1
|
Zhang Z, Zhao R, Wu X, Ma Y, He Y. Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review). Mol Med Rep 2025; 31:47. [PMID: 39635819 PMCID: PMC11638739 DOI: 10.3892/mmr.2024.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
The cornea is a clear connective tissue membrane at the front of the outer layer of the eyeball wall. It plays a crucial role in the refractive system of the eyeball, making it essential to maintain its transparency. Neovascularization and lymphangiogenesis in the cornea significantly impact corneal transparency and immune privilege. The growth of corneal neovascularization (CNV) and corneal lymphangiogenesis (CL) vessels is interconnected yet independent. Currently, there is a substantial amount of clinical and experimental research on CNV and CL vessels. However, due to the relatively recent focus on CL vessel research compared with CNV research, most scholars tend to concentrate on CNV, with few articles offering a comprehensive comparison and discussion of the two processes. The present review emphasizes the similarities and differences between CNV and CL and summarizes recent research progress on their correlation in animal models, growth characteristics, cytokine effects and related diseases.
Collapse
Affiliation(s)
- Zhaochen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Rongxuan Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xuhui Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yunkun Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
2
|
Qi Q, Su D, Zhuang S, Yao S, Heindl LM, Fan X, Lin M, Li J, Pang Y. Progress in Nanotechnology for Treating Ocular Surface Chemical Injuries: Reflecting on Advances in Ophthalmology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407340. [PMID: 39755928 DOI: 10.1002/advs.202407340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques. In recent years, nanotechnology has made significant strides, revolutionizing the management of ocular surface chemical injuries by enabling sustained drug release, enhancing treatment efficacy, and minimizing side effects. This review provides a comprehensive analysis of the etiology, epidemiology, classification, and conventional therapies for ocular chemical burns, with a special focus on nanotechnology-based drug delivery systems in managing ocular surface chemical injuries. Twelve categories of nanocarrier platforms are examined, including liposomes, nanoemulsions, nanomicelles, nanowafers, nanostructured lipid carriers, nanoparticles, hydrogels, dendrimers, nanocomplexes, nanofibers, nanozymes, and nanocomposite materials, highlighting their advantages in targeted delivery, biocompatibility, and improved healing efficacy. Additionally, current challenges and limitations in the field are discussed and the future potential of nanotechnology in treating ocular diseases is explored. This review presents the most extensive examination of this topic to date, aiming to link recent advancements with broader therapeutic strategies.
Collapse
Affiliation(s)
- Qiaoran Qi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, 200011, China
| | - Dai Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, 200011, China
| | - Shuqin Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, 200011, China
| | - Sunyuan Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, 200011, China
| | - Ludwig M Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Cologne, Germany
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, 200011, China
| | - Ming Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, 200011, China
| | - Jin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, 200011, China
| | - Yan Pang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Center for Basic Medical Research and Innovation in Visual System Diseases, Ministry of Education, Shanghai, 200011, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Li Z, Chen J, Huang Z, Huang W, Wang K, Liang X, Su W. Topical application of 666-15, a potent inhibitor of CREB, alleviates alkali-induced corneal neovascularization. Exp Eye Res 2025; 250:110165. [PMID: 39571779 DOI: 10.1016/j.exer.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/02/2024]
Abstract
Corneal neovascularization (CNV) is a dynamically regulated process that arises due to a disruption in the equilibrium between pro-angiogenic and anti-angiogenic factors. Various cytokines are released by vascular endothelial cells and macrophages in damaged cornea, ultimately inducing CNV. The cAMP-response element-binding protein (CREB), a nuclear transcription factor, potentially impacts tumor angiogenesis by modulating the secretion of angiogenic proteins. This study aimed to assess the impact of 666-15, a potent inhibitor of CREB, on angiogenesis using human microvascular retinal endothelial cells (HMRECs), RAW 264.7 macrophage cell line and alkali-induce CNV mouse model. In vivo, the topical application of 666-15 (0.05 mg/mL) to the alkali-burn corneas led to 45% reduction in CNV. Additionally, in vitro treatment with 666-15 is effective in suppressing the migration, proliferation, and tube formation by HMRECs. Furthermore, treatment with 666-15 resulted in a down-regulation of pro-angiogenic cytokines expression, including VEGF-A, TGF-β1, b-FGF, and MMP-2 but simultaneously increasing anti-angiogenic cytokines expression, such as ADAMTS-1, Thrombospondin-1 (Tsp-1) and Tsp-2, both in alkali-burn corneas and HMRECs. And 666-15 inhibited the recruitment and the cytokines expression (VEGF-A, MMP-2, IL-1β, TNF-α, MCP-1 and MIP-1) of macrophage. Our findings revealed that 666-15 may suppress the function of endothelial cells and angiogenesis by restoring the homeostasis of pro-angiogenic stimuli, suggesting its potential as a therapeutic agent in the treatment of CNV and other angiogenesis-driven diseases.
Collapse
Affiliation(s)
- Zuohong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kerui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuanwei Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China.
| |
Collapse
|
4
|
Wang H, Yang Y, Yu H, Ma L, Qi X, Qu J, Zhang X, Li N, Dou S, Liu X, Wei C, Gao H. Self-Cascade API Nanozyme for Synergistic Anti-Inflammatory, Antioxidant, and Ferroptosis Modulation in the Treatment of Corneal Neovascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407751. [PMID: 39648573 DOI: 10.1002/smll.202407751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Corneal neovascularization is a common pathological ocular change that can severely impairs vision, potentially leading to blindness. Although steroids and non-steroidal anti-inflammatory drugs are the primary treatments, their side effects, such as ocular hypertension, eye irritation, and corneal lysis, limit their widespread use. In the present study, an active pharmaceutical ingredient (API) nanozyme (PC-DS NE) is developed through the metal-organic coordination of ferrous sulfate with the anti-inflammatory agent diclofenac sodium and the natural antioxidant proanthocyanidin. PC-DS NE exhibited a spheroid morphology with a particle size of 39.7 ± 5.2 nm, and could achieve the short-term release of diclofenac sodium and sustained release of proanthocyanidin. Notably, the PC-DS NE possessed favorable biocompatibility, self-cascade redox regulation capacity, and significant anti-inflammatory activity. In corneal alkali burn experiments, PC-DS NE effectively inhibited corneal neovascularization by scavenging reactive oxygen species, inhibiting the expression of inflammatory cytokines and pro-angiogenic factors, and down-regulating ferroptosis. These synergistic effects highlighted the potential of PC-DS NE as a promising treatment for ocular inflammatory diseases.
Collapse
Affiliation(s)
- Hongwei Wang
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Yang Yang
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- The Affiliated Women's and Children's Hospital of Ningbo University, Ningbo, 315000, China
- Medical College, Qingdao University, Qingdao, 266073, China
| | - Huimin Yu
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- Medical College, Qingdao University, Qingdao, 266073, China
| | - Li Ma
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Xia Qi
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Junpeng Qu
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- Medical College, Qingdao University, Qingdao, 266073, China
| | - Xiaoyu Zhang
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
- Eye Hospital of Shandong First Medical University, Jinan, 250117, China
| | - Na Li
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
- Eye Hospital of Shandong First Medical University, Jinan, 250117, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
- Eye Hospital of Shandong First Medical University, Jinan, 250117, China
| | - Chao Wei
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
| | - Hua Gao
- State Key Laboratory Cultivation Base Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
- School of Ophthalmology, Shandong First Medical University, Jinan, 250062, China
- Eye Hospital of Shandong First Medical University, Jinan, 250117, China
| |
Collapse
|
5
|
Shen S, Nan W, Zhang W, Wu H, Zhang Y. Bone morphogenetic protein 4 inhibits corneal neovascularization by blocking NETs-induced disruption to corneal epithelial barrier. Int Immunopharmacol 2024; 142:113023. [PMID: 39217886 DOI: 10.1016/j.intimp.2024.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Corneal neovascularization (CoNV) is the second leading cause of visual impairment worldwide, and current drugs have certain limitations. Inflammatory response is the core pathological process of CoNV. Neutrophil extracellular traps (NETs) are generated after neutrophil activation, which promotes neovascularization. Prior studies demonstrated that bone morphogenetic protein 4 (BMP4) could significantly reduce inflammation and CoNV formation, its exact molecular mechanism remains unclear. Therefore, we stimulated human peripheral blood neutrophils with phorbol myristate acetate (PMA) or deoxyribonuclease I (DNase I) to induce or inhibit NETs formation. By using corneal sutures and subconjunctival injections of NETs or DNase I, rat CoNV models were established. Compared with the suture group, NETs formation and inflammatory cell infiltration in the corneal stroma were significantly increased, corneal edema was aggravated, and the length, area and diameter of CoNV were significantly enhanced in the NETs group. Furthermore, by curetting the corneal epithelial apical junctional complexes (AJCs), a crucial component in preserving the function of the corneal epithelial barrier, we discovered that the damage of AJCs had a significant role in inducing CoNV formation. NETs could induce CoNV formation by injuring corneal epithelial AJCs. Finally, by comparing the aforementioned indicators after the intervention of BMP4, BMP4 inhibitor Noggin and NADPH oxidase (NOX) inhibitor, we finally demonstrated that BMP4 could inhibit NETs-induced inflammation and corneal epithelial AJC injury, repair corneal epithelial barrier function and eventually inhibit CoNV formation by blocking NOX-2-dependent NETs formation.
Collapse
Affiliation(s)
- Sitong Shen
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province 130041, China
| | - Weijin Nan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenxin Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province 130041, China
| | - Hong Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province 130041, China
| | - Yan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province 130041, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
6
|
Zhu Q, Wang Y, Wang L, Su G. Elucidating acceptance and clinical indications to support the rational design of drug-eluting contact lenses. Int J Pharm 2024; 665:124702. [PMID: 39270761 DOI: 10.1016/j.ijpharm.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The advent of drug-eluting contact lenses (DECLs) has opened up new avenues for the treatment of eye diseases. DECLs is expected to partially overcome the shortcomings of eye drops due to single-dose packaging, accurate dosing, prolonged drug elution behavior, and simplified dosing procedures. Currently, a significant proportion of the DECLs design effort has been directed towards enhancing the compatibility of contact lenses with drugs. The appropriate elution time for the drug remains unclear. Additionally, it is ambiguous for which ophthalmic diseases DECLs offers the greatest therapeutic advantage. To rationally design DECLs in practice, it is necessary to understand the acceptance of DECLs by patients and practitioners and to clarify the indications for DECLs. This review will first focus on the acceptance of DECLs by different patients and practitioners and discuss the factors that influence its acceptance. Secondly, this review presents an overview of the current effectiveness of DECLs treatments in animals and in the clinical phase, with a particular focus on the suitability of DECLs for the treatment of ophthalmic diseases. Overall, patients and practitioners expressed positive attitudes towards DECLs. However, this is related to factors such as DECLs' treatment cycle, safety, and price. In addition, DECLs has good application prospects for ocular wound healing, postoperative management, and treatment of contact lenses-related complications. Furthermore, chronic diseases such as glaucoma that necessitate long-term medication and intraocular diseases that require implants or injections represent additional potential applications for DECLs. It is hoped that this review will facilitate a deeper understanding of DECLs acceptance and indications, thereby supporting the rational design of DECLs. At the same time, this review provides a reference for the design of other drug-device combination products.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China
| | - Yong Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University and First People's Hospital of Nantong City, Nantong 226001, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, China
| | - Gaoxing Su
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, China.
| |
Collapse
|
7
|
Wu C, Shi L, Deng Y, Chen H, Lu Y, Xiong X, Yin X. Bufalin Regulates STAT3 Signaling Pathway to Inhibit Corneal Neovascularization and Fibrosis After Alkali Burn in Rats. Curr Eye Res 2024:1-9. [PMID: 39356002 DOI: 10.1080/02713683.2024.2408392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE Bufalin (BU) is a bioactive ingredient extracted from the skin and parotid venom glands of Bufo raddei, which can effectively inhibit angiogenesis. The aim of this study was to investigate whether BU could affect corneal neovascularization (CoNV). METHODS A rat CoNV model (right eye) was constructed by administration of NaOH, and the left eye served as a control. Corneal damage scores of rats were detected. Hematoxylin & eosin, TUNEL, and Masson staining examined pathological changes, apoptosis, and fibrosis of corneal tissues. Immunohistochemistry and western blotting assessed the expression of proteins. RESULTS BU intervention resulted in a significant reduction in corneal inflammatory cells, repair of corneal epithelial hyperplasia, significant reduction in stromal edema, and reduction in vascular proliferation. BU can inhibit corneal neovascularization. CONCLUSION This study demonstrated that BU inhibits CoNV, fibrosis, and inflammation by modulating the STAT3 signaling pathway, elucidating the intrinsic mechanism of its protective effect. BU has great potential in the treatment of CoNV caused by corneal alkali burns.
Collapse
Affiliation(s)
- Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lu Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yan Deng
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang, China
| | - Ying Lu
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoyan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaolong Yin
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Wang W, Li H, Qian Y, Li M, Deng M, Bi D, Zou J. ALKBH5 Regulates Corneal Neovascularization by Mediating FOXM1 M6A Demethylation. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39441582 PMCID: PMC11512564 DOI: 10.1167/iovs.65.12.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose This study aims to explore the regulatory role and potential mechanisms of ALKBH5-mediated N6-methyladenosine (m6A) demethylation modification in corneal neovascularization (CNV). Methods A mouse CNV model was established through corneal alkali burns. Total m6A levels were measured using an m6A RNA methylation quantification kit. The mRNA expression of candidate m6A-related enzymes was quantified by quantitative RT-PCR. Small interfering RNA targeting ALKBH5 was injected subconjunctivally into alkali-burned mice. The CNV area, corneal epithelial thickness, and pathological changes were evaluated. Protein expression was detected by western blot and immunofluorescence. Human umbilical vein endothelial cells (HUVECs) were treated with IL-6. Plasmid transfection knocked down ALKBH5 or overexpressed FOXM1 in IL-6-induced HUVECs. The assays of CCK8, wound healing, and tube formation evaluated the cell proliferation, migration, and tube formation abilities, respectively. The dual-luciferase assay examined the binding between ALKBH5 and FOXM1. Methylated RNA immunoprecipitation-qPCR detected the m6A levels of FOXM1. Results Significant CNV was observed on the seventh day. Total m6A levels were reduced, and ALKBH5 expression was increased in CNV corneas and IL-6-induced HUVECs. ALKBH5 knockdown alleviated corneal neovascularization and inflammation and countered IL-6-induced promotion of cell proliferation, migration, and tube formation in HUVECs. ALKBH5 depletion increased m6A levels and decreased VEGFA and CD31 expression both in vivo and in vitro. This knockdown in HUVECs elevated m6A levels on FOXM1 mRNA while reducing its mRNA and protein expression. Notably, FOXM1 overexpression can reverse ALKBH5 depletion effects. Conclusions ALKBH5 modulates FOXM1 m6A demethylation, influencing CNV progression and highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hua Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiyong Qian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Yang X, Li M, Wang H, Wang M, Liu Y, Xu W, Jiang T. SNORD45A Affects Content of HIF-1α and Promotes Endothelial Angiogenic Function. Appl Biochem Biotechnol 2024; 196:7185-7197. [PMID: 38489114 DOI: 10.1007/s12010-024-04916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
To find out the differentially expressed small nucleolar RNAs (snoRNAs) in corneal neovascularization and their effect on angiogenesis. The rat model of corneal neovascularization induced by alkali burn was established, and the differentially expressed snoRNAs were sifted by high-throughput sequencing. Human genome homologs were screened and verified in cytopathological models. Polymerase chain reactions (PCRs) and Western blot assays were applied to detect mRNA and corresponding proteins affected by the differentially expressed snoRNA. In vitro, experiments were promoted to identify whether snoRNA affects endothelial cell migration and angiogenesis. Forty-seven differentially expressed snoRNAs were sifted from transparent cornea and neovascularization. According to sequencing and cytopathological model results, SNORD45A was selected for subsequent experiments. At mRNA and protein levels, SNORD45A affected the expression of HIF-1α. SNORD45A promoted endothelial angiogenesis through endothelial cell migration and tube formation regulation. The research suggested that SNORD45A partakes in the corneal neovascularization formation and can become one of the targets for corneal neovascularization therapy.
Collapse
Affiliation(s)
- Xi Yang
- The Affiliated Hospital, Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong province, China
| | - Meng Li
- The Medical Faculty, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, Shandong province, China
| | - Hongqiao Wang
- Department of Blood Purification, Hiser Medical Center of Qingdao, No.4, Renmin Road, Qingdao, 266034, Shandong province, China
| | - Mengyuan Wang
- The Medical Faculty, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, Shandong province, China
| | - Yiming Liu
- The Medical Faculty, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, Shandong province, China
| | - Wenhua Xu
- The Affiliated Hospital, Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong province, China.
- Institute of Regenerative Medicine and Laboratory Innovation, Qingdao University, No. 308, Ningxia Road, Qingdao, 266071, Shandong province, China.
| | - Tao Jiang
- The Affiliated Hospital, Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong province, China.
| |
Collapse
|
10
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Liang B, Kong Y, Luo D, Wen H, Liao Y, Yuan Y, Li S. Prenatal ultrasound diagnosis of complete cryptophthalmos, congenital aphakia, and corneal vascularization in a fetus: A case report and literature review. Eur J Obstet Gynecol Reprod Biol 2024; 301:70-76. [PMID: 39106617 DOI: 10.1016/j.ejogrb.2024.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Complete cryptophthalmos, congenital aphakia, and corneal vascularization are relatively uncommon congenital eye malformations during the fetal period. Herein, we report a case of a fetus with complete cryptophthalmos, congenital aphakia, and corneal vascularization in both eyes and review previous prenatal reports of related cases. CASE PRESENTATION The patient was a 27-year-old pregnant woman, gravida 2, para 1, who was referred to our hospital for consultation at 23 weeks of gestation due to a diagnosis of fetal right renal agenesis at an external hospital. The ultrasound system of our hospital diagnosed the fetus with complete cryptophthalmos, congenital aphakia, and corneal vascularization, which was verified under the postnatal water basin test, anatomical and pathological sections. CONCLUSIONS Fetal ocular malformations are often associated with malformations of other organs, and if ultrasound findings are associated with such malformations, attention should be paid to the ocular examination to avoid missing the diagnosis.
Collapse
Affiliation(s)
- Bocheng Liang
- Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China
| | - Yanqing Kong
- Department of Pathology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China
| | - Dandan Luo
- Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China
| | - Huaxuan Wen
- Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China
| | - Yimei Liao
- Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China
| | - Ying Yuan
- Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China
| | - Shengli Li
- Department of Ultrasound, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518028, China.
| |
Collapse
|
12
|
Kim DR, Park SK, Kim EJ, Kim DK, Yoon YC, Myung D, Lee HJ, Na KS. Dexamethasone acetate loaded poly(ε-caprolactone) nanofibers for rat corneal chemical burn treatment. Sci Rep 2024; 14:21806. [PMID: 39300144 DOI: 10.1038/s41598-024-62026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 09/22/2024] Open
Abstract
Topical eye drop approaches to treat ocular inflammation in dry eyes often face limitations such as low efficiency and short duration of drug delivery. Nanofibers serve to overcome the limitation of the short duration of action of topical eye drops used against ocular inflammation in dry eyes. Several attempts to develop suitable nanofibers have been made; however, there is no ideal solution. Here, we developed polycaprolactone (PCL) nanofibers loaded with dexamethasone acetate (DEX), prepared by electrospinning, as a potential ocular drug delivery platform for corneal injury treatment. Thirty-nine Sprague Dawley rats (7 weeks old males) were divided into four treatment groups after alkaline burns of the cornea; negative control (no treatment group); dexamethasone eyedrops (DEX group); PCL fiber (PCL group); dexamethasone loaded PCL (PCL + DEX group). We evaluated therapeutic efficacy of PCL + DEX by examining the epithelial wound healing effect, the extent of corneal opacity and neovascularization. Additionally, various inflammatory factors, including IL-1β, were investigated through immunochemistry, western blot analysis, and quantitative real-time RT-PCR (qRT-PCR). PCL + DEX group showed histologically alleviated signs of corneal inflammation compared with DEX group, which showed a decrease in IL-1β and MMP9 in the corneal stroma. The quantitative expression on day 1 after alkaline burn of pro-inflammatory markers, including IL-1β and IL-6, in the PCL + DEX group was significantly lower than that in the DEX group. Notably, PCL + DEX treatment significantly suppressed neovascularization, and enhanced the anti-inflammatory function of DEX during the acute phase of ocular inflammation. Collectively, these findings suggest that PCL + DEX may be a promising approach to effective drug delivery in corneal burn injuries.
Collapse
Affiliation(s)
- Da Ran Kim
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, Republic of Korea
| | - Sun-Kyoung Park
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, Republic of Korea
| | - Eun Jeong Kim
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, Republic of Korea
| | - Dong-Kyu Kim
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, Republic of Korea
| | - Young Chae Yoon
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, Republic of Korea
| | - David Myung
- Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, 94303, USA
| | - Hyun Jong Lee
- Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Kyung-Sun Na
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul, 07345, Republic of Korea.
| |
Collapse
|
13
|
Xie M, Wang L, Deng Y, Ma K, Yin H, Zhang X, Xiang X, Tang J. Sustained and Efficient Delivery of Antivascular Endothelial Growth Factor by the Adeno-associated Virus for the Treatment of Corneal Neovascularization: An Outlook for Its Clinical Translation. J Ophthalmol 2024; 2024:5487973. [PMID: 39286553 PMCID: PMC11405113 DOI: 10.1155/2024/5487973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/16/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Corneal diseases represent 5.1% of all eye defects and are the fourth leading cause of blindness globally. Corneal neovascularization can arise from all conditions of chronic irritation or hypoxia, which disrupts the immune-privileged state of the healthy cornea, increases the risk of rejection after keratoplasty, and leads to opacity. In the past decades, significant progress has been made for neovascular diseases of the retina and choroid, with plenty of drugs getting commercialized. In addition, to overcome the barriers of the short duration and inadequate penetration of conventional formulations of antivascular endothelial growth factor (VEGF), multiple novel drug delivery systems, including adeno-associated virus (AAV)-mediated transfer have gone through the full process of bench-to-bedside translation. Like retina neovascular diseases, corneal neovascularization also suffers from chronicity and a high risk of recurrence, necessitating sustained and efficient delivery across the epithelial barrier to reach deep layers of the corneal stroma. Among the explored methods, adeno-associated virus-mediated delivery of anti-VEGF to treat corneal neovascularization is the most extensively researched and most promising strategy for clinical translation although currently although, it remains predominantly at the preclinical stage. This review comprehensively examines the necessity, benefits, and risks of applying AAV vectors for anti-VEGF drug delivery in corneal vascularization, including its current progress and challenges in clinical translation.
Collapse
Affiliation(s)
- Mengzhen Xie
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
- Beijing Institute of Ophthalmology Beijing Tongren Eye Center Beijing Tongren Hospital Capital Medical University Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Lixiang Wang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Yingping Deng
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Ke Ma
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Hongbo Yin
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xiaolan Zhang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| | - Xingye Xiang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu, Sichuan, China
- Georgia State University, Atlanta, GA 30302, USA
| | - Jing Tang
- Department of Ophthalmology West China Hospital Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Wei C, Mi Y, Sun L, Luo J, Zhang J, Gao Y, Yu X, Ge H, Liu P. Cannabidiol alleviates suture-induced corneal pathological angiogenesis and inflammation by inducing myeloid-derived suppressor cells. Int Immunopharmacol 2024; 137:112429. [PMID: 38851157 DOI: 10.1016/j.intimp.2024.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Currently, no perfect treatment for neovascularization and lymphangiogenesis exist, and each treatment method has its complications and side effects. This study aimed to investigate the anti-angiogenic and anti-inflammatory effects of cannabidiol and its mechanism of action. METHOD An in vivo corneal neovascularization (CNV) model was established using the suture method to investigate the inhibitory effects of CBD on suture-induced corneal inflammation, pathological blood vessel formation, and lymphangiogenesis. Additionally, the impact of CBD on immune cells was studied. In vitro methodologies, including cell sorting and co-culture, were employed to elucidate its mechanism of action. RESULTS Compared with the CNV group, CBD can inhibit CNV, lymphangiogenesis, and inflammation induced via the suture method. In addition, CBD specifically induced CD45+CD11b+Gr-1+ cell upregulation, which significantly inhibited the proliferation of CD4+ T lymphocytes in vitro and exhibited a CD31+ phenotype, proving that they were myeloid-derived suppressor cells (MDSCs). We administered anti-Gr-1 to mice to eliminate MDSCs in vivo and found that anti-Gr-1 partially reversed the anti-inflammatory and angiogenic effects of CBD. Furthermore, we found that compared with MDSCs in the normal group, CBD-induced MDSCs overexpress peroxisome proliferator-activated receptor-gamma (PPAR-γ). Administering PPAR-γ inhibitor in mice almost reversed the induction of MDSCs by CBD, demonstrating the role of PPAR-γ in the function of CBD. CONCLUSION This study indicates that CBD may induce MDSCs upregulation by activating the nuclear receptor PPAR-γ, exerting anti-inflammatory, antiangiogenic, and lymphangiogenic effects, and revealing potential therapeutic targets for corneal neovascularization and lymphangiogenesis.
Collapse
Affiliation(s)
- Chaoqun Wei
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Yu Mi
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liyao Sun
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Jialin Luo
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jiayue Zhang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China; Key Laboratory of Ischemia-reperfusion, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China; Experimental Animal Centre, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yi Gao
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Xiaohan Yu
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Hongyan Ge
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China.
| | - Ping Liu
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
16
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
17
|
Ye J, Cheng Y, Wen X, Han Y, Wei X, Wu Y, Chen C, Su M, Cai S, Pan J, Liu G, Chu C. Biomimetic nanocomplex based corneal neovascularization theranostics. J Control Release 2024; 374:50-60. [PMID: 39111599 DOI: 10.1016/j.jconrel.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Corneal neovascularization (CNV) is a major cause of blindness worldwide. However, the recent drug treatment is limited by repeated administration and low drug bioavailability. In this work, SU6668 (an inhibitor of receptor tyrosine kinases) and indocyanine green (ICG) are loaded onto poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and then coated with anti-VEGFR2 single chain antibody (AbVr2 scFv) genetically engineered cell membrane vesicles. The nanomedicine is delivered via eye drops, and the hyperthermia induced by laser irradiation could block the blood vessels. Meanwhile, the photothermal effect can also cause the degradation of nanomaterials and release chemotherapeutic drugs in the blocked area, thereby continuously inhibit the neovascularization. Furthermore, SU6668 could inhibit the expression of heat shock protein 70 (HSP70), promoting the cell death induced by photothermal effect. In conclusion, the combination of photothermal and chemotherapy drugs provides a novel, effective and safe approach for the treatment of CNV.
Collapse
Affiliation(s)
- Jinfa Ye
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Yuhang Cheng
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Xiaofei Wen
- Department of Interventional Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, China
| | - Yun Han
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Xingyuan Wei
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Yiming Wu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China.
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Shundong Cai
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Jintao Pan
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces & The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361002, China; Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Chengchao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China; Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| |
Collapse
|
18
|
Liu H, Liang X, Peng Y, Liu G, Cheng H. Supercritical Fluids: An Innovative Strategy for Drug Development. Bioengineering (Basel) 2024; 11:788. [PMID: 39199746 PMCID: PMC11351119 DOI: 10.3390/bioengineering11080788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Nanotechnology plays a pivotal role in the biomedical field, especially in the synthesis and regulation of drug particle size. Reducing drug particles to the micron or nanometer scale can enhance bioavailability. Supercritical fluid technology, as a green drug development strategy, is expected to resolve the challenges of thermal degradation, uneven particle size, and organic solvent residue faced by traditional methods such as milling and crystallization. This paper provides an insight into the application of super-stable homogeneous intermix formulating technology (SHIFT) and super-table pure-nanomedicine formulation technology (SPFT) developed based on supercritical fluids for drug dispersion and micronization. These technologies significantly enhance the solubility and permeability of hydrophobic drugs by controlling the particle size and morphology, and the modified drugs show excellent therapeutic efficacy in the treatment of hepatocellular carcinoma, pathological scarring, and corneal neovascularization, and their performance and efficacy are highlighted when administered through multiple routes of administration. Overall, supercritical fluids have opened a green and efficient pathway for clinical drug development, which is expected to reduce side effects and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Xiaoliu Liang
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Yisheng Peng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (H.L.); (X.L.); (Y.P.)
| | - Hongwei Cheng
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR 999078, China
| |
Collapse
|
19
|
Ben H, Liu X, Zhang P, Hong J. Progressive conjunctival invasion of cornea in a child with Warburg-Cinotti Syndrome: a case report. BMC Ophthalmol 2024; 24:322. [PMID: 39095787 PMCID: PMC11295642 DOI: 10.1186/s12886-024-03596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Warburg-Cinotti syndrome is a rare syndrome caused by de novo or inherited variants in discoding domain receptor tyrosine kinase 2 (DDR2). Only six cases have been reported worldwide and our knowledge of this disease remained sparse especially from an ophthalmological perspective, since previous literature mostly focused on systemic malformations or genetics. CASE PRESENTATION A seven-year-old boy developed a gelatinous vascularized conjunctiva-like mass secondary to trauma. The mass enlarged and gradually invaded the cornea. With each surgical intervention, the mass recurred and grew even larger rapidly. The patient ended up with the mass covering the entire cornea along with symblepharon formation. Whole exome sequencing revealed a hemizygous variant in the DDR2 gene, which is consistent with Warburg-Cinotti syndrome. CONCLUSIONS Considering Warburg-Cinotti syndrome, we should be vigilant of patients exhibiting progressive conjunctival invasion of the cornea, even those without systemic manifestations or a positive family history.
Collapse
Affiliation(s)
- Hanzhi Ben
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Pei Zhang
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China.
| |
Collapse
|
20
|
Xiang Y, Qiu Z, Ding Y, Du M, Gao N, Cao H, Zuo H, Cheng H, Gao X, Zheng S, Wan W, Huang X, Hu K. Dexamethasone-loaded ROS stimuli-responsive nanogels for topical ocular therapy of corneal neovascularization. J Control Release 2024; 372:874-884. [PMID: 38977133 DOI: 10.1016/j.jconrel.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Dexamethasone (DEX) has been demonstrated to inhibit the inflammatory corneal neovascularization (CNV). However, the therapeutic efficacy of DEX is limited by the poor bioavailability of conventional eye drops and the increased risk of hormonal glaucoma and cataract associated with prolonged and frequent usage. To address these limitations, we have developed a novel DEX-loaded, reactive oxygen species (ROS)-responsive, controlled-release nanogel, termed DEX@INHANGs. This advanced nanogel system is constructed by the formation of supramolecular host-guest complexes by cyclodextrin (CD) and adamantane (ADA) as a cross-linking force. The introduction of the ROS-responsive material, thioketal (TK), ensures the controlled release of DEX in response to oxidative stress, a characteristic of CNV. Furthermore, the nanogel's prolonged retention on the corneal surface for over 8 h is achieved through covalent binding of the integrin β1 fusion protein, which enhances its bioavailability. Cytotoxicity assays demonstrated that DEX@INHANGs was not notably toxic to human corneal epithelial cells (HCECs). Furthermore, DEX@INHANGs has been demonstrated to effectively inhibit angiogenesis in vitro. In a rabbit model with chemically burned eyes, the once-daily topical application of DEX@INHANGs was observed to effectively suppress CNV. These results collectively indicate that the nanomedicine formulation of DEX@INHANGs may offer a promising treatment option for CNV, offering significant advantages such as reduced dosing frequency and enhanced patient compliance.
Collapse
Affiliation(s)
- Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Zhu Qiu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Miaomiao Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Ning Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Huijie Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Hong Cheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Xiang Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No.266 Fangzheng Avenue, Beibei District, Chongqing 400714, China.
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China.
| |
Collapse
|
21
|
Wang MT, Cai YR, Jang V, Meng HJ, Sun LB, Deng LM, Liu YW, Zou WJ. Establishment of a corneal ulcer prognostic model based on machine learning. Sci Rep 2024; 14:16154. [PMID: 38997339 PMCID: PMC11245505 DOI: 10.1038/s41598-024-66608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Corneal infection is a major public health concern worldwide and the most common cause of unilateral corneal blindness. Toxic effects of different microorganisms, such as bacteria and fungi, worsen keratitis leading to corneal perforation even with optimal drug treatment. The cornea forms the main refractive surface of the eye. Diseases affecting the cornea can cause severe visual impairment. Therefore, it is crucial to analyze the risk of corneal perforation and visual impairment in corneal ulcer patients for making early treatment strategies. The modeling of a fully automated prognostic model system was performed in two parts. In the first part, the dataset contained 4973 slit lamp images of corneal ulcer patients in three centers. A deep learning model was developed and tested for segmenting and classifying five lesions (corneal ulcer, corneal scar, hypopyon, corneal descementocele, and corneal neovascularization) in the eyes of corneal ulcer patients. Further, hierarchical quantification was carried out based on policy rules. In the second part, the dataset included clinical data (name, gender, age, best corrected visual acuity, and type of corneal ulcer) of 240 patients with corneal ulcers and respective 1010 slit lamp images under two light sources (natural light and cobalt blue light). The slit lamp images were then quantified hierarchically according to the policy rules developed in the first part of the modeling. Combining the above clinical data, the features were used to build the final prognostic model system for corneal ulcer perforation outcome and visual impairment using machine learning algorithms such as XGBoost, LightGBM. The ROC curve area (AUC value) evaluated the model's performance. For segmentation of the five lesions, the accuracy rates of hypopyon, descemetocele, corneal ulcer under blue light, and corneal neovascularization were 96.86, 91.64, 90.51, and 93.97, respectively. For the corneal scar lesion classification, the accuracy rate of the final model was 69.76. The XGBoost model performed the best in predicting the 1-month prognosis of patients, with an AUC of 0.81 (95% CI 0.63-1.00) for ulcer perforation and an AUC of 0.77 (95% CI 0.63-0.91) for visual impairment. In predicting the 3-month prognosis of patients, the XGBoost model received the best AUC of 0.97 (95% CI 0.92-1.00) for ulcer perforation, while the LightGBM model achieved the best performance with an AUC of 0.98 (95% CI 0.94-1.00) for visual impairment.
Collapse
Affiliation(s)
- Meng-Tong Wang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - You-Ran Cai
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Vlon Jang
- Qi Dian Fu Liu Technology Co.Ltd, Beijing, China
| | - Hong-Jian Meng
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Ling-Bo Sun
- Department of Ophthalmology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Li-Min Deng
- Department of Ophthalmology, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, China
| | - Yu-Wen Liu
- School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Wen-Jin Zou
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
22
|
Li Y, Chen A, Hong A, Xiong S, Chen X, Xie Q. Shark Cartilage-Derived Anti-Angiogenic Peptide Inhibits Corneal Neovascularization. Bioengineering (Basel) 2024; 11:693. [PMID: 39061775 PMCID: PMC11273382 DOI: 10.3390/bioengineering11070693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Corneal neovascularization is a significant cause of vision loss, often resulting in corneal clouding and chronic inflammation. Shark cartilage is widely recognized as a significant natural source of anti-angiogenic compounds. Our previous studies have shown that a polypeptide from white-spotted catshark (Chiloscyllium plagiosum Bonnet) has the potential to inhibit the angiogenesis of breast tumors. This study applied this peptide (SAIF) to a corneal alkali injury model to assess its effect on corneal neovascularization. Results revealed that SAIF inhibits endothelial cell proliferation, migration, and tube formation. SAIF inhibited VEGF-induced angiogenesis in the matrigel plug. Using the corneal alkali injury model, SAIF significantly inhibited corneal vascular neovascularization in mice. We found that SAIF not only significantly inhibited the upregulation of pro-angiogenic factors such as VEGF, bFGF, and PDGF expression induced by alkali injury, but also promoted the expression of anti-angiogenesis factor PEDF. Moreover, we also analyzed the MMPs and TIMPs involved in extracellular matrix (ECM) remodeling, angiogenesis, and lymphangiogenesis. We found that SAIF treatment inhibited the expression of pro-angiogenic factors like MMP1, MMP2, MMP3, MMP9, MMP13, and MMP14, and promoted the expression of anti-angiogenesis factors such as MMP7, TIMP1, TIMP2, and TIMP3. In conclusion, SAIF acts as an anti-angiogenic factor to inhibit the proliferation, migration, and tube formation of endothelial cells, inhibit pro-angiogenic factors, promote anti-angiogenic factors, and regulate the expression of MMPs, ultimately inhibiting corneal neovascularization.
Collapse
Affiliation(s)
- Yunxian Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
| | - Aoke Chen
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
- Guangdong Jida Engineering Research Center of Genetic Medicine Co., Ltd., Guangzhou 510535, China
| | - An Hong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Sheng Xiong
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Xiaojia Chen
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| | - Qiuling Xie
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.L.); (A.H.); (S.X.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
| |
Collapse
|
23
|
Dohlman TH, Singh RB, Amparo F, Carreno-Galeano T, Dastjerdi M, Coco G, Di Zazzo A, Shikari H, Saboo U, Sippel K, Ciralsky J, Yoo SH, Sticca M, Wakamatsu TH, Murthy S, Hamrah P, Jurkunas U, Ciolino JB, Saeed H, Gomes JA, Perez VL, Yin J, Dana R. Suppression of Neovascularization by Topical and Subconjunctival Bevacizumab After High-Risk Corneal Transplantation. OPHTHALMOLOGY SCIENCE 2024; 4:100492. [PMID: 38682029 PMCID: PMC11046200 DOI: 10.1016/j.xops.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 05/01/2024]
Abstract
Purpose To assess the effectiveness of topical and subconjunctival bevacizumab in suppressing vascularization in graft and host bed after high-risk corneal transplantation. Design Secondary analysis of prospective, randomized, double-blind, placebo-controlled multicentric clinical trial. Participants The study includes patients aged > 18 years who underwent high-risk penetrating keratoplasty, which was defined as corneal vascularization in ≥ 1 quadrants of the corneal graft and host bed, excluding the limbus. Methods Patients were randomized to treatment and control groups. The patients in the treatment group received subconjunctival injection of bevacizumab (2.5 mg/0.1 ml) on the day of the procedure, followed by topical bevacizumab (10 mg/ml) 4 times per day for 4 weeks. The patients in control group received injection of vehicle (0.9% sodium chloride) on the day of procedure, followed by topical vehicle (carboxymethylcellulose sodium 1%) 4 times a day for 4 weeks. Main Outcome Measures Vessel and invasion area of vessels in the corneal graft and host beds. Results This study included 56 eyes of 56 patients who underwent high-risk corneal transplantation, with equal numbers in the bevacizumab and vehicle (control) treatment groups. The mean age of patients who received bevacizumab was 61.2 ± 15.9 years, and the mean age of those treated with vehicle was 60.0 ± 16.1 years. The vessel area at baseline was comparable in the bevacizumab (16.72% ± 3.19%) and control groups (15.48% ± 3.12%; P = 0.72). Similarly, the invasion areas were also similar in the treatment (35.60% ± 2.47%) and control (34.23% ± 2.64%; P = 0.9) groups at baseline. The reduction in vessel area was significantly higher in the bevacizumab-treated group (83.7%) over a period of 52 weeks compared with the control group (61.5%; P < 0.0001). In the bevacizumab-treated group, invasion area was reduced by 75.8% as compared with 46.5% in the control group. The vessel area was similar at 52 weeks postprocedure in cases of first (3.54% ± 1.21%) and repeat (3.80% ± 0.40%) corneal transplantation in patients who received bevacizumab treatment. In the vehicle-treated patients, the vessel area was significantly higher in repeat (9.76% ± 0.32%) compared with first (8.06% ± 1.02%; P < 0.0001) penetrating keratoplasty. In the bevacizumab treatment group, invasion areas at week 52 were comparable in first (11.70% ± 3.38%) and repeat (11.64% ± 1.74%) procedures, whereas invasion area was significantly higher in repeat (27.87% ± 2.57%) as compared with first (24.11% ± 2.17%) penetrating keratoplasty in vehicle-treated patients. Conclusions In patients undergoing vascularized high-risk corneal transplantation, bevacizumab is efficacious in reducing vascularization of corneal graft and host bed, thereby reducing the risk of corneal graft rejection in vascularized host beds. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Thomas H. Dohlman
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Rohan Bir Singh
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Francisco Amparo
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Tatiana Carreno-Galeano
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Mohammad Dastjerdi
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Giulia Coco
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Antonio Di Zazzo
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hasanain Shikari
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ujwala Saboo
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Kimberly Sippel
- Department of Ophthalmology, Weill Cornell Medicine, New York, New York
| | - Jessica Ciralsky
- Department of Ophthalmology, Weill Cornell Medicine, New York, New York
| | - Sonia H. Yoo
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Matheus Sticca
- Cornea and External Disease Service, Paulista Medical School/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tais H. Wakamatsu
- Cornea and External Disease Service, Paulista Medical School/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Somasheila Murthy
- Cornea Service, The Cornea Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India
| | - Pedram Hamrah
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Ula Jurkunas
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Joseph B. Ciolino
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hajirah Saeed
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jose A.P. Gomes
- Cornea and External Disease Service, Paulista Medical School/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Victor L. Perez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
- Foster Center for Ocular Immunology, Duke Eye Center, Duke University School of Medicine, Durham, North Carolina
| | - Jia Yin
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Reza Dana
- Cornea Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Wen Y, Chen Z, McAlinden C, Zhou X, Huang J. Recent advances in corneal neovascularization imaging. Exp Eye Res 2024; 244:109930. [PMID: 38750782 DOI: 10.1016/j.exer.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Corneal neovascularization (CoNV) is a vision-threatening ocular disease commonly secondary to infectious, inflammatory, and traumatic etiologies. Slit lamp photography, in vivo confocal microscopy, angiography, and optical coherence tomography angiography (OCTA) are the primary diagnostic tools utilized in clinical practice to evaluate the vasculature of the ocular surface. However, there is currently a dearth of comprehensive literature that reviews the advancements in imaging technology for CoNV administration. Initially designed for retinal vascular imaging, OCTA has now been expanded to the anterior segment and has shown promising potential for imaging the conjunctiva, cornea, and iris. This expansion allows for the quantitative monitoring of the structural and functional changes associated with CoNV. In this review, we emphasize the impact of algorithm optimization in anterior segment-optical coherence tomography angiography (AS-OCTA) on the diagnostic efficacy of CoNV. Through the analysis of existing literature, animal model assessments are further reported to investigate its pathological mechanism and exhibit remarkable therapeutic interventions. In conclusion, AS-OCTA holds broad prospects and extensive potential for clinical diagnostics and research applications in CoNV.
Collapse
Affiliation(s)
- Yinuo Wen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Colm McAlinden
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China; Corneo Plastic Unit & Eye Bank, Queen Victoria Hospital, East Grinstead, UK
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key laboratory of Myopia and Related Eye Diseases, NHC; Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| |
Collapse
|
25
|
Zhang J, Zhou H, Cai Y, Yoshida S, Li Y, Zhou Y. Melatonin: Unveiling the functions and implications in ocular health. Pharmacol Res 2024; 205:107253. [PMID: 38862072 DOI: 10.1016/j.phrs.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
26
|
Zang Y, Zhao Y, Peng R, Xiao G, Liu X, Qu Y, Zhang X, Zhang J, Hong J. Incidence of Cytomegalovirus Infection After Repeat Keratoplasty and Associated Rate of Graft Failure. Ophthalmol Ther 2024; 13:1967-1980. [PMID: 38789667 PMCID: PMC11178760 DOI: 10.1007/s40123-024-00968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION The aim of this work was to compare the prognosis and characteristics of patients with Cytomegalovirus (CMV) infection (CMV+) with those of patients without virus infection (Virus-) undergoing repeat keratoplasty. METHODS This prospective propensity score-matched cohort study enrolled patients who underwent repeat keratoplasty for graft failure at the Peking University Third Hospital between January 2016 and May 2022. Patients with prior viral keratitis before the first keratoplasty were excluded. The primary outcome measure was the graft failure rate. The secondary outcome measures included the anterior segment characteristics, intraocular pressure (IOP), and endothelial cell density. RESULTS Ninety-four matched patient pairs were included. The graft failure rate in the CMV+ group (71%) was higher than that in the Virus- group (29%) (P < 0.001). CMV infection in the cornea increased the risk of repeat graft failure and shortened the median survival time (hazard ratio, 3.876; 95% confidence intervals, 2.554-5.884; P < 0.001). The characteristics of graft failure included exacerbation of ocular surface inflammation, neovascularization, and opacification. Epithelial defects, high IOP, and endothelial decompensation were observed at an increased frequency in the CMV+ group (all P < 0.005). Recurrent CMV infection presented as early endothelial infection in the CMV+ group. Recurrence of CMV infection was confined to the graft endothelium without involving the stroma and epithelium post-repeat endothelial keratoplasty. CONCLUSIONS CMV infection post-keratoplasty leads to persistent endothelial damage and graft opacification and significantly increases the risk of repeat graft failure. Localized recurrence of CMV infection in the endothelial grafts underscores the importance of monitoring and treatment. TRIAL REGISTRATION Chictr.org.cn, ChiCTR1800014684.
Collapse
Affiliation(s)
- Yunxiao Zang
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Yaning Zhao
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Rongmei Peng
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Gege Xiao
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Xiaozhen Liu
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Yi Qu
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Xuanjun Zhang
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Jiaxin Zhang
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, No. 49 Garden North Road, Haidian, Beijing, 100191, China.
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China.
| |
Collapse
|
27
|
Yao Q, Wu H, Ren H, Cao J, Shao Y, Liu G, Lu P. Inhibition of Experimental Corneal Neovascularization by the Tight Junction Protein ZO-1. J Ocul Pharmacol Ther 2024; 40:379-388. [PMID: 39172123 DOI: 10.1089/jop.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Purpose: To explore the effects of the tight junction protein zonula occludens 1 (ZO-1) on experimental corneal neovascularization (CNV). Methods: CNV models were established in the left eyes of BALB/c mice using NaOH. Anti-ZO-1 neutralizing antibody was topically applied to the burnt corneas after modeling thrice a day for 1 week. CD31 expression was analyzed to calculate the ratio of CNV number to area using a corneal whole-mount fluorescent immunohistochemical assay. Messenger ribonucleic acid (mRNA) and protein expression levels of ZO-1, vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-6, IL-8, IL-18, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), phosphorylated protein kinase C (pPKC), and clusterin in burned corneas were detected by reverse transcriptase polymerase chain reaction (PCR) and western blot analyses. Infiltration of neutrophils, macrophages, and progenitor cells was examined by flow cytometry. Results: CNV was obviously greater in 45 s than in 15 s alkali injury group. In another experiment, CNV was obviously greater in the ZO-1 antibody group than in the vehicle-treated group. Corneal mRNA and protein expression levels of VEGF, IL-1β, IL-6, IL-8, IL-18, and MCP-1 were significantly higher in the ZO-1 antibody group than in the control group. Infiltration of neutrophils, macrophages, and progenitor cells was significantly greater in the ZO-1 antibody group than in the control group. TNF-α expression was much higher in 45 s than in 15 s alkali injury group. However, protein expression of pPKC and clusterin was much lower in 45 s than in 15 s alkali injury group. Conclusions: Anti-ZO-1 neutralizing antibody-treated mice exhibited enhanced alkali-induced CNV through enhanced intracorneal infiltration of progenitor and inflammatory cells.
Collapse
Affiliation(s)
- Qingying Yao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongya Wu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hang Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiufa Cao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Shao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
29
|
Cruz GKP, Júnior MAF, Mota FM, Maidana GM, Zulin MEG, Frota OP, Santos VEP, Vitor AF. A Descriptive Study of Corneal Graft Failure in Retransplant Patients. Transplant Proc 2024; 56:1129-1133. [PMID: 38744590 DOI: 10.1016/j.transproceed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE To identify the main predictors for corneal graft failure in patients who underwent retransplantation. METHOD This is a cross-sectional research with a quantitative and analytical approach, conducted based on data from secondary sources of a Human Eye Tissue Bank (HETB) in Northeast Brazil. Data were collected from the medical charts of all patients transplanted between January 2010 and December 2014. Descriptive statistics were used for the univariate analysis by means of absolute and relative frequencies and means. For the inferential analysis, the chi-square (X²) and the Fisher's Exact tests were used. RESULTS A total of 241 records were reviewed, representing 258 keratoplasties, of which 27 (10.46%) were retransplantations due to corneal graft failure. Of the total, 55.56% of the individuals were female, with a mean age of 58.56 years, 55.56% of the population was brown, and the highest relative frequency of housing found was in the Central Mesoregion. Of the corneal graft failure cases, 88.89% were due to late failure, 30.77% of cases were classified as pseudophakic and 11.57% as aphakic. Through inferential analysis, a statistical association was obtained among the variable "corneal graft failure" and mesoregion of the state, presence of glaucoma, vascularization, and classification of the eye. CONCLUSION The prognosis of keratoplasty is of multifactorial nature. Factors such as mesoregion of the State (place of residence), glaucoma, corneal vascularization, and aphakic eyes represent predictors for graft failure in the analyzed sample.
Collapse
Affiliation(s)
| | | | - Felipe Machado Mota
- Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | | | | | - Oleci Pereira Frota
- Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Allyne Fortes Vitor
- Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
30
|
Tu Y, Luo Y, Zhao Q, Zeng Y, Leng K, Zhu M. Role of macrophage in ocular neovascularization. Heliyon 2024; 10:e30840. [PMID: 38770313 PMCID: PMC11103465 DOI: 10.1016/j.heliyon.2024.e30840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Ocular neovascularization is the leading cause of blindness in clinical settings. Pathological angiogenesis of the eye can be divided into corneal neovascularization (CoNV), retinal neovascularization (RNV, including diabetic retinopathy and retinopathy of prematurity), and choroidal neovascularization (CNV) based on the anatomical location of abnormal neovascularization. Although anti-Vascular endothelial growth factor (VEGF) agents have wide-ranging clinical applications and are an effective treatment for neovascular eye disease, many deficiencies in this treatment strategy remain. Recently, emerging evidence has demonstrated that macrophages are vital during the process of physiological and pathological angiogenesis. Monocyte-macrophage lineage is diverse and plastic, they can shift between different activation modes and have different functions. Due to the obvious regulatory effect of macrophages on inflammation and angiogenesis, macrophages have been increasingly studied in the field of ophthalmology. Here, we detail how macrophage activated and the role of different subtypes of macrophages in the pathogenesis of ocular neovascularization. The complexity of macrophages has recently taken center stage owing to their subset diversity and tightly regulated molecular and metabolic phenotypes. In this review, we reveal the functional and phenotypic characterization of macrophage subsets associated with ocular neovascularization, more in-depth research is needed to explore the specific mechanisms by which macrophages regulate angiogenesis as well as macrophage polarization. Targeted regulation of macrophage differentiation based on their phenotype and function could be an effective approach to treat and manage ocular neovascularization in the future.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yalu Luo
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Qingliang Zhao
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanfeng Zeng
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Leng
- Department of Medical Informatics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Wu H, Ye J, Zhang M, Zhang L, Lin S, Li Q, Liu Y, Han Y, Huang C, Wu Y, Cheng Y, Cai S, Ke L, Liu G, Li W, Chu C. A SU6668 pure nanoparticle-based eyedrops: toward its high drug Accumulation and Long-time treatment for corneal neovascularization. J Nanobiotechnology 2024; 22:290. [PMID: 38802884 PMCID: PMC11129376 DOI: 10.1186/s12951-024-02510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.
Collapse
Affiliation(s)
- Han Wu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Jinfa Ye
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Minjie Zhang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Department of Rheumatology and Clinical Immunology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, XM, 361000, China
- Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Lingyu Zhang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Sijie Lin
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Qingjian Li
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yanbo Liu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yun Han
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Caihong Huang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yiming Wu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yuhang Cheng
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Shundong Cai
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Lang Ke
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361002, China.
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| | - Wei Li
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China.
| | - Chengchao Chu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China.
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
32
|
Mergen B, Safi T, Nadig M, Bhattrai G, Daas L, Alexandersson J, Seitz B. Detecting the corneal neovascularisation area using artificial intelligence. Br J Ophthalmol 2024; 108:667-672. [PMID: 37339866 DOI: 10.1136/bjo-2023-323308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023]
Abstract
AIMS To create and assess the performance of an artificial intelligence-based image analysis tool for the measurement and quantification of the corneal neovascularisation (CoNV) area. METHODS Slit lamp images of patients with CoNV were exported from the electronic medical records and included in the study. An experienced ophthalmologist made manual annotations of the CoNV areas, which were then used to create, train and evaluate an automated image analysis tool that uses deep learning to segment and detect CoNV areas. A pretrained neural network (U-Net) was used and fine-tuned on the annotated images. Sixfold cross-validation was used to evaluate the performance of the algorithm on each subset of 20 images. The main metric for our evaluation was intersection over union (IoU). RESULTS The slit lamp images of 120 eyes of 120 patients with CoNV were included in the analysis. Detections of the total corneal area achieved IoU between 90.0% and 95.5% in each fold and those of the non-vascularised area achieved IoU between 76.6% and 82.2%. The specificity for the detection was between 96.4% and 98.6% for the total corneal area and 96.6% and 98.0% for the non-vascularised area. CONCLUSION The proposed algorithm showed a high accuracy compared with the measurement made by an ophthalmologist. The study suggests that an automated tool using artificial intelligence may be used for the calculation of the CoNV area from the slit-lamp images of patients with CoNV.
Collapse
Affiliation(s)
- Burak Mergen
- Department of Ophthalmology, Saarland University Medical Center (UKS), Homburg, Saarland, Germany
- Department of Ophthalmology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Tarek Safi
- Department of Ophthalmology, Saarland University Medical Center (UKS), Homburg, Saarland, Germany
| | - Matthias Nadig
- Saarland Informatics Campus, German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Saarland, Germany
| | - Gopal Bhattrai
- Saarland Informatics Campus, German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Saarland, Germany
| | - Loay Daas
- Department of Ophthalmology, Saarland University Medical Center (UKS), Homburg, Saarland, Germany
| | - Jan Alexandersson
- Saarland Informatics Campus, German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Saarland, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center (UKS), Homburg, Saarland, Germany
| |
Collapse
|
33
|
Ding W, Su Y, Mo J, Sun D, Cao C, Zhang X, Wang Y. Novel artemisinin derivative P31 inhibits VEGF-induced corneal neovascularization through AKT and ERK1/2 pathways. Heliyon 2024; 10:e29984. [PMID: 38699723 PMCID: PMC11063438 DOI: 10.1016/j.heliyon.2024.e29984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Corneal neovascularization (CoNV)is a major cause of blindness in many ocular diseases. Substantial evidence indicates that vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of corneal neovascularization. Previous evidence showed that artemisinin may inhibit angiogenesis through down regulation of the VEGF receptors. We designed and synthesized artemisinin derivatives, and validated their inhibitory effect on neovascularization in cell and animal models, and explored the mechanisms by which they exert an inhibitory effect on CoNV. Among these derivatives, P31 demonstrated significant anti-angiogenic effects in vivo and in vitro. Besides, P31 inhibited VEGF-induced HUVECs angiogenesis and neovascularization in rabbit model via AKT and ERK pathways. Moreover, P31 alleviated angiogenic and inflammatory responses in suture rabbit cornea. In conclusion, as a novel artemisinin derivative, P31 attenuates corneal neovascularization and has a promising application in ocular diseases.
Collapse
Affiliation(s)
- Wen Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Jianshan Mo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Danyuan Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chen Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yandong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
34
|
Cheng Y, Cai S, Wu H, Pan J, Su M, Wei X, Ye J, Ke L, Liu G, Chu C. Revolutionizing eye care: the game-changing applications of nano-antioxidants in ophthalmology. NANOSCALE 2024; 16:7307-7322. [PMID: 38533621 DOI: 10.1039/d4nr00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Since the theory of free radical-induced aging was proposed in 1956, it has been constantly proven that reactive oxygen species (ROS) produced by oxidative stress play a vital role in the occurrence and progression of eye diseases. However, the inherent limitations of traditional drug therapy hindered the development of ophthalmic disease treatment. In recent years, great achievements have been made in the research of nanomedicine, which promotes the rapid development of safe theranostics in ophthalmology. In this review, we focus on the applications of antioxidant nanomedicine in the treatment of ophthalmology. The eye diseases were mainly classified into two categories: ocular surface diseases and posterior eye diseases. In each part, we first introduced the pathology of specific diseases about oxidative stress, and then presented the representative application examples of nano-antioxidants in eye disease therapy. Meanwhile, the nanocarriers that were used, the mechanism of function, and the therapeutic effect were also presented. Finally, we summarized the latest research progress and limitations of antioxidant nanomedicine for eye disease treatment and put forward the prospects of future development.
Collapse
Affiliation(s)
- Yuhang Cheng
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shundong Cai
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Han Wu
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jintao Pan
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China.
| | - Xingyuan Wei
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jinfa Ye
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lang Ke
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
| | - Chengchao Chu
- Shen Zhen Research Institute of Xiamen University, Shenzhen 518057, China.
- Xiamen University affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
35
|
Li Z, Huang W, Zhang M, Huo Y, Li F, Song L, Wu S, Yang Q, Li X, Zhang J, Yang L, Hao J, Kang L. Minocycline-loaded nHAP/PLGA microspheres for prevention of injury-related corneal angiogenesis. J Nanobiotechnology 2024; 22:134. [PMID: 38549081 PMCID: PMC10979583 DOI: 10.1186/s12951-024-02317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/26/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Corneal neovascularization (CoNV) threatens vision by disrupting corneal avascularity, however, current treatments, including pharmacotherapy and surgery, are hindered by limitations in efficacy and adverse effects. Minocycline, known for its anti-inflammatory properties, could suppress CoNV but faces challenges in effective delivery due to the cornea's unique structure. Therefore, in this study a novel drug delivery system using minocycline-loaded nano-hydroxyapatite/poly (lactic-co-glycolic acid) (nHAP/PLGA) nanoparticles was developed to improve treatment outcomes for CoNV. RESULTS Ultra-small nHAP was synthesized using high gravity technology, then encapsulated in PLGA by a double emulsion method to form nHAP/PLGA microspheres, attenuating the acidic by-products of PLGA degradation. The MINO@PLGA nanocomplex, featuring sustained release and permeation properties, demonstrated an efficient delivery system for minocycline that significantly inhibited the CoNV area in an alkali-burn model without exhibiting apparent cytotoxicity. On day 14, the in vivo microscope examination and ex vivo CD31 staining corroborated the inhibition of neovascularization, with the significantly smaller CoNV area (29.40% ± 6.55%) in the MINO@PLGA Tid group (three times daily) than that of the control group (86.81% ± 15.71%), the MINO group (72.42% ± 30.15%), and the PLGA group (86.87% ± 14.94%) (p < 0.05). Fluorescein sodium staining show MINO@PLGA treatments, administered once daily (Qd) and three times daily (Tid) demonstrated rapid corneal epithelial healing while the Alkali injury group and the DEX group showed longer healing times (p < 0.05). Additionally, compared to the control group, treatments with dexamethasone, MINO, and MINO@PLGA were associated with an increased expression of TGF-β as evidenced by immunofluorescence, while the levels of pro-inflammatory cytokines IL-1β and TNF-α demonstrated a significant decrease following alkali burn. Safety evaluations, including assessments of renal and hepatic biomarkers, along with H&E staining of major organs, revealed no significant cytotoxicity of the MINO@PLGA nanocomplex in vivo. CONCLUSIONS The novel MINO@PLGA nanocomplex, comprising minocycline-loaded nHAP/PLGA microspheres, has shown a substantial capacity for preventing CoNV. This study confirms the complex's ability to downregulate inflammatory pathways, significantly reducing CoNV with minimal cytotoxicity and high biosafety in vivo. Given these findings, MINO@PLGA stands as a highly promising candidate for ocular conditions characterized by CoNV.
Collapse
Affiliation(s)
- Zitong Li
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
| | - Yan Huo
- Department of Ophthalmology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Feifei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Sitong Wu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Xiaoming Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jianjun Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Liu Yang
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| | - Jianchen Hao
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
36
|
Gandhi P, Wang Y, Li G, Wang S. The role of long noncoding RNAs in ocular angiogenesis and vascular oculopathy. Cell Biosci 2024; 14:39. [PMID: 38521951 PMCID: PMC10961000 DOI: 10.1186/s13578-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA transcripts over 200 nucleotides in length that do not code for proteins. Initially considered a genomic mystery, an increasing number of lncRNAs have been shown to have vital roles in physiological and pathological conditions by regulating gene expression through diverse mechanisms depending on their subcellular localization. Dysregulated angiogenesis is responsible for various vascular oculopathies, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and corneal neovascularization. While anti-VEGF treatment is available, it is not curative, and long-term outcomes are suboptimal, and some patients are unresponsive. To better understand these diseases, researchers have investigated the role of lncRNAs in regulating angiogenesis and models of vascular oculopathies. This review summarizes recent research on lncRNAs in ocular angiogenesis, including the pro-angiogenic lncRNAs ANRIL, HOTAIR, HOTTIP, H19, IPW, MALAT1, MIAT, NEAT1, and TUG1, the anti-angiogenic lncRNAs MEG3 and PKNY, and the human/primate specific lncRNAs lncEGFL7OS, discussing their functions and mechanisms of action in vascular oculopathies.
Collapse
Affiliation(s)
- Pranali Gandhi
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuzhi Wang
- Louisiana State University School of Medicine, New Orleans, LA, 70112, USA
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P.R. China.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Department of Ophthalmology, Tulane University, New Orleans, LA, 70112, USA.
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
37
|
Zhu H, Ye J, Wu Y, Cheng Y, Su M, Dai Q, Han Y, Pan J, Wu Z, Chen C, Qiu C, Li W, Liu G, Chu C. A Synergistic Therapy With Antioxidant and Anti-VEGF: Toward its Safe and Effective Elimination for Corneal Neovascularization. Adv Healthc Mater 2024; 13:e2302192. [PMID: 38018632 DOI: 10.1002/adhm.202302192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/26/2023] [Indexed: 11/30/2023]
Abstract
Corneal neovascularization (CNV) is one of the leading causes of blindness in the world. In clinical practice; however, it remains a challenge to achieve a noninvasive and safe treatment. Herein, a biocompatible shell with excellent antioxidant and antivascularity is prepared by co-assembly of epigallocatechin gallate/gallic acid and Cu (II). After loading glucose oxidase (GOx) inside, the shell is modified with dimeric DPA-Zn for codelivering vascular endothelial growth factor (VEGF) small interfering RNA (VEGF-siRNA). Meanwhile, the Arg-Gly-Asp peptide (RGD) peptide-engineered cell membranes coating improves angiogenesis-targeting and is biocompatible for the multifunctional nanomedicine (CEGs/RGD). After eye drops administration, CEGs/RGD targets enrichment in neovascularization and CEGs NPs enter cells. Then, the inner GOx consumes glucose with a decrease in local pH, which in turn leads to the release of EGCE and VEGF-siRNA. As a result, the nanomedicines significantly reduce angiogenesis and inhibit CNV formation through synergistic effect of antioxidant and antivascular via down-regulation of cluster of differentiation 31 and VEGF. The nanomedicine represents a safe and efficient CNV treatment through the combined effect of antioxidant/gene, which provides important theoretical and clinical significance.
Collapse
Affiliation(s)
- Huimin Zhu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jinfa Ye
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yiming Wu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yuhang Cheng
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Qixuan Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yun Han
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jintao Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhenyu Wu
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Chenyue Qiu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wei Li
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Shen Zhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518057, China
| | - Chengchao Chu
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
- Shen Zhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
38
|
Nan W, Shen S, Yang Y, Wu M, He Y, Zhang R, Cui X, Zhang Y. Bone morphogenetic protein 4 thermosensitive hydrogel inhibits corneal neovascularization by repairing corneal epithelial apical junctional complexes. Mater Today Bio 2024; 24:100944. [PMID: 38269056 PMCID: PMC10806348 DOI: 10.1016/j.mtbio.2024.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Corneal neovascularization (CNV) is a heavy attribute of blinding disease changes. Existing medications need numerous infusions and have a limited absorption. Investigating novel drugs with safety, efficacy, and convenience is crucial. In this study, we developed a bone morphogenetic protein 4 (BMP4)-loaded poloxamer-oxidized sodium alginate (F127-OSA) thermosensitive hydrogel. The 14 % F127-OSA hydrogel transformed from sol to gel at 31-32 °C, which might extend the application period on the ocular surface. The hydrogel's porous structure and uniform dispersion made it possible for drugs to release gradually. We used a suture-induced rat CNV model to investigate the mechanism of CNV inhibition by hydrogel. We discovered that F127-OSA hydrogel loaded with BMP4 could significantly reduce the length and area of CNV, relieve corneal edema, and stop aberrant epithelial cell proliferation. The hydrogel's efficacy was superior to that of the common solvent group. Additionally, BMP4 thermosensitive hydrogel repaired ultrastructure, including microvilli, intercellular junctions, and damaged apical junctional complexes (AJCs), suggesting a potential mechanism by which the hydrogel prevented CNV formation. In conclusion, our investigation demonstrates that F127-OSA thermosensitive hydrogel loaded with BMP4 can repair corneal epithelial AJCs and is a promising novel medication for the treatment of CNV.
Collapse
Affiliation(s)
- Weijin Nan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai, 200080, PR China
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, PR China
| | - Sitong Shen
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, PR China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Meiliang Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, PR China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, 130012, PR China
- Weihai Institute for Bionics-Jilin University, Weihai, 264400, PR China
| | - Yan Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai, 200080, PR China
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, PR China
| |
Collapse
|
39
|
Li J, Ge R, Lin K, Wang J, He Y, Lu H, Dong H. Advances in the Application of Microneedles in the Treatment of Local Organ Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306222. [PMID: 37786290 DOI: 10.1002/smll.202306222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/07/2023] [Indexed: 10/04/2023]
Abstract
In recent years, microneedles (MNs) have attracted a lot of attention due to their microscale sizes and high surface area (500-1000 µm in length), allowing pain-free and efficient drug delivery through the skin. In addition to the great success of MNs based transdermal drug delivery, especially for skin diseases, increasing studies have indicated the expansion of MNs to diverse nontransdermal applications, including the delivery of therapeutics for hair loss, ocular diseases, and oral mucosal. Here, the current treatment of hair loss, eye diseases, and oral disease is discussed and an overview of recent advances in the application of MNs is provided for these three noncutaneous localized organ diseases. Particular emphasis is laid on the future trend of MNs technology development and future challenges of expanding the generalizability of MNs.
Collapse
Affiliation(s)
- Jinze Li
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China
| | - Rujiao Ge
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518060, China
| | - Junren Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China
| | - Yu He
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China
| |
Collapse
|
40
|
Adeeb S, Arabi TZ, Shah H, Alsalameh S, Abu-Shaar M, El-Sibai AM, Alkattan K, Yaqinuddin A. Unveiling the Web: Exploring the Multifaceted Role of Neutrophil Extracellular Traps in Ocular Health and Disease. J Clin Med 2024; 13:512. [PMID: 38256646 PMCID: PMC10816449 DOI: 10.3390/jcm13020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Neutrophil extracellular traps (NETs) play an essential role in antimicrobial defense. However, NETs have also been shown to promote and mediate a wide spectrum of diseases, including cancer, diabetes mellitus, cardiovascular diseases, and ocular diseases. Data regarding NETs in ocular diseases remain limited. In physiological conditions, NETs protect the eye from debris and cleave proinflammatory cytokines, including several interleukins. On the other hand, NETs play a role in corneal diseases, such as dry eye disease and ocular graft-versus-host disease, where they promote acinar atrophy and delayed wound healing. Additionally, NET levels positively correlate with increased severity of uveitis. NETs have also been described in the context of diabetic retinopathy. Although increased NET biomarkers are associated with an increased risk of the disease, NETs also assist in the elimination of pathological blood vessels and the regeneration of normal vessels. Targeting NET pathways for the treatment of ocular diseases has shown promising outcomes; however, more studies are still needed in this regard. In this article, we summarize the literature on the protective roles of NETs in the eye. Then, we describe their pathogenetic effects in ocular diseases, including those of the cornea, uvea, and retinal blood vessels. Finally, we describe the therapeutic implications of targeting NETs in such conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.); (T.Z.A.); (H.S.); (S.A.); (M.A.-S.); (A.M.E.-S.); (K.A.)
| |
Collapse
|
41
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
42
|
Eleiwa TK, Youssef GH, Elsaadani IA, Abdelrahman SN, Khater AA. Debulking corneal biopsy with tectonic amniotic membrane transplantation in refractory clinically presumed fungal keratitis. Sci Rep 2024; 14:521. [PMID: 38177182 PMCID: PMC10767135 DOI: 10.1038/s41598-023-50987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
The treatment of fungal keratitis (FK) is challenging due to the subacute indolent course, and initial misdiagnosis. In this retrospective case series, we highlight both the diagnostic and therapeutic roles of corneal biopsy together with amniotic membrane transplantation (AMT) in patients with refractory clinically presumed FK. Debulking biopsy and tectonic AMT were performed during the initial presentation. Biopsy specimens were sent for KOH smears and cultures. After KOH smears confirmed the presence of fungal elements, topical voriconazole 1% was prescribed for the first 72 h then tailored according to the clinical response and the culture results. The outcome measures were complete resolution of infection and restoration of corneal integrity. Cases associated with culture proven bacterial keratitis were excluded. Twelve cases were included in the study. KOH smears confirmed the presence of fungal growth in all specimens. Cultures grew Aspergillus in 6/12 cases, sensitive to voriconazole (5/6) and amphotericin (3/6); Fusarium (4/12), sensitive to both voriconazole and amphotericin; and no growth in 2/12 cases. Amphotericin 0.15% eye drops were added to the 7 cases with proven sensitivity and to the remaining 2 culture negative cases. Gradual resolution of infection was seen in all cases after 35.6 ± 7.8 days. In FK, a debulking biopsy simultaneously with AMT help decrease the microbial load, suppress the inflammatory process, support the corneal integrity, confirm the presence of fungal pathogen.
Collapse
Affiliation(s)
- Taher K Eleiwa
- Department of Ophthalmology, Benha Faculty of Medicine, Benha University Hospitals, Benha University, Al-Sahaa Street, Diverted From Farid Nada St., Benha, 13511, Egypt.
| | - Gehad H Youssef
- Department of Ophthalmology, Benha Faculty of Medicine, Benha University Hospitals, Benha University, Al-Sahaa Street, Diverted From Farid Nada St., Benha, 13511, Egypt
| | - Ibrahim Abdelkhalik Elsaadani
- Department of Ophthalmology, Benha Faculty of Medicine, Benha University Hospitals, Benha University, Al-Sahaa Street, Diverted From Farid Nada St., Benha, 13511, Egypt
| | - Samar N Abdelrahman
- Department of Clinical Pathology, Benha University Hospitals, Benha University, Benha, Egypt
| | - Ahmed A Khater
- Department of Ophthalmology, Benha Faculty of Medicine, Benha University Hospitals, Benha University, Al-Sahaa Street, Diverted From Farid Nada St., Benha, 13511, Egypt
| |
Collapse
|
43
|
Wang W, Deng M, Li M, Liu L, Zou J, Qian Y. Exploring Corneal Neovascularization: An Integrated Approach Using Transcriptomics and Proteomics in an Alkali Burn Mouse Model. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38190126 PMCID: PMC10777872 DOI: 10.1167/iovs.65.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Corneal neovascularization (CNV) impairs corneal transparency and visual acuity. The study aims to deepen our understanding of the molecules involved in CNV induced by alkali burns, facilitate a better grasp of CNV mechanisms, and uncover potential therapeutic targets. Methods Eighty-four mice were selected for establishing CNV models via alkali burns. On days 3, 7, and 14 after the burns, corneal observations and histological investigations were conducted. An integrated analysis of RNA sequencing (RNA-seq)-based transcriptomics and label-free quantitative proteomics was performed in both normal and burned corneas. Bioinformatics approaches, encompassing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, were applied to discern differentially expressed genes (DEGs) and crucial signaling pathways. Four potentially CNV-related genes were validated using quantitative real-time PCR (qRT-PCR) and Western blot. Results Significant CNV was observed on the seventh day. Forty-one genes were differentially expressed in neovascularized corneas, with 15 upregulated and 26 downregulated at both mRNA and protein levels. Bioinformatics analysis revealed that these DEGs participated in diverse biological processes, encompassing retinol and retinoic acid metabolism, neutrophil chemotaxis, and actin filament assembly, along with significant enrichment pathways like cytochrome P450, tyrosine, and phenylalanine metabolism. The upregulation of lymphocyte cytosolic protein 1 (LCP1) and cysteine and glycine-rich protein 2 (CSRP2) genes and the downregulation of transglutaminase 2 (TGM2) and transforming growth factor-beta-induced (TGFBI) genes were confirmed. Conclusions We analyzed gene expression differences in mouse corneas 7 days after alkali burns, finding 41 genes with altered expression. The exact role of these genes in CNV is not fully understood, but exploring angiogenesis-related molecules offers potential for CNV treatment or prevention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiyong Qian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Zhou J, Cai Y, Li T, Zhou H, Dong H, Wu X, Li Z, Wang W, Yuan D, Li Y, Shi J. Aflibercept Loaded Eye-Drop Hydrogel Mediated with Cell-Penetrating Peptide for Corneal Neovascularization Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302765. [PMID: 37679056 DOI: 10.1002/smll.202302765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Corneal neovascularization (CoNV) is a major cause of visual impairment worldwide. Currently, available treatment options have limited efficacy and are associated with adverse effects due to biological barriers and clearance mechanisms. To address this challenge, a novel topical delivery system is developed-Gel 2_1&Eylea-an aflibercept-loaded eye-drop hydrogel mediated with cell-penetrating peptide 1. Gel 2_1&Eylea demonstrates superior membrane permeability, increased stability, and prolonged drug retention time on the ocular surface, and thus may improve drug efficacy. In a rabbit CoNV model, Gel 2_1&Eylea significantly reduces the density of neovascularization with no adverse effects on normal corneoscleral limbal vessels, demonstrating high efficacy and biocompatibility. This work identifies a promising treatment for CoNV which has the potential to benefit other ocular neovascular diseases.
Collapse
Affiliation(s)
- Jianan Zhou
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tingting Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Huilei Dong
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Xia Wu
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, Guangdong, 518116, China
| | - Zenghui Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Wenjie Wang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Dan Yuan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junfeng Shi
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
45
|
Wu CM, Mao JW, Zhu JZ, Xie CC, Yao JY, Yang XQ, Xiang M, He YF, Tong X, Litifu D, Xiong XY, Cheng MN, Zhu FH, He SJ, Lin ZM, Zuo JP. DZ2002 alleviates corneal angiogenesis and inflammation in rodent models of dry eye disease via regulating STAT3-PI3K-Akt-NF-κB pathway. Acta Pharmacol Sin 2024; 45:166-179. [PMID: 37605050 PMCID: PMC10770170 DOI: 10.1038/s41401-023-01146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 μL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.
Collapse
Affiliation(s)
- Chun-Mei Wu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Wen Mao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Zhi Zhu
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Can-Can Xie
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Ying Yao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Qian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mai Xiang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Fan He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Tong
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dilinaer Litifu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yu Xiong
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Nan Cheng
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng-Hua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ze-Min Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
46
|
Nan W, He Y, Shen S, Wu M, Wang S, Zhang Y. BMP4 inhibits corneal neovascularization by interfering with tip cells in angiogenesis. Exp Eye Res 2023; 237:109680. [PMID: 37858608 DOI: 10.1016/j.exer.2023.109680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Corneal neovascularization (CNV) can lead to impaired corneal transparency, resulting in vision loss or blindness. The primary pathological mechanism underlying CNV is an imbalance between pro-angiogenic and anti-angiogenic factors, with inflammation playing a crucial role. Notably, a vascular endothelial growth factor(VEGF)-A gradient triggers the selection of single endothelial cells(ECs) into primary tip cells that guide sprouting, while a dynamic balance between tip and stalk cells maintains a specific ratio to promote CNV. Despite the central importance of tip-stalk cell selection and shuffling, the underlying mechanisms remain poorly understood. In this study, we examined the effects of bone morphogenetic protein 4 (BMP4) on VEGF-A-induced lumen formation in human umbilical vein endothelial cells (HUVECs) and CD34-stained tip cell formation. In vivo, BMP4 inhibited CNV caused by corneal sutures. This process was achieved by BMP4 decreasing the protein expression of VEGF-A and VEGFR2 in corneal tissue after corneal suture injury. By observing the ultrastructure of the cornea, BMP4 inhibited the sprouting of tip cells and brought forward the appearance of intussusception. Meanwhile, BMP4 attenuated the inflammatory response by inhibiting neutrophil extracellular traps (NETs)formation through the NADPH oxidase-2(NOX-2)pathway. Our results indicate that BMP4 inhibits the formation of tip cells by reducing the generation of NETs, disrupting the dynamic balance of tip and stalk cells and thereby inhibiting CNV, suggesting that BMP4 may be a potential therapeutic target for CNV.
Collapse
Affiliation(s)
- Weijin Nan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Yuxi He
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Sitong Shen
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Meiliang Wu
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Shurong Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yan Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
47
|
Loiseau A, Raîche-Marcoux G, Maranda C, Bertrand N, Boisselier E. Animal Models in Eye Research: Focus on Corneal Pathologies. Int J Mol Sci 2023; 24:16661. [PMID: 38068983 PMCID: PMC10706114 DOI: 10.3390/ijms242316661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The eye is a complex sensory organ that enables visual perception of the world. The dysfunction of any of these tissues can impair vision. Conduction studies on laboratory animals are essential to ensure the safety of therapeutic products directly applied or injected into the eye to treat ocular diseases before eventually proceeding to clinical trials. Among these tissues, the cornea has unique homeostatic and regenerative mechanisms for maintaining transparency and refraction of external light, which are essential for vision. However, being the outermost tissue of the eye and directly exposed to the external environment, the cornea is particularly susceptible to injury and diseases. This review highlights the evidence for selecting appropriate animals to better understand and treat corneal diseases, which rank as the fifth leading cause of blindness worldwide. The development of reliable and human-relevant animal models is, therefore, a valuable research tool for understanding and translating fundamental mechanistic findings, as well as for assessing therapeutic potential in humans. First, this review emphasizes the unique characteristics of animal models used in ocular research. Subsequently, it discusses current animal models associated with human corneal pathologies, their utility in understanding ocular disease mechanisms, and their role as translational models for patients.
Collapse
Affiliation(s)
- Alexis Loiseau
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Gabrielle Raîche-Marcoux
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Cloé Maranda
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, Québec, QC G1V 4G2, Canada;
| | - Elodie Boisselier
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| |
Collapse
|
48
|
Huang X, Li L, Chen Z, Yu H, You X, Kong N, Tao W, Zhou X, Huang J. Nanomedicine for the Detection and Treatment of Ocular Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302431. [PMID: 37231939 DOI: 10.1002/adma.202302431] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Ocular bacterial infection is a prevalent cause of blindness worldwide, with substantial consequences for normal human life. Traditional treatments for ocular bacterial infections areless effective, necessitating the development of novel techniques to enable accurate diagnosis, precise drug delivery, and effective treatment alternatives. With the rapid advancement of nanoscience and biomedicine, increasing emphasis has been placed on multifunctional nanosystems to overcome the challenges posed by ocular bacterial infections. Given the advantages of nanotechnology in the biomedical industry, it can be utilized to diagnose ocular bacterial infections, administer medications, and treat them. In this review, the recent advancements in nanosystems for the detection and treatment of ocular bacterial infections are discussed; this includes the latest application scenarios of nanomaterials for ocular bacterial infections, in addition to the impact of their essential characteristics on bioavailability, tissue permeability, and inflammatory microenvironment. Through an in-depth investigation into the effect of sophisticated ocular barriers, antibacterial drug formulations, and ocular metabolism on drug delivery systems, this review highlights the challenges faced by ophthalmic medicine and encourages basic research and future clinical transformation based on ophthalmic antibacterial nanomedicine.
Collapse
Affiliation(s)
- Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Luoyuan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Haoyu Yu
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| |
Collapse
|
49
|
Liu J, Liu S, Yu M, Li J, Xie Z, Gao B, Liu Y. Anti-inflammatory effect and mechanism of catalpol in various inflammatory diseases. Drug Dev Res 2023; 84:1376-1394. [PMID: 37534768 DOI: 10.1002/ddr.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Catalpol is a kind of iridoid glucoside, widely found in a variety of plants, mostly extracted from the rhizome of the traditional medicinal herb rehmanniae. It has various biological activities such as anti-inflammatory, antioxidant, and antitumor. The anti-inflammatory effects of catalpol have been demonstrated in a variety of diseases, such as neurological diseases, atherosclerosis, renal diseases, respiratory diseases, digestive diseases, bone and joint diseases, eye diseases, and periodontitis. The purpose of this review is to summarize the existing literature on the anti-inflammatory effects of catalpol in a variety of inflammatory diseases over the last decade and to focus on the anti-inflammatory mechanisms of catalpol.
Collapse
Affiliation(s)
- Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Boyang Gao
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
50
|
Zhang W, He Y, Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential. Pharmacol Res 2023; 197:106946. [PMID: 37797661 DOI: 10.1016/j.phrs.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Ocular neovascular disease (OND), characterized by the aberrant formation of immature blood vessels, is the leading cause of vision impairment and blindness. It is important to find effective ways to diagnose and treat these diseases. Circular RNA (circRNA) is a group of endogenous non-coding RNA that play a crucial role in regulating different biological processes. Due to their close association with ocular disease and angiogenesis, circRNAs have become a hotspot in OND research. In this review, we intensively investigate the possibility of using circRNAs in the management of ONDs. In general, angiogenesis is divided into five phases. On the basis of these five steps, we describe the potential of using circRNAs by introducing how they regulate angiogenesis. Subsequently, the interactions between circRNAs and ONDs, including pterygium, corneal neovascularization, age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity, are analyzed in detail. We also introduce the potential use of circRNAs as OND diagnostic biomarkers. Finally, we summarize the prospects of using circRNAs as a potential strategy in OND management. The gaps in recent research are also pointed out with the purpose of promoting the introduction of circRNAs into clinical applications.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|