1
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
2
|
Sanyal S, Ravula V. Mitigation of pesticide-mediated ocular toxicity via nanotechnology-based contact lenses: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46602-46624. [PMID: 37542697 DOI: 10.1007/s11356-023-28904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
The xenobiotic stress exerted by pesticides leads to the deterioration of human and animal health including ocular health. Acute or prolonged exposure to these agricultural toxicants has been implicated in a number of pathological conditions of the eye such as irritation, epiphora or hyper-lacrimation, abrasions on the ocular surface, and decreased visual acuity. The issue is compounded by the fact that tissues of the eye absorb pesticides faster than other organs of the body and are more susceptible to damage as well. However, there is a lacuna in our knowledge regarding the ways by which pesticide exposure-mediated ocular insult might be counteracted. Topical instillation of drugs known to combat the pesticide induced toxicity has been explored to mitigate the detrimental impact of pesticide exposure. However, topical eye drop solutions exhibit very low bioavailability and limited drug residence duration in the tear film decreasing their efficacy. Contact lenses have been explored in this respect to increase bioavailability of ocular drugs, while nanoparticles have lately been utilized to increase drug bioavailability and increase drug residence duration in different tissues. The current review focuses on drug delivery and futuristic aspects of corneal protection from ocular toxicity using contact lenses.
Collapse
Affiliation(s)
- Shalini Sanyal
- Laboratory of Self Assembled Biomaterials and Translational Science, Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bengaluru, 560065, Karnataka, India.
| | - Venkatesh Ravula
- Laboratory of Self Assembled Biomaterials and Translational Science, Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bengaluru, 560065, Karnataka, India
| |
Collapse
|
3
|
Latham SG, Williams RL, Grover LM, Rauz S. Achieving net-zero in the dry eye disease care pathway. Eye (Lond) 2024; 38:829-840. [PMID: 37957294 PMCID: PMC10965955 DOI: 10.1038/s41433-023-02814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Climate change is a threat to human health and wellbeing across the world. In recent years, there has been a surge in awareness of this crisis, leading to many countries and organisations setting "net-zero" targets. This entails minimising carbon emissions and neutralising remaining emissions by removing carbon from the atmosphere. At the 2022 United Nations Climate Change Conference (COP27), commitments to transition away from fossil fuels and augment climate targets were underwhelming. It is therefore imperative for public and private sector organisations to demonstrate successful implementation of net-zero and set a precedent for the global political consensus. As a top 10 world employer, the United Kingdom National Health Service (NHS) has pledged to reach net-zero by 2045. The NHS has already taken positive steps forward, but its scale and complexity as a health system means stakeholders in each of its services must highlight the specifications for further progress. Dry eye disease is a chronic illness with an estimated global prevalence of 29.5% and an environmentally damaging care pathway. Moreover, environmental damage is a known aggravator of dry eye disease. Worldwide management of this illness generates copious amounts of non-recyclable waste, utilises inefficient supply chains and involves recurrent follow-up appointments and prescriptions. By mapping the dry eye disease care pathway to environmental impact, in this review we will highlight seven key areas in which reduced emissions and pollution could be targeted. Examining these approaches for improved environmental sustainability is critical in driving the transformation needed to preserve our health and wellbeing.
Collapse
Affiliation(s)
- Samuel G Latham
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Richard L Williams
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK
| | - Liam M Grover
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK.
| |
Collapse
|
4
|
Tambe S, Jain D, Rawat R, Mali S, Pagano MA, Brunati AM, Amin P. MeltSerts technology (brinzolamide ocular inserts via hot-melt extrusion): QbD-steered development, molecular dynamics, in vitro, ex vivo and in vivo studies. Int J Pharm 2023; 648:123579. [PMID: 37931727 DOI: 10.1016/j.ijpharm.2023.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The research work aimed to develop a robust sustained release biocompatible brinzolamide (BRZ)-loaded ocular inserts (MeltSerts) using hot-melt extrusion technology with enhanced solubility for glaucoma management. A 32 rotatable central composite design was employed for the optimization of the MeltSerts to achieve sustained release. The effect of two independent factors was examined: Metolose® SR 90SH-100000SR (HPMC, hydroxypropyl methyl cellulose) and Kolliphor® P 407 (Poloxamer 407, P407). The drug release (DR) of BRZ at 0.5 h and 8 h were adopted as dependent responses. The factorial analysis resulted in an optimum composition of 50.00 % w/w of HPMC and 15.00 % w/w of P407 which gave % DR of 9.11 at 0.5 h and 69.10 at 8 h. Furthermore, molecular dynamic simulations were performed to elucidate various interactions between BRZ, and other formulation components and it was observed that BRZ showed maximum interactions with HPC and HPMC with an occupancy of 92.82 and 52.87 %, respectively. Additionally, molecular docking studies were performed to understand the interactions between BRZ and mucoadhesive polymers with ocular mucin (MUC-1). The results indicated a docking score of only -5.368 for BRZ alone, whereas a significantly higher docking score was observed for the optimized Meltserts -6.977, suggesting enhanced retention time of the optimized MeltSerts. SEM images displayed irregular surfaces, while EDS analysis validated uniform BRZ distribution in the optimized formulation. The results of the ocular irritancy studies both ex vivo and in vivo demonstrated that MeltSerts are safe for ocular use. The results indicate that the developed MeltSerts Technology has the potential to manufacture ocular inserts with cost-effectiveness, one-step processability, and enhanced product quality. Nonetheless, it also offers a once-daily regimen, consequently decreasing the dosing frequency, preservative exposure, and ultimately better glaucoma management.
Collapse
Affiliation(s)
- Srushti Tambe
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Mumbai 400019, India
| | - Divya Jain
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Mumbai 400019, India
| | - Ravi Rawat
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Suraj Mali
- Birla Institute of Technology, Department of Pharmaceutical Sciences & Technology, Mesra, Ranchi 835 215, India
| | | | - Anna Maria Brunati
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Purnima Amin
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Mumbai 400019, India.
| |
Collapse
|
5
|
Qiu L, Zhang J, Liu S, Li B, Wang J, Tang J, Pu X, Huang Z, Liao X, Yin G. Dendritic Oligoethylenimine Decorated Liposome with Augmented Corneal Retention and Permeation for Efficient Topical Delivery of Antiglaucoma Drugs. NANO LETTERS 2023; 23:11193-11202. [PMID: 38039401 DOI: 10.1021/acs.nanolett.3c03691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The topically administered glaucoma medications usually encounter serious precorneal drug loss and low corneal penetration, leading to a low bioavailability. In addition, due to the complexity of glaucoma etiology, a single medication is often insufficient. In this work, we report a novel dendritic oligoethylenimine decorated liposome for codelivery of two antiglaucoma drugs, latanoprost and timolol. The liposome showed a uniform nanoscopic particle size, positive surface charge, and excellent dual-drug loading capacity. A prolonged precorneal retention is observed by using this liposomal delivery system. This liposomal delivery system presents increased cellular uptake and tight junctions opening capacity, contributing respectively to the transcellular and paracellular permeation, thereby enhancing the trans-corneal transportation. Following topical administration of one eye drop in brown Norway rats, the dual-drug-loaded liposome formulation resulted in a sustained and effective intraocular pressure reduction as long as 5 days, without inducing ocular inflammation, discomfort, and tissue damage.
Collapse
Affiliation(s)
- Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jialuo Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shujing Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
6
|
van Mechelen RJS, Wolters JEJ, Fredrich S, Bertens CJF, Gijbels MJJ, Schenning APHJ, Pinchuk L, Gorgels TGMF, Beckers HJM. A Degradable Sustained-Release Drug Delivery System for Bleb-Forming Glaucoma Surgery. Macromol Biosci 2023; 23:e2300075. [PMID: 37249127 DOI: 10.1002/mabi.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/12/2023] [Indexed: 05/31/2023]
Abstract
Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Jarno E J Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Sebastian Fredrich
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Marion J J Gijbels
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Technical University of Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Leonard Pinchuk
- InnFocus Inc. a Santen company, 12415 S.W. 136 Avenue, Miami, FL, 33186, USA
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
7
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
8
|
Anitua E, Muruzabal F, de la Fuente M, Del Olmo-Aguado S, Alkhraisat MH, Merayo-Lloves J. PRGF Membrane with Tailored Optical Properties Preserves the Cytoprotective Effect of Plasma Rich in Growth Factors: In Vitro Model of Retinal Pigment Epithelial Cells. Int J Mol Sci 2023; 24:11195. [PMID: 37446374 DOI: 10.3390/ijms241311195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The present study evaluates the ability of a novel plasma rich in growth factors (PRGF) membrane with improved optical properties to reduce oxidative stress in retinal pigment epithelial cells (ARPE-19 cells) exposed to blue light. PRGF was obtained from three healthy donors and divided into four main groups: (i) PRGF membrane (M-PRGF), (ii) PRGF supernatant (S-PRGF), (iii) platelet-poor plasma (PPP) membrane diluted 50% with S-PRGF (M-PPP 50%), and (iv) M-PPP 50% supernatant (S-PPP 50%). ARPE-19 cells were exposed to blue light and then incubated with the different PRGF-derived formulations or control for 24 and 48 h under blue light exposure. Mitochondrial and cell viability, reactive oxygen species (ROS) production, and heme oxygenase-1 (HO-1) and ZO-1 expression were evaluated. Mitochondrial viability and cell survival were significantly increased after treatment with the different PRGF-derived formulations. ROS synthesis and HO-1 expression were significantly reduced after cell treatment with any of the PRGF-derived formulations. Furthermore, the different PRGF-derived formulations significantly increased ZO-1 expression in ARPE-19 exposed to blue light. The new PRGF membrane with improved optical properties and its supernatant (M-PPP 50% and S-PPP 50%) protected and reversed blue light-induced oxidative stress in ARPE-19 cells at levels like those of a natural PRGF membrane and its supernatant.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Francisco Muruzabal
- BTI-Biotechnology Institute, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - María de la Fuente
- BTI-Biotechnology Institute, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Susana Del Olmo-Aguado
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Mohammad H Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Jesús Merayo-Lloves
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
9
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
10
|
Tang X, Liu J, Yan R, Peng Q. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: A review. Int J Biol Macromol 2023; 242:124902. [PMID: 37210054 DOI: 10.1016/j.ijbiomac.2023.124902] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Eyes are directly exposed to the outer environment and susceptible to infections, leading to various ocular disorders. Local medication is preferred to treat eye diseases due to its convenience and compliance. However, the rapid clearance of the local formulations highly limits the therapeutic efficacy. In the past decades, several carbohydrate bioadhesive polymers (CBPs), such as chitosan and hyaluronic acid, have been used in ophthalmology for sustained ocular drug delivery. These CBP-based delivery systems have improved the treatment of ocular diseases to a large extent but also caused some undesired effects. Herein, we aim to summarize the applications of some typical CBPs (including chitosan, hyaluronic acid, cellulose, cyclodextrin, alginate and pectin) in treating ocular diseases from the general view of ocular physiology, pathophysiology and drug delivery, and to provide a comprehensive understanding of the design of the CBP-based formulations for ocular use. The patents and clinical trials of CBPs for ocular management are also discussed. In addition, a discussion on the concerns of CBPs in clinical use and the possible solutions is presented.
Collapse
Affiliation(s)
- Xuelin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Wu KY, Joly-Chevrier M, Akbar D, Tran SD. Overcoming Treatment Challenges in Posterior Segment Diseases with Biodegradable Nano-Based Drug Delivery Systems. Pharmaceutics 2023; 15:1094. [PMID: 37111579 PMCID: PMC10142934 DOI: 10.3390/pharmaceutics15041094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | | | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
12
|
Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Carbohydr Polym 2023; 313:120760. [PMID: 37182939 DOI: 10.1016/j.carbpol.2023.120760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Cyclodextrin and its derivative (CDs) are natural building blocks for linking with other components to afford functional biomaterials. Hydrogels are polymer network systems that can form hydrophilic three-dimensional network structures through different cross-linking methods and are developing as potential materials in biomedical applications. Natural polysaccharide hydrogels (NPHs) are widely adopted in biomedical field with good biocompatibility, biodegradability, low cytotoxicity, and versatility in emulating natural tissue properties. Compared with conventional NPHs, CD regulated natural polysaccharide hydrogels (CD-NPHs) maintain good biocompatibility, while improving poor mechanical qualities and unpredictable gelation times. Recently, there has been increasing and considerable usage of CD-NPHs while there is still no review comprehensively introducing their construction, classification, and application of these hydrogels from the material point of view regarding biomedical fields. To draw a complete picture of the current and future development of CD-NPHs, we systematically overview the classification of CD-NPHs, and provide a holistic view on the role of CD-NPHs in different biomedical fields, especially in drug delivery, wound dressing, cell encapsulation, and tissue engineering. Moreover, the current challenges and prospects of CD-NPHs are discussed rationally, providing an insight into developing vibrant fields of CD-NPHs-based biomedicine, and facilitating their translation from bench to clinical medicine.
Collapse
|
13
|
Wang J, Li B, Kompella UB, Yang H. Dendrimer and dendrimer gel-derived drug delivery systems: Breaking bottlenecks of topical administration of glaucoma medications. MEDCOMM - BIOMATERIALS AND APPLICATIONS 2023; 2:e30. [PMID: 38562247 PMCID: PMC10983815 DOI: 10.1002/mba2.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 04/04/2024]
Abstract
Due to high structural flexibility, multidrug carrying capability, and tunable size, dendrimers have been used as suitable carriers for ophthalmic drug delivery. Drug molecules can be either encapsulated or chemically coupled to dendrimers. The nanoscopic size, spheroidal shape, and cationic surface of polyamidoamine (PAMAM) dendrimers promote their interaction with the cornea and result in prolonged precorneal retention. Dendrimers could be further cross-linked to produce three-dimensional hydrogel networks or dendrimer hydrogels (DH). The properties of the DH can be readily adjusted to maintain both fluidity and adhesiveness, making them suitable for developing topical ocular drug formulations. Micro-/nano-sized DHs, that is, dendrimer micro-/nano-gels, have unique properties such as ease of administration, large specific surface area for adhesion, and drug targeting functionalities, making them attractive for ophthalmic drug delivery. This perspective reports advances in PAMAM dendrimer based drug delivery systems including drug conjugates and micro- and nano-gels to enhance and sustain the delivery of multiple anti-glaucoma drugs, Dendrimer and dendrimer gel-derived drug delivery systems hold great potential as multifunctional topical drug delivery systems for the eye.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Uday B. Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
14
|
Topical dexamethasone delivery to the retina: An aqueous cyclodextrin-based microsuspension. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
15
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Evaluation of Safety, Tolerability and Pharmacokinetic Characteristics of SA001 and Its Active Metabolite Rebamipide after Single and Multiple Oral Administration. Pharmaceuticals (Basel) 2023; 16:ph16010132. [PMID: 36678630 PMCID: PMC9862565 DOI: 10.3390/ph16010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Dry eye disease (DED) is one of the most common eye diseases caused by multiple factors. Rebamipide, which is currently used to treat peptic ulcer disease, was shown to enhance secretory function and modulate inflammation in animal disease models. Considering the pathophysiology of DED, SA001 was developed expecting enhanced systemic exposure of rebamipide. Clinical trials to evaluate the safety, tolerability and pharmacokinetic (PK) characteristics of SA001 and its active metabolite rebamipide were conducted. After oral administration of SA001, blood and urine samples were collected for PK analysis of SA001 and rebamipide. PK parameters were compared between SA001 and conventional rebamipide (Bamedin®) and also between fasted and fed. Safety and tolerability were evaluated throughout the study based on adverse events (AEs), physical examinations, vital signs, 12-lead electrocardiography and clinical laboratory tests. SA001 was rapidly absorbed and quickly converted to rebamipide. The systemic exposure of rebamipide was dose-proportional after single and multiple doses. The plasma concentration of rebamipide after administration of SA001 was higher with a dose adjusted AUClast and Cmax 2.20 and 5.45 times higher in the 240 mg dose group and 4.73 and 11.94 times higher in the 600 mg dose group compared to conventional rebamipide. The favorable PK and tolerability profiles support further clinical development.
Collapse
|
17
|
Goto E, Tagami T, Ogawa K, Ozeki T. Fabrication of 3D-Printed Contact Lens Composed of Polyethylene Glycol Diacrylate for Controlled Release of Azithromycin. Biol Pharm Bull 2023; 46:1461-1467. [PMID: 37779048 DOI: 10.1248/bpb.b23-00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Since three-dimensional (3D)-printed tablets were approved by the United States Food and Drug Administration (FDA), 3D printing technology has garnered increasing interest for the fabrication of medical and pharmaceutical devices. With various dosing devices being designed for manufacture by 3D printing, 3D-printed ophthalmic formulations to release drugs have been one such target of investigation. In the current study, 3D-printed contact lenses designed for the controlled release of the antibiotic azithromycin were produced by vat photopolymerization, and the effect of the printer ink composition and a second curing process was investigated. The azithromycin-loaded contact lenses were composed of the cross-linking reagent polyethylene glycol diacrylate (PEGDA), PEG 400 as a solvent, a photoinitiator, and azithromycin. The 3D-printed contact lenses were fabricated successfully, and formulations with lower PEGDA concentrations produced thicker lenses. The mechanical strength of the PEGDA-based contact lenses was dependent on the amount of PEGDA and was improved by a second curing process. Drug release from 3D-printed contact lenses was reduced in the samples with a second curing process. The azithromycin-loaded contact lenses exhibited antimicrobial effects in vitro for both Gram-positive and -negative bacteria. These results suggest that 3D-printed contact lenses containing antibiotics are an effective model for treating eye infections by controlling drug release.
Collapse
Affiliation(s)
- Eiichi Goto
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Koki Ogawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
18
|
Dourado LFN, Silva CND, Gonçalves RS, Inoue TT, de Lima ME, Cunha-Júnior ADS. Improvement of PnPP-19 peptide bioavailability for glaucoma therapy: Design and application of nanowafers based on PVA. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
20
|
Yang Y, Lockwood A. Topical ocular drug delivery systems: Innovations for an unmet need. Exp Eye Res 2022; 218:109006. [DOI: 10.1016/j.exer.2022.109006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/06/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023]
|
21
|
Pereira-da-Mota AF, Phan CM, Concheiro A, Jones L, Alvarez-Lorenzo C. Testing drug release from medicated contact lenses: The missing link to predict in vivo performance. J Control Release 2022; 343:672-702. [DOI: 10.1016/j.jconrel.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
|
22
|
van Mechelen RJS, Wolters JE, Bertens CJF, Webers CAB, van den Biggelaar FJHM, Gorgels TGMF, Beckers HJM. Animal models and drug candidates for use in glaucoma filtration surgery: A systematic review. Exp Eye Res 2022; 217:108972. [PMID: 35114212 DOI: 10.1016/j.exer.2022.108972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Glaucoma, a degenerative disease of the optic nerve, is the leading cause of irreversible blindness worldwide. Currently, there is no curative treatment. The only proven treatment is lowering intraocular pressure (IOP), the most important risk factor. Glaucoma filtration surgery (GFS) can effectively lower IOP. However, approximately 10% of all surgeries fail yearly due to excessive wound healing, leading to fibrosis. GFS animal models are commonly used for the development of novel treatment modalities. The aim of the present review was to provide an overview of available animal models and anti-fibrotic drug candidates. MEDLINE and Embase were systematically searched. Manuscripts until September 1st, 2021 were included. Studies that used animal models of GFS were included in this review. Additionally, the snowball method was used to identify other publications which had not been identified through the systematic search. Two hundred articles were included in this manuscript. Small rodents (e.g. mice and rats) are often used to study the fibrotic response after GFS and to test drug candidates. Due to their larger eyes, rabbits are better suited to develop medical devices. Novel drugs aim to inhibit specific pathways, e.g. through the use of modulators, monoclonal antibodies, aqueous suppressants or gene therapy. Although most newly studied drugs offer a higher safety profile compared to antimetabolites, their efficacy is in most cases lower when compared to MMC. Current literature on animal models and potential drug candidates for GFS were summarized in this review. Future research should focus on refining current animal models (for example through the induction of glaucoma prior to undertaking GFS) and standardizing animal research to ensure a higher reproducibility and reliability across different research groups. Lastly, novel therapies need to be further optimized, e.g. by conducting more research on the dosage, administration route, application frequency, the option of creating combination therapies, or the development of drug delivery systems for sustained release of anti-fibrotic medication.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands.
| | - Jarno Ej Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), 6229 GS, Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Frank J H M van den Biggelaar
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), 6202 AZ, Maastricht, the Netherlands
| |
Collapse
|
23
|
Tagami T, Goto E, Kida R, Hirose K, Noda T, Ozeki T. Lyophilized ophthalmologic patches as novel corneal drug formulations using a semi-solid extrusion 3D printer. Int J Pharm 2022; 617:121448. [PMID: 35066116 DOI: 10.1016/j.ijpharm.2022.121448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022]
Abstract
3D printing technology is a novel and practical approach for producing unique and complex industrial and medical objects. In the pharmaceutical field, the approval of 3D printed tablets by the US Food and Drug Administration has led to other 3D printed drug formulations and dosage forms being proposed and investigated. Here, we report novel ophthalmologic patches for controlled drug release fabricated using a semi-solid material extrusion-type 3D printer. The patch-shaped objects were 3D printed using hydrogel-based printer inks composed of hypromellose (HPMC), sugar alcohols (mannitol, xylitol), and drugs, then freeze-dried. The viscous properties of the printer inks and patches were dependent on the HPMC and sugar alcohol concentrations. Then, the physical properties, surface structure, water uptake, antimicrobial activity, and drug release profile of lyophilized patches were characterized. Lyophilized ophthalmologic patches with different dosages and patterns were fabricated as models of personalized treatments prepared in hospitals. Then, ophthalmologic patches containing multiple drugs were fabricated using commercially available eye drop formulations. The current study indicates that 3D printing is applicable to producing novel dosage forms because its high flexibility allows the preparation of patient-tailored dosages in a clinical setting.
Collapse
Affiliation(s)
- Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Eiichi Goto
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Risako Kida
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Kiyomi Hirose
- Department of Hospital Pharmacy, Nagoya University Hospital, 65-banchi, Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Takehiro Noda
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
24
|
Wang JH, Tseng CL, Lin FL, Chen J, Hsieh EH, Lama S, Chuang YF, Kumar S, Zhu L, McGuinness MB, Hernandez J, Tu L, Wang PY, Liu GS. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics 2022; 12:657-674. [PMID: 34976206 PMCID: PMC8692906 DOI: 10.7150/thno.65098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Rationale: Corneal neovascularization (CoNV) is a severe complication of various types of corneal diseases, that leads to permanent visual impairment. Current treatments for CoNV, such as steroids or anti-vascular endothelial growth factor agents, are argued over their therapeutic efficacy and adverse effects. Here, we demonstrate that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) plays an important role in the pathogenesis of CoNV. Methods: Angiogenic activities were assessed in ex vivo and in vitro models subjected to TAK1 inhibition by 5Z-7-oxozeaenol, a selective inhibitor of TAK1. RNA-Seq was used to examine pathways that could be potentially affected by TAK1 inhibition. A gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol was developed as the eyedrop to treat CoNV in a rodent model. Results: We showed that 5Z-7-oxozeaenol reduced angiogenic processes through impeding cell proliferation. Transcriptome analysis suggested 5Z-7-oxozeaenol principally suppresses cell cycle and DNA replication, thereby restraining cell proliferation. In addition, inhibition of TAK1 by 5Z-7-oxozeaenol blocked TNFα-mediated NFκB signalling, and its downstream genes related to angiogenesis and inflammation. 5Z-7-oxozeaenol also ameliorated pro-angiogenic activity, including endothelial migration and tube formation. Furthermore, topical administration of the gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol led to significantly greater suppression of CoNV in a mouse model compared to the free form of 5Z-7-oxozeaenol, likely due to extended retention of 5Z-7-oxozeaenol in the cornea. Conclusion: Our study shows the potential of TAK1 as a therapeutic target for pathological angiogenesis, and the gelatin nanoparticle coupled with 5Z-7-oxozeaenol as a promising new eyedrop administration model in treatment of CoNV.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinying Chen
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Suraj Lama
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Satheesh Kumar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Linxin Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jessika Hernandez
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Leilei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
25
|
Kagkelaris K, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol 2022; 14:25158414221112356. [PMID: 35873277 PMCID: PMC9301101 DOI: 10.1177/25158414221112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Conventional drug delivery formulations, such as eye drops and ointments, are
mainly administered by topical instillation. The topical delivery of ophthalmic
drugs is a challenging endeavor despite the eye is easily accessible. Unique and
complex barriers, serving as protection against extrinsic harmful factors,
hamper therapeutic intraocular drug concentrations. Bioavailability for deeper
ocular tissues of the anterior segment of the eye is exceptionally low. As the
bioavailability of the active substance is the major hurdle to overcome, dosing
is increased, so the side effects do. Both provoke patient poor compliance,
confining the desired therapeutic outcome. The incidence and severity of adverse
reactions amplify evenly in the case of chronic treatments. Current research
focuses on the development of innovative delivery strategies to address low
ocular bioavailability and provide safe and convenient dosing schemes. The main
objective of this review is to explore and present the latest developments in
ocular drug delivery formulations for the treatment of the pathology of the
anterior segment of the eye. Nanotechnology-based formulations, that is, organic
nanoparticles (liposomes, niosomes/discosomes, dendrimers, nanoemulsions,
nanosuspensions, nanoparticles/nanospheres) and inorganic nanoparticles,
nanoparticle-laden therapeutic contact lenses, in situ gelling
systems, and ocular inserts, are summarized and presented accordingly.
Collapse
Affiliation(s)
- Konstantinos Kagkelaris
- Department of Ophthalmology, School of Medicine, University of Patras, 26500 Patras, Greece
- Department of General Pharmacology, School of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
26
|
Ocular Fluid Mechanics and Drug Delivery: A Review of Mathematical and Computational Models. Pharm Res 2021; 38:2003-2033. [PMID: 34936067 DOI: 10.1007/s11095-021-03141-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The human eye is a complex biomechanical structure with a range of biomechanical processes involved in various physiological as well as pathological conditions. Fluid flow inside different domains of the eye is one of the most significant biomechanical processes that tend to perform a wide variety of functions and when combined with other biophysical processes play a crucial role in ocular drug delivery. However, it is quite difficult to comprehend the effect of these processes on drug transport and associated treatment experimentally because of ethical constraints and economic feasibility. Computational modeling on the other hand is an excellent means to understand the associated complexity between these aforementioned processes and drug delivery. A wide range of computational models specific to different types of fluids present in different domains of the eye as well as varying drug delivery modes has been established to understand the fluid flow behavior and drug transport phenomenon in an insilico manner. These computational models have been used as a non-invasive tool to aid ophthalmologists in identifying the challenges associated with a particular drug delivery mode while treating particular eye diseases and to advance the understanding of the biomechanical behavior of the eye. In this regard, the author attempts to summarize the existing computational and mathematical approaches proposed in the last two decades for understanding the fluid mechanics and drug transport associated with different domains of the eye, together with their application to modify the existing treatment processes.
Collapse
|
27
|
Wang J, Li B, Huang D, Norat P, Grannonico M, Cooper RC, Gui Q, Chow WN, Liu X, Yang H. Nano-in-Nano Dendrimer Gel Particles for Efficient Topical Delivery of Antiglaucoma Drugs into the Eye. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 425:130498. [PMID: 34121919 PMCID: PMC8194049 DOI: 10.1016/j.cej.2021.130498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low bioavailability of topically applied drugs remains a significant challenge for long-term glaucoma therapy. To enhance drug delivery efficiency, we developed dendrimer gel particles that collectively exhibit structural benefits of dendrimer, hydrogel, and particles, using the inverse emulsion method coupled with the highly efficient aza-Michael addition reaction (IEaMA). This hierarchical approach would maximize the utility of the structural features of existing ocular drug delivery systems. We have tested the delivery efficiency and efficacy of two first-line antiglaucoma drugs, brimonidine tartrate (BT) and timolol maleate (TM), which were loaded into dendrimer gel particles of various sizes, i.e., nDHP (nano-in-nano dendrimer hydrogel particles, ~200 nm), μDHP3 (3 μm), and μDHP10 (9 μm). We found that nDHP was superior to μDHP3 and μDHP10 in terms of cytocompatibility, degradability, drug release kinetics, and corneal permeability. The nDHPs increased drug corneal permeability by 17-fold compared to plain drug solution and enabled zero-order prolonged drug release kinetics. The nDHP-based formulation demonstrated pronounced IOP-lowering effects in both single-dose test and 7-day chronic daily dosing test in both Brown Norway rats and glaucoma mice. Taken together, we have developed nano-in-nano dendrimer gel particles for precise dosing and enabling sustained and synergistic efficacy of antiglaucoma drugs, which could be clinically impactful for improving glaucoma treatment.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Da Huang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pedro Norat
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Remy C. Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Qin Gui
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Woon Nam Chow
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Ophthalmology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, United States
- Corresponding authors: (XL), (HY)
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Corresponding authors: (XL), (HY)
| |
Collapse
|
28
|
Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14111201. [PMID: 34832983 PMCID: PMC8621906 DOI: 10.3390/ph14111201] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.
Collapse
|
29
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
30
|
Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm 2021; 608:121090. [PMID: 34530102 DOI: 10.1016/j.ijpharm.2021.121090] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of drugs that target ocular tissues is challenging due to the physiological barriers of the eye like tear dilution, nasolacrimal drainage, blinking, tear turnover rate and low residence time Drug-laden contact lenses can be a possible solution to overcome some of these challenges. Nanoparticles are being extensively studied as novel systems for loading drugs into therapeutic contact lenses. The versatile features of the organic and inorganic nanoparticles and their diverse physicochemical properties make it possible to load and sustain drug release from the contact lenses. Nevertheless, several issues remains to be solved before its clinical application and commercialization such as changes in contact lens swelling (water content), transmittance, protein adherence, surface roughness, tensile strength, ion and oxygen permeability and drug leaching during contact lens manufacture. However, clinical studies demonstrated the potential of therapeutic contact lenses to manage the scientific, commercial and regulatory challenges to make its place in the market. This review highlights the different methodologies used to fabricate nanoparticle-laden contact lenses and highlights the major advances and challenges to commercialization.
Collapse
|
31
|
Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. Int J Pharm 2021; 608:121105. [PMID: 34537269 DOI: 10.1016/j.ijpharm.2021.121105] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
The human eye is a complex organ with unique anatomy and physiology that restricts the delivery of drugs to target ocular tissues/sites. Recent advances in the field of pharmacy, biotechnology and material science have led to development of novel ophthalmic dosage forms which can provide sustained drug delivery, reduce dosing frequency and improve the ocular bioavailability of drugs. This review highlights the different anatomical and physiological factors which affect ocular bioavailability of drugs and explores advancements from 2016 to 2020 in various ophthalmic preparations. Different routes of drug administration such as topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral and retrobulbar are discussed with their advances and limitations.
Collapse
|
32
|
Omer S, Zelkó R. A Systematic Review of Drug-Loaded Electrospun Nanofiber-Based Ophthalmic Inserts. Pharmaceutics 2021; 13:1637. [PMID: 34683930 PMCID: PMC8536958 DOI: 10.3390/pharmaceutics13101637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, ocular inserts and nanoparticles have received much attention due to the limited bioavailability of conventional eye preparations and the toxicity problems of systemic drug administration. The current systematic review aims to present recent studies on the use of electrospun nanofiber-based ocular inserts to improve the bioavailability of drugs used for different ophthalmic diseases. A systematic search was performed in PubMed, Ovid Medline, Web of Science, ScienceDirect, Scopus, Reaxys, Google Scholar, and Google Patents/Espacenet taking "drug-loaded", "nanofibers", and "ophthalmic inserts" and their equivalent terms as keywords. The search was limited to original and peer-reviewed studies published in 2011-2021 in English language. Only 13 out of 795 articles and 15 out of 197 patents were included. All results revealed the success of nanofiber-based ocular inserts in targeting and improved bioavailability. Ocular inserts based on nanofibers can be used as safe, efficient carriers for the treatment of anterior and posterior eye diseases.
Collapse
Affiliation(s)
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, 1092 Budapest, Hungary;
| |
Collapse
|
33
|
Wróblewska KB, Jadach B, Muszalska-Kolos I. Progress in drug formulation design and delivery of medicinal substances used in ophthalmology. Int J Pharm 2021; 607:121012. [PMID: 34400274 DOI: 10.1016/j.ijpharm.2021.121012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Due to the very low bioavailability of drugs administered to the surface of the eyeball, issues related to the formulation of an ophthalmic drug pose a technological challenge. The essence of an ophthalmic drug is the selection of an appropriate active substance (API), but also auxiliary substances that determine the desired drug quality and API availability. The ophthalmic drug is not only classic eye drops. Therefore, on the basis of the literature data, the properties and application of auxiliary substances increasing the pharmaceutical availability of API, improving the penetration of API into the eye structures and modifying the viscosity of eye drops were characterized. The possibility of chemical modification of API and the use of prodrugs in ophthalmic drug forms was also noted. Taking into account the progress in the field of ophthalmic drug formulation, the use of multi-compartment systems (lipid particles, nanoparticles, microparticles, liposomes, niosomes, dendrimers) and modern ophthalmic drug delivery systems (inserts, implants, microneedles, contact lenses, ionophoretic systems) have been indicated. Examples of solutions already used by manufacturers, as well as those in the phase of laboratory or clinical trials, were indicated.
Collapse
Affiliation(s)
- Katarzyna B Wróblewska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
34
|
Lin W, Zhao L, Tan Q, Lin D. Treatment of Severe Acute Bacterial Keratitis in Rabbits Using Continuous Topical Ocular Instillation with Norvancomycin. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:617-628. [PMID: 33623371 PMCID: PMC7896742 DOI: 10.2147/dddt.s295874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/23/2021] [Indexed: 11/30/2022]
Abstract
Purpose Efficacy of norvancomycin (NVCM) through continuous topical ocular instillation drug delivery (CTOIDD) system for treating severe acute bacterial keratitis infection with Staphylococcus aureus was investigated. Methods Rabbits with bacterial keratitis were treated using CTOIDD with NVCM (n=13), topical NVCM eye drops (n=11), and CTOIDD with saline (n=8). Clinical signs of keratitis in all groups were assessed consecutively for a week. Bacterial quantification of excised corneas was counted on the fourth and eighth days. Histopathologic examinations were performed to assess inflammatory cell infiltration on the eighth day. Results All signs of bacterial keratitis were alleviated in CTOIDD with NVCM according to criteria, and the CTOIDD-NVCM group had significantly less inflammation than CTOIDD-saline (p<0.05), and eye drop-NVCM (p<0.05). Two eyes in the eye drop-NVCM group, four eyes in the CTOIDD-saline group had corneal perforation (CP), while none of the rabbits showed CP in the CTOIDD-NVCM group. Bacterial counts were significantly less in the CTOIDD with NVCM group in comparison to the eye drop-NVCM (p<0.05), and CTOIDD-saline (p<0.05) groups. Severe inflammation and marked inflammatory cell infiltration were found in histopathologic examinations in the CTOIDD-saline and eye drop-NVCM groups, while significantly less inflammation was documented in the CTOIDD-NVCM (p<0.05) group. Conclusion CTOIDD with NVCM effectively reduced the severity and treated acute bacterial S. aureus keratitis infection in a rabbit model. The presented approach of CTOIDD with NVCM appears to be a promising therapeutic approach for severe acute bacterial keratitis.
Collapse
Affiliation(s)
- Wenxiang Lin
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Central South University, Changsha, People's Republic of China
| | - Libei Zhao
- Department of Ophthalmology, Changsha Aier Eye Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Tan
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Central South University, Changsha, People's Republic of China
| | - Ding Lin
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
35
|
Bertens CJF, Gijs M, Dias AAJ, van den Biggelaar FJHM, Ghosh A, Sethu S, Nuijts RMMA. Pharmacokinetics and efficacy of a ketorolac-loaded ocular coil in New Zealand white rabbits. Drug Deliv 2021; 28:400-407. [PMID: 33594935 PMCID: PMC7894442 DOI: 10.1080/10717544.2021.1883157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eye drops are considered standard practice for the delivery of ocular drugs. However, low patient compliance and low drug levels compromise its effectiveness. Our group developed a ketorolac-loaded ocular coil for sustained drug delivery up to 28 days. The aim of this study was to gain insight into the pharmacokinetics and efficacy of the ocular coil. The pharmacokinetics of the ketorolac-loaded ocular coil versus eye drops were tested in New Zealand White rabbits by repetitive sampling for 28 days. Efficacy of the ocular coil was also tested in New Zealand White rabbits. Ocular inflammation was induced where after the ocular coil was inserted, or eye drops, or no treatment was provided. The total protein concentration and cytokine levels were measured in tears, aqueous humor, and plasma at 4 h, 8 h, 24 h, 4 d, 7 d, 14 d, 21 d, and 28 d. Four h after inserting the ocular coil in the eye, ketorolac levels in aqueous humor and plasma were higher in the ocular coil group than in the eye drop group. Ketorolac released from the ocular coil could be detected up to 28 d in tears, up to 4 d in aqueous humor and up to 24 h in plasma. After inducing inflammation, both the ocular coil and eye drops were able to suppress prostaglandin E2, TNFα and IL-6 levels in aqueous humor and plasma as compared to the group that received no treatment. To conclude, the ocular coil facilitated a sustained release of the drug and showed similar therapeutic benefit in suppressing post-operative inflammation as eye drops.
Collapse
Affiliation(s)
- Christian J F Bertens
- Chemelot Institute for Science and Technology (InSciTe), Maastricht, The Netherlands.,University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Marlies Gijs
- Chemelot Institute for Science and Technology (InSciTe), Maastricht, The Netherlands.,University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Aylvin A J Dias
- Chemelot Institute for Science and Technology (InSciTe), Maastricht, The Netherlands.,Eyegle bv, Maastricht, The Netherlands
| | - Frank J H M van den Biggelaar
- Chemelot Institute for Science and Technology (InSciTe), Maastricht, The Netherlands.,University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Rudy M M A Nuijts
- Chemelot Institute for Science and Technology (InSciTe), Maastricht, The Netherlands.,University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
36
|
Bertens CJF, Dunker SL, Dias AJAA, van den Biggelaar FJHM, Nuijts RMMA, Gijs M. Safety and Comfort of an Innovative Drug Delivery Device in Healthy Subjects. Transl Vis Sci Technol 2021; 9:35. [PMID: 33384889 PMCID: PMC7757610 DOI: 10.1167/tvst.9.13.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose The aim of this study was to investigate safety and comfort of two versions of a placebo-microsphere filled ocular coil (straight and curved) in healthy subjects. Methods The study was a single-center intervention study. One ocular coil was placed in the inferior conjunctival fornix for the intended duration of 28 days. Forty-two healthy adult subjects were included. At baseline, 30 minutes, 8 hours, 24 hours, 48 hours, 7 days, 14 days, 21 days, and 28 days after insertion, examinations were performed, including slit lamp evaluation to score ocular redness, intraocular pressure measurement, visual acuity, tear secretion test, and questionnaires. Results The straight and curved ocular coils had a median retention time of 5 days and 12 days, respectively. After 48 hours, 57% and 81% subjects retained the straight and curved ocular coil, respectively. Four (19%) subjects with the straight coil and six (29%) with the curved coil completed the entire study period. Minor changes in ocular hyperemia were observed in both groups. On day 7, the straight coil was more comfortable than the curved coil with a visual analogue scale (VAS) score of 77 ± 21 compared to 94 ± 11 (P = 0.028), respectively. No other ocular adverse events were observed. Conclusions Comfort and safety of the straight and curved ocular coil are high. Because the retention time is too short for long-term sustained drug release, the use in the perioperative or immediate postoperative period could prove to be more valuable. Translational Relevance The ocular coil is a noninvasive, comfortable and safe short-term drug delivery device.
Collapse
Affiliation(s)
- Christian J F Bertens
- Chemelot Institute for Science and Technology (InSciTe), GS Maastricht, The Netherlands
| | - Suryan L Dunker
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), HX Maastricht, The Netherlands.,Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, ER Maastricht, The Netherlands
| | - Aylvin J A A Dias
- Chemelot Institute for Science and Technology (InSciTe), GS Maastricht, The Netherlands.,Eyegle bv. Gerbergaplantsoen 11, Maastricht, The Netherlands
| | - Frank J H M van den Biggelaar
- Chemelot Institute for Science and Technology (InSciTe), GS Maastricht, The Netherlands.,University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), HX Maastricht, The Netherlands
| | - Rudy M M A Nuijts
- Chemelot Institute for Science and Technology (InSciTe), GS Maastricht, The Netherlands.,University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), HX Maastricht, The Netherlands
| | - Marlies Gijs
- Chemelot Institute for Science and Technology (InSciTe), GS Maastricht, The Netherlands
| |
Collapse
|
37
|
Silva D, de Sousa HC, Gil MH, Santos LF, Oom MS, Alvarez-Lorenzo C, Saramago B, Serro AP. Moxifloxacin-imprinted silicone-based hydrogels as contact lens materials for extended drug release. Eur J Pharm Sci 2021; 156:105591. [PMID: 33065225 DOI: 10.1016/j.ejps.2020.105591] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
Contact lenses may act as drug release platforms for the treatment of ocular infections, but there is still the need for extending their typical release periods and enhancing ocular bioavailability. The present study aimed to develop a molecularly imprinted silicone-based hydrogel to be used in the manufacturing of contact lenses that can be loaded efficiently and be able to release the antibiotic moxifloxacin hydrochloride (MXF) in a sustained way. A set of hydrogels was prepared by the molecular imprinting method using acrylic acid (AA) as the functional monomer for the specific recognition of MXF. The modified hydrogels loaded a higher amount of MXF, which was released for a longer time. In vitro experiments, using a microfluidic cell to mimic the ocular surface fluid turnover, showed that the imprinted hydrogel TRIS(300)-I prepared with the highest content in AA led to MXF concentrations in the release medium which were effective against S. aureus and S. epidermidis for about 2 weeks. Furthermore, some important properties such as water uptake, wettability, transmittance, ionic permeability, and Young´s modulus of the modified hydrogel remained within the range of values recommended for contact lenses. No cytotoxicity and no potential ocular irritancy effect were detected. Such hydrogel seems to be a promising alternative to the current options for the treatment of ocular infections.
Collapse
Affiliation(s)
- Diana Silva
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Hermínio C de Sousa
- Univ Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra
| | - Maria Helena Gil
- Univ Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra
| | - Luís F Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Madalena Salema Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz,2829-511 Caparica, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Benilde Saramago
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz,2829-511 Caparica, Portugal.
| |
Collapse
|
38
|
Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, Vranić E. Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions. Pharmaceutics 2020; 13:E28. [PMID: 33375224 PMCID: PMC7824381 DOI: 10.3390/pharmaceutics13010028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is considered to be one of the biggest health problems in the world. It is the main cause of preventable blindness due to its asymptomatic nature in the early stages on the one hand and patients' non-adherence on the other. There are several approaches in glaucoma treatment, whereby this has to be individually designed for each patient. The first-line treatment is medication therapy. However, taking into account numerous disadvantages of conventional ophthalmic dosage forms, intensive work has been carried out on the development of novel drug delivery systems for glaucoma. This review aims to provide an overview of formulation solutions and strategies in the development of in situ gel systems, nanosystems, ocular inserts, contact lenses, collagen corneal shields, ocular implants, microneedles, and iontophoretic devices. The results of studies confirming the effectiveness of the aforementioned drug delivery systems were also briefly presented.
Collapse
Affiliation(s)
- Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Naida Omerović
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| |
Collapse
|
39
|
Abasian P, Ghanavati S, Rahebi S, Nouri Khorasani S, Khalili S. Polymeric nanocarriers in targeted drug delivery systems: A review. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Payam Abasian
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Sonya Ghanavati
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University St. Petersburg Russian Federation
| | - Saeed Rahebi
- Department of Renewable Energies University of Tehran Tehran Iran
| | | | - Shahla Khalili
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| |
Collapse
|
40
|
Xu C, Chen Y, Zheng Z, Liu Y, Cao S, Xu Y. Mussel-Inspired Biocompatible PAADOPA/PAAm Hydrogel Adhesive for Amoxicillin Delivery. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chengyuan Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yang Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Zhiyuan Zheng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yongchun Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| |
Collapse
|
41
|
Silva D, de Sousa HC, Gil MH, Santos LF, Moutinho GM, Salema-Oom M, Alvarez-Lorenzo C, Serro AP, Saramago B. Diclofenac sustained release from sterilised soft contact lens materials using an optimised layer-by-layer coating. Int J Pharm 2020; 585:119506. [PMID: 32512224 DOI: 10.1016/j.ijpharm.2020.119506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022]
Abstract
A layer-by-layer (LbL) coating was designed using ionic polysaccharides (chitosan, sodium alginate, sodium hyaluronate) and genipin (crosslinker), to sustain the release of diclofenac sodium salt (DCF) from soft contact lens (SCL) materials. The coating was hydrophilic, biocompatible, non-toxic, reduced bacterial growth and had minor effects on the physical properties of the material, such as wettability, ionic permeability, refractive index and transmittance, which remained within the recommended values for SCLs. The coating was applied on a silicone-based hydrogel and on commercial SofLens and Purevision SCLs. The coating attenuated the initial drug burst and extended the therapeutic period for, at least, two weeks. Relevantly, the problems of sterilizing drug loaded SCLs coated with biopolymers, using classic methods that involve high temperature or radiation, were successfully solved through high hydrostatic pressure (HHP) sterilization.
Collapse
Affiliation(s)
- Diana Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Hermínio C de Sousa
- Univ Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Maria Helena Gil
- Univ Coimbra, CIEPQPF, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Luís F Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Guilhermina Martins Moutinho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
42
|
Bertens CJF, Martino C, van Osch MC, Lataster A, Dias AJAA, van den Biggelaar FJHM, Tuinier R, Nuijts RMMA, Gijs M. Design of the ocular coil, a new device for non-invasive drug delivery. Eur J Pharm Biopharm 2020; 150:120-130. [PMID: 32173602 DOI: 10.1016/j.ejpb.2020.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
Abstract
Eye drops and ointments are the most prescribed methods for ocular drug delivery. However, due to low drug bioavailability, rapid drug elimination, and low patient compliance there is a need for improved ophthalmic drug delivery systems. This study provides insights into the design of a new drug delivery device that consists of an ocular coil filled with ketorolac loaded PMMA microspheres. Nine different ocular coils were created, ranging in wire diameter and coiled outer diameter. Based on its microsphere holding capacity and flexibility, one type of ocular coil was selected and used for further experiments. No escape of microspheres was observed after bending the ocular coil at curvature which reflect the in vivo situation in human upon positioning in the lower conjunctival sac. Shape behavior and tissue contact were investigated by computed tomography imaging after inserting the ocular coil in the lower conjunctival fornix of a human cadaver. Thanks to its high flexibility, the ocular coil bends along the circumference of the eye. Because of its location deep in the fornix, it appears unlikely that in vivo, the ocular coil will interfere with eye movements. In vitro drug release experiments demonstrate the potential of the ocular coil as sustained drug delivery device for the eye. We developed PMMA microspheres with a 26.5 ± 0.3 wt% ketorolac encapsulation efficiency. After 28 days, 69.9% ± 5.6% of the loaded ketorolac was released from the ocular coil when tested in an in vitro lacrimal system. In the first three days high released dose (48.7% ± 5.4%) was observed, followed by a more gradually release of ketorolac. Hence, the ocular coil seems a promising carrier for ophthalmic drugs delivery in the early postoperative time period.
Collapse
Affiliation(s)
- Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS Maastricht, the Netherlands.
| | - Chiara Martino
- Eindhoven University of Technology (TU/e), Department of Chemical Engineering & Institute for Complex Molecular Systems (icms) and Chemistry, Laboratory of Physical Chemistry, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS Maastricht, the Netherlands
| | - Marty C van Osch
- Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS Maastricht, the Netherlands
| | - Arno Lataster
- Maastricht University, Department of Anatomy and Embryology, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Aylvin J A A Dias
- Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS Maastricht, the Netherlands; Eyegle bv., Gerbergaplantsoen 11, 6226 DR Maastricht, the Netherlands
| | - Frank J H M van den Biggelaar
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS Maastricht, the Netherlands
| | - Remco Tuinier
- Eindhoven University of Technology (TU/e), Department of Chemical Engineering & Institute for Complex Molecular Systems (icms) and Chemistry, Laboratory of Physical Chemistry, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS Maastricht, the Netherlands
| | - Marlies Gijs
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Gaetano Martinolaan 63-65, 6229 GS Maastricht, the Netherlands
| |
Collapse
|
43
|
Lin W, Zhao L, Huang X, Tan Q, Peng M, Khan MA, Lin D. Comparative Assessment of Distribution Characteristics and Ocular Pharmacokinetics of Norvancomycin Between Continuous Topical Ocular Instillation and Hourly Administration of Eye Drop. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:867-879. [PMID: 32161446 PMCID: PMC7049745 DOI: 10.2147/dddt.s233047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/13/2020] [Indexed: 01/04/2023]
Abstract
Background The aim of this study was to compare the distribution characteristics and ocular pharmacokinetics of norvancomycin (NVCM) in ocular tissues of the anterior segment between continuous topical ocular instillation and hourly administration of eye drop in rabbits. Methods Sixty rabbits were randomly divided into two groups: continuous topical ocular instillation drug delivery (CTOIDD) group and eye drop (control) group. In the CTOIDD group, NVCM solution (50 mg/mL) was perfused to the ocular surface using the CTOIDD system at 2 mL/h up to 10 h and the same solution was administered at one drop (50 μL) per hour for 10 h in the control group. Animals (N=6 per time-point per group) were humanely killed at 2, 4, 6, 10, and 24 h to analyze their ocular tissues and plasma. The concentrations of NVCM in the conjunctiva, cornea, aqueous humour, iris, ciliary body and plasma were measured by HPLC with photodiode array detector. The pharmacokinetic parameters were calculated by Kinetica 5.1. Results The highest concentrations of NVCM for the CTOIDD group and control group were 2105.45±919.89 μg/g and 97.18±43.14 μg/g in cornea, 3033.92±1061.95 μg/g and 806.99±563.02 μg/g in conjunctiva, 1570.19±402.87 μg/g and 46.93±23.46 μg/g in iris, 181.94±47.11 μg/g and 15.38±4.00 μg/g in ciliary body, 29.78±4.90 μg/mL and 3.20±1.48 μg/mL in aqueous humour, and 26.89±5.57 μg/mL and 1.90±1.87 μg/mL in plasma, respectively. The mean NVCM levels significantly increased at all time-points in cornea, iris, and ciliary body (p<0.05) in the CTOIDD group. The AUC0–24 values in the CTOIDD group were 27,543.70 μg·h/g in cornea, 32,514.48 μg·h/g in conjunctiva, 8631.05 μg·h/g in iris, 2194.36 μg·h/g in ciliary body and 343.9 μg·h/mL in aqueous humour, which were higher than for the eye drop group in all tissues. Conclusion Since continuous instillation of NVCM with CTOIDD could reach significantly higher concentrations and was sustained for a longer period compared with hourly administration of eye drop, CTOIDD administered NVCM could be a possible method to treat bacterial keratitis. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/mh0eyzHYgRE
Collapse
Affiliation(s)
- Wenxiang Lin
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha, People's Republic of China
| | - Libei Zhao
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha, People's Republic of China
| | - Xuetao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qian Tan
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha, People's Republic of China
| | - Manqiang Peng
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha, People's Republic of China
| | - Muhammad Ahmad Khan
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha, People's Republic of China
| | - Ding Lin
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha, People's Republic of China
| |
Collapse
|
44
|
Zhang X, Cao X, Qi P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:549-560. [PMID: 31902299 DOI: 10.1080/09205063.2020.1712175] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiuju Zhang
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| | - Xiuzhen Cao
- Department of Anus and Intestine Surgery, Taian Central Hospital, Taian, Shandong, China
| | - Ping Qi
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
45
|
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in Ocular Drug Delivery. Pharmaceutics 2019; 12:E22. [PMID: 31878298 PMCID: PMC7023054 DOI: 10.3390/pharmaceutics12010022] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides, such as cellulose, hyaluronic acid, alginic acid, and chitosan, as well as polysaccharide derivatives, have been successfully used to augment drug delivery in the treatment of ocular pathologies. The properties of polysaccharides can be extensively modified to optimize ocular drug formulations and to obtain biocompatible and biodegradable drugs with improved bioavailability and tailored pharmacological effects. This review discusses the available polysaccharide choices for overcoming the difficulties associated with ocular drug delivery, and it explores the reasons for the dependence between the physicochemical properties of polysaccharide-based drug carriers and their efficiency in different formulations and applications. Polysaccharides will continue to be of great interest to researchers endeavoring to develop ophthalmic drugs with improved effectiveness and safety.
Collapse
Affiliation(s)
- Natallia Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Daria Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Sergei Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| | - Arto Urtti
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| |
Collapse
|
46
|
Sirazitdinova E, Gijs M, Bertens CJF, Berendschot TTJM, Nuijts RMMA, Deserno TM. Validation of Computerized Quantification of Ocular Redness. Transl Vis Sci Technol 2019; 8:31. [PMID: 31853426 PMCID: PMC6908135 DOI: 10.1167/tvst.8.6.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/20/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose To show feasibility of computerized techniques for ocular redness quantification in clinical studies, and to propose an automatic, objective method. Methods Software for quantification of redness of the bulbar conjunctiva was developed. It provides an interface for manual and automatic sclera segmentation along with automated alignment of region of interest to enable estimation of changes in redness. The software also includes the redness scoring methods: (1) contrast-limited adaptive histogram equalization (CLAHE) in red-green-blue (RGB) color model, (2) product of saturation and hue in hue-saturation-value (HSV), and (3) average of angular sections in HSV. Our validation pipeline compares the scoring outcomes from the perspectives of segmentation reliability, segmentation precision, segmentation automation, and the choice of redness scoring methods. Results Ninety-two photographs of eyes before and after provoked redness were evaluated. Redness in manually segmented images was significantly different within human observers (interobserver, P = 0.04) and two scoring sessions (intraobserver, P < 0.001). Automated segmentation showed the smallest variability, and can therefore be seen as a robust segmentation method. The RGB-based scoring method was less sensitive in redness assessment. Conclusions Computation of ocular redness depends heavily on sclera segmentation. Manual segmentation appears to be subjective, resulting in systematic errors in intraobserver and interobserver settings. At the same time, automatic segmentation seems to be consistent. The scoring methods relying on HSV color space appeared to be more consistent. Translational Relevance Computerized quantification of ocular redness holds great promise to objectify ocular redness in the standard clinical care and, in particular, in clinical trials.
Collapse
Affiliation(s)
| | - Marlies Gijs
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands.,Department of Ophthalmology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Thomas M Deserno
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany
| |
Collapse
|
47
|
Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm 2019; 573:118803. [PMID: 31682963 DOI: 10.1016/j.ijpharm.2019.118803] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Hydrogels are hydrophilic polymer networks, able to absorb large amount of water, increasing their volume and showing a plethora of different material behaviors. Since their first practical application, dating from sixties of last century, they have been employed in several fields of biomedical sciences. After more than half a century of industrial uses, nowadays a lot of hydrogels are currently on the market for different purposes, and offering a wide spectra of features. In this review, even if it is virtually impossible to list all the commercial products based on hydrogels for biomedical applications, an extensive analysis of those materials that have reached the market has been carried out. The hydrogel-based materials used for drug delivery, wound dressing, tissue engineering, the building of contact lens, and hygiene products are enlisted and briefly described. A detailed snapshot of the set of these products that have reached the commercial maturity has been then obtained and presented. For each class of application, the basics of requirements are described, and then the materials are listed and classified on the basis of their chemical nature. For each product the commercial name, the producer, the chemical nature and the main characteristics are reported.
Collapse
Affiliation(s)
- Sara Cascone
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy.
| | - Gaetano Lamberti
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
48
|
Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome. Acta Biomater 2019; 99:350-362. [PMID: 31449929 DOI: 10.1016/j.actbio.2019.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Dry eye syndrome is a common eye disease that affects many people worldwide. It is usually treated with eye drops, which has low bioavailability owing to rapid clearance from the ocular surface and leads to poor patient compliance and side effects. For the purpose of improving the therapeutic efficacy, nanostructured lipid carrier (NLC)-loaded dexamethasone (DEX) was prepared and functionalized with (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS). As APBA has a boronic acid group, it can form a high-affinity complex with sialic acids present in the ocular mucin, which contributes to extension of corneal retention time and improvement of drug delivery. Compared with eye drops, Rhodamine B (RhB)-labeled APBA-ChS-NLC could significantly prolong the residence time on the corneal surface. Moreover, the DEX-APBA-ChS-NLC showed no irritation to the rabbit eye as indicated in irritation studies and histological images. The pharmacodynamics study indicated that DEX-APBA-ChS-NLC could relieve symptoms of dry eye disease in rabbits. These results demonstrated that the developed mucoadhesive drug carrier could improve the delivery of drugs and have promising potential to treat anterior eye diseases. STATEMENT OF SIGNIFICANCE: In this research, (3-aminomethylphenyl)boronic acid-conjugated chondroitin sulfate (APBA-ChS)-based nanostructured lipid carriers (NLCs) including dexamethasone (DEX) were designed and constructed. APBA-ChS, which is present on the surface of DEX-NLC and contains the boronic acid group, can form complex with sialic acids in the ocular mucin, hence leading to prolonged precorneal retention. This affinity between boronic acid and sialic acids was used to develop a mucoadhesive drug delivery system. The developed mucoadhesive drug carrier demonstrated prolonged retention time and alleviation of dry eye syndrome. APBA-ChS-based NLC may be considered a promising ocular drug delivery system for treating anterior eye diseases.
Collapse
|
49
|
Bertens CJF, Zhang S, Erckens RJ, van den Biggelaar FJHM, Berendschot TTJM, Webers CAB, Nuijts RMMA, Gijs M. Confocal Raman spectroscopy: Evaluation of a non-invasive technique for the detection of topically applied ketorolac tromethamine in vitro and in vivo. Int J Pharm 2019; 570:118641. [PMID: 31446026 DOI: 10.1016/j.ijpharm.2019.118641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Current information about the pharmacokinetics of an ocular drug can only be achieved by invasive sampling. However, confocal Raman spectroscopy bears the potential to quantify drug concentrations non-invasively. In this project, we evaluated the detection and quantification of ocular ketorolac tromethamine levels with confocal Raman spectroscopy after topical administration. Confocal Raman spectroscopy and high-performance liquid chromatography (HPLC) were compared in terms of sensitivity of detection. Enucleated pig eyes were treated with different concentrations of ketorolac. Hereafter, ketorolac concentrations in the aqueous humor of pig eyes were analyzed by confocal Raman spectroscopy and HPLC. Subsequently, twelve rabbits were treated with Acular™ for four weeks. At several time points, ketorolac concentrations in aqueous humor of the rabbits were measured by confocal Raman spectroscopy followed by drawing an aqueous humor sample for HPLC analysis. In ketorolac treated pig eyes, both ex vivo Raman spectroscopy as well as HPLC were able to detect ketorolac in a broad concentration range. However, in vivo confocal Raman spectroscopy in rabbits was unable to detect ketorolac in contrast to HPLC. To conclude, confocal Raman spectroscopy has the capacity to detect ketorolac tromethamine in vitro, but currently lacks sensitivity for in vivo detection.
Collapse
Affiliation(s)
- Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Urmonderbaan 20F, 6167 RD Geleen, the Netherlands.
| | - Shuo Zhang
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Roel J Erckens
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Department of Ophthalmology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Frank J H M van den Biggelaar
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Urmonderbaan 20F, 6167 RD Geleen, the Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Urmonderbaan 20F, 6167 RD Geleen, the Netherlands; Department of Ophthalmology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Marlies Gijs
- University Eye Clinic Maastricht, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Chemelot Institute for Science and Technology (InSciTe), Urmonderbaan 20F, 6167 RD Geleen, the Netherlands
| |
Collapse
|
50
|
Cao Y, Samy KE, Bernards DA, Desai TA. Recent advances in intraocular sustained-release drug delivery devices. Drug Discov Today 2019; 24:1694-1700. [PMID: 31173915 PMCID: PMC6708500 DOI: 10.1016/j.drudis.2019.05.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/16/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022]
Abstract
Topical eye-drop administration and intravitreal injections are the current standard for ocular drug delivery. However, patient adherence to the drug regimen and insufficient administration frequency are well-documented challenges to this field. In this review, we describe recent advances in intraocular implants designed to deliver therapeutics for months to years, to obviate the issues of patient adherence. We highlight recent advances in monolithic ocular implants in the literature, the commercialization pipeline, and approved for the market. We also describe design considerations based on material selection, active pharmaceutical ingredient, and implantation site.
Collapse
Affiliation(s)
- Yiqi Cao
- UC Berkeley-UCSF Graduate Program in Bioengineering, 1700 4th Street, San Francisco, CA 94158, United States
| | - Karen E Samy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Daniel A Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
| |
Collapse
|