1
|
Kaewngam S, Prajit R, Anosri T, Suwannakot K, Saenno R, Sritawan N, Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. The effects of hesperidin on valproic acid-induced reduction in hippocampal neurogenesis through the antioxidant and apoptotic pathways in adult rats. Sci Rep 2024; 14:28864. [PMID: 39572680 PMCID: PMC11582586 DOI: 10.1038/s41598-024-80183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Treatment with valproic acid (VPA) can induce oxidative stress, leading to neuronal degeneration. Hesperidin (HSD) has an antioxidant function that can mitigate oxidative stress, thereby promoting hippocampal neurogenesis. Because brain function and memory are reliant on hippocampal neurogenesis, this work is planned to elucidate the effects of HSD on the VPA-induced alterations in hippocampal neurogenesis and apoptosis via oxidative damage. Twenty-four male Sprague-Dawley rats were grouped into the vehicle, VPA, HSD, and VPA + HSD groups. After administration, the hippocampi and prefrontal cortex were harvested for p21 staining, assessment of MDA, CAT, SOD, and GPx, and Western blotting analysis of Nrf2, Bax, caspase3, and Bcl-2 proteins. The results exhibited a significantly elevated level of p21-positive cells in VPA-treated rats, indicating cell cycle arrest in hippocampal neurogenesis. Additionally, our findings demonstrated a notable rise in oxidative stress, a decrease in antioxidant enzyme activity and the transcription factor Nrf2 in VPA-treated rats. Furthermore, VPA induced apoptotic activities, as substantiated by the upregulation of Bax and caspase3, and the downregulation of Bcl-2. These findings demonstrate that HSD can reduce oxidative stress levels, thereby mitigating the arrest of the cell cycle and apoptotic activity induced by VPA treatment in both the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Soraya Kaewngam
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ram Prajit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tanaporn Anosri
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kornrawee Suwannakot
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Rasa Saenno
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, the University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Ling X, Zhu L, Yan Y, Qian H, Kang Z, Ye W, Xie Z, Xue C. Ferulic Acid Protects Human Lens Epithelial Cells Against UVA-Induced Oxidative Damage by Downregulating the DNA Demethylation of the Keap1 Promoter. J Biochem Mol Toxicol 2024; 38:e70031. [PMID: 39470141 DOI: 10.1002/jbt.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Ultraviolet (UV) radiation-triggered production of reactive oxygen species (ROS) is a primary contributor to apoptosis in human lens epithelial cells (HLECs), which can ultimately result in cataract formation. The nuclear factor erythroid-2-related factor 2 (Nrf2)-Kelch ECH associating protein 1 (Keap1) pathway, a fundamental oxidative stress regulation mechanism, plays a crucial role in the development of cataracts. Ferulic acid (FA), recognized for its potent antioxidant properties can activate the Nrf2 signaling pathway to mitigate oxidative damage and cell apoptosis. In this study, we have demonstrated the protective effects of FA in reducing UVA-induced oxidative damage and apoptosis in HLECs through the modulation of the Keap1/Nrf2 pathway, as evidenced by both cellular and animal experiments. HLECs and Lens were exposed to 10 J/cm2 UVA radiation with or without prior treatment with FA. We found that UVA radiation increased oxidative damage and cell apoptosis in HLECs, ultimately leading to opacification of rat lenses, while FA was able to attenuate both oxidative damage and cell apoptosis in HLECs and reduce the degree of lens opacification. FA upregulated the expression of antioxidant response factors of the Keap1/Nrf2 pathway and downregulated the expression of apoptosis-related genes in HLECs, as demonstrated by Western blot and RT-qPCR analyses. We also found that UVA radiation increased the degree of demethylation of the Keap1 promoter in HLECs, whereas FA reduced the level of Keap1 promoter demethylation as determined by DNA sequencing. Additionally, UVA upregulated the expression of DNA active demethylase of the Keap1 promoter in HLECs, Dnmt1, Dnmt3a, and Dnmt3b, as shown by immunofluorescence, Western blot, and RT-qPCR, however, FA attenuated the activity of the passive demethylase TET1 in addition to the active demethylases. These results demonstrated that UVA radiation can cause oxidative damage, cell apoptosis, and rat lens opacification by increasing the demethylation of the Keap1 promoter in lens epithelial cells. Conversely, FA was shown to reduce oxidative damage, inhibit cell apoptosis, and decrease rat lens opacification by increasing the methylation of the Keap1 promoter. These findings suggest that FA could be therapeutically beneficial in preventing and mitigating cataracts induced by UVA radiation.
Collapse
Affiliation(s)
- Xinru Ling
- Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Zhu
- Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
| | - Yuling Yan
- Medical School, Nanjing University, Nanjing, China
| | - Haocheng Qian
- School of Medicine, Southeast University, Nanjing, China
| | - Zhen Kang
- Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Ye
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhenggao Xie
- Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chunyan Xue
- Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Lim JC, Jiang L, Lust NG, Donaldson PJ. Minimizing Oxidative Stress in the Lens: Alternative Measures for Elevating Glutathione in the Lens to Protect against Cataract. Antioxidants (Basel) 2024; 13:1193. [PMID: 39456447 PMCID: PMC11505578 DOI: 10.3390/antiox13101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Oxidative stress plays a major role in the formation of the cataract that is the result of advancing age, diabetes or which follows vitrectomy surgery. Glutathione (GSH) is the principal antioxidant in the lens, and so supplementation with GSH would seem like an intuitive strategy to counteract oxidative stress there. However, the delivery of glutathione to the lens is fraught with difficulties, including the limited bioavailability of GSH caused by its rapid degradation, anatomical barriers of the anterior eye that result in insufficient delivery of GSH to the lens, and intracellular barriers within the lens that limit delivery of GSH to its different regions. Hence, more attention should be focused on alternative methods by which to enhance GSH levels in the lens. In this review, we focus on the following three strategies, which utilize the natural molecular machinery of the lens to enhance GSH and/or antioxidant potential in its different regions: the NRF2 pathway, which regulates the transcription of genes involved in GSH homeostasis; the use of lipid permeable cysteine-based analogues to increase the availability of cysteine for GSH synthesis; and the upregulation of the lens's internal microcirculation system, which is a circulating current of Na+ ions that drives water transport in the lens and with it the potential delivery of cysteine or GSH. The first two strategies have the potential to restore GSH levels in the epithelium and cortex, while the ability to harness the lens's internal microcirculation system offers the exciting potential to deliver and elevate antioxidant levels in its nucleus. This is an important distinction, as the damage phenotypes for age-related (nuclear) and diabetic (cortical) cataract indicate that antioxidant delivery must be targeted to different regions of the lens in order to alleviate oxidative stress. Given our increasing aging and diabetic populations it has become increasingly important to consider how the natural machinery of the lens can be utilized to restore GSH levels in its different regions and to afford protection from cataract.
Collapse
Affiliation(s)
- Julie C. Lim
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Lanpeng Jiang
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Natasha G. Lust
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Paul J. Donaldson
- Department Physiology, University of Auckland, Auckland 1023, New Zealand; (L.J.); (N.G.L.); (P.J.D.)
- Aotearoa New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
4
|
Emad D, Bayoumi AMA, Gebril SM, Ali DME, Waz S. Modulation of keap-1/Nrf2/HO-1 and NF-ĸb/caspase-3 signaling pathways by dihydromyricetin ameliorates sodium valproate-induced liver injury. Arch Biochem Biophys 2024; 758:110084. [PMID: 38971420 DOI: 10.1016/j.abb.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nuclear factor erythroid factor 2 (Nrf2) is the key regulatory of the antioxidant response elements. Also, Nrf2 interacts with nuclear factor kappa B (NF-ĸB) to inhibit subsequent inflammatory cascade. Activation of Nrf2 signaling ameliorates drug-induced liver injury. Sodium valproate (SVP) is an anti-epilepsy drug with a hepatotoxic adverse effect that restricts its clinical use. In this study, coadministration of Dihydromyricetin (DHM), a natural flavonoid, with SVP to rats upregulated gene expression of Nrf2 and its downstream gene, heme oxygenase 1 (HO-1), while suppressed the Nrf2 repressor, Keap-1. Additionally, DHM led to downregulation of proinflammatory factors in liver tissues, including NF-ĸB, interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α). This was accompanied by a decrease in the proapoptotic protein (cleaved caspase-3) expression level. Furthermore, biochemical and histopathological studies showed that DHM treatment improved liver function and lipid profile while decreased inflammatory cell infiltration, congestion, and hepatocellular damage. According to our knowledge, prior research has not examined the protective effect of DHM on the liver injury induced by SVP. Consequently, this study provides DHM as a promising herbal medication that, when used with SVP, can prevent its induced hepatotoxicity owing to its potential anti-oxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Doaa Emad
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| | - Sahar M Gebril
- Department of Histology and Cell biology, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | | | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| |
Collapse
|
5
|
Sinha N, Patil PS, Ananta A, Suresh SB, Unni N. Unexpected Cataract Formation Following Valproate Treatment: A Case Report. Cureus 2024; 16:e63093. [PMID: 39055475 PMCID: PMC11272151 DOI: 10.7759/cureus.63093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Valproic acid (VPA), or sodium valproate, is a frequently prescribed medication for many psychiatric conditions, notably for the management of bipolar affective disorder. While its common side effects are well known and thoroughly documented in medical literature, the occurrence of cataracts as a side effect is exceedingly rare. There is evidence of cataract formation with long-term use of VPA in a few studies. Recognizing this potential adverse effect is crucial. It is important to recommend that patients undergo regular eye examinations if they experience any visual disturbances or as a preventative measure to ensure effective management. This case report examines the unusual occurrence of cataract development associated with valproate use.
Collapse
Affiliation(s)
- Nayan Sinha
- Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pradeep S Patil
- Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Aditi Ananta
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Nagpur, IND
| | - Sneha B Suresh
- Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Navaneetha Unni
- Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
6
|
Piorczynski TB, Calixto J, Henry HC, England K, Cowley S, Hansen JM, Hill JT, Hansen JM. Valproic Acid Causes Redox-Regulated Post-Translational Protein Modifications That Are Dependent upon P19 Cellular Differentiation States. Antioxidants (Basel) 2024; 13:560. [PMID: 38790665 PMCID: PMC11117966 DOI: 10.3390/antiox13050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Valproic acid (VPA) is a common anti-epileptic drug and known neurodevelopmental toxicant. Although the exact mechanism of VPA toxicity remains unknown, recent findings show that VPA disrupts redox signaling in undifferentiated cells but has little effect on fully differentiated neurons. Redox imbalances often alter oxidative post-translational protein modifications and could affect embryogenesis if developmentally critical proteins are targeted. We hypothesize that VPA causes redox-sensitive post-translational protein modifications that are dependent upon cellular differentiation states. Undifferentiated P19 cells and P19-derived neurons were treated with VPA alone or pretreated with D3T, an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant pathway, prior to VPA exposure. Undifferentiated cells treated with VPA alone exhibited an oxidized glutathione redox couple and increased overall protein oxidation, whereas differentiated neurons were protected from protein oxidation via increased S-glutathionylation. Pretreatment with D3T prevented the effects of VPA exposure in undifferentiated cells. Taken together, our findings support redox-sensitive post-translational protein alterations in undifferentiated cells as a mechanism of VPA-induced developmental toxicity and propose NRF2 activation as a means to preserve proper neurogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jason M. Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA; (T.B.P.); (J.C.); (H.C.H.); (K.E.); (S.C.); (J.M.H.); (J.T.H.)
| |
Collapse
|
7
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
8
|
Li Y, Ma L, Deng Y, Du Z, Guo B, Yue J, Liu X, Zhang Y. The Notch1/Hes1 signaling pathway affects autophagy by adjusting DNA methyltransferases expression in a valproic acid-induced autism spectrum disorder model. Neuropharmacology 2023; 239:109682. [PMID: 37543138 DOI: 10.1016/j.neuropharm.2023.109682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
As a pervasive neurodevelopmental disease, autism spectrum disorder (ASD) is caused by both hereditary and environmental elements. Research has demonstrated the functions of the Notch pathway and DNA methylation in the etiology of ASD. DNA methyltransferases DNMT3 and DNMT1 are responsible for methylation establishment and maintenance, respectively. In this study, we aimed to explore the association of DNA methyltransferases with the Notch pathway in ASD. Our results showed Notch1 and Hes1 were upregulated, while DNMT3A and DNMT3B were downregulated at the protein level in the prefrontal cortex (PFC), hippocampus (HC) and cerebellum (CB) of VPA-induced ASD rats compared with Control (Con) group. However, the protein levels of DNMT3A and DNMT3B were augmented after treatment with 3,5-difluorophenacetyl-L-alanyl-S-phenylglycine-2-butyl ester (DAPT), suggesting that abnormal Notch pathway activation may affect the expression of DNMT3A and DNMT3B. Besides, our previous findings revealed that the Notch pathway may participate in development of ASD by influencing autophagy. Therefore, we hypothesized the Notch pathway adjusts autophagy and contributes to ASD by affecting DNA methyltransferases. Our current results showed that after receiving the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-2'dc), the VPA + DAPT+5-Aza-2'dc (V + D + Aza) group exhibited reduced social interaction ability and increased stereotyped behaviors, and decreased expression of DNMT3A, DNMT3B and autophagy-related proteins, but did not show changes in Notch1 and Hes1 protein levels. Our results indicated that the Notch1/Hes1 pathway may adjust DNMT3A and DNMT3B expression and subsequently affect autophagy in the occurrence of ASD, providing new insight into the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Liping Ma
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Yanan Deng
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Ziwei Du
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Bingqian Guo
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Jianing Yue
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Xianxian Liu
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China
| | - Yinghua Zhang
- Department of Human Anatomy & Histoembryology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Xinxiang Key Laboratory of Molecular Neurology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
9
|
Zhang X, Liu B, Lal K, Liu H, Tran M, Zhou M, Ezugwu C, Gao X, Dang T, Au ML, Brown E, Wu H, Liao Y. Antioxidant System and Endoplasmic Reticulum Stress in Cataracts. Cell Mol Neurobiol 2023; 43:4041-4058. [PMID: 37874455 PMCID: PMC10842247 DOI: 10.1007/s10571-023-01427-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
The primary underlying contributor for cataract, a leading cause of vision impairment and blindness worldwide, is oxidative stress. Oxidative stress triggers protein damage, cell apoptosis, and subsequent cataract formation. The nuclear factor-erythroid 2-related factor 2 (Nrf2) serves as a principal redox transcriptional factor in the lens, offering a line of defense against oxidative stress. In response to oxidative challenges, Nrf2 dissociates from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), moves to the nucleus, and binds to the antioxidant response element (ARE) to activate the Nrf2-dependent antioxidant system. In parallel, oxidative stress also induces endoplasmic reticulum stress (ERS). Reactive oxygen species (ROS), generated during oxidative stress, can directly damage proteins, causing them to misfold. Initially, the unfolded protein response (UPR) activates to mitigate excessive misfolded proteins. Yet, under persistent or severe stress, the failure to rectify protein misfolding leads to an accumulation of these aberrant proteins, pushing the UPR towards an apoptotic pathway, further contributing to cataractogenesis. Importantly, there is a dynamic interaction between the Nrf2 antioxidant system and the ERS/UPR mechanism in the lens. This interplay, where ERS/UPR can modulate Nrf2 expression and vice versa, holds potential therapeutic implications for cataract prevention and treatment. This review explores the intricate crosstalk between these systems, aiming to illuminate strategies for future advancements in cataract prevention and intervention. The Nrf2-dependent antioxidant system communicates and cross-talks with the ERS/UPR pathway. Both mechanisms are proposed to play pivotal roles in the onset of cataract formation.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqing Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kevin Lal
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haihua Liu
- Peking University First Hospital, Beijing, China
| | - Myhoa Tran
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Manyu Zhou
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chimdindu Ezugwu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xin Gao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Terry Dang
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Lien Au
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Erica Brown
- School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA.
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Yan Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
10
|
Kaplánek R, Kejík Z, Hajduch J, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hosnedlová B, Hromádka R, Dytrych P, Novotný P, Abramenko N, Antonyová V, Hoskovec D, Babula P, Masařík M, Martásek P, Jakubek M. TET protein inhibitors: Potential and limitations. Biomed Pharmacother 2023; 166:115324. [PMID: 37598475 DOI: 10.1016/j.biopha.2023.115324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
Collapse
Affiliation(s)
- Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Novotný
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
11
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Uzel G, Oylumlu E, Durmus L, Ciraci C. Duality of Valproic Acid Effects on Inflammation, Oxidative Stress and Autophagy in Human Eosinophilic Cells. Int J Mol Sci 2023; 24:13446. [PMID: 37686250 PMCID: PMC10487571 DOI: 10.3390/ijms241713446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Eosinophils function in rapid innate immune responses and allergic reactions. Recent research has raised the possibility that the histone deacetylase inhibitor valproic acid (VPA) may be a promising therapeutic agent for treatment of allergic responses and certain cancers. However, its effects on eosinophils remain unclear. Utilizing the EoL-1 human eosinophil cell line as a model, we investigated the effects of VPA on oxidative stress- and autophagy-mediated immune responses. We found that VPA induced reactive oxidative species (ROS) generation and eosinophil activation without affecting cell viability. Moreover, VPA treatment suppressed the negative regulator of antioxidant transcription factor Nrf2, which is known to activate antioxidant defense. Interestingly, VPA was able to increase autophagic markers, as well as NLRP3 and NLRC4 mRNA activation, in Eol-1 cells in a dose-dependent manner. Collectively, our results indicate that VPA could increase the severity of allergic responses, and if so, it clearly would not be a suitable drug for the treatment of allergic reactions. However, VPA does have the potential to induce autophagy and to regulate the inflammatory responses via inflammasome-driven caspase-1 deactivation in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey; (G.U.); (E.O.); (L.D.)
| |
Collapse
|
13
|
Amanfo AF, Kyei S, Boakye YD, Akoto CO, Addo JK, Yeboah KO, Osafo N. The Aqueous Stem Bark Extract of Alstonia boonei Exhibits Anticataract Activity in Sprague Dawley Rat. SCIENTIFICA 2023; 2023:5524137. [PMID: 37560323 PMCID: PMC10409581 DOI: 10.1155/2023/5524137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In Africa, Alstonia boonei is used folklorically for the management of the multitude of conditions including cataract, which accounts for 50% of cases of blindness in the region. The current study set out to probe the traditional use of the aqueous extract of Alstonia boonei stem bark (ABE) as an anticataract remedy using Sprague Dawley rat models. We investigated the probable phytochemical constituents in the extract, in vitro antioxidant potential, and its in vitro aldose reductase inhibition. For the anticataract investigations, diabetic cataract was induced using galactose in 3-week-old Sprague Dawley rats, and age-related cataract was induced by the administration of sodium selenite to 10-day-old rat pups. Cataract scores in both models were determined after treatment with 30, 100, and 300 mgkg-1 doses of ABE and 10 mlkg-1 of distilled water. Lens glutathione, total lens protein, soluble lens proteins (alpha-A) crystallin, and aquaporin 0 levels in the enucleated lens homogenates were determined. Changes in lens to body weight were also determined with histopathological analysis done on the lenses in the selenite-induced cataract model. The presence of alkaloids, tannins, flavonoids, glycosides, and triterpenoids was identified in the extract. The extract inhibited aldose reductase activity with IC50 of 92.30 μgml-1. The 30, 100, and 300 mgkg-1ABE-treated rats recorded significantly (p < 0.05) reduced cataract scores indicating a delay in cataractogenesis in galactose-induced cataract and in selenite-induced cataractogenesis as well. Markers of lens transparency such as AQP0, alpha-A crystallin, and total lens proteins and lens glutathione levels were significantly (p < 0.05) preserved. In conclusion, this study establishes the anticataract potential of the aqueous stem bark extract of Alstonia boonei in Sprague Dawley rat models.
Collapse
Affiliation(s)
- Adwoa Frema Amanfo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Kyei
- Department of Optometry and Vision Science, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, University of Cape Coast, Cape Coast, Ghana
| | - Yaw Duah Boakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Clement Osei Akoto
- Department of Chemistry, College of Science, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | | | - Kofi Oduro Yeboah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Newman Osafo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
14
|
Bejarano E, Weinberg J, Clark M, Taylor A, Rowan S, Whitcomb EA. Redox Regulation in Age-Related Cataracts: Roles for Glutathione, Vitamin C, and the NRF2 Signaling Pathway. Nutrients 2023; 15:3375. [PMID: 37571310 PMCID: PMC10421530 DOI: 10.3390/nu15153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Age is the biggest risk factor for cataracts, and aberrant oxidative modifications are correlated with age-related cataracts, suggesting that proper redox regulation is important for lens clarity. The lens has very high levels of antioxidants, including ascorbate and glutathione that aid in keeping the lens clear, at least in young animals and humans. We summarize current functional and genetic data supporting the hypothesis that impaired regulation of oxidative stress leads to redox dysregulation and cataract. We will focus on the essential endogenous antioxidant glutathione and the exogenous antioxidant vitamin C/ascorbate. Additionally, gene expression in response to oxidative stress is regulated in part by the transcription factor NRF2 (nuclear factor erythroid 2-related factor 2 [NFE2L2]), thus we will summarize our data regarding cataracts in Nrf2-/- mice. In this work, we discuss the function and integration of these capacities with the objective of maintaining lens clarity.
Collapse
Affiliation(s)
- Eloy Bejarano
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- School of Health Sciences and Veterinary, Universidad CEU Cardenal Herrera, CEU Universities, 46113 Valencia, Spain
| | - Jasper Weinberg
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| | - Madison Clark
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Ophthalmology, School of Medicine, Tufts University, Boston, MA 02111, USA
- Department of Developmental, Chemical and Molecular Biology, Tufts University, Boston, MA 02111, USA
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Department of Ophthalmology, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Elizabeth A. Whitcomb
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA; (E.B.); (J.W.); (M.C.); (A.T.); (S.R.)
| |
Collapse
|
15
|
Rocha MA, de Campos Vidal B, Mello MLS. Sodium Valproate Modulates the Methylation Status of Lysine Residues 4, 9 and 27 in Histone H3 of HeLa Cells. Curr Mol Pharmacol 2023; 16:197-210. [PMID: 35297358 DOI: 10.2174/1874467215666220316110405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Valproic acid/sodium valproate (VPA), a well-known anti-epileptic agent, inhibits histone deacetylases, induces histone hyperacetylation, promotes DNA demethylation, and affects the histone methylation status in some cell models. Histone methylation profiles have been described as potential markers for cervical cancer prognosis. However, histone methylation markers that can be studied in a cervical cancer cell line, like HeLa cells, have not been investigated following treatment with VPA. METHODS In this study, the effect of 0.5 mM and 2.0 mM VPA for 24 h on H3K4me2/me3, H3K9me/me2 and H3K27me/me3 signals as well as on KMT2D, EZH2, and KDM3A gene expression was investigated using confocal microscopy, Western blotting, and RT-PCR. Histone methylation changes were also investigated by Fourier-transform infrared spectroscopy (FTIR). RESULTS We found that VPA induces increased levels of H3K4me2/me3 and H3K9me, which are indicative of chromatin activation. Particularly, H3K4me2 markers appeared intensified close to the nuclear periphery, which may suggest their implication in increased transcriptional memory. The abundance of H3K4me2/me3 in the presence of VPA was associated with increased methyltransferase KMT2D gene expression. VPA induced hypomethylation of H3K9me2, which is associated with gene silencing, and concomitant with the demethylase KDM3A, it increased gene expression. Although VPA induces increased H3K27me/me3 levels, it is suggested that the role of the methyltransferase EZH2 in this context could be affected by interactions with this drug. CONCLUSION Histone FTIR spectra were not affected by VPA under present experimental conditions. Whether our epigenetic results are consistent with VPA affecting the aggressive tumorous state of HeLa cells, further investigation is required.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
16
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
17
|
Teng H, Hong Y, Cao J, Li H, Tian F, Sun J, Wen K, Han G, Whelchel A, Zhang X, Li X, Dong L. Senescence marker protein30 protects lens epithelial cells against oxidative damage by restoring mitochondrial function. Bioengineered 2022; 13:12955-12971. [PMID: 35615975 PMCID: PMC9275934 DOI: 10.1080/21655979.2022.2079270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Etiology and pathogenesis of age-related cataract is not entirely clear till now. Senescence marker protein 30 (SMP30) is a newly discovered anti-aging factor, which plays an important role in preventing apoptosis and reducing oxidative stress damage. Mitochondria are located at the intersection of key cellular pathways, such as energy substrate metabolism, reactive oxygen species (ROS) production and apoptosis. Oxidative stress induced by 4-hydroxynonenal (4-HNE) is closely related to neurodegenerative diseases and aging. Our study focused on the effect of SMP30 on mitochondrial homeostasis of human lens epithelial cells (HLECs) induced by 4-HNE. Western blots and qPCR were used to compare the expression of SMP30 protein in the residual lens epithelial cells in the lens capsule of age-related cataract (ARC) patients and the donated transparent lens capsule. On this basis, SMP30 overexpression plasmid and SMP30 shRNA interference plasmid were introduced to explore the effect of SMP30 on the biological behavior in HLECs under the condition of oxidative stress induced by 4-HNE through immunohistochemistry, ROS evaluation, metabolic spectrum analysis and JC-1 fluorescence measurement. Given that Nuclear Factor erythroid 2-Related Factor 2 (Nrf2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway is the most important antioxidant stress pathway, we further analyzed the regulatory effect of SMP30 by WB to explore its molecular mechanism. Our study indicated that SMP30 may inhibit ROS accumulation, restore mitochondrial function, activate Nrf2/Keap1 signaling pathway, therefore protecting lens epithelial cells from oxidative stress-induced cell damage.
Collapse
Affiliation(s)
- He Teng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Yaru Hong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Jingjing Cao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Hui Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Fang Tian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Jing Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Kai Wen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Amy Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma, Ok, USA
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China, Eye Institute and School of Optometry, Tianjin, China, Tianjin Medical University Eye Hospita, Tianjin, China
| |
Collapse
|
18
|
Abbasalipour H, Hajizadeh Moghaddam A, Ranjbar M. Sumac and gallic acid-loaded nanophytosomes ameliorate hippocampal oxidative stress via regulation of Nrf2/Keap1 pathway in autistic rats. J Biochem Mol Toxicol 2022; 36:e23035. [PMID: 35307911 DOI: 10.1002/jbt.23035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/07/2022]
Abstract
Autism spectrum disorders cover a range of neurodevelopmental disorders characterized by impairments in social interaction and cognitive deficits. Phenolic compound applications have been restricted due to their poor solubility, bioavailability, and low stability. This paper aimed to explore the neuroprotective effects of sumac and gallic acid-loaded nanophytosomes (GNP) on oxidative stress-induced cognitive impairment and Nrf2/Keap1 gene expression in the autism model. Valproic acid (VPA) was administered intraperitoneally at doses of 500 mg/kg to female rats during gestational 12.5 days (E12.5). The prenatal VPA-exposed rats were divided into five groups, including VPA, VPA treated with sumac, gallic acid (GA), sumac-loaded nanophytosome (SNP), and GNP at doses of 20 mg/kg for 4 weeks (n = 6). A novel object test was conducted and antioxidant parameters and Nrf2/Keap1gene expression were evaluated in the hippocampus. According to the obtained results, the rat model of autism exhibited recognition memory impairment. We observed an increase in glutathione peroxidase (GPx), glutathione reductase (GRx), superoxide dismutase (SOD), catalase (CAT) enzyme activity, total antioxidant capacity (TAC), and glutathione (GSH) levels. Furthermore, sumac and GNP improved recognition memory deficits and increased GPx, GRx, SOD, and CAT activities, GSH and TAC levels, and Nrf2/Keap1gene expression in the hippocampal area. Our results also suggested that SNP and GNP ameliorate VPA-induced learning and memory deficits more efficiently than sumac extract and pure GA by reducing oxidative stress, enhancing antioxidant enzyme activity, and Keap1/Nrf2 gene expression. The present study demonstrated that the utilization of SNP and GNP significantly improved recognition memory deficits.
Collapse
Affiliation(s)
- Haniyeh Abbasalipour
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mojtaba Ranjbar
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
19
|
Di Pasqua LG, Cagna M, Berardo C, Vairetti M, Ferrigno A. Detailed Molecular Mechanisms Involved in Drug-Induced Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: An Update. Biomedicines 2022; 10:194. [PMID: 35052872 PMCID: PMC8774221 DOI: 10.3390/biomedicines10010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are some of the biggest public health challenges due to their spread and increasing incidence around the world. NAFLD is characterized by intrahepatic lipid deposition, accompanied by dyslipidemia, hypertension, and insulin resistance, leading to more serious complications. Among the various causes, drug administration for the treatment of numerous kinds of diseases, such as antiarrhythmic and antihypertensive drugs, promotes the onset and progression of steatosis, causing drug-induced hepatic steatosis (DIHS). Here, we reviewed in detail the major classes of drugs that cause DIHS and the specific molecular mechanisms involved in these processes. Eight classes of drugs, among the most used for the treatment of common pathologies, were considered. The most diffused mechanism whereby drugs can induce NAFLD/NASH is interfering with mitochondrial activity, inhibiting fatty acid oxidation, but other pathways involved in lipid homeostasis are also affected. PubMed research was performed to obtain significant papers published up to November 2021. The key words included the class of drugs, or the specific compound, combined with steatosis, nonalcoholic steatohepatitis, fibrosis, fatty liver and hepatic lipid deposition. Additional information was found in the citations listed in other papers, when they were not displayed in the original search.
Collapse
Affiliation(s)
- Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
20
|
Hansen JM, Lucas SM, Ramos CD, Green EJ, Nuttall DJ, Clark DS, Marchant ED, Hancock CR, Piorczynski TB. Valproic acid promotes SOD2 acetylation: A potential mechanism of valproic acid-induced oxidative stress in developing systems. Free Radic Res 2021; 55:1130-1144. [PMID: 34895005 DOI: 10.1080/10715762.2021.2017913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Valproic acid (VPA) is an antiepileptic, bipolar and migraine medication, which is associated with embryonic dysmorphology, more specifically neural tube defects (NTDs), if taken while pregnant. One mechanism by which VPA may cause NTDs is through oxidative stress that cause disruption of cell signaling. However, mechanisms of VPA-induced oxidative stress are not fully understood. Since VPA is a deacetylase inhibitor, we propose that VPA promotes mitochondrial superoxide dismutase-2 (SOD2) acetylation, decreasing SOD2 activity and increasing oxidant levels. Using the pluripotent embryonal carcinoma cell line, P19, VPA effects were evaluated in undifferentiated and neurodifferentiated cells. VPA treatments increased oxidant levels, oxidized the glutathione (GSH)/glutathione disulfide (GSSG) redox couple, and decreased total SOD and SOD2 activity in undifferentiated P19 cells but not in differentiated P19 cells. VPA caused a specific increase in mitochondrial oxidants in undifferentiated P19 cells, VPA did not alter respirometry measurements. Immunoblot analyses demonstrated that VPA increased acetylation of SOD2 at lysine68 (AcK68 SOD2) in undifferentiated P19 cells but not in differentiated P19 cells. Pretreatments with the Nrf2 inducer, dithiol-3-thione (D3T), in undifferentiated P19 cells prevented increased oxidant levels, GSH/GSSG redox oxidation and restored total SOD and SOD2 activity, correlating with a decrease in AcK68 SOD2 levels. In embryos, VPA decreased total SOD and SOD2 activity and increased levels of AcK68 SOD2, and D3T pretreatments prevented VPA effects, increasing total SOD and SOD2 activity and lowering levels of AcK68 SOD2. These data demonstrate a potential, contributing oxidizing mechanism by which VPA incites teratogenesis in developing systems. Moreover, these data also suggest that Nrf2 interventions may serve as a means to protect developmental signaling and inhibit VPA-induced malformations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erik D Marchant
- Department of Nutrition, Dietetics and Food Science, College of Life Sciences, Brigham Young University, Provo, Utah, USA
| | - Chad R Hancock
- Department of Nutrition, Dietetics and Food Science, College of Life Sciences, Brigham Young University, Provo, Utah, USA
| | | |
Collapse
|
21
|
NRF2 activation protects against valproic acid-induced disruption of neurogenesis in P19 cells. Differentiation 2021; 123:18-29. [PMID: 34902770 DOI: 10.1016/j.diff.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a commonly prescribed antiepileptic drug that causes fetal valproate syndrome (FVS) in developing embryos exposed to it. Symptoms of FVS include neural tube defects (NTDs), musculoskeletal abnormalities, and neurodevelopmental difficulties. One proposed mechanism of VPA-induced developmental toxicity is via oxidative stress, defined as the disruption of redox-sensitive cell signaling. We propose that redox imbalances caused by VPA exposure result in improper cellular differentiation that may contribute to FVS. In undifferentiated P19 mouse embryonal carcinoma cells treated with VPA, glutathione disulfide (GSSG) concentrations were higher and the glutathione (GSH)/GSSG redox potential (Eh) was more oxidizing compared to vehicle-treated control cells, both of which are indications of potential intracellular oxidative stress. Interestingly, VPA had no effect on GSH or GSSG levels in differentiated P19 neurons. Undifferentiated cells pretreated with 3H-1,2-dithiole-3-thione (D3T), an inducer of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant response that combats cellular redox disruption, were protected from VPA-induced alterations to the GSH/GSSG system. To assess differential periods of susceptibility, P19 cells were exposed to VPA at various time points during their neuronal differentiation. Cells exposed to VPA early in the differentiation process did not undergo normal neurogenesis as measured by POU domain, class 5, transcription factor 1 (OCT4) and tubulin beta-3 chain (βIII-tubulin), markers of cell stemness and neuronal differentiation, respectively. Neurogenesis was improved with D3T pretreatments prior to VPA exposure. Furthermore, differentiating P19 cells treated with VPA exhibited increased protein oxidation that was diminished with D3T pretreatment. These findings demonstrate that VPA inhibits neurogenesis and propose NRF2-mediated redox homeostasis as a means to promote normal neuronal differentiation, thereby potentially decreasing the prevalence of FVS outcomes.
Collapse
|
22
|
Rowan S, Jiang S, Francisco SG, Pomatto LCD, Ma Z, Jiao X, Campos MM, Aryal S, Patel SD, Mahaling B, Riazuddin SA, Duh EJ, Lachke SA, Hejtmancik JF, de Cabo R, FitzGerald PG, Taylor A. Aged Nrf2-Null Mice Develop All Major Types of Age-Related Cataracts. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 34882206 PMCID: PMC8665303 DOI: 10.1167/iovs.62.15.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Age-related cataracts affect the majority of older adults and are a leading cause of blindness worldwide. Treatments that delay cataract onset or severity have the potential to delay cataract surgery, but require relevant animal models that recapitulate the major types of cataracts for their development. Unfortunately, few such models are available. Here, we report the lens phenotypes of aged mice lacking the critical antioxidant transcription factor Nfe2l2 (designated as Nrf2 −/−). Methods Three independent cohorts of Nrf2 −/− and wild-type C57BL/6J mice were evaluated for cataracts using combinations of slit lamp imaging, photography of freshly dissected lenses, and histology. Mice were fed high glycemic diets, low glycemic diets, regular chow ad libitum, or regular chow with 30% caloric restriction. Results Nrf2 −/− mice developed significant opacities between 11 and 15 months and developed advanced cortical, posterior subcapsular, anterior subcapsular, and nuclear cataracts. Cataracts occurred similarly in male mice fed high or low glycemic diets, and were also observed in 21-month male and female Nrf2 −/− mice fed ad libitum or 30% caloric restriction. Histological observation of 18-month cataractous lenses revealed significant disruption to fiber cell architecture and the retention of nuclei throughout the cortical region of the lens. However, fiber cell denucleation and initiation of lens differentiation was normal at birth, with the first abnormalities observed at 3 months. Conclusions Nrf2 −/− mice offer a tool to understand how defective antioxidant signaling causes multiple forms of cataract and may be useful for screening drugs to prevent or delay cataractogenesis in susceptible adults.
Collapse
Affiliation(s)
- Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| | - Shuhong Jiang
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Sarah G Francisco
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Maria M Campos
- NEI Histology Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Binapani Mahaling
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elia J Duh
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
23
|
Melatonin Ameliorates Valproic Acid-Induced Neurogenesis Impairment: The Role of Oxidative Stress in Adult Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9997582. [PMID: 34804374 PMCID: PMC8604576 DOI: 10.1155/2021/9997582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Background Valproic acid (anticonvulsant medication) has been found to inhibit histone deacetylase activity and suppress hippocampal neurogenesis, which causes memory impairment in both humans and rodents. The neurohormone melatonin, which regulates mammalian seasonal and circadian physiology, has recently been shown to have neuroprotective properties, counteracting memory impairment associated with VPA-caused hippocampal neurogenesis reduction. This study is aimed at investigating the molecular mechanisms of melatonin associated with VPA-induced hippocampal neurogenesis and memory impairment. Methods Male Spraque-Dawley rats received VPA (300 mg/kg) twice daily or melatonin (8 mg/kg/day) or some rats were given melatonin for 14 days during VPA administration. Results The VPA-treated rats showed a significant increase in malondialdehyde (MDA) levels in the hippocampus and p21-positive cells in the subgranular zone (SGZ) of the dentate gyrus (DG) but decreased superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities. Moreover, VPA significantly decreased levels of nestin, Notchl, nuclear factor erythroid 2-related factor 2 (Nrf2), doublecortin (DCX), sex determining region Y-box 2 (SOX2), and brain-derived neurotrophic factor (BDNF). Conclusions We found that melatonin was able to counteract these neurotoxic effects, acting as a neuroprotectant in VPA-induced memory hippocampal neurogenesis impairment by preventing intracellular oxidative stress and increasing antioxidant activity.
Collapse
|
24
|
Piorczynski TB, Lapehn S, Ringer KP, Allen SA, Johnson GA, Call K, Lucas SM, Harris C, Hansen JM. NRF2 activation inhibits valproic acid-induced neural tube defects in mice. Neurotoxicol Teratol 2021; 89:107039. [PMID: 34737154 DOI: 10.1016/j.ntt.2021.107039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 01/02/2023]
Abstract
Valproic acid (VPA) is a widely prescribed medication that has traditionally been used to treat epilepsy, yet embryonic exposure to VPA increases the risk of the fetus developing neural tube defects (NTDs). While the mechanism by which VPA causes NTDs is unknown, we hypothesize that VPA causes dysmorphogenesis through the disruption of redox-sensitive signaling pathways that are critical for proper embryonic development, and that protection from the redox disruption may decrease the prevalence of NTDs. Time-bred CD-1 mice were treated with 3H-1,2-dithiole-3-thione (D3T), an inducer of nuclear factor erythroid 2-related factor 2 (NRF2)-a transcription factor that activates the intracellular antioxidant response to prevent redox disruptions. Embryos were then collected for whole embryo culture and subsequently treated with VPA in vitro. The glutathione (GSH)/glutathione disulfide (GSSG) redox potential (Eh), a measure of the intracellular redox environment, was measured in the developing mouse embryos. Embryos treated with VPA exhibited a transiently oxidizing GSH/GSSG Eh, while those that received D3T pretreatment prior to VPA exposure showed no differences compared to controls. Moving to an in utero mouse model, time-bred C57BL/6 J dams were pretreated with or without D3T and then exposed to VPA, after which all embryos were collected for morphological analyses. The prevalence of open neural tubes in embryos treated with VPA significantly decreased with D3T pretreatment, as did the severity of the observed defects evaluated by a morphological assessment. These data show that NRF2 induction via D3T pretreatment protects against VPA-induced redox dysregulation and decreases the prevalence of NTDs in developing mouse embryos.
Collapse
Affiliation(s)
- Ted B Piorczynski
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelsey P Ringer
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Spencer A Allen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Garett A Johnson
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Krista Call
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - S Marc Lucas
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason M Hansen
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
25
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
26
|
Lledó VE, Alkozi HA, Sánchez-Naves J, Fernandez-Torres MA, Guzman-Aranguez A. Modulation of aqueous humor melatonin levels by yellow-filter and its protective effect on lens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112248. [PMID: 34192628 DOI: 10.1016/j.jphotobiol.2021.112248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022]
Abstract
Melatonin is mainly secreted by the pineal gland, and it is also produced by various ocular structures such as the lens. It has been recently demonstrated that melatonin ocular synthesis can be induced by blocking the blue component of white light by means of filters. Melatonin exhibits antioxidant properties that can be useful to face light-induced oxidative stress as well as oxidative events associated to ocular pathologies like cataracts. Moreover, as oxidative stress is a main event in cataract development, changes in melatonin levels could happen and be relevant in the progression of this pathology, a subject that remains uncertain. The goal of this work was to analyze the ability of a short wavelength light blocking (yellow) filter to modulate endogenous melatonin concentration and the antioxidant and cytoprotective actions induced by yellow filter's use in lens. Furthermore, we evaluated the potential changes in aqueous humor melatonin concentration from patients with cataracts. In human lens epithelial cells, white light-emitting diode (LED) light challenge reduced melatonin secretion, protein levels of the enzymes involved in melatonin synthesis (hydroxyindole-O-methyltransferase and unphosphorylated and phosphorylated forms of arylalkylamine N-acetyltransferase) and cell viability whereas increased reactive oxygen species production. Yellow filter exposure precluded melatonin secretion reduction and protected cells from oxidative damage. Consistent with cataract patient's results, significantly lower levels of melatonin were observed in aqueous humor of alloxan-induced diabetic cataract rabbits as compared to those of control rabbits. In contrast, aqueous humor melatonin levels of diabetic cataract animals maintaining in cages covered with a yellow filter resembled control values. This recovery seems to be mediated by the induction of melatonin biosynthetic enzymes protein expression. Yellow filter also preserved Nrf2 lens protein expression and superoxide dismutase protein levels and activity in diabetic animals. Modulation of endogenous ocular melatonin concentration using blocking filters might be a promising approach to prevent premature lens opacification.
Collapse
Affiliation(s)
- Victoria Eugenia Lledó
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Sánchez-Naves
- Department of Ophthalmology, OPHTHALMEDIC and I.P.O. Institute of Ophthalmology, Balearic Island, Spain
| | - Miguel Angel Fernandez-Torres
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
27
|
Pethő D, Hendrik Z, Nagy A, Beke L, Patsalos A, Nagy L, Póliska S, Méhes G, Tóth C, Potor L, Eaton JW, Jacob HS, Balla G, Balla J, Gáll T. Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression. Sci Rep 2021; 11:10435. [PMID: 34001932 PMCID: PMC8129109 DOI: 10.1038/s41598-021-89713-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.
Collapse
|
28
|
Mello MLS. Sodium Valproate-Induced Chromatin Remodeling. Front Cell Dev Biol 2021; 9:645518. [PMID: 33959607 PMCID: PMC8093769 DOI: 10.3389/fcell.2021.645518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Valproic acid/sodium valproate (VPA), a drug originally prescribed as an anticonvulsant, has been widely reported to act on epigenetic marks by inducing histone acetylation, affecting the DNA and histone methylation status, and altering the expression of transcription factors, thus leading to modulation of gene expression. All these epigenetic changes have been associated with chromatin remodeling effects. The present minireview briefly reports the main effects of VPA on chromatin and image analysis and Fourier transform infrared (FTIR) microspectroscopy in association with molecular biology methodological approaches to investigate the VPA-induced changes in chromatin structure and at the higher-order supraorganizational level.
Collapse
Affiliation(s)
- Maria Luiza S. Mello
- Department of Structural and Functional Biology, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
29
|
Lapehn S, Piorczynski TB, Hansen JM, Harris C. Spatiotemporal evaluation of the mouse embryonic redox environment and histiotrophic nutrition following treatment with valproic acid and 1,2-dithiole-3-thione during early organogenesis. Reprod Toxicol 2021; 101:81-92. [PMID: 33713778 PMCID: PMC8110175 DOI: 10.1016/j.reprotox.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/27/2022]
Abstract
Redox regulation during metazoan development ensures that coordinated metabolic reprogramming and developmental signaling are orchestrated with high fidelity in the hypoxic embryonic environment. Valproic acid (VPA), an anti-seizure medication, is known to increase markers of oxidation and also increase the risk of neural tube defects (NTDs) when taken during pregnancy. It is unknown, however, whether oxidation plays a direct role in failed neural tube closure (NTC). Spatial and temporal fluctuations in total glutathione (GSH) and total cysteine (Cys) redox steady states were seen during a 24 h period of CD-1 mouse organogenesis in untreated conceptuses and following exposure to VPA and the Nrf2 antioxidant pathway inducer, 1,2-dithiole-3-thione (D3T). Glutathione, glutathione disulfide (GSSG), and Cys, cystine (CySS) concentrations, measured in conceptal tissues (embryo/visceral yolk sac) and fluids (yolk sac fluid/amniotic fluid) showed that VPA did not cause extensive and prolonged oxidation during the period of NTC, but instead produced transient periods of oxidation, as assessed by GSH:GSSG redox potentials, which revealed oxidation in all four conceptal compartments at 4, 10, and 14 h, corresponding to the period of heartbeat activation and NTC. Other changes were tissue and time specific. VPA treatment also reduced total FITC-Ab clearance from the medium over 3 h, indicating potential disruption of nutritive amino acid supply. Overall, these results indicated that VPA's ability to affect cellular redox status may be limited to tissue-specific windows of sensitivity during the period of NTC. The safety evaluation of drugs used during pregnancy should consider time and tissue specific redox factors.
Collapse
Affiliation(s)
- Samantha Lapehn
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, United States
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
30
|
Pluquet O, Abbadie C. Cellular senescence and tumor promotion: Role of the Unfolded Protein Response. Adv Cancer Res 2021; 150:285-334. [PMID: 33858599 DOI: 10.1016/bs.acr.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.
Collapse
Affiliation(s)
- Olivier Pluquet
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.
| | - Corinne Abbadie
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
31
|
The Protective Effects of Flavonoids in Cataract Formation through the Activation of Nrf2 and the Inhibition of MMP-9. Nutrients 2020; 12:nu12123651. [PMID: 33261005 PMCID: PMC7759919 DOI: 10.3390/nu12123651] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cataracts account for over half of global blindness. Cataracts formations occur mainly due to aging and to the direct insults of oxidative stress and inflammation to the eye lens. The nuclear factor-erythroid-2-related factor 2 (Nrf2), a transcriptional factor for cell cytoprotection, is known as the master regulator of redox homeostasis. Nrf2 regulates nearly 600 genes involved in cellular protection against contributing factors of oxidative stress, including aging, disease, and inflammation. Nrf2 was reported to disrupt the oxidative stress that activates Nuclear factor-κB (NFκB) and proinflammatory cytokines. One of these cytokines is matrix metalloproteinase 9 (MMP-9), which participates in the decomposition of lens epithelial cells (LECs) extracellular matrix and has been correlated with cataract development. Thus, during inflammatory processes, MMP production may be attenuated by the Nrf2 pathway or by the Nrf2 inhibition of NFκB pathway activation. Moreover, plant-based polyphenols have garnered attention due to their presumed safety and efficacy, nutritional, and antioxidant effects. Polyphenol compounds can activate Nrf2 and inhibit MMP-9. Therefore, this review focuses on discussing Nrf2's role in oxidative stress and cataract formation, epigenetic effect in Nrf2 activity, and the association between Nrf2 and MMP-9 in cataract development. Moreover, we describe the protective role of flavonoids in cataract formation, targeting Nrf2 activation and MMP-9 synthesis inhibition as potential molecular targets in preventing cataracts.
Collapse
|
32
|
Victor P, Sarada D, Ramkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1. Eur J Pharmacol 2020; 892:173749. [PMID: 33245896 DOI: 10.1016/j.ejphar.2020.173749] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Cellular stress and inflammation, establishing as disease pathology, have reached great heights in the last few decades. Stress conditions such as hyperglycemia, hyperlipidemia and lipoproteins are known to disturb proteostasis resulting in the accumulation of unfolded or misfolded proteins, alteration in calcium homeostasis culminating in unfolded protein response. Protein disulfide isomerase and endoplasmic reticulum oxidase-1 are the key players in protein folding. The protein folding process assisted by endoplasmic reticulum oxidase-1 results in the production of reactive oxygen species in the lumen of the endoplasmic reticulum. Production of reactive oxygen species beyond the quenching capacity of the antioxidant systems perturbs ER homeostasis. Endoplasmic reticulum stress also induces the production of cytokines leading to inflammatory responses. This has been proven to be the major causative factor for various pathophysiological states compared to other cellular triggers in diseases, which further manifests to increased oxidative stress, mitochondrial dysfunction, and altered inflammatory responses, deleterious to cellular physiology and homeostasis. Numerous studies have drawn correlations between the progression of several diseases in association with endoplasmic reticulum stress, redox protein folding, oxidative stress and inflammatory responses. This review aims to provide an insight into the role of protein disulfide isomerase and endoplasmic reticulum oxidase-1 in endoplasmic reticulum stress, unfolded protein response, mitochondrial dysfunction, and inflammatory responses, which exacerbate the progression of various diseases.
Collapse
Affiliation(s)
- Paul Victor
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Dronamraju Sarada
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bio-engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India; Life Science Division, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India.
| |
Collapse
|
33
|
Kong FC, Ma CL, Zhong MK. Epigenetic Effects Mediated by Antiepileptic Drugs and their Potential Application. Curr Neuropharmacol 2020; 18:153-166. [PMID: 31660836 PMCID: PMC7324883 DOI: 10.2174/1570159x17666191010094849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
An epigenetic effect mainly refers to a heritable modulation in gene expression in the short term but does not involve alterations in the DNA itself. Epigenetic molecular mechanisms include DNA methylation, histone modification, and untranslated RNA regulation. Antiepileptic drugs have drawn attention to biological and translational medicine because their impact on epigenetic mechanisms will lead to the identification of novel biomarkers and possible therapeutic strategies for the prevention and treatment of various diseases ranging from neuropsychological disorders to cancers and other chronic conditions. However, these transcriptional and posttranscriptional alterations can also result in adverse reactions and toxicity in vitro and in vivo. Hence, in this review, we focus on recent findings showing epigenetic processes mediated by antiepileptic drugs to elucidate their application in medical experiments and shed light on epigenetic research for medicinal purposes.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med 2020; 157:63-74. [PMID: 32234331 PMCID: PMC7732858 DOI: 10.1016/j.freeradbiomed.2020.03.023] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Nrf2 (NFE2L2 - nuclear factor (erythroid-derived 2)-like 2) is a transcription factor, which is repressed by interaction with a redox-sensitive protein Keap1 (Kelch-like ECH-associated protein 1). Deregulation of Nrf2 transcriptional activity has been described in the pathogenesis of multiple diseases, and the Nrf2/Keap1 axis has emerged as a crucial modulator of cellular homeostasis. Whereas the significance of Nrf2 in the modulation of biological processes has been well established and broadly discussed in detail, the focus on Keap1 rarely goes beyond the regulation of Nrf2 activity and redox sensing. However, recent studies and scrutinized analysis of available data point to Keap1 as an intriguing and potent regulator of cellular function. This review aims to shed more light on Keap1 structure, interactome, regulation and non-canonical functions, thereby enhancing its significance in cell biology. We also intend to highlight the impact of balance between Keap1 and Nrf2 in the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
35
|
Ghoneim FM, Alrefai H, Elsamanoudy AZ, Abo El-khair SM, Khalaf HA. The Protective Role of Prenatal Alpha Lipoic Acid Supplementation against Pancreatic Oxidative Damage in Offspring of Valproic Acid-Treated Rats: Histological and Molecular Study. BIOLOGY 2020; 9:biology9090239. [PMID: 32825436 PMCID: PMC7564314 DOI: 10.3390/biology9090239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/21/2023]
Abstract
Background: Sodium valproate (VPA) is an antiepileptic drug (AED) licensed for epilepsy and used during pregnancy in various indications. Alpha-lipoic acid (ALA) is a natural compound inducing endogenous antioxidant production. Our study aimed to investigate the effect of prenatal administration of VPA on the pancreas of rat offspring and assess the potential protective role of ALA co-administration during pregnancy. Methods: Twenty-eight pregnant female albino rats were divided into four groups: group I (negative control), group II (positive control, ALA treated), group III (VPA-treated), and group IV (VPA-ALA-treated). The pancreases of the rat offspring were removed at the fourth week postpartum and prepared for histological, immune-histochemical, morphometric, molecular, and oxidative stress marker studies. Results: In group III, there were pyknotic nuclei, vacuolated cytoplasm with ballooning of acinar, α, and β cells of the pancreas. Ultrastructural degeneration of cytoplasmic organelles was detected. Additionally, there was a significant increase in oxidative stress, a decrease in insulin-positive cell percentage, and an increase in glucagon positive cells in comparison to control groups. Moreover, VPA increased the gene expression of an apoptotic marker, caspase-3, with a decrease in anti-apoptotic Bcl2 and nuclear factor erythroid 2-related factor 2 (Nrf2) transcriptional factor. Conversely, ALA improved oxidative stress and apoptosis in group VI, and a consequent improvement of the histological and ultrastructure picture was detected. Conclusion: ALA co-administration with VPA significantly improved the oxidative stress condition, histological and morphometric picture of the pancreas, and restored normal expression of related genes, including Nrf2, caspase-3, and Bcl-2. Administration of α-lipoic acid has a protective effect against VPA-induced pancreatic oxidative damage via its cytoprotective antioxidant effect.
Collapse
Affiliation(s)
- Fatma M. Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (H.A.K.)
| | - Hani Alrefai
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (A.Z.E.); (S.M.A.E.-k.)
- Department of Internal Medicine, Infectious Diseases Div., College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-513-975-9195
| | - Ayman Z. Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (A.Z.E.); (S.M.A.E.-k.)
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Salwa M. Abo El-khair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (A.Z.E.); (S.M.A.E.-k.)
| | - Hanaa A. Khalaf
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (H.A.K.)
| |
Collapse
|
36
|
Tian F, Zhao J, Bu S, Teng H, Yang J, Zhang X, Li X, Dong L. KLF6 Induces Apoptosis in Human Lens Epithelial Cells Through the ATF4-ATF3-CHOP Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1041-1055. [PMID: 32210535 PMCID: PMC7069589 DOI: 10.2147/dddt.s218467] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
Background Many studies have confirmed that high myopia is related to the high prevalence of cataracts, which results from apoptosis of lens epithelial cells (LECs) due to endoplasmic reticulum stress. Krüppel-like factor 6 (KLF6) is a tumor suppressor that is involved in the regulation of cell proliferation and apoptosis. Purpose In this study, our purpose was to find the relationship between KLF6-induced apoptosis in LECs and ATF4 (activating transcription factor 4)-ATF3 (activating transcription factor 3)-CHOP (C/EBP homologous protein) signaling pathway. Methods KLF6, ATF4, ATF3, and CHOP were ectopically expressed using cDNAs subcloned into the pCDNA3.1+ vector. ATF4, ATF3, and CHOP knockdown were performed by small interfering RNA (siRNA). Expression of relative gene was tested using QT-PCR and western-blot. Then, accompanied by UVB stimulation, cell viability was measured by CCK-8 assay; The cell damage was examined by live & dead staining; The apoptotic markers Bax and Bcl-2 were detected by immunoblotting; Quantitative apoptotic levels were measured with the Apoptosis Detection Kit; The expression level of reactive oxygen-free radical (ROS) was analyzed by DCFH-DA` probe. Results Ectopically expressed ATF4, ATF3, and CHOP-induced apoptosis in cells, whereas ATF4, ATF3, and CHOP knockdown by small interfering RNA (siRNA) blocked KLF6-induced apoptosis. In addition, we determined that ATF4 regulates ATF3 and CHOP expression and that ATF3 silencing reduces CHOP upregulation without changing ATF4 levels; however, ATF4 and ATF3 expression was unaffected by blockade of CHOP, suggesting that KLF6 triggers endoplasmic reticulum stress in LECs by mediating the ATF4-ATF3/CHOP axis. Besides, KLF6 overexpression significantly induced LEC apoptosis under UV radiation, as demonstrated by the elevated Bax/Bcl-2 ratio. Conclusion The ATF4-ATF3-CHOP pathway plays an important role in KLF6-induced apoptosis in HLECs. Our results increase our understanding of the mechanisms that regulate LEC apoptosis and contribute to the development of a new preventative strategy for cataract.
Collapse
Affiliation(s)
- Fang Tian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Jinzhi Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Shaochong Bu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - He Teng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Jun Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| |
Collapse
|
37
|
Rocha MA, Veronezi GMB, Felisbino MB, Gatti MSV, Tamashiro WMSC, Mello MLS. Sodium valproate and 5-aza-2'-deoxycytidine differentially modulate DNA demethylation in G1 phase-arrested and proliferative HeLa cells. Sci Rep 2019; 9:18236. [PMID: 31796828 PMCID: PMC6890691 DOI: 10.1038/s41598-019-54848-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Sodium valproate/valproic acid (VPA), a histone deacetylase inhibitor, and 5-aza-2-deoxycytidine (5-aza-CdR), a DNA methyltransferase 1 (DNMT1) inhibitor, induce DNA demethylation in several cell types. In HeLa cells, although VPA leads to decreased DNA 5-methylcytosine (5mC) levels, the demethylation pathway involved in this effect is not fully understood. We investigated this process using flow cytometry, ELISA, immunocytochemistry, Western blotting and RT-qPCR in G1 phase-arrested and proliferative HeLa cells compared to the presumably passive demethylation promoted by 5-aza-CdR. The results revealed that VPA acts predominantly on active DNA demethylation because it induced TET2 gene and protein overexpression, decreased 5mC abundance, and increased 5-hydroxy-methylcytosine (5hmC) abundance, in both G1-arrested and proliferative cells. However, because VPA caused decreased DNMT1 gene expression levels, it may also act on the passive demethylation pathway. 5-aza-CdR attenuated DNMT1 gene expression levels but increased TET2 and 5hmC abundance in replicating cells, although it did not affect the gene expression of TETs at any stage of the cell cycle. Therefore, 5-aza-CdR may also function in the active pathway. Because VPA reduces DNA methylation levels in non-replicating HeLa cells, it could be tested as a candidate for the therapeutic reversal of DNA methylation in cells in which cell division is arrested.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Giovana Maria Breda Veronezi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Marina Barreto Felisbino
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Maria Silvia Viccari Gatti
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Wirla M S C Tamashiro
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
38
|
Torres S, Baulies A, Insausti-Urkia N, Alarcón-Vila C, Fucho R, Solsona-Vilarrasa E, Núñez S, Robles D, Ribas V, Wakefield L, Grompe M, Lucena MI, Andrade RJ, Win S, Aung TA, Kaplowitz N, García-Ruiz C, Fernández-Checa JC. Endoplasmic Reticulum Stress-Induced Upregulation of STARD1 Promotes Acetaminophen-Induced Acute Liver Failure. Gastroenterology 2019; 157:552-568. [PMID: 31029706 DOI: 10.1053/j.gastro.2019.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP) overdose is a major cause of acute liver failure (ALF). Mitochondrial SH3BP5 (also called SAB) and phosphorylation of c-Jun N-terminal kinase (JNK) mediate the hepatotoxic effects of APAP. We investigated the involvement of steroidogenic acute regulatory protein (STARD1), a mitochondrial cholesterol transporter, in this process and sensitization by valproic acid (VPA), which depletes glutathione and stimulates steroidogenesis. METHODS Nonfasted C57BL/6J mice (control) and mice with liver-specific deletion of STARD1 (Stard1ΔHep), SAB (SabΔHep), or JNK1 and JNK2 (Jnk1+2ΔHep) were given VPA with or without APAP. Liver tissues were collected and analyzed by histology and immunohistochemistry and for APAP metabolism, endoplasmic reticulum (ER) stress, and mitochondrial function. Adult human hepatocytes were transplanted into Fah-/-/Rag2-/-/Il2rg-/-/NOD (FRGN) mice to create mice with humanized livers. RESULTS Administration of VPA before administration of APAP increased the severity of liver damage in control mice. The combination of VPA and APAP increased expression of CYP2E1, formation of NAPQI-protein adducts, and depletion of glutathione from liver tissues of control mice, resulting in ER stress and the upregulation of STARD1. Livers from control mice given VPA and APAP accumulated cholesterol in the mitochondria and had sustained mitochondrial depletion of glutathione and mitochondrial dysfunction. Inhibition of ER stress, by administration of tauroursodeoxycholic acid to control mice, prevented upregulation of STARD1 in liver and protected the mice from hepatoxicity following administration of VPA and APAP. Administration of N-acetylcysteine to control mice prevented VPA- and APAP-induced ER stress and liver injury. Stard1ΔHep mice were resistant to induction of ALF by VPA and APAP, despite increased mitochondrial levels of glutathione and phosphorylated JNK; we made similar observations in fasted Stard1ΔHep mice given APAP alone. SabΔHep mice or Jnk1+2ΔHep mice did not develop ALF following administration of VPA and APAP. The ability of VPA to increase the severity of APAP-induced liver damage was observed in FRGN mice with humanized liver. CONCLUSIONS In studies of mice, we found that upregulation of STARD1 following ER stress mediates APAP hepatoxicity via SH3BP5 and phosphorylation of JNK1 and JNK2.
Collapse
Affiliation(s)
- Sandra Torres
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Anna Baulies
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Naroa Insausti-Urkia
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Cristina Alarcón-Vila
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Raquel Fucho
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Susana Núñez
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - David Robles
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Vicent Ribas
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | | | - Markus Grompe
- Oregon Health and Science University, Portland, Oregon
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, CIBEREHD, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, CIBEREHD, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Sanda Win
- USC Research Center for Liver Disease, USC Keck School of Medicine, Los Angeles, California
| | - Tin A Aung
- USC Research Center for Liver Disease, USC Keck School of Medicine, Los Angeles, California
| | - Neil Kaplowitz
- USC Research Center for Liver Disease, USC Keck School of Medicine, Los Angeles, California
| | - Carmen García-Ruiz
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California
| | - Jose C Fernández-Checa
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California.
| |
Collapse
|
39
|
Fang W, Ye Q, Yao Y, Xiu Y, Gu F, Zhu Y. Protective Effects of Trimetazidine in Retarding Selenite-Induced Lens Opacification. Curr Eye Res 2019; 44:1325-1336. [PMID: 31284779 DOI: 10.1080/02713683.2019.1633359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Cataracts are the leading cause of vision loss worldwide, and the over-production of reactive oxygen species (ROS) is the foremost underlying cause of cataracts. Reducing ROS levels can efficiently prevent lens opacification, as evidenced by many studies. Here, we inhibited ROS overproduction with trimetazidine (TMZ), which is an antioxidant, to explore the therapeutic effects of TMZ and the mechanism of lens opacification.Materials and methods: Sodium selenite-induced cataract formation resulted in a significant loss of lens transparency. This effect could be efficiently rescued by TMZ, which was further found to be an inhibitor of ROS production, as determined by assaying oxidative stress-related parameters (SOD activity, MDA, ·OH and H2O2 levels) during cataract formation. The experimental protocols involving animal research were approved by the Animal Care and Ethics Committee of Wenzhou Medical University and conducted according to the Association for Research in Vision and Ophthalmology under the guidelines of the Animal Welfare Act (SYXK 2015-0009).Results: Our study found that TMZ can retard the onset and progression of lens opacification in vivo in experiments using Sprague-Dawley (SD) suckling rats and can rescue the morphology of HLEB3 cells in vitro. The flow cytometry and DNA fragmentation assays showed that TMZ could prevent sodium selenite-induced apoptosis. The western blot analysing showed that the levels of apoptosis-associated Bcl-2 and Nrf2 were dramatically decreased following the sodium selenite treatment. In addition, the bisulfate DNA sequencing revealed that the demethylation of CpGs in the promoter region of Keap1 was stimulated, and that this demethylation could be inhibited by TMZ by rescuing the Nrf2 expression level.Conclusions: Our findings indicate that the antioxidant TMZ strongly reduces ROS production, which ultimately delays the progression of cataract formation, suggesting that treatment with TMZ represents a novel, promising antioxidant protection to retard cataract formation.
Collapse
Affiliation(s)
- Weifang Fang
- Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qin Ye
- Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yihua Yao
- Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yanghui Xiu
- Eye Institute & Xiamen Eye Centre, Affiliated Xiamen University, Xiamen, Fujian, China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yihua Zhu
- Department of Ophthalmology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
40
|
Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 2019; 125:496-502. [DOI: 10.1016/j.ijbiomac.2018.11.190] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
|
41
|
Renaud CO, Ziros PG, Chartoumpekis DV, Bongiovanni M, Sykiotis GP. Keap1/Nrf2 Signaling: A New Player in Thyroid Pathophysiology and Thyroid Cancer. Front Endocrinol (Lausanne) 2019; 10:510. [PMID: 31428048 PMCID: PMC6687762 DOI: 10.3389/fendo.2019.00510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The Keap1/Nrf2 pathway is a key mediator of general redox and tissue-specific homeostasis. It also exerts a dual role in cancer, by preventing cell transformation of normal cells but promoting aggressiveness, and drug resistance of malignant ones. Although Nrf2 is well-studied in other tissues, its roles in the thyroid gland are only recently emerging. This review focuses on the involvement of Keap1/Nrf2 signaling in thyroid physiology, and pathophysiology in general, and particularly in thyroid cancer. Studies in mice and cultured follicular cells have shown that, under physiological conditions, Nrf2 coordinates antioxidant defenses, directly increases thyroglobulin production and inhibits its iodination. Increased Nrf2 pathway activation has been reported in two independent families with multinodular goiters due to germline loss-of-function mutations in KEAP1. Nrf2 pathway activation has also been documented in papillary thyroid carcinoma (PTC), due to somatic mutations, or epigenetic modifications in KEAP1, or other pathway components. In PTC, such Nrf2-activating KEAP1 mutations have been associated with tumor aggressiveness. Furthermore, polymorphisms in the prototypical Nrf2 target genes NQO1 and NQO2 have been associated with extra-thyroidal extension and metastasis. More recently, mutations in the Nrf2 pathway have also been found in Hürthle-cell (oncocytic) thyroid carcinoma. Finally, in in vitro, and in vivo models of poorly-differentiated, and undifferentiated (anaplastic) thyroid carcinoma, Nrf2 activation has been associated with resistance to experimental molecularly-targeted therapy. Thus, Keap1/Nrf2 signaling is involved in both benign and malignant thyroid conditions, where it might serve as a prognostic marker or therapeutic target.
Collapse
Affiliation(s)
- Cedric O. Renaud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Panos G. Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dionysios V. Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Massimo Bongiovanni
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- *Correspondence: Gerasimos P. Sykiotis
| |
Collapse
|
42
|
Epigenetic Promoter DNA Methylation of miR-124 Promotes HIV-1 Tat-Mediated Microglial Activation via MECP2-STAT3 Axis. J Neurosci 2018; 38:5367-5383. [PMID: 29760177 DOI: 10.1523/jneurosci.3474-17.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 11/21/2022] Open
Abstract
The present study demonstrates HIV-1 Tat-mediated epigenetic downregulation of microglial miR-124 and its association with microglial activation. Exposure of mouse primary microglia isolated from newborn pups of either sex to HIV-1 Tat resulted in decreased expression of primary miR-124-1, primary miR-124-2 as well as the mature miR-124. In parallel, HIV-1 Tat exposure to mouse primary microglial cells resulted in increased expression of DNA methylation enzymes, such as DNMT1, DNMT3A, and DNMT3B, which were also accompanied by increased global DNA methylation. Bisulfite-converted genomic DNA sequencing in the HIV-1 Tat-exposed mouse primary microglial cells further confirmed increased DNA methylation of the primary miR-124-1 and primary miR-124-2 promoters. Bioinformatic analyses identified MECP2 as a novel 3'-UTR target of miR-124. This was further validated in mouse primary microglial cells wherein HIV-1 Tat-mediated downregulation of miR-124 resulted in increased expression of MECP2, leading in turn to further repression of miR-124 via the feedback loop. In addition to MECP2, miR-124 also modulated the levels of STAT3 through its binding to the 3'-UTR, leading to microglial activation. Luciferase assays and Ago2 immunoprecipitation determined the direct binding between miR-124 and 3'-UTR of both MECP2 and STAT3. Gene silencing of MECP2 and DNMT1 and overexpression of miR-124 blocked HIV-1 Tat-mediated downregulation of miR-124 and microglial activation. In vitro findings were also confirmed in the basal ganglia of SIV-infected rhesus macaques (both sexes). In summary, our findings demonstrate a novel mechanism of HIV-1 Tat-mediated activation of microglia via downregulation of miR-124, leading ultimately to increased MECP2 and STAT3 signaling.SIGNIFICANCE STATEMENT Despite the effectiveness of combination antiretroviral therapy in controlling viremia, the CNS continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins, including HIV-1 Tat protein. Understanding the epigenetic/molecular mechanism(s) by which viral proteins, such as HIV-1 Tat, can activate microglia is thus of paramount importance. This study demonstrated that HIV-1 Tat-mediated DNA methylation of the miR-124 promoter leads to its downregulation with a concomitant upregulation of the MECP2-STAT3-IL6, resulting in microglial activation. These findings reveal an unexplored epigenetic/molecular mechanism(s) underlying HIV-1 Tat-mediated microglial activation, thereby providing a potential target for the development of therapeutics aimed at ameliorating microglial activation and neuroinflammation in the context of HIV-1 infection.
Collapse
|
43
|
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proc Natl Acad Sci U S A 2018; 115:2758-2763. [PMID: 29472449 DOI: 10.1073/pnas.1714056115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nrf2 plays critical roles in animals' defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.
Collapse
|
44
|
Chu CS, Lin CH, Lan TH, Chou PH. Associations between use of mood stabilizers and risk of cataract: A population-based nested case-control study. J Affect Disord 2018; 227:79-81. [PMID: 29053979 DOI: 10.1016/j.jad.2017.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/23/2017] [Accepted: 10/04/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was to investigate whether use of mood stabilizers (MS) is associated with an increased risk of cataract development. METHODS We conducted a nested case-control study using National Health Insurance Research Database in Taiwan. A total of 14,288 patients with bipolar disorder (BD) and schizophrenia were included; 7651 in the cataract group and 6637 in the control group. Based on overall cumulative period of MS (lithium, carbamazepine, valproate, and lamotrigine) treatment, we categorized into following groups: no use, and duration < 1 year, 1 to 2 years, and > 2 years. Conditional logistic regression analysis was used to explore the association between use of MS and risk of cataract development. RESULTS The risks for cataract development were significantly higher in patients using lithium alone and lithium combined with other MS for more than 2 years (adjusted odd ratio [AOR] = 1.39; 95% CI = 1.01-1.92, p = 0.043 and AOR = 1.44; 95% CI = 1.13-1.85, p = 0.003, respectively) than in non-users. Furthermore, the risks of cataract development increased in those treated with valproic acid combined with other MS (AOR = 1.26; 95% CI = 1.02-1.57, p = 0.035). Finally, no increased risks of cataract development were found in carbamazepine and lamotrigine users. CONCLUSIONS We found increased risks of cataract development in long-term users of lithium, lithium combined with other MS and valproic acid combined with other MS for more than two years among patients with BD and schizophrenia.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Po-Han Chou
- Department of Psychiatry, Faculty of Medicine, National Yang Ming University, Taipei, Taiwan; Department of Photonics, National Chiao Tung University, Hsinchu, Taiwan; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA.
| |
Collapse
|
45
|
Valproic Acid Sensitizes Hepatocellular Carcinoma Cells to Proton Therapy by Suppressing NRF2 Activation. Sci Rep 2017; 7:14986. [PMID: 29118323 PMCID: PMC5678087 DOI: 10.1038/s41598-017-15165-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
Although efficacy of combined histone deacetylase (HDAC) inhibitors and conventional photon radiotherapy is being tested in clinical trials, their combined effect with proton beam radiotherapy has yet to be determined. Here, we compared combined effect of valproic acid (VPA), a class I and II HDAC inhibitor and antiepileptic drug with proton and photon irradiation in hepatocellular carcinoma (HCC) cells in vitro and in vivo. We found that VPA sensitized more Hep3B cells to proton than to photon irradiation. VPA prolonged proton-induced DNA damage and augmented proton-induced apoptosis. In addition, VPA further increased proton-induced production of intracellular reactive oxygen species and suppressed expression of nuclear factor erythroid-2-related factor 2 (NRF2), a key transcription factor regulating antioxidant response. Downregulation of NRF2 by siRNA transfection increased proton-induced apoptotic cell death, supporting NRF2 as a target of VPA in radiosensitization. In Hep3B tumor xenograft models, VPA significantly enhanced proton-induced tumor growth delay with increased apoptosis and decreased NRF2 expression in vivo. Collectively, our study highlights a proton radiosensitizing effect of VPA in HCC cells. As NRF2 is an emerging prognostic marker contributing to radioresistance in HCC, targeting NRF2 pathway may impact clinical outcome of proton beam radiotherapy.
Collapse
|
46
|
Liu X, Hao J, Xie T, Malik TH, Lu C, Liu C, Shu C, Lu C, Zhou D. Nrf2 as a target for prevention of age-related and diabetic cataracts by against oxidative stress. Aging Cell 2017; 16:934-942. [PMID: 28722304 PMCID: PMC5595676 DOI: 10.1111/acel.12645] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
Cataract is one of the most important causes of blindness worldwide, with age-related cataract being the most common one. Agents preventing cataract formation are urgently required. Substantial evidences point out aggravated oxidative stress as a vital factor for cataract formation. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1) system is considered as one of the main cellular defense mechanisms against oxidative stresses. This review discusses the role of Nrf2 pathway in the prevention of cataracts and highlights that Nrf2 suppressors may augment oxidative stress of the lens, and Nrf2 inducers may decrease the oxidative stress and prevent the cataract formation. Thus, Nrf2 may serve as a promising therapeutic target for cataract treatment.
Collapse
Affiliation(s)
- Xiu‐Fen Liu
- Department of OphthalmologyThe First Hospital of Jilin UniversityJilinChina
| | - Ji‐Long Hao
- Department of OphthalmologyThe First Hospital of Jilin UniversityJilinChina
| | - Tian Xie
- Department of NeurosurgeryThe People's Hospital of Jilin ProvinceJilinChina
| | - Tayyab Hamid Malik
- Department of GastroenterologyThe First Hospital of Jilin UniversityJilinChina
| | - Cheng‐Bo Lu
- Department of CardiologyThe First Hospital of Jiamusi UniversityHeilongjiangChina
| | - Cong Liu
- Department of OphthalmologyThe First Hospital of Jilin UniversityJilinChina
| | - Chang Shu
- Department of Obstetrics and GynecologyThe First Hospital of Jilin UniversityJilinChina
| | - Cheng‐Wei Lu
- Department of OphthalmologyThe First Hospital of Jilin UniversityJilinChina
| | - Dan‐Dan Zhou
- Department of RadiologyThe First Hospital of Jilin UniversityJilinChina
| |
Collapse
|
47
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
48
|
Wang Y, Guan H. The Role of DNA Methylation in Lens Development and Cataract Formation. Cell Mol Neurobiol 2017; 37:979-984. [PMID: 27858287 DOI: 10.1007/s10571-016-0447-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
Epigenetics pertains to heritable alterations in genomic structural modifications without altering genomic DNA sequence. The studies of epigenetic mechanisms include DNA methylation, histone modifications, and microRNAs. DNA methylation may contribute to silencing gene expression which is a major mechanism of epigenetic gene regulation. DNA methylation regulatory mechanisms in lens development and pathogenesis of cataract represent exciting areas of research that have opened new avenues for association with aging and environment. This review addresses our current understanding of the major mechanisms and function of DNA methylation in lens development, age-related cataract, secondary cataract, and complicated cataract. By understanding the role of DNA methylation in the lens disease and development, it is expected to open up a new therapeutic approach to clinical treatment of cataract.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China.
| |
Collapse
|
49
|
Gong ZY, Yuan ZQ, Dong ZW, Peng YZ. Glutamine with probiotics attenuates intestinal inflammation and oxidative stress in a rat burn injury model through altered iNOS gene aberrant methylation. Am J Transl Res 2017; 9:2535-2547. [PMID: 28560003 PMCID: PMC5446535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Severe burns may lead to intestinal inflammation and oxidative stress resulting in intestinal barrier damage and gut dysfunction. In the management of severe burns, therapies are needed to attenuate whole-body inflammatory responses and control the burden of oxidative stress. In this study, we evaluated the effects of oral glutamine (Gln) with probiotics on burn-induced intestinal inflammation and oxidative stress using a Wistar rat burn injury model. We then explored potential molecular mechanisms for the effects of glutamine and probiotics on intestinal tissue inflammation and oxidative stress. We found that glutamine and probiotics together significantly inhibited nitric oxide (NO) content; reduced levels of the inflammatory factors TNF-α, IL-6, and IL-8; and altered expression of oxidative stress factors including reactive oxygen species and superoxide dismutase. We found that the apoptotic proportion of intestinal epithelial cells in severely burned subjects was notably decreased following treatment with glutamine plus probiotics. We also found that glutamine and probiotics given together markedly reduced NO content by down-regulating the expression of iNOS in blood and intestinal tissue. These findings indicate that regulation of the iNOS gene plays a pivotal role in inflammation and oxidative stress in the response to severe burns in the Wistar rat. We then further investigated the mechanism by which combined therapy with glutamine and probiotics might reduce expression of iNOS and found that this treatment resulted in increased methylation of the iNOS gene. The methylation level of the iNOS gene was found to be regulated via differential expression of DNMT1 and Tet1. Collectively, our results suggest that combined therapy with glutamine and probiotics can markedly reduce the synthesis of NO, suppressing intestinal inflammation and oxidative stress in the Wistar rat burn injury model.
Collapse
Affiliation(s)
- Zhen-Yu Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, China
| | - Zhi-Qiang Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, China
| | - Zhi-Wei Dong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, China
| | - Yi-Zhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, China
| |
Collapse
|
50
|
Involvement of Nrf2 in Ocular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1703810. [PMID: 28473877 PMCID: PMC5394909 DOI: 10.1155/2017/1703810] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022]
Abstract
The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world.
Collapse
|