metabo12030272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 01/27/2023] Open
Abstract
Metabolomic analysis of different body fluids bears high importance in medical sciences. Our aim was to develop and validate a fast UHPLC-UV method for the analysis of 33 amino acids and biogenic amines from complex biological samples. AccQ-Tag derivatization was conducted on target molecules and the derivatized targets were analyzed by UHPLC-UV. The detection of the analytes was carried out with UV analysis and by Selected Reaction Monitoring (SRM)-based targeted mass spectrometry. The method was validated according to the FDA guidelines. Serum and non-stimulated tear samples were collected from five healthy individuals and the samples were analyzed by the method. The method was successfully validated with appropriate accuracy and precision for all 33 biomolecules. A total of 29 analytes were detected in serum samples and 26 of them were quantified. In the tears, 30 amino acids and biogenic amines were identified and 20 of them were quantified. The developed and validated UHPLC-UV method enables the fast and precise analysis of amino acids and biogenic amines from complex biological samples.
Collapse
|
42
|
van Mechelen RJS, Wolters JE, Bertens CJF, Webers CAB, van den Biggelaar FJHM, Gorgels TGMF, Beckers HJM. Animal models and drug candidates for use in glaucoma filtration surgery: A systematic review. Exp Eye Res 2022; 217:108972. [PMID: 35114212 DOI: 10.1016/j.exer.2022.108972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Glaucoma, a degenerative disease of the optic nerve, is the leading cause of irreversible blindness worldwide. Currently, there is no curative treatment. The only proven treatment is lowering intraocular pressure (IOP), the most important risk factor. Glaucoma filtration surgery (GFS) can effectively lower IOP. However, approximately 10% of all surgeries fail yearly due to excessive wound healing, leading to fibrosis. GFS animal models are commonly used for the development of novel treatment modalities. The aim of the present review was to provide an overview of available animal models and anti-fibrotic drug candidates. MEDLINE and Embase were systematically searched. Manuscripts until September 1st, 2021 were included. Studies that used animal models of GFS were included in this review. Additionally, the snowball method was used to identify other publications which had not been identified through the systematic search. Two hundred articles were included in this manuscript. Small rodents (e.g. mice and rats) are often used to study the fibrotic response after GFS and to test drug candidates. Due to their larger eyes, rabbits are better suited to develop medical devices. Novel drugs aim to inhibit specific pathways, e.g. through the use of modulators, monoclonal antibodies, aqueous suppressants or gene therapy. Although most newly studied drugs offer a higher safety profile compared to antimetabolites, their efficacy is in most cases lower when compared to MMC. Current literature on animal models and potential drug candidates for GFS were summarized in this review. Future research should focus on refining current animal models (for example through the induction of glaucoma prior to undertaking GFS) and standardizing animal research to ensure a higher reproducibility and reliability across different research groups. Lastly, novel therapies need to be further optimized, e.g. by conducting more research on the dosage, administration route, application frequency, the option of creating combination therapies, or the development of drug delivery systems for sustained release of anti-fibrotic medication.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands.
| | - Jarno Ej Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Frank J H M van den Biggelaar
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| |
Collapse
|
43
|
Khanna RK, Catanese S, Emond P, Corcia P, Blasco H, Pisella PJ. Metabolomics and lipidomics approaches in human tears: A systematic review. Surv Ophthalmol 2022; 67:1229-1243. [PMID: 35093405 DOI: 10.1016/j.survophthal.2022.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
The human tear film is at the interface between the ocular surface and the external environment. Although investigation has been hindered by its small volume, improvements in preanalytical and analytical methods have allowed the omics approach to represent an innovative biomarker search strategy. There is still a significant lack of standardization, representing a barrier for performing between-studies comparisons and transferring experimental findings into clinical use and trials. We summarize the preanalytical and analytical procedures, describe the biomarkers that can be found using the metabo-lipidomics approach, and provide our expert opinion for omics investigations in human tears. For this systematic review of 38 studies, we searched PubMed by combining Boolean operators with the following keywords: tear, metabolomic, lipidomic, -omics. The human tear metabo-lipidome has been well-characterized in normal individuals using high-resolution liquid chromatography coupled with mass spectrometry. Lipid and metabolite profiles were influenced by ocular (e.g. dry eye disorders; Meibomian gland dysfunction; contact lens wear; glaucoma; keratoconus; pterygium) and systemic conditions (e.g. multiple sclerosis). Investigating the tear metabo-lipidome could improve our understanding of the pathogenesis of both ocular and systemic diseases, but also provide diagnostic as well as prognostic biomarkers.
Collapse
Affiliation(s)
- Raoul K Khanna
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France; UMR 1253, iBrain, Tours, Centre-Val de Loire, France
| | - Sophie Catanese
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France; UMR 1253, iBrain, Tours, Centre-Val de Loire, France
| | - Patrick Emond
- UMR 1253, iBrain, Tours, Centre-Val de Loire, France; CHRU Tours, Nuclear medicine in vitro department, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, Tours, Centre-Val de Loire, France; Amyotrophic lateral sclerosis Centre, Department of Neurology, CHRU Tours, France
| | - Hélène Blasco
- UMR 1253, iBrain, Tours, Centre-Val de Loire, France; CHRU Tours, Biochemistry and molecular biology department, Tours, France
| | - Pierre-Jean Pisella
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France.
| |
Collapse
|
44
|
Guedes PEB, Veloso JF, Lacerda LC, Santana JO, Mora-Ocampo IY, Pirovani CP, Cruz RDS, Munhoz AD, Carlos RSA. Protein expression of the tear film of domestic cats before and after inoculation with Toxoplasma gondii. BMC Vet Res 2021; 17:386. [PMID: 34906132 PMCID: PMC8670102 DOI: 10.1186/s12917-021-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tear film (TF) helps maintain and protect ocular function against damage to the ocular surface. Proteins are one of its main constituents, whose expression pattern can be used as a biomarker of ocular changes and systemic diseases. The aim of this study was to evaluate the expression of proteins in the TF of domestic cats before and after infection with Toxoplasma gondii, in the phases of acute infection and chronicity. Twelve healthy cats received orally homogenized brain matter obtained from mice inoculated with T. gondii oocysts, strain ME49. Cat feces were collected daily from the third day after infection to assess the release of oocysts. TF samples were obtained from cats, by Schirmer's Tear Test 1, on day 0 (before infection), day 5 after infection (acute phase of infection, with maximum peak release of oocysts in feces) and on day 21 after infection (start of chronic phase, 7 days after total absence of oocyst release in feces). Tear samples were also submitted to proteomic analysis in a Q-Tof-Premier mass spectrometer. RESULTS A total of 37 proteins with scores equal to or greater than 100 were identified on D0, followed by 36 on D5 and 42 on D21. Of these, 27 were common to D0 and D5, 33 to D0 and D21, 27 to D5 and D21, and 26 were common to the three groups, totaling 54 proteins. The most abundant proteins were lipocalin allergen Fel d, serum albumin, aldehyde dehydrogenase, lactoperoxidase and lactotransferrin. There was no significant difference in the abundance of proteins found on D0 and D5, but there was a statistical difference between D0 and D21 for ACT1_AEDAE, CERU_HUMAN and GELS_HUMAN. Regarding D5 and D21, there were significant differences for KV1_CANLF, LAC_PIG, TRFL_PIG, ACT1_AEDAE, CERU_HUMAN, GELS_HUMAN and OVOS2_HUMAN. CONCLUSIONS The main proteins identified in the TF of domestic cats are similar to those found in humans and other animal species. Most are part of the ocular surface defense system against injuries. The most expressed proteins in animals in the chronic phase of T. gondii infection are associated with the immune response to the parasite.
Collapse
Affiliation(s)
| | - Jéssica Fontes Veloso
- Federal University of Western Bahia, Av. 23 de Agosto, S/N, Assunção, Bahia Barra, Brazil
| | | | | | | | | | | | - Alexandre Dias Munhoz
- Department of Agricultural and Environmental Sciences, Santa Cruz State University, Ilhéus, Brazil
| | | |
Collapse
|
45
|
Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 2021; 12:449-475. [PMID: 34876936 PMCID: PMC8639411 DOI: 10.1007/s13167-021-00265-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Over the last two decades, a large number of non-communicable/chronic disorders reached an epidemic level on a global scale such as diabetes mellitus type 2, cardio-vascular disease, several types of malignancies, neurological and eye pathologies-all exerted system's enormous socio-economic burden to primary, secondary, and tertiary healthcare. The paradigm change from reactive to predictive, preventive, and personalized medicine (3PM/PPPM) has been declared as an essential transformation of the overall healthcare approach to benefit the patient and society at large. To this end, specific biomarker panels are instrumental for a cost-effective predictive approach of individualized prevention and treatments tailored to the person. The source of biomarkers is crucial for specificity and reliability of diagnostic tests and treatment targets. Furthermore, any diagnostic approach preferentially should be noninvasive to increase availability of the biomaterial, and to decrease risks of potential complications as well as concomitant costs. These requirements are clearly fulfilled by tear fluid, which represents a precious source of biomarker panels. The well-justified principle of a "sick eye in a sick body" makes comprehensive tear fluid biomarker profiling highly relevant not only for diagnostics of eye pathologies but also for prediction, prognosis, and treatment monitoring of systemic diseases. One prominent example is the Sicca syndrome linked to a cascade of severe complications that include dry eye, neurologic, and oncologic diseases. In this review, protein profiles in tear fluid are highlighted and corresponding biomarkers are exemplified for several relevant pathologies, including dry eye disease, diabetic retinopathy, cancers, and neurological disorders. Corresponding analytical approaches such as sample pre-processing, differential proteomics, electrophoretic techniques, high-performance liquid chromatography (HPLC), enzyme-linked immuno-sorbent assay (ELISA), microarrays, and mass spectrometry (MS) methodology are detailed. Consequently, we proposed the overall strategies based on the tear fluid biomarkers application for 3P medicine practice. In the context of 3P medicine, tear fluid analytical pathways are considered to predict disease development, to target preventive measures, and to create treatment algorithms tailored to individual patient profiles.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, 250117 Shandong China
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| | - Jiajia Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| |
Collapse
|
46
|
Khazaei H, Khazaei D, Verma R, Ng J, Wilmarth PA, David LL, Rosenbaum JT. The potential of tear proteomics for diagnosis and management of orbital inflammatory disorders including Graves' ophthalmopathy. Exp Eye Res 2021; 213:108813. [PMID: 34742692 DOI: 10.1016/j.exer.2021.108813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Orbital compartments harbor a variety of tissues that can be independently targeted in a plethora of disorders resulting in sight-threatening risks. Orbital inflammatory disorders (OID) including Graves' ophthalmopathy, sarcoidosis, IgG4 disease, granulomatosis with polyangiitis, and nonspecific orbital inflammation constitute an important cause of pain, diplopia and vision loss. Physical examination, laboratory tests, imaging, and even biopsy are not always adequate to classify orbital inflammation which is frequently deemed "nonspecific". Tear sampling and testing provide a potential "window" to the orbital disease process through a non-invasive technique that allows longitudinal sampling as the disease evolves. Using PubMed/Medline, we identified potentially relevant articles on tear proteomics published in the English language between 1988 and 2021. Of 303 citations obtained, 225 contained empirical data on tear proteins, including 33 publications on inflammatory conditions, 15 in glaucoma, 15 in thyroid eye disease, 1 in sarcoidosis (75) and 2 in uveitis (77,78). Review articles were used to identify an additional 56 relevant articles through citation search. In this review, we provide a short introduction to the potential use of tears as a diagnostic fluid and tool to investigate the mechanism of ocular diseases. A general review of previous tear proteomics studies is also provided, with a focus on Graves' ophthalmopathy (GO), and a discussion of unmet needs in the diagnosis and treatment of orbital inflammatory disease (OID). The review concludes by pointing out current limitations of mass spectrometric analysis of tear proteins and summarizes future needs in the field.
Collapse
|
47
|
Cheng S, Gu Z, Zhou L, Hao M, An H, Song K, Wu X, Zhang K, Zhao Z, Dong Y, Wen Y. Recent Progress in Intelligent Wearable Sensors for Health Monitoring and Wound Healing Based on Biofluids. Front Bioeng Biotechnol 2021; 9:765987. [PMID: 34790653 PMCID: PMC8591136 DOI: 10.3389/fbioe.2021.765987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
The intelligent wearable sensors promote the transformation of the health care from a traditional hospital-centered model to a personal portable device-centered model. There is an urgent need of real-time, multi-functional, and personalized monitoring of various biochemical target substances and signals based on the intelligent wearable sensors for health monitoring, especially wound healing. Under this background, this review article first reviews the outstanding progress in the development of intelligent, wearable sensors designed for continuous, real-time analysis, and monitoring of sweat, blood, interstitial fluid, tears, wound fluid, etc. Second, this paper reports the advanced status of intelligent wound monitoring sensors designed for wound diagnosis and treatment. The paper highlights some smart sensors to monitor target analytes in various wounds. Finally, this paper makes conservative recommendations regarding future development of intelligent wearable sensors.
Collapse
Affiliation(s)
- Siyang Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kaiyu Song
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaochao Wu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Kexin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zeya Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | | | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
48
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
49
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
50
|
Age- and Sex-Adjusted Reference Intervals in Tear Cytokine Levels in Healthy Subjects. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alterations in tear cytokine levels have been associated with various ocular disorders as compared to those in healthy subjects. However, age and sex are not always considered in these comparisons. In this study we aimed to establish age and sex reference intervals (RIs) for tear cytokine levels in healthy people. Tear samples were taken from 75 males and 82 females, aged 18–88 years, and tear cytokine levels were determined. Age- and sex-adjusted RIs for epidermal growth factor (EGF), fractalkine, interleukin (IL)-1 receptor antagonist (RA), IL-7, IL-8, interferon inducible protein (IP)-10, monocyte chemotactic protein (MCP)-1, and vascular endothelial growth factor (VEGF) tear cytokine levels in a healthy sample were established using generalized additive for location, scale and shape (GAMLSS) models. RIs were tested in two external samples: a validation sample of 40 individuals with normal results at four Dry Eye Disease (DED) clinical diagnostic tests (OSDI, T-BUT, corneal staining and Schirmer test); and a utility sample of 13 severe DED cases. IL-1RA, IL-8, IP-10, and MCP-1 levels showed a positive association with age, while EGF was negatively correlated. IL-7 concentration increased up to 40 years and again after 70 years, observing a quasi-linear decrease between them. For VEGF, higher levels were observed in the middle-aged range. Regarding sex-influence, fractalkine tear levels were higher in men, whereas those of IL-7, IL-8, and IP-10 were higher in women. Using the estimated age- and sex-adjusted RIs, more than 92% of the validation sample was correctly classified, and 100% of the severe DED patients in the utility sample had concentrations outside the RIs in at least two of the cytokines evaluated.
Collapse
|