1
|
Chen J, Lu T, Chen C, Zheng W, Lu L, Li N. Elevation of ANXA1 associated with potential protective mechanism against ferroptosis and immune cell infiltration in age-related macular degeneration. Eur J Med Res 2024; 29:615. [PMID: 39710756 DOI: 10.1186/s40001-024-02163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD), is a neurodegenerative ocular disease. This study investigated the role of ferroptosis-related genes and their interaction with immune cell infiltration in AMD. METHODS We screened differential expression genes (DEGs) of AMD from data sets in Gene Expression Omnibus. We identified ferroptosis-related differentially expressed genes (ferroDEGs) by intersecting DEGs with ferroptosis-related genes. Protein-protein interactions network and Cytoscape were used for screening hub genes. Next, we analyzed immune cell infiltration using CIBERSORT and examined the crosstalk between hub ferroDEGs and immune cell infiltration. Hub genes expression in each cell cluster and the proportions of different cell clusters between AMD and normal samples were examined using single-cell data. The hub ferroDEG expressions were verified in cell and mouse models using RT-qPCR, western blot, and immunofluorescence assay. The roles of ANXA1 in ferroptosis and its crosstalk with microglia were investigated. RESULTS We identified hub ferroDEGs that include six genes (ANXA1, DKK1, CD44, VIM, TGFB2, DUSP1). Functional analysis of those hub ferroDEGs was found to be correlated with leukocyte migration and chemotaxis, macrophage migration, and gliogenesis. The high-risk ferroptosis group exhibited elevated levels of CD8+ T cells, activated NK cells, and M2 macrophages. Single-cell sequencing data revealed a high degree of cell heterogeneity in macular degeneration and the monocytes proportion in the macular area was higher in AMD samples. Moreover, we observed elevated mRNA and protein levels of CD44, ANXA1 (P < 0.01), while ANXA1 knockdown reduced GPX4 expression in the cell model. Finally, we validated increased ANXA1 expression and observed its colocalization with microglia in mouse models using immunofluorescence assays. CONCLUSIONS This study offers insights into the AMD pathogenesis and identifies ANXA1 as a potential target related to protecting from ferroptosis and immune response for future research.
Collapse
Affiliation(s)
- Jing Chen
- Department of Ophthalmology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Tu Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510060, China
- Department of Ophthalmology, First Hospital of China Medical University, Shenyang, China
| | - Chen Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wenbin Zheng
- Department of Ophthalmology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Naiyang Li
- Department of Ophthalmology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China.
| |
Collapse
|
2
|
Zhu M, Yu J. Identification of Ferroptosis-Related Gene in Age-Related Macular Degeneration Using Machine Learning. Immun Inflamm Dis 2024; 12:e70059. [PMID: 39679976 DOI: 10.1002/iid3.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a major cause of irreversible visual impairment, with dry AMD being the most prevalent form. Programmed cell death of retinal pigment epithelium (RPE) cells is a central mechanism in the pathogenesis of dry AMD. Ferroptosis, a recently identified form of programmed cell death, is characterized by iron accumulation-induced lipid peroxidation. This study aimed to investigate the involvement of ferroptosis in the progression of AMD. METHODS A total of 41 samples of AMD and 50 normal samples were obtained from the data set GSE29801 for differential gene expression analysis and functional enrichment. Differentially expressed genes (DEGs) were selected and intersected with genes from the ferroptosis database to obtain differentially expressed ferroptosis-associated genes (DEFGs). Machine learning algorithms were employed to screen diagnostic genes. The diagnostic genes were subjected to Gene Set Enrichment Analysis (GSEA). Expression differences of diagnostic genes were validated in in vivo and in vitro models. RESULTS We identified 462 DEGs when comparing normal and AMD samples. The GO enrichment analysis indicated significant involvement in key biological processes like collagen-containing extracellular matrix composition, positive cell adhesion regulation, and extracellular matrix organization. Through the intersection with ferroptosis gene sets, we pinpointed 10 DEFGs. Leveraging machine learning algorithms, we pinpointed five ferroptosis feature diagnostic genes: VEGFA, SLC2A1, HAMP, HSPB1, and FADS2. The subsequent experiments validated the increased expression of SLC2A1 and FADS2 in the AMD ferroptosis model. CONCLUSION The occurrence of ferroptosis could potentially contribute to the advancement of AMD. SLC2A1 and FADS2 have demonstrated promise as emerging diagnostic biomarkers and plausible therapeutic targets for AMD.
Collapse
Affiliation(s)
- Meijiang Zhu
- Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jing Yu
- Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
3
|
Ossewaarde-van Norel J, Spaide RF. PROGRESSION OF PERIPAPILLARY AND MACULAR CHORIORETINAL ATROPHY IN MULTIFOCAL CHOROIDITIS IS ASSOCIATED WITH PERIATROPHIC INFLAMMATORY PLUMES. Retina 2024; 44:1860-1868. [PMID: 39089007 DOI: 10.1097/iae.0000000000004227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
PURPOSE To investigate peripapillary atrophy and macular chorioretinal scars in eyes affected by multifocal choroiditis and panuveitis. METHODS This retrospective cohort study reviewed the medical records, fundus photographs, and spectral-domain optical coherence tomographic scans of 31 eyes from 19 patients. RESULTS Patients had a mean age of 45 years (range 24-69 years). The average follow-up duration was 7 years (range, 2.5-14.5 years), with 14 patients undergoing immunosuppressive treatment. In the group of 31 eyes, 20 showed peripapillary plumes of ill-defined hyperreflectivity at the termination border of the retinal pigment epithelium. These plumes, extending from bare Bruch membrane to the outer nuclear layer, sometimes undermined the adjacent retinal pigment epithelium. They responded to corticosteroid treatment and resembled the material under the retinal pigment epithelium in acute lesions. Among 20 eyes with these peripapillary inflammatory lesions, 16 (80%) experienced increased atrophy, in contrast to none in the eyes without these lesions ( P < 0.001). Similar patterns were observed at the edges of macular chorioretinal atrophy. This observation occurred in patients using immunosuppressive medication who were otherwise thought to be under adequate control. CONCLUSION In patients with multifocal choroiditis and panuveitis, previously unrecognized plumes of smoldering inflammatory activity at the borders of chorioretinal atrophy appears to be linked to atrophy expansion. The recognition of this phenomenon may require a reappraisal of treatment of multifocal choroidopathies to help mitigate the expansion of atrophy in these eyes.
Collapse
Affiliation(s)
- Jeannette Ossewaarde-van Norel
- Vitreous, Retina, Macula Consultants of New York, New York; and
- University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
4
|
Wei S, Li J, Zhang Y, Li Y, Wang Y. Ferroptosis in eye diseases: a systematic review. Eye (Lond) 2024:10.1038/s41433-024-03371-z. [PMID: 39379520 DOI: 10.1038/s41433-024-03371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis is a type of iron-dependent cell death that differs from apoptosis, necroptosis, autophagy, and other forms of cell death. It is mainly characterized by the accumulation of intracellular lipid peroxides, redox imbalance, and reduced levels of glutathione and glutathione peroxidase 4. Studies have demonstrated that ferroptosis plays an important regulatory role in the occurrence and development of neurodegenerative diseases, stroke, traumatic brain injury, and ischemia-reperfusion injuries. Multiple mechanisms, such as iron metabolism, ferritinophagy, p53, and p62/Keap1/Nrf2, as well as the combination of FSP1/CoQ/NADPH and hepcidin/FPN-1 can alter the vulnerability to ferroptosis. Nevertheless, there has been limited research on the development and management of ferroptosis in the realm of eye disorders, with most studies focusing on retinal conditions such as age-related macular degeneration and retinitis pigmentosa. This review offers a thorough examination of the disruption of iron homeostasis in eye disorders, investigating the underlying mechanisms. We anticipate that the occurrence of ferroptotic cell death will not only establish a fresh field of study in eye diseases, but also present a promising therapeutic target for treating these diseases.
Collapse
Affiliation(s)
- Shengsheng Wei
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Jing Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yaohua Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yan Wang
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China.
- Nankai University Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
Kuo BL, Muste JC, Russell MW, Wu AK, Valentim CCS, Singh RP. Evidence for the Hepato-Retinal Axis: A Systematic Review. Ophthalmic Surg Lasers Imaging Retina 2024; 55:587-596. [PMID: 39037358 DOI: 10.3928/23258160-20240524-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Liver health has been reported to be associated with retinal pathology in various ways. These include deposition of retino-toxins, neovascular drive, and disruption of the blood-retina barrier. Extrahepatic synthesis of implicated molecules and hemodynamic changes in liver dysfunction are also considered. The objective was to review the current evidence for and against a hepato-retinal axis that may guide further areas of preclinical and clinical investigation. METHODS This was a systematic review. PubMed and Cochrane were queried for English language studies examining the connection between hepatic dysfunction and retinal pathology. RESULTS Fourteen studies were included and examined out of 604 candidate publications. The studies selected include preclinical studies as well as clinical case series and studies. CONCLUSIONS Several liver pathologies may be linked to retinal pathology as mediated by hepatically synthesized molecules. The hepato-retinal axis may be present and further, targeted studies of the axis are warranted. [Ophthalmic Surg Lasers Imaging Retina 2024;55:587-596.].
Collapse
|
6
|
Xu Y, Huang S, Zhou S, Wang X, Wei M, Chen X, Zong R, Lin X, Li S, Liu Z, Chen Q. Iron Chelator Deferiprone Restores Iron Homeostasis and Inhibits Retinal Neovascularization in Experimental Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 39093298 PMCID: PMC11305424 DOI: 10.1167/iovs.65.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose Retinal neovascularization is a significant feature of advanced age-related macular degeneration (AMD) and a major cause of blindness in patients with AMD. However, the underlying mechanism of this pathological neovascularization remains unknown. Iron metabolism has been implicated in various biological processes. This study was conducted to investigate the effects of iron metabolism on retinal neovascularization in neovascular AMD (nAMD). Methods C57BL/6J and very low-density lipoprotein receptor (VLDLR) knockout (Vldlr-/-) mice, a murine model of nAMD, were used in this study. Bulk-RNA sequencing was used to identify differentially expressed genes. Western blot analysis was performed to test the expression of proteins. Iron chelator deferiprone (DFP) was administrated to the mice by oral gavage. Fundus fluorescein angiography was used to evaluate retinal vascular leakage. Immunofluorescence staining was used to detect macrophages and iron-related proteins. Results RNA sequencing (RNA-seq) results showed altered transferrin expression in the retina and RPE of Vldlr-/- mice. Disrupted iron homeostasis was observed in the retina and RPE of Vldlr-/- mice. DFP mitigated iron overload and significantly reduced retinal neovascularization and vascular leakage. In addition, DFP suppressed the inflammation in Vldlr-/- retinas. The reduced signals of macrophages were observed at sites of neovascularization in the retina and RPE of Vldlr-/- mice after DFP treatment. Further, the IL-6/JAK2/STAT3 signaling pathway was activated in the retina and RPE of Vldlr-/- mice and reversed by DFP treatment. Conclusions Disrupted iron metabolism may contribute to retinal neovascularization in nAMD. Restoring iron homeostasis by DFP could be a potential therapeutic approach for nAMD.
Collapse
Affiliation(s)
- Yuan Xu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiya Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shengmei Zhou
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xin Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mingyan Wei
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaodong Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
7
|
Aschner M, Skalny AV, Paoliello MMB, Tinkova MN, Martins AC, Santamaria A, Lee E, Rocha JBT, Farsky SHP, Tinkov AA. Retinal toxicity of heavy metals and its involvement in retinal pathology. Food Chem Toxicol 2024; 188:114685. [PMID: 38663763 DOI: 10.1016/j.fct.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
The objective of the present review is to discuss epidemiological evidence demonstrating the association between toxic metal (Cd, Pb, Hg, As, Sn, Ti, Tl) exposure and retinal pathology, along with the potential underlying molecular mechanisms. Epidemiological studies demonstrate that Cd, and to a lesser extent Pb exposure, are associated with age-related macular degeneration (AMD), while the existing evidence on the levels of these metals in patients with diabetic retinopathy is scarce. Epidemiological data on the association between other toxic metals and metalloids including mercury (Hg) and arsenic (As), are limited. Clinical reports and laboratory in vivo studies have shown structural alterations in different layers of retina following metal exposure. Examination of retina samples demonstrate that toxic metals can accumulate in the retina, and the rate of accumulation appears to increase with age. Experimental studies in vivo and in vitro studies in APRE-19 and D407 cells demonstrate that toxic metal exposure may cause retinal damage through oxidative stress, apoptosis, DNA damage, mitochondrial dysfunction, endoplasmic reticulum stress, impaired retinogenesis, and retinal inflammation. However, further epidemiological as well as laboratory studies are required for understanding the underlying molecular mechanisms and identifying of the potential therapeutic targets and estimation of the dose-response effects.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Laboratorio de Nanotecnología y Nanomedicina, Departamento de Cuidado de La Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia.
| |
Collapse
|
8
|
Huang H, Zeng J, Yu X, Du H, Wen C, Mao Y, Tang H, Kuang X, Liu W, Yu H, Liu H, Li B, Long C, Yan J, Shen H. Establishing chronic models of age-related macular degeneration via long-term iron ion overload. Am J Physiol Cell Physiol 2024; 326:C1367-C1383. [PMID: 38406826 DOI: 10.1152/ajpcell.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Age-related macular degeneration (AMD) is characterized by the degenerative senescence in the retinal pigment epithelium (RPE) and photoreceptors, which is accompanied by the accumulation of iron ions in the aging retina. However, current models of acute oxidative stress are still insufficient to simulate the gradual progression of AMD. To address this, we established chronic injury models by exposing the aRPE-19 cells, 661W cells, and mouse retina to iron ion overload over time. Investigations at the levels of cell biology and molecular biology were performed. It was demonstrated that long-term treatment of excessive iron ions induced senescence-like morphological changes, decreased cell proliferation, and impaired mitochondrial function, contributing to apoptosis. Activation of the mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were confirmed both in the aRPE-19 and 661W cells. Furthermore, iron ion overload resulted in dry AMD-like lesions and decreased visual function in the mouse retina. These findings suggest that chronic exposure to overloading iron ions plays a significant role in the pathogenesis of retinopathy and provide a potential model for future studies on AMD.NEW & NOTEWORTHY To explore the possibility of constructing reliable research carriers on age-related macular degeneration (AMD), iron ion overload was applied to establish models in vitro and in vivo. Subsequent investigations into cellular physiology and molecular biology confirmed the presence of senescence in these models. Through this study, we hope to provide a better option of feasible methods for future researches into AMD.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, People's Republic of China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Han Du
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chaojuan Wen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Mao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Han Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Liu
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, People's Republic of China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huijun Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Eye Fundus Department, Affiliated Aier Eye Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Forte G, Battagliola ET, Malvasi M, Ruberti N, Daniele P, Mantovani A, Bocca B, Pacella E. Trace Element Concentration in the Blood and Aqueous Humor of Subjects with Eye Cataract. Biol Trace Elem Res 2024:10.1007/s12011-024-04207-3. [PMID: 38687421 DOI: 10.1007/s12011-024-04207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Cataract, characterized by the opacification of the lens, is the leading cause of reversible blindness and visual impairment globally. The study aims to investigate the role of trace elements such as Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn in the development and severity of cataract. Elements were quantified by inductively coupled plasma mass spectrometry in blood and aqueous humor of 32 cataract cases and 27 controls living in the Latium region, Italy. The association between element concentration in blood and aqueous humor and cataract severity, gender, and age of subjects were also assessed. Results showed Cr levels significantly elevated in both blood and aqueous humor of cataract cases, with concentrations that increased with cataract severity. In addition, blood Pb levels were significantly higher in older cases and positively correlated with the age of cataract cases, while blood Co and Cu levels negatively correlated with cataract severity, suggesting changes in the levels of these elements. In conclusion, this study provides evidence of the involvement of specific elements in cataract development and severity, and the findings highlighted important avenues for future research. Understanding the biological mechanism underlying element-induced cataract may contribute to preventing cataractogenesis and providing targeted interventions.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | | | - Mariaelena Malvasi
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Niccolò Ruberti
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Pierluigi Daniele
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | | | - Beatrice Bocca
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy.
| |
Collapse
|
10
|
Liu D, Liu Z, Liao H, Chen ZS, Qin B. Ferroptosis as a potential therapeutic target for age-related macular degeneration. Drug Discov Today 2024; 29:103920. [PMID: 38369100 DOI: 10.1016/j.drudis.2024.103920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Cell death plays a crucial part in the process of age-related macular degeneration (AMD), but its mechanisms remain elusive. Accumulating evidence suggests that ferroptosis, a novel form of regulatory cell death characterized by iron-dependent accumulation of lipid hydroperoxides, has a crucial role in the pathogenesis of AMD. Numerous studies have suggested that ferroptosis participates in the degradation of retinal cells and accelerates the progression of AMD. Furthermore, inhibitors of ferroptosis exhibit notable protective effects in AMD, underscoring the significance of ferroptosis as a pivotal mechanism in the death of retinal cells during the process of AMD. This review aims to summarize the molecular mechanisms of ferroptosis in AMD, enumerate potential inhibitors and discuss the challenges and future opportunities associated with targeting ferroptosis as a therapeutic strategy, providing important information references and insights for the prevention and treatment of AMD.
Collapse
Affiliation(s)
- Dongcheng Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Hongxia Liao
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; Aier Eye Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
11
|
Shelton DA, Gefke I, Summers V, Kim YK, Yu H, Getz Y, Ferdous S, Donaldson K, Liao K, Papania JT, Chrenek MA, Boatright JH, Nickerson JM. Age-Related RPE changes in Wildtype C57BL/6J Mice between 2 and 32 Months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.574142. [PMID: 38352604 PMCID: PMC10862734 DOI: 10.1101/2024.01.30.574142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Purpose This study provides a systematic evaluation of age-related changes in RPE cell structure and function using a morphometric approach. We aim to better capture nuanced predictive changes in cell heterogeneity that reflect loss of RPE integrity during normal aging. Using C57BL6/J mice ranging from P60-P730, we sought to evaluate how regional changes in RPE shape reflect incremental losses in RPE cell function with advancing age. We hypothesize that tracking global morphological changes in RPE is predictive of functional defects over time. Methods We tested three groups of C57BL/6J mice (young: P60-180; Middle-aged: P365-729; aged: 730+) for function and structural defects using electroretinograms, immunofluorescence, and phagocytosis assays. Results The largest changes in RPE morphology were evident between the young and aged groups, while the middle-aged group exhibited smaller but notable region-specific differences. We observed a 1.9-fold increase in cytoplasmic alpha-catenin expression specifically in the central-medial region of the eye between the young and aged group. There was an 8-fold increase in subretinal, IBA-1-positive immune cell recruitment and a significant decrease in visual function in aged mice compared to young mice. Functional defects in the RPE corroborated by changes in RPE phagocytotic capacity. Conclusions The marked increase of cytoplasmic alpha-catenin expression and subretinal immune cell deposition, and decreased visual output coincide with regional changes in RPE cell morphometrics when stratified by age. These cumulative changes in the RPE morphology showed predictive regional patterns of stress associated with loss of RPE integrity.
Collapse
Affiliation(s)
- Debresha A. Shelton
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Isabelle Gefke
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Vivian Summers
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Yong-Kyu Kim
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Hanyi Yu
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Department of Computer Science, Emory University, Atlanta, Georgia, United States
| | - Yana Getz
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Salma Ferdous
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Kevin Donaldson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Kristie Liao
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jack T. Papania
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Qu S, Lin H, Pfeiffer N, Grus FH. Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1624. [PMID: 38338904 PMCID: PMC10855900 DOI: 10.3390/ijms25031624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Age-related macular degeneration (AMD) is a severe retinal disease that causes irreversible visual loss and blindness in elderly populations worldwide. The pathological mechanism of AMD is complex, involving the interactions of multiple environmental and genetic factors. A poor understanding of the disease leads to limited treatment options and few effective prevention methods. The discovery of autoantibodies in AMD patients provides an opportunity to explore the pathogenesis and treatment direction of the disease. This review focuses on the mitochondria-associated autoantibodies and summarizes the functional roles of mitochondria under physiological conditions and their alterations during the pathological states. Additionally, it discusses the crosstalk between mitochondria and other organelles, as well as the mitochondria-related therapeutic strategies in AMD.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (S.Q.); (H.L.)
| |
Collapse
|
13
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
14
|
Li C, Xiao C, Tao H, Tang X. Research progress of iron metabolism in retinal diseases. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:93-100. [PMID: 37846377 PMCID: PMC10577842 DOI: 10.1016/j.aopr.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 10/18/2023]
Abstract
Background Retinal diseases can lead to severe visual impairment and even blindness, but current treatments are limited. For precise targeted therapy, the pathophysiological mechanisms of the diseases still need to be further explored. Iron serves an essential role in many biological activities and helps maintain the function and morphology of the retina. The vision problems caused by retinal diseases are affecting more and more people, the study of iron metabolism in retinal diseases possesses great potential for clinical application. Main text Iron maintains a dynamic balance in the retina but in excess is toxic to the retina. Iron overload can lead to various pathological changes in the retina through oxidative stress, inflammation, cell death, angiogenesis and other pathways. It is therefore involved in the progression of retinal diseases such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and hereditary iron overload. In recent years, iron chelators have been shown to be effective in the treatment of retinal diseases, but the exact mechanism is not yet fully understood. This question prompted further investigation into the specific mechanisms by which iron metabolism is involved in retinal disease. Conclusions This review summarizes iron metabolism processes in the retina and mechanistic studies of iron metabolism in the progression of retinal disease. It also highlights the therapeutic potential of iron chelators in retinal diseases.
Collapse
Affiliation(s)
- Cunzi Li
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunyu Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Tao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianling Tang
- Department of Ophthalmology, Shenzhen Third People's Hospital, Shenzhen, China
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Liu Y, Wu D, Fu Q, Hao S, Gu Y, Zhao W, Chen S, Sheng F, Xu Y, Chen Z, Yao K. CHAC1 as a Novel Contributor of Ferroptosis in Retinal Pigment Epithelial Cells with Oxidative Damage. Int J Mol Sci 2023; 24:1582. [PMID: 36675091 PMCID: PMC9861460 DOI: 10.3390/ijms24021582] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the elderly population. With aging and the accumulated effects of environmental stress, retinal pigment epithelial (RPE) cells are particularly susceptible to oxidative damage, which can lead to retinal degeneration. However, the underlying molecular mechanisms of how RPE responds and progresses under oxidative damage are still largely unknown. Here, we reveal that exogenous oxidative stress led to ferroptosis characterized by Fe2+ accumulation and lipid peroxidation in RPE cells. Glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), as a component of the unfolded protein response (UPR) pathway, plays a pivotal role in oxidative-stress-induced cell ferroptosis via the regulation of glutathione depletion. These results indicate the biological significance of Chac1 as a novel contributor of oxidative-stress-induced ferroptosis in RPE, suggesting its potential role in AMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiqing Chen
- Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ke Yao
- Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
16
|
Multiomic Mass Spectrometry Imaging to Advance Future Pathological Understanding of Ocular Disease. Metabolites 2022; 12:metabo12121239. [PMID: 36557277 PMCID: PMC9786289 DOI: 10.3390/metabo12121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Determining the locations of proteins within the eye thought to be involved in ocular pathogenesis is important to determine how best to target them for therapeutic benefits. However, immunohistochemistry is limited by the availability and specificity of antibodies. Additionally, the perceived role of both essential and non-essential metals within ocular tissue has been at the forefront of age-related macular degeneration (AMD) pathology for decades, yet even key metals such as copper and zinc have yet to have their roles deconvoluted. Here, mass spectrometry imaging (MSI) is employed to identify and spatially characterize both proteomic and metallomic species within ocular tissue to advance the application of a multiomic imaging methodology for the investigation of ocular diseases.
Collapse
|
17
|
Henning Y, Blind US, Larafa S, Matschke J, Fandrey J. Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis 2022; 13:662. [PMID: 35906211 PMCID: PMC9338085 DOI: 10.1038/s41419-022-05121-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023]
Abstract
Oxidative stress and hypoxia in the retinal pigment epithelium (RPE) have long been considered major risk factors in the pathophysiology of age-related macular degeneration (AMD), but systematic investigation of the interplay between these two risk factors was lacking. For this purpose, we treated a human RPE cell line (ARPE-19) with sodium iodate (SI), an oxidative stress agent, together with dimethyloxalylglycine (DMOG) which leads to stabilization of hypoxia-inducible factors (HIFs), key regulators of cellular adaptation to hypoxic conditions. We found that HIF stabilization aggravated oxidative stress-induced cell death by SI and iron-dependent ferroptosis was identified as the main cell death mechanism. Ferroptotic cell death depends on the Fenton reaction where H2O2 and iron react to generate hydroxyl radicals which trigger lipid peroxidation. Our findings clearly provide evidence for superoxide dismutase (SOD) driven H2O2 production fostering the Fenton reaction as indicated by triggered SOD activity upon DMOG + SI treatment as well as by reduced cell death levels upon SOD2 knockdown. In addition, iron transporters involved in non-transferrin-bound Fe2+ import as well as intracellular iron levels were also upregulated. Consequently, chelation of Fe2+ by 2'2-Bipyridyl completely rescued cells. Taken together, we show for the first time that HIF stabilization under oxidative stress conditions aggravates ferroptotic cell death in RPE cells. Thus, our study provides a novel link between hypoxia, oxidative stress and iron metabolism in AMD pathophysiology. Since iron accumulation and altered iron metabolism are characteristic features of AMD retinas and RPE cells, our cell culture model is suitable for high-throughput screening of new treatment approaches against AMD.
Collapse
Affiliation(s)
- Yoshiyuki Henning
- grid.410718.b0000 0001 0262 7331Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ursula Sarah Blind
- grid.410718.b0000 0001 0262 7331Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Safa Larafa
- grid.410718.b0000 0001 0262 7331Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johann Matschke
- grid.410718.b0000 0001 0262 7331Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- grid.410718.b0000 0001 0262 7331Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Różanowska MB, Czuba-Pełech B, Różanowski B. Is There an Optimal Combination of AREDS2 Antioxidants Zeaxanthin, Vitamin E and Vitamin C on Light-Induced Toxicity of Vitamin A Aldehyde to the Retina? Antioxidants (Basel) 2022; 11:antiox11061132. [PMID: 35740030 PMCID: PMC9220409 DOI: 10.3390/antiox11061132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Vitamins C and E and zeaxanthin are components of a supplement tested in a large clinical trial-Age-Related Eye Disease Study 2 (AREDS2)-and it has been demonstrated that they can inhibit the progression of age-related macular degeneration. The aim of this study was to determine the optimal combinations of these antioxidants to prevent the phototoxicity mediated by vitamin A aldehyde (ATR), which can accumulate in photoreceptor outer segments (POS) upon exposure to light. We used cultured retinal pigment epithelial cells ARPE-19 and liposomes containing unsaturated lipids and ATR as a model of POS. Cells and/or liposomes were enriched with lipophilic antioxidants, whereas ascorbate was added just before the exposure to light. Supplementing the cells and/or liposomes with single lipophilic antioxidants had only a minor effect on phototoxicity, but the protection substantially increased in the presence of both ways of supplementation. Combinations of zeaxanthin with α-tocopherol in liposomes and cells provided substantial protection, enhancing cell viability from ~26% in the absence of antioxidants to ~63% in the presence of 4 µM zeaxanthin and 80 µM α-tocopherol, and this protective effect was further increased to ~69% in the presence of 0.5 mM ascorbate. The protective effect of ascorbate disappeared at a concentration of 1 mM, whereas 2 mM of ascorbate exacerbated the phototoxicity. Zeaxanthin or α-tocopherol partly ameliorated the cytotoxic effects. Altogether, our results suggest that the optimal combination includes upper levels of zeaxanthin and α-tocopherol achievable by diet and/or supplementations, whereas ascorbate needs to be at a four-fold smaller concentration than that in the vitreous. The physiological relevance of the results is discussed.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Correspondence: ; Tel.: +44-292087-5057
| | - Barbara Czuba-Pełech
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | | |
Collapse
|
19
|
Hassel C, Couchet M, Jacquemot N, Blavignac C, Loï C, Moinard C, Cia D. Citrulline protects human retinal pigment epithelium from hydrogen peroxide and iron/ascorbate induced damages. J Cell Mol Med 2022; 26:2808-2818. [PMID: 35460170 PMCID: PMC9097847 DOI: 10.1111/jcmm.17294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age‐related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo‐excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age‐related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L‐Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE‐19) cells were exposed to hydrogen peroxide (H2O2) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE‐19 cells against H2O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL‐8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Chervin Hassel
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| | - Morgane Couchet
- Université Grenoble-Alpes, INSERM U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble, France
| | - Nathalie Jacquemot
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont Auvergne, Centre Imagerie Cellulaire Santé, Clermont-Ferrand, France
| | | | - Christophe Moinard
- Université Grenoble-Alpes, INSERM U1055, Laboratoire de Bioénergétique Fondamentale et Appliquée, Grenoble, France
| | - David Cia
- Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Laboratoire de Biophysique Neurosensorielle, Clermont-Ferrand, France
| |
Collapse
|
20
|
Valencia E, García M, Fernández-Vega B, Pereiro R, Lobo L, González-Iglesias H. Targeted Analysis of Tears Revealed Specific Altered Metal Homeostasis in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:10. [PMID: 35426907 PMCID: PMC9034717 DOI: 10.1167/iovs.63.4.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Specific altered metal homeostasis has been investigated in the tear film of age-related macular degeneration (AMD) patients considering that metal dyshomeostasis contributes to the production of free radicals, inflammation, and apoptosis and results in conformational changes of proteins. Methods A multitargeted approach based on spectrophotometry and mass spectrometry techniques has been implemented to the multiplexed quantitation of lactoferrin (LF), S100 calcium binding protein A6 (S100A6), metallothionein 1A (MT1A), complement factor H (CFH), clusterin (CLU), amyloid precursor protein (APP), Mg, P, Na, Fe, Cu, Zn, and Ca, in the tear film from 60 subjects, 31 patients diagnosed with the dry form of AMD, and 29 healthy individuals Results Significant up-regulations of MT1A (1.9-fold) and S100A6 (1.4-fold) and down-regulations of LF (0.7-fold), Fe (0.6-fold), Mg (0.7-fold), and Cu (0.7-fold) were observed in AMD patients, when compared to control subjects. Of all the studied variables, only APP showed negative correlation with age in the AMD group. Also, positive correlations were observed for the variables Mg and Na, Cu and Mg, and P and Mg in both the AMD and control groups, whereas positive correlations were exclusively determined in the AMD group for Cu and LF, Na and Ca, and Mg and Ca. The panel constituted of MT1A, Na, and Mg predicts AMD disease in 73% of cases. Conclusions The different levels of target metals and (metallo-)proteins in the tear film suggest altered metal homeostasis in AMD patients. These observed pathophysiological changes may be related with the anomalous protein aggregation in the macula.
Collapse
Affiliation(s)
- Eva Valencia
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Montserrat García
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| | - Beatriz Fernández-Vega
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| | - Rosario Pereiro
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Lara Lobo
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Héctor González-Iglesias
- Ophtalmological Research Foundation, University Institute Fernández-Vega, University of Oviedo, Oviedo, Spain.,Ophthalmological Institute Fernández-Vega, Oviedo, Spain
| |
Collapse
|
21
|
Shahandeh A, Bui BV, Finkelstein DI, Nguyen CTO. Effects of Excess Iron on the Retina: Insights From Clinical Cases and Animal Models of Iron Disorders. Front Neurosci 2022; 15:794809. [PMID: 35185447 PMCID: PMC8851357 DOI: 10.3389/fnins.2021.794809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 01/19/2023] Open
Abstract
Iron plays an important role in a wide range of metabolic pathways that are important for neuronal health. Excessive levels of iron, however, can promote toxicity and cell death. An example of an iron overload disorder is hemochromatosis (HH) which is a genetic disorder of iron metabolism in which the body’s ability to regulate iron absorption is altered, resulting in iron build-up and injury in several organs. The retina was traditionally assumed to be protected from high levels of systemic iron overload by the blood-retina barrier. However, recent data shows that expression of genes that are associated with HH can disrupt retinal iron metabolism. Thus, the effects of iron overload on the retina have become an area of research interest, as excessively high levels of iron are implicated in several retinal disorders, most notably age–related macular degeneration. This review is an effort to highlight risk factors for excessive levels of systemic iron build-up in the retina and its potential impact on the eye health. Information is integrated across clinical and preclinical animal studies to provide insights into the effects of systemic iron loading on the retina.
Collapse
Affiliation(s)
- Ali Shahandeh
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Christine T. O. Nguyen,
| |
Collapse
|
22
|
Liu Y, Bell BA, Song Y, Kim HJ, Sterling JK, Kim BJ, Poli M, Guo M, Zhang K, Rao A, Sparrow JR, Su G, Dunaief JL. Intraocular iron injection induces oxidative stress followed by elements of geographic atrophy and sympathetic ophthalmia. Aging Cell 2021; 20:e13490. [PMID: 34626070 PMCID: PMC8590099 DOI: 10.1111/acel.13490] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 01/24/2023] Open
Abstract
Iron has been implicated in the pathogenesis of age‐related retinal diseases, including age‐related macular degeneration (AMD). Previous work showed that intravitreal (IVT) injection of iron induces acute photoreceptor death, lipid peroxidation, and autofluorescence (AF). Herein, we extend this work, finding surprising chronic features of the model: geographic atrophy and sympathetic ophthalmia. We provide new mechanistic insights derived from focal AF in the photoreceptors, quantification of bisretinoids, and localization of carboxyethyl pyrrole, an oxidized adduct of docosahexaenoic acid associated with AMD. In mice given IVT ferric ammonium citrate (FAC), RPE died in patches that slowly expanded at their borders, like human geographic atrophy. There was green AF in the photoreceptor ellipsoid, a mitochondria‐rich region, 4 h after injection, followed later by gold AF in rod outer segments, RPE and subretinal myeloid cells. The green AF signature is consistent with flavin adenine dinucleotide, while measured increases in the bisretinoid all‐trans‐retinal dimer are consistent with the gold AF. FAC induced formation carboxyethyl pyrrole accumulation first in photoreceptors, then in RPE and myeloid cells. Quantitative PCR on neural retina and RPE indicated antioxidant upregulation and inflammation. Unexpectedly, reminiscent of sympathetic ophthalmia, autofluorescent myeloid cells containing abundant iron infiltrated the saline‐injected fellow eyes only if the contralateral eye had received IVT FAC. These findings provide mechanistic insights into the potential toxicity caused by AMD‐associated retinal iron accumulation. The mouse model will be useful for testing antioxidants, iron chelators, ferroptosis inhibitors, anti‐inflammatory medications, and choroidal neovascularization inhibitors.
Collapse
Affiliation(s)
- Yingrui Liu
- Department of Ophthalmology The Second Hospital of Jilin University Changchun China
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Hye J. Kim
- Department of Ophthalmology Harkness Eye Institute Columbia University Medical Center New York New York USA
| | - Jacob K. Sterling
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Benjamin J. Kim
- Department of Ophthalmology Scheie Eye Institute University of Pennsylvania Philadelphia Pennsylvania USA
| | - Maura Poli
- Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Michelle Guo
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Kevin Zhang
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| | - Aditya Rao
- Department of Molecular Life Science University of Pennsylvania Philadelphia Pennsylvania USA
| | - Janet R. Sparrow
- Department of Ophthalmology Harkness Eye Institute Columbia University Medical Center New York New York USA
| | - Guanfang Su
- Department of Ophthalmology The Second Hospital of Jilin University Changchun China
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
23
|
Liu YV, Konar G, Aziz K, Tun SBB, Hua CHE, Tan B, Tian J, Luu CD, Barathi VA, Singh MS. Localized Structural and Functional Deficits in a Nonhuman Primate Model of Outer Retinal Atrophy. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34643661 PMCID: PMC8525844 DOI: 10.1167/iovs.62.13.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose Cell-based therapy development for geographic atrophy (GA) in age-related macular degeneration (AMD) is hampered by the paucity of models of localized photoreceptor and retinal pigment epithelium (RPE) degeneration. We aimed to characterize the structural and functional deficits in a laser-induced nonhuman primate model, including an analysis of the choroid. Methods Macular laser photocoagulation was applied in four macaques. Fundus photography, optical coherence tomography (OCT), dye angiography, and OCT-angiography were conducted over 4.5 months, with histological correlation. Longitudinal changes in spatially resolved macular dysfunction were measured using multifocal electroretinography (MFERG). Results Lesion features, depending on laser settings, included photoreceptor layer degeneration, inner retinal sparing, skip lesions, RPE elevation, and neovascularization. The intralesional choroid was degenerated. The normalized mean MFERG amplitude within lesions was consistently lower than control regions (0.94 ± 0.35 vs. 1.10 ± 0.27, P = 0.032 at month 1, 0.67 ± 0.22 vs. 0.83 ± 0.15, P = 0.0002 at month 2, and 0.97 ± 0.31 vs. 1.20 ± 0.21, P < 0.0001 at month 3.5). The intertest variation of mean MFERG amplitudes in rings 1 to 5 ranged from 13.0% to 26.0% in normal eyes. Conclusions Laser application in this model caused localized outer retinal, RPE, and choriocapillaris loss. Localized dysfunction was apparent by MFERG in the first month after lesion induction. Correlative structure-function testing may be useful for research on the functional effects of stem cell-based therapy for GA. MFERG amplitude data should be interpreted in the context of relatively high intertest variability of the rings that correspond to the central macula. Sustained choroidal insufficiency may limit long-term subretinal graft viability in this model.
Collapse
Affiliation(s)
- Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Gregory Konar
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kanza Aziz
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Sai Bo Bo Tun
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Candice Ho Ee Hua
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Jing Tian
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, United States
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Victoria, Australia
| | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,Academic Clinical Program in Ophthalmology, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
24
|
Amadoro G, Latina V, Balzamino BO, Squitti R, Varano M, Calissano P, Micera A. Nerve Growth Factor-Based Therapy in Alzheimer's Disease and Age-Related Macular Degeneration. Front Neurosci 2021; 15:735928. [PMID: 34566573 PMCID: PMC8459906 DOI: 10.3389/fnins.2021.735928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease which is the most common cause of dementia among the elderly. Imbalance in nerve growth factor (NGF) signaling, metabolism, and/or defect in NGF transport to the basal forebrain cholinergic neurons occurs in patients affected with AD. According to the cholinergic hypothesis, an early and progressive synaptic and neuronal loss in a vulnerable population of basal forebrain involved in memory and learning processes leads to degeneration of cortical and hippocampal projections followed by cognitive impairment with accumulation of misfolded/aggregated Aβ and tau protein. The neuroprotective and regenerative effects of NGF on cholinergic neurons have been largely demonstrated, both in animal models of AD and in living patients. However, the development of this neurotrophin as a disease-modifying therapy in humans is challenged by both delivery limitations (inability to cross the blood-brain barrier (BBB), poor pharmacokinetic profile) and unwanted side effects (pain and weight loss). Age-related macular degeneration (AMD) is a retinal disease which represents the major cause of blindness in developed countries and shares several clinical and pathological features with AD, including alterations in NGF transduction pathways. Interestingly, nerve fiber layer thinning, degeneration of retinal ganglion cells and changes of vascular parameters, aggregation of Aβ and tau protein, and apoptosis also occur in the retina of both AD and AMD. A protective effect of ocular administration of NGF on both photoreceptor and retinal ganglion cell degeneration has been recently described. Besides, the current knowledge about the detection of essential trace metals associated with AD and AMD and their changes depending on the severity of diseases, either systemic or locally detected, further pave the way for a promising diagnostic approach. This review is aimed at describing the employment of NGF as a common therapeutic approach to AMD and AD and the diagnostic power of detection of essential trace metals associated with both diseases. The multiple approaches employed to allow a sustained release/targeting of NGF to the brain and its neurosensorial ocular extensions will be also discussed, highlighting innovative technologies and future translational prospects.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Rome, Italy
- European Brain Research Institute, Rome, Italy
| | | | | | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| | | | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Rome, Italy
| |
Collapse
|
25
|
Ashok A, Chaudhary S, Wise AS, Rana NA, McDonald D, Kritikos AE, Lindner E, Singh N. Release of Iron-Loaded Ferritin in Sodium Iodate-Induced Model of Age Related Macular Degeneration: An In-Vitro and In-Vivo Study. Antioxidants (Basel) 2021; 10:1253. [PMID: 34439501 PMCID: PMC8389213 DOI: 10.3390/antiox10081253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
To evaluate the role of iron in sodium iodate (NaIO3)-induced model of age-related macular degeneration (AMD) in ARPE-19 cells in-vitro and in mouse models in-vivo. ARPE-19 cells, a human retinal pigment epithelial cell line, was exposed to 10 mM NaIO3 for 24 h, and the expression and localization of major iron modulating proteins was evaluated by Western blotting (WB) and immunostaining. Synthesis and maturation of cathepsin-D (cat-D), a lysosomal enzyme, was evaluated by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) and WB, respectively. For in-vivo studies, C57BL/6 mice were injected with 40 mg/kg mouse body weight of NaIO3 intraperitoneally, and their retina was evaluated after 3 weeks as above. NaIO3 induced a 10-fold increase in ferritin in ARPE-19 cells, which co-localized with LC3II, an autophagosomal marker, and LAMP-1, a lysosomal marker. A similar increase in ferritin was noted in retinal lysates and retinal sections of NaIO3-injected mice by WB and immunostaining. Impaired synthesis and maturation of cat-D was also noted. Accumulated ferritin was loaded with iron, and released from retinal pigmented epithelial (RPE) cells in Perls' and LAMP-1 positive vesicles. NaIO3 impairs lysosomal degradation of ferritin by decreasing the transcription and maturation of cat-D in RPE cells. Iron-loaded ferritin accumulates in lysosomes and is released in lysosomal membrane-enclosed vesicles to the extracellular milieu. Accumulation of ferritin in RPE cells and fusion of ferritin-containing vesicles with adjacent photoreceptor cells is likely to create an iron overload, compromising their viability. Moreover, reduced activity of cat-D is likely to promote accumulation of other cellular debris in lysosomal vesicles, contributing to AMD-like pathology.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Suman Chaudhary
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Aaron S. Wise
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Neil A. Rana
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Dallas McDonald
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Alexander E. Kritikos
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria;
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (A.A.); (S.C.); (A.S.W.); (N.A.R.); (D.M.); (A.E.K.)
| |
Collapse
|
26
|
Bede-Ojimadu O, Orish CN, Bocca B, Ruggieri F, Frazzoli C, Orisakwe OE. Trace elements exposure and risk in age-related eye diseases: a systematic review of epidemiological evidence. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:293-339. [PMID: 34114934 DOI: 10.1080/26896583.2021.1916331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This systematic review aimed to evaluate existing evidence on the associations between trace elements exposure and age-related eye diseases. PubMed and Google scholar databases were searched for epidemiological and postmortem studies on the relationship between exposure to trace elements and Age-related eye diseases such as age-related macular degeneration (AMD), cataract, glaucoma and diabetic retinopathy (DR), in population groups aged 40 years and above. Available evidence suggests that cadmium (Cd) exposure may be positively associated with the risks of AMD and cataract. There is also evidence that exposure to lead (Pb) may be positively associated with higher risk of cataract and glaucoma. There is limited number of relevant studies and lack of prospective studies for most of the investigated associations. Evidence for other trace elements is weak and inconsistent, and the number of available studies is small. Likewise, there are very few relevant studies on the role of trace elements in DR. Chemical elements that affect the distribution and absorption of other trace elements have never been investigated. The suggestive but limited evidence motivates large and quality prospective studies to fully characterize the impact of exposure to trace (toxic and essential) elements on age-related eye diseases.
Collapse
Affiliation(s)
- Onyinyechi Bede-Ojimadu
- Department of Chemical Pathology, Faculty of Medicine, Nnamdi Azikiwe University, Nnewi, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences University of Port Harcourt, Port Harcourt, Choba, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Rivers, Nigeria
| |
Collapse
|
27
|
Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells. Eye (Lond) 2021; 35:2917-2929. [PMID: 34079093 DOI: 10.1038/s41433-021-01602-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
In human retina, photoreceptor cell death (PCD) is a slow but conspicuous event, which continues with aging. Rods die earlier than cones, the latter continue to alter in a subtle manner until advanced aging. This review summarizes the existing information on age-related changes in photoreceptor cells, especially cones and analyses the possible associated factors. Oxidative and nitrosative stress are involved in photoreceptor alterations, which may stem from light and iron toxicity and other sources. Lipid peroxidation in macular photoreceptor outer segments and mitochondrial aberrations are prominent in aging. It is important to understand how those changes ultimately trigger PCD. The redistribution of calbindin D-28K and long/middle-wavelength-sensitive opsin in the parafoveal and perifoveal cones, anomalies in their somata and axons are strong predictors of their increasing vulnerability with aging. Signs of reduced autophagy, with autophagosomes containing organelle remnants are seen in aging photoreceptor cells. Currently, mechanisms that lead to human PCD are unknown; some observations favour apoptosis as a pathway. Since cones appear to change slowly, there is an opportunity to reverse those changes before they die. Therefore, a full understanding of how cones alter and the molecular pathways they utilize for survival must be the future research goal. Recent approaches to prevent PCD in aging and diseases are highlighted.
Collapse
|
28
|
Maurya M, Nag TC, Kumar P, Roy TS. Expression patterns of iron regulatory proteins after intense light exposure in a cone-dominated retina. Mol Cell Biochem 2021; 476:3483-3495. [PMID: 33983563 DOI: 10.1007/s11010-021-04175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Iron is implicated in ocular diseases such as in age-related macular degeneration. Light is also considered as a pathological factor in this disease. Earlier, two studies reported the influence of constant light environment on the pattern of expressions of iron-handling proteins. Here, we aimed to see the influence of light in 12-h light-12-h dark (12L:12D) cycles on the expression of iron-handling proteins in chick retina. Chicks were exposed to 400 lx (control) and 5000 lx (experimental) light at 12L:12D cycles and sacrificed at variable timepoints. Retinal ferrous ion (Fe2+) level, ultrastructural changes, lipid peroxidation level, immunolocalization and expression patterns of iron-handling proteins were analysed after light exposure. Both total Fe2+ level (p = 0.0004) and lipid peroxidation (p = 0.002) significantly increased at 12-, 48- and 168-h timepoint (for Fe2+) and 48- and 168-h timepoint (for lipid peroxidation), and there were degenerative retinal changes after 168 h of light exposure. Intense light exposure led to an increase in the levels of transferrin and transferrin receptor-1 (at 168-h) and ferroportin-1, whereas the levels of ferritins, hephaestin, (at 24-, 48- and 168-h timepoint) and ceruloplasmin (at 168-h timepoint) were decreased. These changes in iron-handling proteins after light exposure are likely due to a disturbance in the iron storage pool evident from decreased ferritin levels, which would result in increased intracellular Fe2+ levels. To counteract this, Fe2+ is released into the extracellular space, an observation supported by increased expression of ferroportin-1. Ceruloplasmin was able to convert Fe2+ into Fe3+ until 48 h of light exposure, but its decreased expression with time (at 168-h timepoint) resulted in increased extracellular Fe2+ that might have caused oxidative stress and retinal cell damage.
Collapse
Affiliation(s)
- Meenakshi Maurya
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Pankaj Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
29
|
Tang Z, Ju Y, Dai X, Ni N, Liu Y, Zhang D, Gao H, Sun H, Zhang J, Gu P. HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox Biol 2021; 43:101971. [PMID: 33895485 PMCID: PMC8099560 DOI: 10.1016/j.redox.2021.101971] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress-mediated retinal pigment epithelium (RPE) degeneration plays a vital role in retinal degeneration with irreversible visual impairment, most notably in age-related macular degeneration (AMD), but a key pathogenic factor and the targeted medical control remain controversial and unclear. In this work, by sophisticated high-throughput sequencing and biochemistry investigations, the major pathologic processes during RPE degeneration in the sodium iodate-induced oxidative stress model has been identified to be heme oxygenase-1 (HO-1)-regulated ferroptosis, which is controlled by the Nrf2–SLC7A11–HO-1 hierarchy, through which ferrous ion accumulation and lethal oxidative stress cause RPE death and subsequently photoreceptor degeneration. By direct knockdown of HO-1 or using HO-1 inhibitor ZnPP, the specific inhibition of HO-1 overexpression has been determined to significantly block RPE ferroptosis. In mice, treatment with ZnPP effectively rescued RPE degeneration and achieved superior therapeutic effects: substantial recovery of the retinal structure and visual function. These findings highlight that targeting HO-1-mediated RPE ferroptosis could serve as an effectively retinal-protective strategy for retinal degenerative diseases prevention, including AMD.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Yahan Ju
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Xiaochan Dai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Yan Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Dandan Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Huiqin Gao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Jing Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| |
Collapse
|
30
|
Zhao T, Guo X, Sun Y. Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration. Aging Dis 2021; 12:529-551. [PMID: 33815881 PMCID: PMC7990372 DOI: 10.14336/ad.2020.0912] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential component in many biological processes in the human body. It is critical for the visual phototransduction cascade in the retina. However, excess iron can be toxic. Iron accumulation and reduced efficiency of intracellular antioxidative defense systems predispose the aging retina to oxidative stress-induced cell death. Age-related macular degeneration (AMD) is characterized by retinal iron accumulation and lipid peroxidation. The mechanisms underlying AMD include oxidative stress-mediated death of retinal pigment epithelium (RPE) cells and subsequent death of retinal photoreceptors. Understanding the mechanism of the disruption of iron and redox homeostasis in the aging retina and AMD is crucial to decipher these mechanisms of cell death and AMD pathogenesis. The mechanisms of retinal cell death in AMD are an area of active investigation; previous studies have proposed several types of cell death as major mechanisms. Ferroptosis, a newly discovered programmed cell death pathway, has been associated with the pathogenesis of several neurodegenerative diseases. Ferroptosis is initiated by lipid peroxidation and is characterized by iron-dependent accumulation. In this review, we provide an overview of the mechanisms of iron accumulation and lipid peroxidation in the aging retina and AMD, with an emphasis on ferroptosis.
Collapse
Affiliation(s)
- Tantai Zhao
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- 1Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
31
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
32
|
Lindner E, Woltsche N, Merle D, Steinwender G, Strohmaier H, Nairz M, Ivastinovic D. Prion Protein on Human Leukocytes Is Reduced in Iron Deficiency - Possible Implications for Age-related Macular Degeneration? Curr Eye Res 2020; 46:1178-1183. [PMID: 33317353 DOI: 10.1080/02713683.2020.1863432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MATERIALS AND METHODS Patients presenting to the department of ophthalmology of the Medical University of Graz for reasons unrelated to prion diseases were enrolled. Parameters of iron metabolism, including ferritin and soluble transferrin receptor were measured by routine laboratory tests. Serum prion protein was determined by enzyme-linked immunosorbent assay. Surface prion protein on CD14+ monocytes and CD4+ T cells was analyzed by fluorescence activated cell sorting. RESULTS 95 patients were enrolled. Soluble transferrin receptor correlated significantly with prion protein levels on CD14+POM1+ monocytes (P = .001, r = -0.7) and on CD4+POM1+ T cells (P = .01, r = -0.62). CONCLUSION Our findings suggest a connection between the physiological function of the prion protein and iron metabolism in humans.
Collapse
Affiliation(s)
- Ewald Lindner
- Department of Ophthalmology, Medical University Graz, Graz, Austria
| | - Nora Woltsche
- Department of Ophthalmology, Medical University Graz, Graz, Austria
| | - David Merle
- Department of Ophthalmology, Medical University Graz, Graz, Austria
| | | | - Heimo Strohmaier
- Core Facility Imaging, Centre of Medical Research Graz, Graz, Austria
| | - Manfred Nairz
- Department of General Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
33
|
ASSOCIATION BETWEEN ORAL IRON SUPPLEMENTATION AND RETINAL OR SUBRETINAL HEMORRHAGE IN THE COMPARISON OF AGE-RELATED MACULAR DEGENERATION TREATMENT TRIALS. Retina 2020; 39:1965-1972. [PMID: 30157115 DOI: 10.1097/iae.0000000000002295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE Because patients often take iron supplements without medical indication, and iron can accumulate in vascular endothelial cells, the authors evaluated the association of oral iron supplementation with retinal/subretinal hemorrhage in patients with neovascular age-related macular degeneration. METHODS A post hoc secondary data analysis of comparison of age-related macular degeneration treatments trials was performed. Participants were interviewed for use of oral iron supplements. Trained readers evaluated retinal/subretinal hemorrhage in baseline fundus photographs. Adjusted odds ratios from multivariate logistic regression models assessed the association between iron use and baseline hemorrhage adjusted by age, sex, smoking, hypertension, anemia, and use of antiplatelet/anticoagulant drugs. RESULTS Among 1,165 participants, baseline retinal/subretinal hemorrhage was present in the study eye in 71% of 181 iron users and in 61% of 984 participants without iron use (adjusted odds ratio = 1.47, P = 0.04), and the association was dose dependent (adjusted linear trend P = 0.048). Iron use was associated with hemorrhage in participants with hypertension (adjusted odds ratio = 1.87, P = 0.006) but not without hypertension. The association of iron use with hemorrhage remained significant among hypertensive participants without anemia (adjusted odds ratio = 1.85, P = 0.02). CONCLUSION Among participants of comparison of age-related macular degeneration treatments trials, the use of oral iron supplements was associated with retinal/subretinal hemorrhage in a dose-response manner. Unindicated iron supplementation may be detrimental in patients with wet age-related macular degeneration.
Collapse
|
34
|
Bigot K, Gondouin P, Bénard R, Montagne P, Youale J, Piazza M, Picard E, Bordet T, Behar-Cohen F. Transferrin Non-Viral Gene Therapy for Treatment of Retinal Degeneration. Pharmaceutics 2020; 12:E836. [PMID: 32882879 PMCID: PMC7557784 DOI: 10.3390/pharmaceutics12090836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of iron metabolism is observed in animal models of retinitis pigmentosa (RP) and in patients with age-related macular degeneration (AMD), possibly contributing to oxidative damage of the retina. Transferrin (TF), an endogenous iron chelator, was proposed as a therapeutic candidate. Here, the efficacy of TF non-viral gene therapy based on the electrotransfection of pEYS611, a plasmid encoding human TF, into the ciliary muscle was evaluated in several rat models of retinal degeneration. pEYS611 administration allowed for the sustained intraocular production of TF for at least 3 and 6 months in rats and rabbits, respectively. In the photo-oxidative damage model, pEYS611 protected both retinal structure and function more efficiently than carnosic acid, a natural antioxidant, reduced microglial infiltration in the outer retina and preserved the integrity of the outer retinal barrier. pEYS611 also protected photoreceptors from N-methyl-N-nitrosourea-induced apoptosis. Finally, pEYS611 delayed structural and functional degeneration in the RCS rat model of RP while malondialdehyde (MDA) ocular content, a biomarker of oxidative stress, was decreased. The neuroprotective benefits of TF non-viral gene delivery in retinal degenerative disease models further validates iron overload as a therapeutic target and supports the continued development of pEY611 for treatment of RP and dry AMD.
Collapse
Affiliation(s)
- Karine Bigot
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Pauline Gondouin
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Romain Bénard
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Pierrick Montagne
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Jenny Youale
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, 75006 Paris, France;
| | - Marie Piazza
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Emilie Picard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, 75006 Paris, France;
| | - Thierry Bordet
- Eyevensys, Biopark, 11 rue Watt, 75013 Paris, France; (K.B.); (P.G.); (R.B.); (P.M.); (J.Y.); (M.P.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, 75006 Paris, France;
- Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
35
|
Kieffer J, Singh S, Dhillon BS, Kumar U, Shaikh S, Ho S, Seal S. Ceria Nanoparticles Mitigate the Iron Oxidative Toxicity of Human Retinal Pigment Epithelium. Cureus 2020; 12:e9675. [PMID: 32923270 PMCID: PMC7485992 DOI: 10.7759/cureus.9675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/11/2020] [Indexed: 01/26/2023] Open
Abstract
Oxidative injury is implicated in retinal damage observed in age-related macular degeneration (AMD), as well as other degenerative conditions. Abnormally elevated levels of iron accumulation within the retinal pigment epithelium have been detected in eyes with AMD, and it is suspected to play a role in the pathogenesis through the production of reactive oxygen species (ROS). Ceria nanoparticles (CNP) have the ability to scavenge ROS. This study sought to evaluate the ability of CNP to mitigate iron-induced oxidative stress and assess cell viability in the human ARPE-19 cell line in vitro. Cell viability was measured by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and compared between experimental groups undergoing 48-hr exposure to a ferrous iron solution with and without 24-hr CNP pre-treatment. The CNP effect on ROS formation was evaluated additionally by H2DCFDA (2,7-dichlorodihydrofluorescein diacetate) fluorescent probe assay and superoxide dismutase assay. CNP demonstrated a three-fold increase in cell viability and a reduction in ROS generation. The results show a promising treatment modality for diseases causing oxidative damage in the eye.
Collapse
Affiliation(s)
- Jason Kieffer
- Ophthalmology, University of Central Florida College of Medicine, Orlando, USA
| | - Sushant Singh
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, Dept. of Materials Science and Engineering, University of Central Florida, Orlando, USA
| | - Baltej S Dhillon
- Ophthalmology, University of Central Florida College of Medicine, Orlando, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, Dept. of Materials Science and Engineering, University of Central Florida, Orlando, USA
| | - Saad Shaikh
- Ophthalmology, University of Central Florida College of Medicine, Orlando, USA
| | - Son Ho
- Ophthalmology, Orlando VA Medical Center, Orlando, USA
- Ophthalmology, University of Central Florida College of Medicine, Orlando, USA
| | - Sudipta Seal
- Materials Science Engineering, Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, Dept. of Materials Science and Engineering, University of Central Florida, Orlando, USA
| |
Collapse
|
36
|
Courtois Y, Youale J, Behar-Cohen F, Picard É. [Iron and age-related macular degeneration: a new track]. Med Sci (Paris) 2020; 36:616-625. [PMID: 32614313 DOI: 10.1051/medsci/2020096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Iron has a fundamental role for cell physiology and especially in retina as a cofactor of many pathways of the visual transduction. A tightly regulated homeostasis avoids the accumulation of prooxidant and proinflammatory free iron. A dysfunction of iron retinal homeostasis is associated with many genetic or age-related degenerative diseases such as age-related macular degeneration (AMD). Here, we describe various mechanisms reported during AMD, enhanced by iron accumulation and its homeostasis dysregulation. We have investigated a local treatment with transferrin, the natural iron carrier, to control these pathological pathways and iron dysfunction, without side effects. Iron has a central role in pathogenesis of AMD and is a target for futures therapies.
Collapse
Affiliation(s)
- Yves Courtois
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, UMRS1138, 15 rue de l'École de Médecine, F-75006 Paris, France
| | - Jenny Youale
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, UMRS1138, 15 rue de l'École de Médecine, F-75006 Paris, France
| | - Francine Behar-Cohen
- Hôpital Cochin, AP-HP, Assistance Publique-Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Émilie Picard
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, UMRS1138, 15 rue de l'École de Médecine, F-75006 Paris, France
| |
Collapse
|
37
|
Copper mediates mitochondrial biogenesis in retinal pigment epithelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165843. [PMID: 32454166 DOI: 10.1016/j.bbadis.2020.165843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022]
Abstract
Age related macular degeneration (AMD) is a multifactorial disease with genetic, biochemical and environmental risk factors. We observed a significant increase in copper levels in choroid-RPE from donor eyeballs with AMD. Adult retinal pigment epithelial cells (ARPE19 cells) exposed to copper in-vitro showed a 2-fold increase in copper influx transporter CTR1 and copper uptake at 50 μM concentration. Further there was 2-fold increase in cytochrome C oxidase activity and a 2-fold increase in the mRNA expression of NRF 2 with copper treatment. There was a significant increase in mitochondrial biogenesis markers PGC1β and TFAM which was confirmed by mitochondrial mass and copy number. On the contrary, in AMD choroid-RPE, the CTR1 mRNA was found to be significantly down-regulated compared to its respective controls. SCO1 and PGC1β mRNA showed an increase in choroid-RPE. Our study proposes copper to play an important role in mitochondrial biogenesis in RPE cells.
Collapse
|
38
|
Buyandelger U, Walker DG, Yanagisawa D, Morimura T, Tooyama I. Effects of FTMT Expression by Retinal Pigment Epithelial Cells on Features of Angiogenesis. Int J Mol Sci 2020; 21:ijms21103635. [PMID: 32455741 PMCID: PMC7279371 DOI: 10.3390/ijms21103635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant angiogenesis is a pathological feature of a number of diseases and arises from the uncoordinated expression of angiogenic factors as response to different cellular stresses. Age-related macular degeneration (AMD), a leading cause of vision loss, can result from pathological angiogenesis. As a mutation in the mitochondrial ferritin (FTMT) gene has been associated with AMD, its possible role in modulating angiogenic factors and angiogenesis was investigated. FTMT is an iron-sequestering protein primarily expressed in metabolically active cells and tissues with high oxygen demand, including retina. In this study, we utilized the human retinal pigment epithelial cell line ARPE-19, both as undifferentiated and differentiated cells. The effects of proinflammatory cytokines, FTMT knockdown, and transient and stable overexpression of FTMT were investigated on expression of pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial-derived factor (PEDF). Proinflammatory cytokines induced FTMT and VEGF expression, while NF-κB inhibition significantly reduced FTMT expression. VEGF protein and mRNA expression were significantly increased in FTMT-silenced ARPE-19 cells. Using an in vitro angiogenesis assay with endothelial cells, we showed that conditioned media from FTMT-overexpressing cells had significant antiangiogenic effects. Collectively, our findings indicate that increased levels of FTMT inhibit angiogenesis, possibly by reducing levels of VEGF and increasing PEDF expression. The cellular models developed can be used to investigate if increased FTMT may be protective in angiogenic diseases, such as AMD.
Collapse
Affiliation(s)
| | | | | | | | - Ikuo Tooyama
- Correspondence: ; Tel.: +81-77-548-2330; Fax: +81-77-548-2331
| |
Collapse
|
39
|
Shu W, Baumann BH, Song Y, Liu Y, Wu X, Dunaief JL. Ferrous but not ferric iron sulfate kills photoreceptors and induces photoreceptor-dependent RPE autofluorescence. Redox Biol 2020; 34:101469. [PMID: 32362442 PMCID: PMC7327978 DOI: 10.1016/j.redox.2020.101469] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 11/18/2022] Open
Abstract
Iron has been implicated in the pathogenesis of retinal degenerative diseases, including ocular siderosis. However, the mechanisms of iron-induced retinal toxicity are incompletely understood. Previous work shows that intravitreal injection of Fe2+ leads to photoreceptor (PR) oxidative stress, resulting in PR death within 14 days, and cones are more susceptible than rods to iron-induced oxidative damage. In order to further investigate the mechanism of intravitreal iron-induced retinal toxicity and shed light on mechanisms of iron-induced retinopathy in other mouse models, Fe2+, Fe3+, or saline were injected into the vitreous of adult wild-type mice. Pre-treatment with Ferrostatin-1 was used to investigate whether iron-induced retinal toxicity resulted from ferroptosis. Color and autofluorescence in vivo retinal imaging and optical coherence tomography were performed on day 2 and day 7 post-injection. Eyes were collected for quantitative PCR and Western analysis on day 1 and for immunofluorescence on both day 2 and 7. In vivo imaging and immunofluorescence revealed that Fe2+, but not Fe3+, induced PR oxidative damage and autofluorescence on day 2, resulting in PR death and retinal pigment epithelial cell (RPE) autofluorescence on day 7. Quantitative PCR and Western analysis on day 1 indicated that both Fe2+ and Fe3+ induced iron accumulation in the retina. However, only Fe2+ elevated levels of oxidative stress markers and components of ferroptosis in the retina, and killed PRs. Ferrostatin-1 failed to protect the retina from Fe2+-induced oxidative damage. To investigate the mechanism of Fe2+-induced RPE autofluorescence, rd10 mutant mice aged 6 weeks, with almost total loss of PRs, were given intravitreal Fe2+ or Fe3+ injections: neither induced RPE autofluorescence. This result suggests Fe2+-induced RPE autofluorescence in wild-type mice resulted from phagocytosed, oxidized outer segments. Together these data suggest that intraretinal Fe2+ causes PR oxidative stress, leading to PR death and RPE autofluorescence. Intravitreal ferrous but not ferric sulfate induces photoreceptor oxidative stress. Ferrous sulfate causes photoreceptor death within 7 days. Ferrous sulfate causes outer segment and RPE autofluorescence. RPE autofluorescence does not develop in retinas lacking photoreceptors. Ferrous sulfate activates a subset of ferroptosis genes.
Collapse
Affiliation(s)
- Wanting Shu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080, China; F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Bailey H Baumann
- F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Ying Song
- F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Yingrui Liu
- F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA; Department of Ophthalmology, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, Jilin, 130041, China.
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, No. 100 Haining Road, Shanghai, 200080, China.
| | - Joshua L Dunaief
- F.M.Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
40
|
Picard E, Daruich A, Youale J, Courtois Y, Behar-Cohen F. From Rust to Quantum Biology: The Role of Iron in Retina Physiopathology. Cells 2020; 9:cells9030705. [PMID: 32183063 PMCID: PMC7140613 DOI: 10.3390/cells9030705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Iron is essential for cell survival and function. It is a transition metal, that could change its oxidation state from Fe2+ to Fe3+ involving an electron transfer, the key of vital functions but also organ dysfunctions. The goal of this review is to illustrate the primordial role of iron and local iron homeostasis in retinal physiology and vision, as well as the pathological consequences of iron excess in animal models of retinal degeneration and in human retinal diseases. We summarize evidence of the potential therapeutic effect of iron chelation in retinal diseases and especially the interest of transferrin, a ubiquitous endogenous iron-binding protein, having the ability to treat or delay degenerative retinal diseases.
Collapse
Affiliation(s)
- Emilie Picard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Correspondence: ; Tel.: +331-44-27-81-82
| | - Alejandra Daruich
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Ophthalmology Department, Necker-Enfants Malades University Hospital, APHP, 75015 Paris, France
| | - Jenny Youale
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
| | - Yves Courtois
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Team 17, F-75006 Paris, France; (A.D.); (J.Y.); (Y.C.); (F.B.-C.)
- Ophtalmopole, Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
41
|
Shu W, Baumann BH, Song Y, Liu Y, Wu X, Dunaief JL. Iron Accumulates in Retinal Vascular Endothelial Cells But Has Minimal Retinal Penetration After IP Iron Dextran Injection in Mice. Invest Ophthalmol Vis Sci 2020; 60:4378-4387. [PMID: 31634395 PMCID: PMC6798310 DOI: 10.1167/iovs.19-28250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Iron supplementation therapy is used for iron-deficiency anemia but has been associated with macular degeneration in a 43-year-old patient. Iron entry into the neurosensory retina (NSR) can be toxic. It is important to determine conditions under which serum iron might cross the blood retinal barrier (BRB) into the NSR. Herein, an established mouse model of systemic iron overload using high-dose intraperitoneal iron dextran (IP FeDex) was studied. In addition, because the NSR expresses the iron regulatory hormone hepcidin, which could limit iron influx into the NSR, we gave retina-specific hepcidin knockout (RS-HepcKO) mice IP FeDex to test this possibility. Methods Wild-type (WT) and RS-HepcKO mice were given IP FeDex. In vivo retina imaging was performed. Blood and tissues were analyzed for iron levels. Quantitative PCR was used to measure levels of mRNAs encoding iron regulatory and photoreceptor-specific genes. Ferritin and albumin were localized in the retina by immunofluorescence. Results IP FeDex in both WT and RS-HepcKO mice induced high levels of iron in the liver, serum, retinal vascular endothelial cells (rVECs), and RPE, but not the NSR. The BRB remained intact. Retinal degeneration did not occur. Conclusions Following injection of high-dose IP FeDex, iron accumulated in the BRB, but not the NSR. Thus, the BRB can shield the NSR from iron delivered in this manner. This ability is not dependent on NSR hepcidin production.
Collapse
Affiliation(s)
- Wanting Shu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Bailey H Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xingwei Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
42
|
Peng JJ, Song WT, Yao F, Zhang X, Peng J, Luo XJ, Xia XB. Involvement of regulated necrosis in blinding diseases: Focus on necroptosis and ferroptosis. Exp Eye Res 2020; 191:107922. [PMID: 31923413 DOI: 10.1016/j.exer.2020.107922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
Besides apoptosis, necrosis can also occur in a highly regulated and genetically controlled manner, defined as regulated necrosis, which is characterized by a loss of cell membrane integrity and release of cytoplasmic content. Depending on the involvement of its signal pathway, regulated necrosis can be further classified as necroptosis, ferroptosis, pyroptosis and parthanatos. Numerous studies have demonstrated that regulated necrosis is involved in the pathogenesis of many diseases covering almost all organs including the brain, heart, liver, kidney, intestine, blood vessel, eye and skin, particularly myocardial infarction and stroke. Most recently, growing evidence suggests that multiple types of regulated necrosis contribute to the degeneration of retinal ganglion cells, retinal pigment epithelial cells or photoreceptor cells, which are the main pathologic features for glaucoma, age-related macular degeneration or retinitis pigmentosa, respectively. This review focuses on the involvement of necroptosis and ferroptosis in these blinding diseases.
Collapse
Affiliation(s)
- Jing-Jie Peng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Wei-Tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xuan Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
43
|
McGuinness MB, Kasza J, Karahalios A, Guymer RH, Finger RP, Simpson JA. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study. BMC Med Res Methodol 2019; 19:223. [PMID: 31795945 PMCID: PMC6892197 DOI: 10.1186/s12874-019-0874-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/20/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Attrition due to death and non-attendance are common sources of bias in studies of age-related diseases. A simulation study is presented to compare two methods for estimating the survivor average causal effect (SACE) of a binary exposure (sex-specific dietary iron intake) on a binary outcome (age-related macular degeneration, AMD) in this setting. METHODS A dataset of 10,000 participants was simulated 1200 times under each scenario with outcome data missing dependent on measured and unmeasured covariates and survival. Scenarios differed by the magnitude and direction of effect of an unmeasured confounder on both survival and the outcome, and whether participants who died following a protective exposure would also die if they had not received the exposure (validity of the monotonicity assumption). The performance of a marginal structural model (MSM, weighting for exposure, survival and missing data) was compared to a sensitivity approach for estimating the SACE. As an illustrative example, the SACE of iron intake on AMD was estimated using data from 39,918 participants of the Melbourne Collaborative Cohort Study. RESULTS The MSM approach tended to underestimate the true magnitude of effect when the unmeasured confounder had opposing directions of effect on survival and the outcome. Overestimation was observed when the unmeasured confounder had the same direction of effect on survival and the outcome. Violation of the monotonicity assumption did not increase bias. The estimates were similar between the MSM approach and the sensitivity approach assessed at the sensitivity parameter of 1 (assuming no survival bias). In the illustrative example, high iron intake was found to be protective of AMD (adjusted OR 0.57, 95% CI 0.40-0.82) using complete case analysis via traditional logistic regression. The adjusted SACE odds ratio did not differ substantially from the complete case estimate, ranging from 0.54 to 0.58 for each of the SACE methods. CONCLUSIONS On average, MSMs with weighting for exposure, missing data and survival produced biased estimates of the SACE in the presence of an unmeasured survival-outcome confounder. The direction and magnitude of effect of unmeasured survival-outcome confounders should be considered when assessing exposure-outcome associations in the presence of attrition due to death.
Collapse
Affiliation(s)
- Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jessica Kasza
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3010 Australia
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Robyn H. Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | | | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| |
Collapse
|
44
|
Yumnamcha T, Devi TS, Singh LP. Auranofin Mediates Mitochondrial Dysregulation and Inflammatory Cell Death in Human Retinal Pigment Epithelial Cells: Implications of Retinal Neurodegenerative Diseases. Front Neurosci 2019; 13:1065. [PMID: 31649499 PMCID: PMC6795687 DOI: 10.3389/fnins.2019.01065] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Photoreceptor degeneration occurs in various retinal diseases including age-related macular degeneration (AMD), Retinitis pigmentosa (RP), and diabetic retinopathy (DR). However, molecular mechanisms are not fully understood yet. The retinal pigment epithelium (RPE) forms the outer blood retinal barrier (oBRB) and supplies glucose, oxygen and nutrients from the fenestrated choriocapillaris to photoreceptors for visual function. Therefore, RPE dysfunction leads to photoreceptor injury/death and progression of blinding eye diseases. This study aims to understand the role of the thioredoxin (Trx) and its reductase (TrxR) redox signaling in human RPE dysfunction and cell death mechanism(s) in an in vitro system. Methods A human RPE cell line (APRE-19) was cultured in DMEM/F12 medium and treated with auranofin (AF - 4 μM, an inhibitor of TrxR) for 4 and 24 h. Mitochondrial and lysosomal function, cellular oxidative stress and NLRP3 inflammasome activity were measured using cell assays, Western blotting, and confocal microscopy. Antioxidants and anti-inflammatory compounds were tested for blocking AF effects on RPE damage. Cell death mechanisms (LDH release to culture media) were determined using necroptosis, ferroptosis and pyroptosis inhibitors. P < 0.05 was considered significant in statistical analysis. Results Auranofin causes mitochondrial dysfunction (Δψm↓ and ATP↓), oxidative stress (H2O2↑) and mitophagic flux to lysosomes. Furthermore, the lysosomal enzyme (cathepsin L) activity is reduced while that of pro-inflammatory caspase-1 (NLRP3 inflammasome) is enhanced in ARPE-19. These effects of AF on ARPE-19 are inhibited by antioxidant N-acetylcysteine (5 mM, NAC) and significantly by a combination of SS31 (mitochondrial antioxidant) and anti-inflammatory drugs (amlexanox and tranilast). AF also causes cell death as measured by cytosolic LDH release/leakage, which is not inhibited by either ferrostatin-1 or necrostatin-1 (ferroptosis and necroptosis inhibitors, respectively). Conversely, AF-induced LDH release is significantly reduced by MCC950 and Ac-YVAD-cmk (NLRP3 and Caspase-1 inhibitors, respectively), suggesting a pro-inflammatory cell death by pyroptosis. Conclusion The Trx/TrxR redox system is critical for RPE function and viability. We previously showed that thioredoxin-interacting protein (TXNIP) is strongly induced in DR inhibiting the Trx/TrxR system and RPE dysfunction. Therefore, our results suggest that the TXNIP-Trx-TrxR redox pathway may participate in RPE dysfunction in DR and other retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Thangal Yumnamcha
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Takhellembam Swornalata Devi
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
45
|
SPECKLED HYPOAUTOFLUORESCENCE AS A SIGN OF RESOLVED SUBRETINAL HEMORRHAGE IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina 2018; 39:1925-1935. [PMID: 30355956 DOI: 10.1097/iae.0000000000002367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To describe patterns of hypoautofluorescence in eyes with neovascular age-related macular degeneration occurring after subretinal hemorrhage. METHODS This was a retrospective descriptive analysis of neovascular age-related macular degeneration eyes presenting with subretinal hemorrhage over the last 5 years that underwent serial multimodal imaging. A review of color fundus photographs, fundus autofluorescence, near-infrared reflectance, and optical coherence tomography was performed at baseline and all available follow-up visits to document the course and evolution of subretinal hemorrhage in these eyes. RESULTS Eleven eyes of 10 patients (9 female, 1 male; mean age: 84.1 years, range: 72-99 years) with a mean follow-up of 19.8 months (range: 3-68 months) were included. Color fundus photographs showed subretinal hemorrhage that resolved over a mean of 5.5 months. During and after hemorrhage resolution, all eyes showed hypoautofluorescence, which appeared distinct from that due to retinal pigment epithelium loss. Discrete multifocal punctate hyperpigmented lesions were observed in 90% of eyes and were markedly hypoautofluorescent, producing a speckled pattern on fundus autofluorescence. CONCLUSION Areas of hypoautofluorescence in the absence of retinal pigment epithelium atrophy, often with a speckled pattern, delineate areas of prior subretinal hemorrhage long after its resolution in patients with neovascular age-related macular degeneration. Potential mechanisms for the development of this pattern are proposed.
Collapse
|
46
|
Shu W, Dunaief JL. Potential Treatment of Retinal Diseases with Iron Chelators. Pharmaceuticals (Basel) 2018; 11:ph11040112. [PMID: 30360383 PMCID: PMC6316536 DOI: 10.3390/ph11040112] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
Iron is essential for life, while excess iron can be toxic. Iron generates hydroxyl radical, which is the most reactive free radical, causing oxidative stress. Since iron is absorbed through the diet but not excreted from the body, it accumulates with age in tissues, including the retina, consequently leading to age-related toxicity. This accumulation is further promoted by inflammation. Hereditary diseases such as aceruloplasminemia, Friedreich’s ataxia, pantothenate kinase-associated neurodegeneration, and posterior column ataxia with retinitis pigmentosa involve retinal degeneration associated with iron dysregulation. In addition to hereditary causes, dietary or parenteral iron supplementation has been recently reported to elevate iron levels in the retinal pigment epithelium (RPE) and promote retinal degeneration. Ocular siderosis from intraocular foreign bodies or subretinal hemorrhage can also lead to retinopathy. Evidence from mice and humans suggests that iron toxicity may contribute to age-related macular degeneration pathogenesis. Iron chelators can protect photoreceptors and RPE in various mouse models. The therapeutic potential for iron chelators is under investigation.
Collapse
Affiliation(s)
- Wanting Shu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, PA 19104, USA.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China.
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratory, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Aging results in iron accumulations in the non-human primate choroid of the eye without an associated increase in zinc, copper or sulphur. Biometals 2018; 31:1061-1073. [PMID: 30306383 PMCID: PMC6245114 DOI: 10.1007/s10534-018-0147-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/23/2018] [Indexed: 12/30/2022]
Abstract
We present further analyses of a previous experiment published in 2016 where the distribution, concentration and correlation of iron, zinc, copper and sulphur in the choroid of the eye in young and aged old world primates (Macaca fascicularis) was studied with synchrotron X-ray fluorescence with a 2 μm resolution. The results indicate that iron accumulates in hotspots in the choroid with age with fluorescence intensity ranging from 2- to 7-fold (1002-3752 ppm) the mean level in the choroidal stroma (500 ppm) and maximum iron levels in blood vessel lumina. Iron hotspots with iron ppm > 1000 preferentially contained Fe3+ as demonstrated by Perls staining. There was a strong spatial co-localisation and correlation between copper and zinc (Pearson's correlation coefficient 0.97), and both elements with sulphur in the choroid of young animals. However, these are reduced in the choroid of aged animals and lost in the iron hotspots. The lack of proportional co-distribution suggests that iron accumulation does not induce a concomitant increase in zinc, copper or zinc-, copper-metalloproteins. It is possible that the iron hotspots are ferritin or hemosiderin molecules loaded with Fe3+ in stable, insoluble, non-toxic complexes without a significant oxidative environment.
Collapse
|
48
|
Modenese A, Gobba F. Macular degeneration and occupational risk factors: a systematic review. Int Arch Occup Environ Health 2018; 92:1-11. [PMID: 30191305 PMCID: PMC6323067 DOI: 10.1007/s00420-018-1355-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Purpose Macular degeneration is a multi-factorial disease, leading cause of blindness for people over 50 years old in developed countries. To date, the knowledge on possible occupational factors involved in the development of the disease is scant. Method We performed a systematic scientific literature search on the association between macular degeneration and occupational risk factors searching the MedLine and Scopus databases. Results We examined 158 articles and, according to the inclusion criteria, 13 peer-reviewed studies evaluating occupational risk factors for macular degeneration or reporting the frequency of the disease in specific groups of workers were included in the review. Ten on thirteen articles evaluated the presence of macular degeneration in workers exposed to solar radiation. Only one study found that non-specific history of occupational chemical exposure was associated with the disease. Two studies showed an association between macular degeneration and the general category of “blue-collar” workers, but they did not identify the specific risk factors involved. Conclusions To date few studies have examined occupational risk factors for macular degeneration. Nevertheless, available data indicate that long-term occupational solar radiation exposure, in particular for its blue-light component, is associated with macular degeneration in outdoor workers. Electronic supplementary material The online version of this article (10.1007/s00420-018-1355-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125, Modena, Italy.
| | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125, Modena, Italy
| |
Collapse
|
49
|
Abstract
Cells are subject to metabolic sources of oxidizing species and to the need to regulate Fe, a redox-active metal. Retinal pigment epithelial (RPE) cells have to contend with an additional, unique source of oxidative stress: photooxidative insult from bisretinoids that accumulate as lipofuscin. Here we report that Fe can interact with bisretinoids in RPE to promote cell damage. These findings inform disease processes in both Fe-related and bisretinoid-associated retinal degeneration. The link between Fe and bisretinoid oxidation also highlights opportunities for repurposed and combination therapies. This could include visual cycle inhibitors as a treatment for maculopathy associated with elevated retinal Fe, and Fe chelation to aid in suppressing the damaging effects of bisretinoids in juvenile and age-related macular degeneration. Intracellular Fe plays a key role in redox active energy and electron transfer. We sought to understand how Fe levels impact the retina, given that retinal pigment epithelial (RPE) cells are also challenged by accumulations of vitamin A aldehyde adducts (bisretinoid lipofuscin) that photogenerate reactive oxygen species and photodecompose into damaging aldehyde- and dicarbonyl-bearing species. In mice treated with the Fe chelator deferiprone (DFP), intracellular Fe levels, as reflected in transferrin receptor mRNA expression, were reduced. DFP-treated albino Abca4−/− and agouti wild-type mice exhibited elevated bisretinoid levels as measured by high-performance liquid chromatography or noninvasively by quantitative fundus autofluorescence. Thinning of the outer nuclear layer, a parameter indicative of the loss of photoreceptor cell viability, was also reduced in DFP-treated albino Abca4−/−. In contrast to the effects of the Fe chelator, mice burdened with increased intracellular Fe in RPE due to deficiency in the Fe export proteins hephaestin and ceruloplasmin, presented with reduced bisretinoid levels. These findings indicate that intracellular Fe promotes bisretinoid oxidation and degradation. This interpretation was supported by experiments showing that DFP decreased the oxidative/degradation of the bisretinoid A2E in the presence of light and reduced cell death in cell-based experiments. Moreover, light-independent oxidation and degradation of A2E by Fenton chemistry products were evidenced by the consumption of A2E, release of dicarbonyls, and generation of oxidized A2E species in cell-free assays.
Collapse
|
50
|
ASSESSMENT OF DRUSEN AND OTHER RETINAL DEGENERATIVE CHANGES IN PATIENTS WITH HEREDITARY HEMOCHROMATOSIS. Retina 2018; 38:594-599. [DOI: 10.1097/iae.0000000000001577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|