1
|
Diaz-Nicieza C, Sahyoun L, Michalaki C, Johansson C, Culley FJ. Ageing results in an exacerbated inflammatory response to LPS by resident lung cells. Immun Ageing 2024; 21:62. [PMID: 39261941 PMCID: PMC11391591 DOI: 10.1186/s12979-024-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Ageing is associated with an increased risk of lung infection and chronic inflammatory lung disease. Innate immune responses are the first line of defence in the respiratory tract, however, age-related changes to innate immunity in the lung are not fully described. Both resident haematopoietic cells, such as alveolar macrophages, and non-haematopoeitic cells, such as epithelial and endothelial cells can contribute to inflammatory and immune responses in the lung. In this study we aimed to determine the impact of ageing on early innate responses of resident cells in the lung. RESULTS Aged and young mice were inoculated intranasally with lipopolysaccharide (LPS). After 4 h, aged mice recruited higher numbers of neutrophils to the airways and lung. This exacerbated inflammatory response was associated with higher concentrations of chemokines CXCL1, CXCL2 and CCL2 in the airways. Next, precision cut lung slices (PCLS) were stimulated ex vivo with LPS for 16 h. Gene expression of Cxcl2, Tnf and Il1b were all higher in PCLS from aged than young mice and higher levels of secretion of CXCL2 and TNF were detected. To determine which lung cells were altered by age, LPS was intranasally administered to aged and young mice and individual populations of cells isolated by FACS. RT-PCR on sorted cell populations demonstrated higher expression of inflammatory cytokines Cxcl2, Ccl2 and Tnf in epithelial cells and alveolar macrophages and higher expression of Cxcl2 by endothelial cells of aged mice compared to young. These differences in expression of pro-inflammatory cytokines did not correspond to higher levels of Tlr4 expression. CONCLUSIONS Ageing leads to a heightened neutrophilic inflammatory response in the lung after LPS exposure, and higher expression and production of pro-inflammatory cytokines by resident lung cells, including alveolar macrophages, epithelial cells and endothelial cells. The responses of multiple resident lung cell populations are altered by aging and contribute to the exacerbated inflammation in the lung following LPS challenge. This has implications for our understanding of respiratory infections and inflammation in older people.
Collapse
Affiliation(s)
- Celia Diaz-Nicieza
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Laura Sahyoun
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Christina Michalaki
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Cecilia Johansson
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Fiona J Culley
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
2
|
Allué-Guardia A, Torrelles JB, Sigal A. Tuberculosis and COVID-19 in the elderly: factors driving a higher burden of disease. Front Immunol 2023; 14:1250198. [PMID: 37841265 PMCID: PMC10569613 DOI: 10.3389/fimmu.2023.1250198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
4
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
5
|
Hsu WB, Lin SJ, Hung JS, Chen MH, Lin CY, Hsu WH, Hsu WWR. Effect of resistance training on satellite cells in old mice - a transcriptome study : implications for sarcopenia. Bone Joint Res 2022; 11:121-133. [PMID: 35188421 PMCID: PMC8882320 DOI: 10.1302/2046-3758.112.bjr-2021-0079.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aims The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model. Methods We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics. Results After the bioinformatic analysis, the PI3K-Akt signalling pathway and the regulation of actin cytoskeleton in particular were highlighted among the top ten pathways with the most differentially expressed genes involved in the young/MID and MID+ T/MID groups. The expression of Gng5, Atf2, and Rtor in the PI3K-Akt signalling pathway was higher in the young and MID+ T groups compared with the MID group. Similarly, Limk1, Arhgef12, and Araf in the regulation of the actin cytoskeleton pathway had a similar bias. Moreover, the protein expression profiles of Atf2, Rptor, and Ccnd3 in each group were paralleled with the results of NGS. Conclusion Our results revealed that age-induced muscle loss might result from age-influenced genes that contribute to muscle development in SCs. After resistance training, age-impaired genes were reactivated, and age-induced genes were depressed. The change fold in these genes in the young/MID mice resembled those in the MID + T/MID group, suggesting that resistance training can rejuvenate the self-renewing ability of SCs by recovering age-influenced genes to prevent sarcopenia. Cite this article: Bone Joint Res 2022;11(2):121–133.
Collapse
Affiliation(s)
- Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
| | - Shih-Jie Lin
- Department of Orthopaedic Surgery, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ji-Shiuan Hung
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Mei-Hsin Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology Academia Sinica, Taipei, Taiwan
| | - Wei-Hsiu Hsu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Wen-Wei Robert Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan.,Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
7
|
Gholamnezhad Z, Safarian B, Esparham A, Mirzaei M, Esmaeilzadeh M, Boskabady MH. The modulatory effects of exercise on lipopolysaccharide-induced lung inflammation and injury: A systemic review. Life Sci 2022; 293:120306. [PMID: 35016883 DOI: 10.1016/j.lfs.2022.120306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Abstract
Recent studies have shown that proper exercise significantly restricts inflammatory responses through regulation of the immune system. This review discusses mechanisms of protective effects of exercise in lipopolysaccharide (LPS)-induced lung injury. We performed a systematic search in PubMed, Scopus, and Web of Sciences using the search components "physical exercise", "lung" and "LPS" to identify preclinical studies, which assessed physical activity effects on LPS-induced pulmonary injury. Articles (n = 1240) were screened and those that had the eligibility criteria were selected for data extraction and critical appraisal. In all of the 21 rodent-model studies included, pulmonary inflammation was induced by LPS. Exercise protocols included low and moderate intensity treadmill training and swimming. The results showed that aerobic exercise would prevent LPS-induced oxidative stress and inflammation as well as airways resistance, exhaled nitric oxide, protein leakage, increase in total WBC, macrophage and neutrophil population, levels of interleukin (IL)-6, IL-1β, IL-17, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor and CXCL1/KC, and improved IL-10 and IL-ra in lung tissue, bronchoalveolar lavage fluid (BALF) and serum. In addition, in trained animals, the expression of some anti-inflammatory factors such as heat shock protein72, IL-10, triggering receptor expressed on myeloid cells-2 and irisin was increased, thus ameliorating lung injury complications. Aerobic exercise was shown to alleviate the LPS-induced lung injury in rodent models by suppressing oxidative stress and lowering the ratio of pro-inflammatory to anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahare Safarian
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Ali Esparham
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Esmaeilzadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
8
|
de Mol J, Kuiper J, Tsiantoulas D, Foks AC. The Dynamics of B Cell Aging in Health and Disease. Front Immunol 2021; 12:733566. [PMID: 34675924 PMCID: PMC8524000 DOI: 10.3389/fimmu.2021.733566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022] Open
Abstract
Aging is considered to be an important risk factor for several inflammatory diseases. B cells play a major role in chronic inflammatory diseases by antibody secretion, antigen presentation and T cell regulation. Different B cell subsets have been implicated in infections and multiple autoimmune diseases. Since aging decreases B cell numbers, affects B cell subsets and impairs antibody responses, the aged B cell is expected to have major impacts on the development and progression of these diseases. In this review, we summarize the role of B cells in health and disease settings, such as atherosclerotic disease. Furthermore, we provide an overview of age-related changes in B cell development and function with respect to their impact in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jill de Mol
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | | | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
9
|
Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med (Berl) 2021; 99:1553-1569. [PMID: 34432073 PMCID: PMC8384586 DOI: 10.1007/s00109-021-02123-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
The functional competence of the immune system gradually declines with aging, a process called immunosenescence. The age-related remodelling of the immune system affects both adaptive and innate immunity. In particular, a chronic low-grade inflammation, termed inflammaging, is associated with the aging process. Immunosenescence not only is present in inflammaging state, but it also occurs in several pathological conditions in conjunction with chronic inflammation. It is known that persistent inflammation stimulates a counteracting compensatory immunosuppression intended to protect host tissues. Inflammatory mediators enhance myelopoiesis and induce the generation of immature myeloid-derived suppressor cells (MDSC) which in mutual cooperation stimulates the immunosuppressive network. Immunosuppressive cells, especially MDSCs, regulatory T cells (Treg), and M2 macrophages produce immunosuppressive factors, e.g., TGF-β, IL-10, ROS, arginase-1 (ARG1), and indoleamine 2,3-dioxygenase (IDO), which suppress the functions of CD4/CD8T and B cells as well as macrophages, natural killer (NK) cells, and dendritic cells. The immunosuppressive armament (i) inhibits the development and proliferation of immune cells, (ii) decreases the cytotoxic activity of CD8T and NK cells, (iii) prevents antigen presentation and antibody production, and (iv) suppresses responsiveness to inflammatory mediators. These phenotypes are the hallmarks of immunosenescence. Immunosuppressive factors are able to control the chromatin landscape, and thus, it seems that the immunosenescence state is epigenetically regulated.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
10
|
The Effects of Physical Activity on the Aging of Circulating Immune Cells in Humans: A Systematic Review. IMMUNO 2021. [DOI: 10.3390/immuno1030009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Age-induced cellular senescence leads to a decline in efficacy of immune response and an increase in morbidity and mortality. Physical activity may be an intervention to slow down or reverse this process for elderly individuals or even delay it via enhanced activity over their lifespan. The aim of this systematic review was to analyze and discuss the current evidence of the effects of physical activity on senescence in leukocyte subpopulations. Two electronic databases (PubMed, Web of Science) were scanned in July 2020. Studies performing endurance or resistance exercise programs and investigating leukocytes of healthy, particularly elderly subjects were included. Nine human studies were identified, including a total of 440 participants, of which two studies examined different types of exercise training retrospectively, three conducted resistance exercise, three endurance exercise, and one endurance vs. resistance training. Results revealed that exercise training increased the naïve subsets of peripheral T-helper cells and cytotoxic T-cells, whereas the senescent and effector memory T-cells re-expresses CD45RA (TEMRA) subsets decreased. Moreover, the percentage of T-helper- compared to cytotoxic T-cells increased. The results suggest that physical activity reduces or slows down cellular immunosenescence. Endurance exercise seems to affect cellular senescence in a more positive way than resistance training. However, training contents and sex also influence senescent cells. Explicit mechanisms need to be clarified.
Collapse
|
11
|
Tokunbo O, Abayomi T, Adekomi D, Oyeyipo I. COVID-19: sitting is the new smoking; the role of exercise in augmenting the immune system among the elderly. Afr Health Sci 2021; 21:189-193. [PMID: 34394297 PMCID: PMC8356589 DOI: 10.4314/ahs.v21i1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Like smoking, sedentary lifestyle is an issue of great concern because of its deleterious health challenges and implications. Given the global spread of the new coronavirus (COVID-19), social isolation regulations and laws have been implemented in many countries to contain the spread of the virus and this has caused a drastic shift from the usual physically demanding life to a sedentary lifestyle characterized by significantly reduced physical activities and prolong sitting. Methods/Data Source Human and nonhuman primate literature was examined to compare experimental and clinical modulation of inflammatory cytokines by exercised-induced myokines. Data synthesis Experimental and clinical evidence was used to examine whether exercised-induced myokines can prime the immune system of the elderly population during the COVID-19 pandemic. Conclusion The immune system changes with advancement in age which increases the likelihood of infectious disease morbidity and mortality in older adults. Several epidemiological studies have also shown that physical inactivity among geriatric population impacts negatively on the immune system. Evidences on the importance of exercise in priming the immune system of elderly individuals could be an effective therapeutic strategy in combating the virus as it may well be a case of “let those with the best immune system win”.
Collapse
|
12
|
Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine Growth Factor Rev 2021; 59:9-21. [PMID: 33551332 DOI: 10.1016/j.cytogfr.2021.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Aging is a natural physiological process that features various and variable challenges, associated with loss of homeostasis within the organism, often leading to negative consequences for health. Cellular senescence occurs when cells exhaust the capacity to renew themselves and their tissue environment as the cell cycle comes to a halt. This process is influenced by genetics, metabolism and extrinsic factors. Immunosenescence, the aging of the immune system, is a result of the aging process, but can also in turn act as a secondary inducer of senescence within other tissues. This review aims to summarize the current state of knowledge regarding hallmarks of aging in relation to immunosenescence, with a focus on aging-related imbalances in the medullary environment, as well as the components of the innate and adaptive immune responses. Aging within the immune system alters its functionality, and has consequences for the person's ability to fight infections, as well as for susceptibility to chronic diseases such as cancer and cardiovascular disease. The senescence-associated secretory phenotype is described, as well as the involvement of this phenomenon in the paracrine induction of senescence in otherwise healthy cells. Inflammaging is discussed in detail, along with the comorbidities associated with this process. A knowledge of these processes is required in order to consider possible targets for the application of senotherapeutic agents - interventions with the potential to modulate the senescence process, thus prolonging the healthy lifespan of the immune system and minimizing the secondary effects of immunosenescence.
Collapse
|
13
|
Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. ACTA ACUST UNITED AC 2020; 2:e200026. [PMID: 32774895 PMCID: PMC7409778 DOI: 10.20900/immunometab20200026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that involves dysfunction on multiple levels, all of which seem to converge on inflammation. Macrophages are intimately involved in initiating and resolving inflammation, and their dysregulation with age is a primary contributor to inflammaging—a state of chronic, low-grade inflammation that develops during aging. Among the age-related changes that occur to macrophages are a heightened state of basal inflammation and diminished or hyperactive inflammatory responses, which seem to be driven by metabolic-dependent epigenetic changes. In this review article we provide a brief overview of mitochondrial functions and age-related changes that occur to macrophages, with an emphasis on how the inflammaging environment, senescence, and NAD decline can affect their metabolism, promote dysregulation, and contribute to inflammaging and age-related pathologies.
Collapse
|
14
|
Niedermair T, Schirner S, Lasheras MG, Straub RH, Grässel S. Absence of α-calcitonin gene-related peptide modulates bone remodeling properties of murine osteoblasts and osteoclasts in an age-dependent way. Mech Ageing Dev 2020; 189:111265. [PMID: 32446790 DOI: 10.1016/j.mad.2020.111265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
Abstract
Mice with an overall deletion of the sensory neuropeptide α-calcitonin gene-related peptide (α-CGRP) develop an age-dependent osteopenic bone phenotype. Underlying molecular mechanisms of how αCGRP affects bone cell metabolism are not well understood. This study aims to characterize differences in metabolic parameters of osteoblast-like cells (OB) and differentiated bone marrow-derived macrophages (BMM)/osteoclast (OC) cultures isolated from 3 month (3 m) and 9 month old (9 m) α-CGRP-deficient mice (-/-) and age-matched WT controls. All WT bone cell cultures endogenously produced and secreted α-CGRP. We found higher BMM but reduced OB numbers and reduced OB vitality after isolation from 9 m compared to 3 m mice, independent of genotype. Absence of α-CGRP reduced cell spreading, increased apoptosis rate throughout osteogenic differentiation, and reduced ALP activity during late osteogenic differentiation in 9 m OB-/- cultures, whereas minor effects were found in 3 m OB-/- cultures. Cathepsin K activity was reduced in 3 m OC-/- cultures. On the contrary, 9 m OC-/- cells demonstrated increased proliferation and caspase3/7 activity. The absence of α-CGRP influenced bone formation and resorption rate differently in bone cells from 3 and 9 m old mice. In summary we suggest, that an increase of dysfunctional mature osteoblasts might occur during aging and contribute to the development of the osteopenic bone phenotype in mature adult (9 m) α-CGRP-deficient mice.
Collapse
Affiliation(s)
- Tanja Niedermair
- Department of Orthopaedic Surgery, University of Regensburg, Germany; Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Stephan Schirner
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Mar Guaza Lasheras
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University of Regensburg, Germany.
| | - Susanne Grässel
- Department of Orthopaedic Surgery, University of Regensburg, Germany; Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| |
Collapse
|
15
|
Jämsen E, Pajarinen J, Lin TH, Lo CW, Nabeshima A, Lu L, Nathan K, Eklund KK, Yao Z, Goodman SB. Effect of Aging on the Macrophage Response to Titanium Particles. J Orthop Res 2020; 38:405-416. [PMID: 31498470 PMCID: PMC6980287 DOI: 10.1002/jor.24461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
Macrophage-mediated inflammatory reaction to implant wear particles drives bone loss around total joint replacements (TJR). Although most TJR recipients are elderly, studies linking wear particle-activated macrophages and peri-implant osteolysis have not taken into account the multiple effects that aging has on the innate immune system and, in particular, on macrophages. To address this, we compared the wear particle responses of bone marrow macrophages obtained from young (2-month) and aged (18-month) mice. Macrophages were polarized to M0, M1, or M2 phenotypes in vitro, challenged with titanium particles, and their inflammatory response was characterized at multiple time points by quantitative reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. In addition, age-dependent changes in activation of transcription factor nuclear factor-κB were analyzed by a lentiviral vector-based luciferase reporter system. The particle stimulation experiment was further repeated using human primary macrophages isolated from blood donors of different ages. We found that the pro-inflammatory responses were generally higher in macrophages obtained from young mice, but differences between the age groups remained small and of uncertain biological significance. Noteworthily, M2 polarization effectively suppressed the particle-induced inflammation in both young and aged macrophages. These results suggest that aging of the innate immune system per se plays no significant role in the response of macrophages to titanium particles, whereas induction of M2 polarization appears a promising strategy to limit macrophage-mediated inflammation regardless of age. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:405-416, 2020.
Collapse
Affiliation(s)
- Eemeli Jämsen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA,Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Translational Immunology Research Program, University of Helsinki,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Jukka Pajarinen
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA,Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Translational Immunology Research Program, University of Helsinki,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Tzu-hua Lin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Chi-Wen Lo
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Akira Nabeshima
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Lu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Karthik Nathan
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari K. Eklund
- Department of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Translational Immunology Research Program, University of Helsinki,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland,University of Helsinki and Helsinki University Hospital, Rheumatology, Helsinki, Finland
| | - Zhenyu Yao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B. Goodman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA,Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
van Beek AA, Van den Bossche J, Mastroberardino PG, de Winther MPJ, Leenen PJM. Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging? Trends Immunol 2019; 40:113-127. [PMID: 30626541 DOI: 10.1016/j.it.2018.12.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Aging is a complex process with an impact on essentially all organs. Declined cellular repair causes increased damage at genomic and proteomic levels upon aging. This can lead to systemic changes in metabolism and pro-inflammatory cytokine production, resulting in low-grade inflammation, or 'inflammaging'. Tissue macrophages, gatekeepers of parenchymal homeostasis and integrity, are prime inflammatory cytokine producers, as well as initiators and regulators of inflammation. In this opinion piece, we summarize intrinsic alterations in macrophage phenotype and function with age. We propose that alternatively activated macrophages (M2-like), which are yet pro-inflammatory, can accumulate in tissues and promote inflammaging. Age-related increases in endoplasmic reticulum stress and mitochondrial dysfunction might be cell-intrinsic forces driving this unusual phenotype.
Collapse
Affiliation(s)
- Adriaan A van Beek
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6709 PG Wageningen, The Netherlands; Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Pier G Mastroberardino
- Department of Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Menno P J de Winther
- Amsterdam UMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands; Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Harper EI, Sheedy EF, Stack MS. With Great Age Comes Great Metastatic Ability: Ovarian Cancer and the Appeal of the Aging Peritoneal Microenvironment. Cancers (Basel) 2018; 10:E230. [PMID: 29996539 PMCID: PMC6070816 DOI: 10.3390/cancers10070230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Age is one of the biggest risk factors for ovarian cancer. Older women have higher rates of diagnosis and death associated with the disease. In mouse models, it was shown that aged mice had greater tumor burden than their younger counterparts when intraperitoneally injected with ovarian tumor cells. While very few papers have been published looking at the direct link between ovarian cancer metastasis and age, there is a wealth of information on how age affects metastatic microenvironments. Mesothelial cells, the peritoneal extracellular matrix (ECM), fibroblasts, adipocytes and immune cells all exhibit distinct changes with age. The aged peritoneum hosts a higher number of senescent cells than its younger counterpart, in both the mesothelium and the stroma. These senescent cells promote an inflammatory profile and overexpress Matrix Metalloproteinases (MMPs), which remodel the ECM. The aged ECM is also modified by dysregulated collagen and laminin synthesis, increases in age-related crosslinking and increasing ovarian cancer invasion into the matrix. These changes contribute to a vastly different microenvironment in young and aged models for circulating ovarian cancer cells, creating a more welcoming “soil”.
Collapse
Affiliation(s)
- Elizabeth I Harper
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Integrated Biomedical Sciences Program, University of Notre Dame, South Bend, IN 46617, USA.
| | - Emma F Sheedy
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Department of Mathematics, University of Notre Dame, South Bend, IN 46617, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| |
Collapse
|
18
|
Breuillard C, Curis E, Le Plénier S, Cynober L, Moinard C. Nitric oxide production by peritoneal macrophages from aged rats: A short term and direct modulation by citrulline. Biochimie 2016; 133:66-73. [PMID: 27939527 DOI: 10.1016/j.biochi.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 11/20/2022]
Abstract
Citrulline has anti-inflammatory properties and exerts beneficial effects on various impaired functions in aging. However, there are few data on citrulline action on immune function in aged populations. The objective of the study was to evaluate citrulline ability, after in vivo and in vitro administration, to modulate macrophage functions in aged rats and the possible pathways involved. Twenty-one-month-old Sprague-Dawley rats (n = 27) received a citrulline supplementation at 5 g/kg/d for 5 days, or an isonitrogenous diet, and peritoneal macrophages were cultured with or without LPS. In the in vitro study, macrophages from 22-month-old rats (n = 16) were cultured with or without LPS, citrulline and inhibitors of different inflammatory pathways (n = 8/conditions). Nitric oxide (NO) and tumor necrosis factor α (TNFα) production were measured in both in vivo and in vitro studies. Citrulline decreased NO production variability by peritoneal macrophages after in vivo administration (p = 0.0034) and downregulated NO production by 22% after in vitro administration (95% CI: [6%; 35%]; p = 0.0394), without any direct effect on TNFα production. None of the transductional pathways explored seem to be involved. Citrulline slightly modulates NO production in vivo and in vitro, suggesting a possible action through modulation of arginine metabolism in macrophages rather than a direct transductional effect. The pleiotropic effects of citrulline in aging could be due, at least in part, to the anti-inflammatory effect of citrulline.
Collapse
Affiliation(s)
- Charlotte Breuillard
- Laboratoire de Biologie de la Nutrition, EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75270 Paris Cedex 6, France
| | - Emmanuel Curis
- Laboratoire de Biomathématiques, EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75270 Paris Cedex 6, France
| | - Servane Le Plénier
- Laboratoire de Biologie de la Nutrition, EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75270 Paris Cedex 6, France
| | - Luc Cynober
- Laboratoire de Biologie de la Nutrition, EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75270 Paris Cedex 6, France; Service de Biochimie, Hôpitaux Cochin et Hôtel-Dieu, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France.
| | - Christophe Moinard
- Laboratoire de Biologie de la Nutrition, EA 4466, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75270 Paris Cedex 6, France
| |
Collapse
|
19
|
Albright JM, Dunn RC, Shults JA, Boe DM, Afshar M, Kovacs EJ. Advanced Age Alters Monocyte and Macrophage Responses. Antioxid Redox Signal 2016; 25:805-815. [PMID: 27357201 PMCID: PMC5107740 DOI: 10.1089/ars.2016.6691] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE With the growing population of baby boomers, there is a great need to determine the effects of advanced age on the function of the immune system. Recent Advances: It is universally accepted that advanced age is associated with a chronic low-grade inflammatory state that is referred to as inflamm-aging, which alters the function of both immune and nonimmune cells. Mononuclear phagocytes play a central role in both the initiation and resolution of inflammation in multiple organ systems and exhibit marked changes in phenotype and function in response to environmental cues, including the low levels of pro-inflammatory mediators seen in the aged. CRITICAL ISSUES Although we know a great deal about the function of immune cells in young adults and there is a growing body of literature focusing on aging of the adaptive immune system, much less is known about the impact of age on innate immunity and the critical role of the mononuclear phagocytes in this process. FUTURE DIRECTIONS In this article, there is a focus on the tissue-specific monocyte and macrophage subsets and how they are altered in the aged milieu, with the hope that this compilation of observations will spark an expansion of research in the field. Antioxid. Redox Signal. 25, 805-815.
Collapse
Affiliation(s)
- Joslyn M Albright
- 1 Department of Surgery, Loyola University Chicago Health Sciences Campus , Maywood, Illinois.,2 Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus , Maywood, Illinois
| | - Robert C Dunn
- 2 Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus , Maywood, Illinois.,3 Stritch School of Medicine, Loyola University Chicago Health Sciences Campus , Maywood, Illinois
| | - Jill A Shults
- 1 Department of Surgery, Loyola University Chicago Health Sciences Campus , Maywood, Illinois.,2 Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus , Maywood, Illinois
| | - Devin M Boe
- 4 Department of Surgery, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| | - Majid Afshar
- 2 Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus , Maywood, Illinois.,3 Stritch School of Medicine, Loyola University Chicago Health Sciences Campus , Maywood, Illinois.,5 Department of Medicine, Loyola University Chicago Health Sciences Campus , Maywood, Illinois.,6 Department of Public Health Sciences, Loyola University Chicago Health Sciences Campus , Maywood, Illinois
| | - Elizabeth J Kovacs
- 4 Department of Surgery, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
20
|
Live Attenuated Leishmania donovani Centrin Knock Out Parasites Generate Non-inferior Protective Immune Response in Aged Mice against Visceral Leishmaniasis. PLoS Negl Trop Dis 2016; 10:e0004963. [PMID: 27580076 PMCID: PMC5007048 DOI: 10.1371/journal.pntd.0004963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Background Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice. Methodology Analysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice. Conclusions Taken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice. Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani. There is no effective vaccine available against VL for any age group and importantly, there are no previous studies regarding immune responses against experimental Leishmania vaccines tested in aged animals. We have reported earlier that immunization with a live attenuated L. donovani parasites (LdCen-/-) induced protective immune response in young animals viz, mice, hamsters and dogs. In this study we analyzed LdCen-/- mediated modulation of innate and adaptive responses in aged mice and compared to young mice. We observed that LdCen-/- infected dendritic cells from young and aged mice resulted in enhanced innate effector functions compared to LdWT parasites both in vitro and in vivo. Further, upon virulent challenge, LdCen-/- immunized young and aged mice displayed protective Th1 immune response which correlated with a significantly reduced parasite burden in the visceral organs compared with naïve challenged mice. Although there was no difference in the LdCen-/- induced dendritic cell response between aged and young mice; adaptive response in aged was reduced, compared to young which correlated with less protection in aged compared to young mice. This study supports the potential use of LdCen-/- as vaccine candidate across all age groups against VL.
Collapse
|
21
|
Pattabiraman G, Palasiewicz K, Ucker DS. Toll-like Receptor function of murine macrophages, probed by cytokine induction, is biphasic and is not impaired globally with age. Mech Ageing Dev 2016; 157:44-59. [PMID: 27453067 DOI: 10.1016/j.mad.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/08/2016] [Accepted: 07/20/2016] [Indexed: 01/11/2023]
Abstract
Aging is associated with a waning of normal immune function. This "immunosenescence" is characterized by a diverse repertoire of seemingly discreet and unbalanced immune alterations. A number of studies have suggested that aging-associated alterations in innate immune responsiveness, especially responsiveness dependent on Toll-like Receptor (TLR) engagement, are causally involved. We find, however, that the magnitude and dose-dependency of responsiveness to TLR engagement (assessed with respect to cytokine production) in distinct populations of murine macrophages are not altered generally with animal age or as a consequence of immunosenescence. Responses elicited with a wide array of TLR agonists were examined by extensive functional analyses, principally on the level of the individual cell. These studies reveal an intriguing "all-or-nothing" response behavior of macrophages, independent of animal age. Although reports to the contrary have been cited widely, aging-associated immune decline cannot be attributed to widespread alterations in the extents of TLR-dependent innate immune macrophage responses.
Collapse
Affiliation(s)
- Goutham Pattabiraman
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, United States.
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, United States
| | - David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, United States.
| |
Collapse
|
22
|
Fei F, Lee KM, McCarry BE, Bowdish DME. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide. Sci Rep 2016; 6:22637. [PMID: 26940652 PMCID: PMC4778050 DOI: 10.1038/srep22637] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022] Open
Abstract
Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6-8 wk) and old (18-22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age.
Collapse
Affiliation(s)
- Fan Fei
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton L8S4M1, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton L8N3Z5, Canada
| | - Keith M. Lee
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton L8N3Z5, Canada
| | - Brian E. McCarry
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton L8S4M1, Canada
| | - Dawn M. E. Bowdish
- Department of Pathology and Molecular Medicine, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton L8N3Z5, Canada
| |
Collapse
|
23
|
Martelli S, Pender SLF, Larbi A. Compartmentalization of immunosenescence: a deeper look at the mucosa. Biogerontology 2015; 17:159-76. [PMID: 26689202 DOI: 10.1007/s10522-015-9628-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
Abstract
Developments in medical care and living conditions led to an astonishing increase in life-span perspective and subsequently a rise in the old population. This can be seen as a success for public health policies but it also challenges society to adapt, in order to cope with the potentially overwhelming cost for the healthcare system. A fast-growing number of older people lose their ability to live independently because of diseases and disabilities, frailty or cognitive impairment. Many require long-term care, including home-based nursing, communities and hospital-based care. Immunosenescence, an age-related deterioration in immune functions, is considered a major contributory factor for the higher prevalence and severity of infectious diseases and the poor efficacy of vaccination in the elderly. When compared with systemic immunosenescence, alterations in the mucosal immune system with age are less well understood. For this reason, this area deserves more extensive and intensive research and support. In this article, we provide an overview of age-associated changes occurring in systemic immunity and discuss the distinct features of mucosal immunosenescence.
Collapse
Affiliation(s)
- Serena Martelli
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
24
|
Abstract
Declining function of the immune system, termed "immunosenescence," leads to a higher incidence of infection, cancer, and autoimmune disease related mortalities in the elderly population. (1) Increasing interest in the field of immunosenescence is well-timed, as 20% of the United States population is expected to surpass the age of 65 by the year 2030. (2) Our current understanding of immunosenescence involves a shift in function of both adaptive and innate immune cells, leading to a reduced capacity to recognize new antigens and widespread chronic inflammation. The present review focuses on changes that occur in haematopoietic stem cells, macrophages, and T-cells using knowledge gained from both rodent and human studies. The review will discuss emerging strategies to combat immunosenescence, focusing on cellular and genetic therapies, including bone marrow transplantation and genetic reprogramming. A better understanding of the mechanisms and implications of immunosenescence will be necessary to combat age-related mortalities in the future.
Collapse
Affiliation(s)
- Elizabeth C Stahl
- a Department of Pathology ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA ;,b McGowan Institute for Regenerative Medicine ; Pittsburgh , PA USA
| | - Bryan N Brown
- a Department of Pathology ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA ;,b McGowan Institute for Regenerative Medicine ; Pittsburgh , PA USA ;,c Bioengineering Department ; Swanson School of Engineering; University of Pittsburgh ; Pittsburgh , PA USA
| |
Collapse
|
25
|
Stanojević S, Kovačević-Jovanović V, Dimitrijević M, Vujić V, Ćuruvija I, Blagojević V, Leposavić G. Unopposed Estrogen Supplementation/Progesterone Deficiency in Post-Reproductive Age Affects the Secretory Profile of Resident Macrophages in a Tissue-Specific Manner in the Rat. Am J Reprod Immunol 2015; 74:445-56. [PMID: 26307150 DOI: 10.1111/aji.12424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
PROBLEM The influence of unopposed estrogen replacement/isolated progesterone deficiency on macrophage production of pro-inflammatory/anti-inflammatory mediators in the post-reproductive age was studied. METHOD OF STUDY Considering that in the rats post-ovariectomy the circulating estradiol, but not progesterone level rises to the values in sham-operated controls, 20-month-old rats ovariectomized at the age of 10 months served as an experimental model. Estrogen and progesterone receptor expression, secretion of pro- and anti-inflammatory cytokines, and arginine metabolism end-products were examined in splenic and peritoneal macrophages under basal conditions and following lipopolysaccharide (LPS) stimulation in vitro. RESULTS Almost all peritoneal and a subset of splenic macrophages expressed the intracellular progesterone receptor. Ovariectomy diminished cytokine production by splenic (IL-1β) and peritoneal (TNF-α, IL-1β, IL-10) macrophages and increased the production of IL-10 by splenic and TGF-β by peritoneal cells under basal conditions. Following LPS stimulation, splenic macrophages from ovariectomized rats produced less TNF-α and more IL-10, whereas peritoneal macrophages produced less IL-1β and TGF-β than the corresponding cells from sham-operated rats. Ovariectomy diminished urea production in both subpopulations of LPS-stimulated macrophages. CONCLUSION Although long-lasting isolated progesterone deficiency in the post-reproductive age differentially affects cytokine production in the macrophages from distinct tissue compartments, in both subpopulations, it impairs the pro-inflammatory/anti-inflammatory cytokine secretory balance.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia
| | - Vesna Kovačević-Jovanović
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia
| | - Mirjana Dimitrijević
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia
| | - Vesna Vujić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Ćuruvija
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia
| | - Veljko Blagojević
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Barrett JP, Costello DA, O'Sullivan J, Cowley TR, Lynch MA. Bone marrow-derived macrophages from aged rats are more responsive to inflammatory stimuli. J Neuroinflammation 2015; 12:67. [PMID: 25890218 PMCID: PMC4397943 DOI: 10.1186/s12974-015-0287-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/24/2015] [Indexed: 12/03/2022] Open
Abstract
Background Lipopolysaccharide (LPS) and interferon-γ (IFNγ) increase expression of tumour necrosis factor-α (TNFα) that characterizes the M1 activation state of macrophages. Whereas it is accepted that the immune system undergoes changes with age, there is inconsistency in the literature with respect to the impact of age on the response of macrophages to inflammatory stimuli. Here, we investigate the effect of age on the responsiveness of bone marrow-derived macrophages (BMDMs) to LPS and IFNγ. The context for addressing this question is that macrophages, which infiltrate the brain of aged animals, will encounter the neuroinflammatory environment that has been described with age. Methods Brain tissue, prepared from young and aged rats, was assessed for expression of inflammatory markers by PCR and for evidence of infiltration of macrophages by flow cytometry. BMDMs were prepared from the long bones of young and aged rats, maintained in culture for 8 days and incubated in the presence or absence of LPS (100 ng/ml) or IFNγ (50 ng/ml). Cells were harvested and assessed for mRNA expression of markers of M1 activation including TNFα and NOS2, or for expression of IFNγR1 and TLR4 by western immunoblotting. To assess whether BMDMs induced glial activation, mixed glial cultures were incubated in the presence of conditioned media obtained from unstimulated BMDMs of young and aged rats and evaluated for expression of inflammatory markers. Results Markers associated with M1 activation were expressed to a greater extent in BMDMs from aged rats in response to LPS and IFNγ, compared with cells from young rats. The increased responsiveness was associated with increases in IFNγ receptor (IFNγR) and Toll-like receptor 4 (TLR4). The data show that conditioned media from BMDMs of aged rats increased the expression of pro-inflammatory mediators in glial cells. Significantly, there was an age-related increase in macrophage infiltration into the brain, and this was combined with increased expression of IFNγ and the Toll-like receptor 4 agonist, high-mobility group protein B1 (HMGB1). Conclusion Exposure of infiltrating macrophages to the inflammatory microenvironment that develops in the brain with age is likely to contribute to a damaging cascade that negatively impacts neuronal function.
Collapse
Affiliation(s)
- James P Barrett
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Derek A Costello
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Joan O'Sullivan
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Thelma R Cowley
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
27
|
Dimitrijević M, Aleksić I, Vujić V, Stanojević S, Pilipović I, von Hörsten S, Leposavić G. Peritoneal exudate cells from long-lived rats exhibit increased IL-10/IL-1β expression ratio and preserved NO/urea ratio following LPS-stimulation in vitro. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9696. [PMID: 25081109 PMCID: PMC4150890 DOI: 10.1007/s11357-014-9696-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
In humans, usual aging, differently from successful aging, is associated with deregulation of proinflammatory/anti-inflammatory cytokine balance. The corresponding data from rat studies are limited. Therefore, we examined (i) cytokine messenger RNA (mRNA) profile of fresh peritoneal cells from 6- (adult), 24- (old), and 31-month-old (long-lived) AO rats and (ii) proinflammatory (IL-1β and IL-6) and anti-inflammatory (IL-10) cytokine, NO, and urea production in their LPS-stimulated cultures. Comparing with adult rats, cells from old ones expressed lower amount of TNF-α and IL-6 mRNAs, but greater amount of IL-1β mRNA. On the other hand, cells from long-lived rats exhibited a dramatic increase in IL-10 mRNA expression followed by diminished TNF-α and IL-6 mRNA expression, and comparable expression of IL-1β mRNA relative to adult rats. Consequently, IL-10/IL-1β mRNA ratio was greater in cells from long-lived rats than in adult and old rats. In LPS-stimulated peritoneal cell cultures (contained ≥95 % macrophages) from old rats, concentration of common proinflammatory cytokines was higher than in those from adult rats. Comparing with adult and old rats, in LPS-stimulated macrophage cultures from long-lived rats, TNF-α and IL-6 concentrations were lower; IL-1β concentration was comparable or greater (in respect to adult rats), whereas that of IL-10 was strikingly higher. Consistently, in macrophage cultures from long-lived rats, NO (iNOS activity marker)/urea (arginase activity marker) ratio was less and not different from that in old and adult rats, respectively. The study suggests that macrophages from long-lived rats, differently from those of old ones, have substantial ability to limit proinflammatory mediator production, which may contribute to their longevity.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Institute of Virology, Vaccines and Sera, "Torlak", Immunology Research Center "Branislav Janković", Vojvode Stepe 458, 11152, Belgrade, Serbia,
| | | | | | | | | | | | | |
Collapse
|
28
|
Linehan E, Dombrowski Y, Snoddy R, Fallon PG, Kissenpfennig A, Fitzgerald DC. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell 2014; 13:699-708. [PMID: 24813244 PMCID: PMC4326936 DOI: 10.1111/acel.12223] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2014] [Indexed: 01/19/2023] Open
Abstract
Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.
Collapse
Affiliation(s)
- Eimear Linehan
- Centre for Infection and Immunity; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7AE Northern Ireland
| | - Yvonne Dombrowski
- Centre for Infection and Immunity; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7AE Northern Ireland
| | - Rachel Snoddy
- Centre for Infection and Immunity; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7AE Northern Ireland
| | - Padraic G. Fallon
- Institute of Molecular Medicine; St. James's Hospital; Trinity College Dublin; Dublin 2 Ireland
- National Children's Research Centre; Our Lady's Children's Hospital Crumlin; Dublin 8 Ireland
| | - Adrien Kissenpfennig
- Centre for Infection and Immunity; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7AE Northern Ireland
| | - Denise C. Fitzgerald
- Centre for Infection and Immunity; Queen's University Belfast; 97 Lisburn Road Belfast BT9 7AE Northern Ireland
| |
Collapse
|
29
|
Dimitrijević M, Stanojević S, Vujić V, Aleksić I, Pilipović I, Leposavić G. Aging oppositely affects TNF-α and IL-10 production by macrophages from different rat strains. Biogerontology 2014; 15:475-86. [PMID: 25009084 DOI: 10.1007/s10522-014-9513-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/25/2014] [Indexed: 01/02/2023]
Abstract
Altered functions of macrophages with aging contribute to impairment of both innate and adaptive immunity in the elderly. The present study aimed to examine strain specificity of age-related changes in the phenotypic and functional characteristics of macrophages from DA and AO rats, which differ in average life span. Resident peritoneal macrophages from young (10-12 weeks old) and aged (98-104 weeks old) rats were tested for: (a) the surface expression of TLR4 and CD14; (b) the basal and LPS-induced production of TNF-α and IL-10; and (c) the basal and LPS-induced activity of iNOS and arginase, by measuring the levels of NO and urea, respectively, in the culture supernatants. Aging elevated TLR4 macrophage surface density in rats of both strains. Conversely, the age-related decrease in the surface density of CD14 co-receptor was detected only on macrophages from aged DA rats. Accordingly, with aging in DA rats, contrary to AO rats, upon LPS-stimulation both TNF-α and IL-10 levels decreased in culture supernatants. However, in rats of both strains TNF-α stimulation index (LPS-induced over basal production) remained stable with aging, but it was significantly greater in AO rats. Furthermore, with aging, IL-10 stimulation index decreased and increased in DA and AO rats, respectively. Age-related shift in urea stimulation index complied with the changes of IL-10 stimulation index during aging. In conclusion, the study suggests that the preserved ability of macrophages from aged AO rats to synthesize not only proinflammatory TNF-α, but also immunoregulatory IL-10 cytokine most likely contributes to their longer average life compared with DA rats.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Institute of Virology, Vaccines and Sera, "Torlak", Immunology Research Center "Branislav Janković", Vojvode Stepe 458, 11152, Belgrade, Serbia,
| | | | | | | | | | | |
Collapse
|
30
|
Posttranscriptional Suppression of Lipopolysaccharide-Stimulated Inflammatory Responses by Macrophages in Middle-Aged Mice: A Possible Role for Eukaryotic Initiation Factor 2 α. Int J Inflam 2014; 2014:292986. [PMID: 24808968 PMCID: PMC3997978 DOI: 10.1155/2014/292986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/24/2014] [Indexed: 11/17/2022] Open
Abstract
The intensities of macrophage inflammatory responses to bacterial components gradually decrease with age. Given that a reduced rate of protein synthesis is a common age-related biochemical change, which is partially mediated by increased phosphorylation of eukaryotic initiation factor-2 α (eIF-2 α ), we investigated the mechanism responsible for the deterioration of macrophage inflammatory responses, focusing specifically on the age-related biochemical changes in middle-aged mice. Peritoneal macrophages isolated from 2-month-old (young) and 12-month-old (middle-aged) male BALB/c mice were stimulated with lipopolysaccharide (LPS). Although LPS-stimulated secretion of tumor necrosis factor- α (TNF- α ) by the macrophages from middle-aged mice was significantly lower than that from young mice, LPS caused marked increases in levels of TNF- α mRNA in macrophages from middle-aged as well as young mice. Moreover, LPS evoked similar levels of phosphorylation of c-Jun N-terminal kinase (JNK) and nuclear factor- κ B (NF- κ B) in young and middle-aged mice. In contrast, the basal level of phosphorylated eIF-2 α in macrophages from middle-aged mice was higher than that in macrophages from young mice. Salubrinal, an inhibitor of the phosphatase activity that dephosphorylates eIF-2 α , suppressed the LPS-stimulated inflammatory responses in a murine macrophage cell line RAW264.7. These results suggest that posttranscriptional suppression of macrophage inflammatory responses during middle age requires phosphorylation of eIF-2 α .
Collapse
|
31
|
Krone CL, van de Groep K, Trzciński K, Sanders EAM, Bogaert D. Immunosenescence and pneumococcal disease: an imbalance in host-pathogen interactions. THE LANCET RESPIRATORY MEDICINE 2013; 2:141-53. [PMID: 24503269 DOI: 10.1016/s2213-2600(13)70165-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Respiratory infections are among the most important causes of morbidity and mortality from infectious diseases worldwide. The most common causative bacterium, Streptococcus pneumoniae, frequently colonises the upper respiratory tract, where it resides mostly asymptomatically. Occasionally, however, S pneumoniae can cause severe disease such as pneumonia. Local host immunity is essential to control colonising pathogens by preventing overgrowth, spread, and invasion. However, age-related immune deficits in elderly people, known as immunosenescence, might contribute to increased disease burden. We review present knowledge about immunosenescence in the respiratory tract against Gram-positive bacteria, particularly S pneumoniae. We discuss the possible underdetection of pneumococcal colonisation in elderly people, and suggest changes to present surveillance methods to improve understanding of the relation between colonisation and disease. We conclude that present knowledge about alteration of host-pathogen interactions by immunosenescence in the respiratory tract is insufficient, and that research is needed to enable improved measures for prevention.
Collapse
Affiliation(s)
- Cassandra L Krone
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Kirsten van de Groep
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Krzysztof Trzciński
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Elizabeth A M Sanders
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands
| | - Debby Bogaert
- Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, WKZ, Utrecht, Netherlands.
| |
Collapse
|
32
|
Groves AM, Gow AJ, Massa CB, Hall L, Laskin JD, Laskin DL. Age-related increases in ozone-induced injury and altered pulmonary mechanics in mice with progressive lung inflammation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L555-68. [PMID: 23997172 DOI: 10.1152/ajplung.00027.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In these studies we determined whether progressive pulmonary inflammation associated with aging in surfactant protein D (Sftpd)-/- mice leads to an exacerbated response to ozone. In Sftpd-/- mice, but not wild-type (WT) mice, age-related increases in numbers of enlarged vacuolated macrophages were observed in the lung, along with alveolar wall rupture, type 2 cell hyperplasia, and increased bronchoalveolar lavage protein and cell content. Numbers of heme oxygenase+ macrophages also increased with age in Sftpd-/- mice, together with classically (iNOS+) and alternatively (mannose receptor+, YM-1+, or galectin-3+) activated macrophages. In both WT and Sftpd-/- mice, increasing age from 8 to 27 wk was associated with reduced lung stiffness, as reflected by decreases in resistance and elastance spectra; however, this response was reversed in 80-wk-old Sftpd-/- mice. Ozone exposure (0.8 ppm, 3 h) caused increases in lung pathology, alveolar epithelial barrier dysfunction, and numbers of iNOS+ macrophages in 8- and 27-wk-old Sftpd-/-, but not WT mice at 72 h postexposure. Conversely, increases in alternatively activated macrophages were observed in 8-wk-old WT mice following ozone exposure, but not in Sftpd-/- mice. Ozone also caused alterations in both airway and tissue mechanics in Sftpd-/- mice at 8 and 27 wk, but not at 80 wk. These data demonstrate that mild to moderate pulmonary inflammation results in increased sensitivity to ozone; however, in senescent mice, these responses are overwhelmed by the larger effects of age-related increases in baseline inflammation and lung injury.
Collapse
Affiliation(s)
- Angela M Groves
- Dept. of Pharmacology and Toxicology, Rutgers Univ., Ernest Mario School of Pharmacy, 160 Frelinghuysen Rd., Piscataway, NJ 08854 (
| | | | | | | | | | | |
Collapse
|
33
|
Cao W, Kim JH, Chirkova T, Reber AJ, Biber R, Shay DK, Sambhara S. Improving immunogenicity and effectiveness of influenza vaccine in older adults. Expert Rev Vaccines 2012; 10:1529-37. [PMID: 22043953 DOI: 10.1586/erv.11.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is associated with a decline in immune function (immunosenescence) that leads to progressive deterioration in both innate and adaptive immune functions. These changes contribute to the subsequent increased risk for infectious diseases and their sequelae. Vaccination is the most effective and inexpensive public health strategy for prevention of infection, despite the decreased efficacy of vaccines in older adults due to immunosenescence. The rapid rise in the older adult population globally represents a great challenge for vaccination programs. This article first addresses the status of innate and adaptive immune functions in aging and then focuses on influenza vaccine. The development history of influenza vaccines, current status, and potential strategies to improve the immunogenicity and vaccine effectiveness in older adults are discussed.
Collapse
Affiliation(s)
- Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Bldg 15, SSB 611 B, 1600 Clifton Road, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum improves phagocytic potential of macrophages in aged mice. Journal of Food Science and Technology 2012; 51:1147-53. [PMID: 24876648 DOI: 10.1007/s13197-012-0637-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/10/2011] [Accepted: 01/24/2012] [Indexed: 12/25/2022]
Abstract
The present study investigated the effect of Dahi containing potential probiotic bacterial strains on macrophage functions in ageing mice. Probiotic Dahi was prepared by co-culturing Dahi bacteria (Lactococcus lactis ssp. cremoris and Lactococcus lactis ssp. lactis biovar diacetylactis) along with Lactobacillus acidophilus LaVK2 (La-Dahi) or combined L. acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 (LaBb-Dahi) in buffalo milk. The effect of ageing on phagocytic function was evaluated on 4 mo, 12 mo and 16 mo old mice. The effect of probiotic Dahi was evaluated for macrophage functions in ageing mice (12 mo old) fed La-Dahi or LaBb-Dahi supplements for 4 months. The production of extracellular superoxide and H2O2 declined in peritoneal macrophages but enhanced in splenic macrophages, while intracellular superoxide declined in both peritoneal and splenic macrophages with ageing in mice. A decline in phagocytic activity of peritoneal macrophages was also observed in aged mice. Supplementation of diet with La-Dahi or LaBb-Dahi for 4 months improved production of reactive oxygen species and phagocytic and adherence indices of peritoneal macrophages in aged mice. These results suggest that oral administration of La-Dahi or LaBb-Dahi has potential to improve immune functions in ageing individuals.
Collapse
|
35
|
Smallwood HS, López-Ferrer D, Squier TC. Aging enhances the production of reactive oxygen species and bactericidal activity in peritoneal macrophages by upregulating classical activation pathways. Biochemistry 2011; 50:9911-22. [PMID: 21981794 DOI: 10.1021/bi2011866] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3-4 months) and aged (14-15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice. Collectively, these results indicate that macrophages isolated from old mice are in a preactivated state that enhances their sensitivities to LPS exposure. The hyper-responsive activation of macrophages in aged animals may act to minimize infection by general bacterial threats that arise due to age-dependent declines in adaptive immunity. However, this hypersensitivity and the associated increase in the level of formation of reactive oxygen species are likely to contribute to observed age-dependent increases in the level of oxidative damage that underlie many diseases of the elderly.
Collapse
Affiliation(s)
- Heather S Smallwood
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | | |
Collapse
|
36
|
Liscovsky MV, Ranocchia RP, Alignani DO, Gorlino CV, Morón G, Maletto BA, Pistoresi-Palencia MC. CpG-ODN+IFN-γ confer pro- and anti-inflammatory properties to peritoneal macrophages in aged mice. Exp Gerontol 2011; 46:462-7. [PMID: 21316438 DOI: 10.1016/j.exger.2011.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/20/2010] [Accepted: 01/31/2011] [Indexed: 02/08/2023]
Abstract
Aging is accompanied by a disturbance in the homeostasis of the immune system. However, research into the behavior of macrophages in aging has shown disagreements about the functional status of these cells in aged mice. In this work, we studied the influence of aging on macrophage functions by evaluating the pro- and anti-inflammatory parameters of peritoneal macrophages preserved in their natural microenvironment. Resident peritoneal macrophages from old mice, in the context of their natural milieu, were found to respond with a similar phenotype and functional pattern to macrophages from young mice. In addition, we evaluated the macrophage response to CpG-ODN, a well-known Th1 promoter. CpG-ODN+IFN-γ were able to activate not only nitric oxide to initiate the inflammatory response, but also IL-12 in resident and inflammatory peritoneal macrophages from aged mice in the context of their natural milieu, although some quantitative differences were found in IL-10 and IL-12 secretion. With this stimulus, NO secretion and arginase activation were maintained in peritoneal macrophages during aging. These results will help to elucidate potential immunization strategies with CpG-ODN in the elderly.
Collapse
Affiliation(s)
- Miriam V Liscovsky
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
37
|
TLR-2 independent recognition of Mycobacterium tuberculosis by CD11c+ pulmonary cells from old mice. Mech Ageing Dev 2010; 131:405-14. [PMID: 20566357 DOI: 10.1016/j.mad.2010.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/30/2010] [Accepted: 05/20/2010] [Indexed: 01/06/2023]
Abstract
The elderly are particularly susceptible to infectious diseases such as influenza, bacterial pneumonia, and tuberculosis. Current vaccines are only partially protective in old age, which makes the elderly a critical target group for the development of new vaccine strategies. The recognition of pathogens via toll like receptors (TLR) and the subsequent generation of pro-inflammatory cytokines has generated interest in incorporating TLR agonists into new vaccines to enhance immunogenicity. However, TLR function is reportedly decreased in old age, leading to questions regarding the benefit of including TLR agonists into vaccines for the elderly. It is critical that we understand the function and role of TLRs in aged hosts prior to approving new TLR based adjuvants for vaccines that will be delivered to the elderly. In this study we determine the ability of TLRs on pulmonary macrophages from old mice to recognize and respond to infection with the virulent pathogen Mycobacterium tuberculosis (M. tb). Although pulmonary (CD11c(+)) cells from old mice were fully capable of producing cytokines in response to M. tb infection, we demonstrate that in contrast to young mice, M. tb induced cytokine production occurred independently of TLR-2. Our data indicate that the inclusion of TLR-2 agonists into new vaccines may not be fully effective in the elderly population. Investigation into such age-related differences in TLR function is of critical importance for the design of effective vaccines that will protect the elderly against infectious diseases.
Collapse
|
38
|
Alvarez M, Saylor C, Casadevall A. Antibody action after phagocytosis promotes Cryptococcus neoformans and Cryptococcus gattii macrophage exocytosis with biofilm-like microcolony formation. Cell Microbiol 2008; 10:1622-33. [PMID: 18384661 DOI: 10.1111/j.1462-5822.2008.01152.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antibody-mediated phagocytosis was discovered over a century ago but little is known about antibody effects in phagolysosomes. We explored the consequences of antibody-mediated phagocytosis for two closely related human pathogenic fungal species, Cryptococcus neoformans and Cryptococcus gattii, of which C. neoformans encompasses two varieties: neoformans and grubii. The interaction between C. neoformans varieties grubii and neoformans and host cells has been extensively studied, but that of C. gattii and macrophages remains largely unexplored. Like C. neoformans, antibody-mediated phagocytosis of C. gattii cells was followed by intracellular replication, host cell cytoplasmic polysaccharide accumulation and phagosomal extrusion. Both C. gattii and C. neoformans cells exited macrophages in biofilm-like microcolonies where the yeast cells were aggregated in a polysaccharide matrix that contained bound antibody. In contrast, complement-opsonized C. neoformans variety grubii cells were released from macrophages dispersed as individual cells. Hence, both antibody- and complement-mediated phagocytosis resulted in intracellular replication but the mode of opsonization affected the outcome of exocytosis. The biofilm-like microcolony exit strategy of C. neoformans and C. gattii following antibody opsonization reduced fungal cell dispersion. This finding suggests that antibody agglutination effects persist in the phagosome to entangle nascent daughter cells and this phenomenon may contribute to antibody-mediated protection.
Collapse
Affiliation(s)
- Mauricio Alvarez
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | |
Collapse
|
39
|
Abstract
Aging is associated with a dysregulation of the immune system known as immunosenescence. Immunosenescence involves cellular and molecular alterations that impact both innate and adaptive immunity, leading to increased incidences of infectious disease morbidity and mortality as well as heightened rates of other immune disorders such as autoimmunity, cancer, and inflammatory conditions. While current data suggests physical activity may be an effective and logistically easy strategy for counteracting immunosenescence, it is currently underutilized in clinical settings. Long-term, moderate physical activity interventions in geriatric populations appear to be associated with several benefits including reduction in infectious disease risk, increased rates of vaccine efficacy, and improvements in both physical and psychosocial aspects of daily living. Exercise may also represent a viable therapy in patients for whom pharmacological treatment is unavailable, ineffective, or inappropriate. The effects of exercise impact multiple aspects of immune response including T cell phenotype and proliferation, antibody response to vaccination, and cytokine production. However, an underlying mechanism by which exercise affects numerous cell types and responses remains to be identified. Given this evidence, an increase in the use of physical activity programs by the healthcare community may result in improved health of geriatric populations.
Collapse
|
40
|
Thompson RW, McClung JM, Baltgalvis KA, Davis JM, Carson JA. Modulation of overload-induced inflammation by aging and anabolic steroid administration. Exp Gerontol 2006; 41:1136-48. [PMID: 17064867 DOI: 10.1016/j.exger.2006.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 08/11/2006] [Accepted: 08/29/2006] [Indexed: 11/23/2022]
Abstract
Aging can alter the skeletal muscle growth response induced by overload. The initiation of overload induces muscle extracellular matrix expansion, increased cellularity, and inflammatory gene expression, which are all related to processes important for myofiber growth. These remodeling processes are also biological targets of testosterone. It is not certain how aging affects the inflammatory response to functional overload and whether anabolic steroid administration can alter this response. The effect of anabolic steroid administration on inflammatory processes during functional overload is not known. The purpose of this study was to determine if age altered the skeletal muscle inflammatory response at the onset of functional overload and whether anabolic steroid administration would modulate this response in young or older animals. Five-month and 25 month F344 x BRN rats were given nandrolone decanoate (ND) (6 mg/kg bw/wk) or sham injections for 3 weeks, and then the soleus muscle was overloaded (OV) for 3 days by synergist ablation. ND alone induced a 230% increase in ED1(+) cells in 5 month muscle. Three days of OV had no effect on ED1(+) cell number at either age. OV combined with ND induced a 90% increase in ED2(+) cells in 5 month muscle, while there was no effect of either treatment alone at this age. In 25 month muscle, OV induced a 40% increase in ED2(+) cells. Regardless of age, OV induced muscle TNF-alpha mRNA expression (300%) and IL-6 mRNA expression (900%). ND attenuated OV-induced IL-6 mRNA but not TNF-alpha expression in both age groups. The overload induction of IL-1beta mRNA was 3-fold greater in 25 month muscle (1400%), compared to 5 month muscle (400%). ND administration ablated the overload IL-1beta mRNA induction in 25 month muscle. Anabolic steroid administration can suppress inflammatory cytokine gene expression at the onset of overload and this effect is age dependent.
Collapse
Affiliation(s)
- Raymond W Thompson
- Integrative Muscle Biology Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
41
|
Lisa Giuliani A, Graldi G, Veronesi M, Lorenzini F, Gandini G, Unis L, Previato A, Wiener E, Wickramasinghe SN, Berti G. Potentiation of erythroid abnormalities following macrophage depletion in aged rats. Eur J Haematol 2006; 78:72-81. [PMID: 17042771 DOI: 10.1111/j.0902-4441.2006.t01-1-ejh3017.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The effects of prolonged macrophage depletion on haematological parameters were investigated in aged rats and compared with those in young ones. METHODS Four weekly i.v. injections of dichloromethylene diphosphonate-containing liposomes (Cl2MDP-CL) were employed to achieve a prolonged depletion of bone marrow (BM) and spleen macrophages. The number of BM macrophages was then assessed by flow cytometry, whereas the spleen clearance function was judged by the elimination of oxidised red blood cells (RBC). Haematological parameters and signs of RBC ageing (reduced MCV, increased density and augmented 4.1a/4.1b membrane protein ratio) were determined. Finally, the recovery from phlebotomy-induced acute anaemia was investigated. RESULTS Following the Cl2MDP-CL treatment, in comparison with young rats, the aged animals showed: (i) reduced numbers of BM macrophages; (ii) greater impairment of spleen clearance function; (iii) similar anaemic condition and signs of RBC ageing; (iv) greater increase in white blood cell (WBC) numbers (mainly neutrophils). In addition, whereas aged control rats showed a recovery from phlebotomy-induced acute anaemia which was similar to that of the untreated young animals, in the aged-treated rats, a significantly diminished/delayed restoration of RBC, Hb and reticulocyte to normal values was observed, accompanied by a significantly higher increase in WBC numbers than in the other groups of animals. CONCLUSION Haematological abnormalities because of Cl2MDP-CL-induced macrophage depletion are potentiated in aged rats in which the BM regenerative potential of the erythroid lineage as well as the clearance function of the spleen appear compromised. Thus, in aged rats, macrophage dysfunction is likely to interfere with erythroid homeostasis particularly during haemopoietic stress.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stanojević S, Vujić V, Kovacević-Jovanović V, Mitić K, Kosec D, Hörsten SV, Dimitrijević M. Age-related effect of peptide YY (PYY) on paw edema in the rat: the function of Y1 receptors on inflammatory cells. Exp Gerontol 2006; 41:793-9. [PMID: 16809015 DOI: 10.1016/j.exger.2006.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/29/2006] [Accepted: 05/02/2006] [Indexed: 11/21/2022]
Abstract
It is well documented that neuropeptides participate in local inflammatory reaction and modulate functions of inflammatory cells. The aim of the study was to determine a link between in vivo and in vitro effects of NPY-related peptides on inflammatory response with respect to ageing. Peptide YY (PYY) intraplantarly applied decreases concanavalin A-induced paw edema in 3 and 8 months, but not in 24 months old male rats of Albino Oxford strain. The use of NPY-related receptor-specific peptides and Y1 receptor antagonist revealed that anti-inflammatory effect of PYY is mediated via NPY Y1 receptors. PYY in vitro decreases adherence of macrophages from 8 months, but not from 3 and 24 months old rats and this effect is also mediated via NPY Y1 receptor. Additionally, PYY (10(-6)M) decreases NBT reduction in macrophages from 3 and 8 months old rats, and suppresses NO production in cells from 24 months old rats, albeit regardless of absence of in vivo effect of PYY on inflammation in aged rats. It is concluded that aged rats are less responsive to anti-inflammatory action of PYY compared to adult and young rats, and that ageing is associated with altered NPY Y1 receptor functioning.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Center "Branislav Janković", Institute of Immunology and Virology "Torlak", Vojvode Stepe 458, 11152 Belgrade, Serbia and Montenegro
| | | | | | | | | | | | | |
Collapse
|
43
|
Sen G, Chen Q, Snapper CM. Immunization of aged mice with a pneumococcal conjugate vaccine combined with an unmethylated CpG-containing oligodeoxynucleotide restores defective immunoglobulin G antipolysaccharide responses and specific CD4+-T-cell priming to young adult levels. Infect Immun 2006; 74:2177-86. [PMID: 16552048 PMCID: PMC1418916 DOI: 10.1128/iai.74.4.2177-2186.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polysaccharide (PS)-protein conjugate vaccines, in contrast to purified PS vaccines, recruit CD4+-T-cell help and restore defective PS-specific humoral immunity in the immature host. Surprisingly, in the immunocompromised, aged host, anti-PS responses to conjugate vaccines are typically no better than those elicited by purified PS vaccines. Although aging leads to defects in multiple immune cell types, diminished CD4+-T-cell helper function has recently been shown to play a dominant role. We show that in response to immunization with purified pneumococcal capsular PS serotype 14 (PPS14) in saline, the T-cell-independent immunoglobulin G (IgG) anti-PPS14 response in aged mice was comparable to that in young mice. In contrast, the T-cell-dependent IgG anti-PPS14 response to a soluble conjugate of PPS14 and pneumococcal surface protein A (PspA) (PPS14-PspA) in saline was markedly defective. This was associated with defective priming of PspA-specific CD4+ T cells. In contrast, immunization of aged mice with PPS14-PspA combined with an unmethylated CpG-containing oligodeoxynucleotide (CpG-ODN) restored IgG anti-PPS14 responses to young adult levels, which were substantially higher than those observed using purified PPS14. This was associated with enhanced PspA-specific CD4+-T-cell priming. Similarly, intact Streptococcus pneumoniae capsular type 14, which contains Toll-like receptor (TLR) ligands, also induced substantial, though modestly reduced, T-cell-dependent (TD) IgG ant-PPS14 responses in aged mice. Spleen and peritoneal cells from aged and young adult mice made comparable levels of proinflammatory cytokines in response to CpG-ODN, although cells from aged mice secreted higher levels of interleukin-10. Collectively, these data suggest that inclusion of a TLR ligand, as an adjuvant, with a conjugate vaccine can correct defective TD IgG anti-PS responses in elderly patients by augmenting CD4+-T-cell help.
Collapse
Affiliation(s)
- Goutam Sen
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
44
|
Brown AS, Davis JM, Murphy EA, Carmichael MD, Carson JA, Ghaffar A, Mayer EP. Gender Differences in Macrophage Antiviral Function following Exercise Stress. Med Sci Sports Exerc 2006; 38:859-63. [PMID: 16672838 DOI: 10.1249/01.mss.0000218125.21509.cc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION In male mice, exhaustive exercise increases susceptibility to respiratory infection following intranasal inoculation with herpes simplex virus-1 (HSV-1), whereas moderate exercise decreases the risk of infection. These responses have been linked with altered macrophage antiviral resistance, among other immune mechanisms. Female mice appear to be better protected from death than male mice following HSV-1 infection, although their response to exercise stress is similar. The possible immune mechanisms, however, have not been explored. PURPOSE This study was conducted to examine gender differences in macrophage antiviral resistance following repeated moderate and exhaustive treadmill exercise. METHODS Male (M, N = 36) and female (F, N = 36) CD-1 mice were randomly assigned to moderate exercise (Mod), exhaustive exercise (Exh), or control (C) groups. Exercise was done daily for 3 d; moderate exercise consisted of treadmill running for 90 min, whereas exhaustive exercise consisted of running to volitional fatigue (approximately 50 min). RESULTS Females had greater macrophage antiviral resistance to HSV-1 than males in C and Mod (P < 0.05), but not Exh; Mod increased resistance, whereas Exh decreased resistance similarly in both genders (P < 0.001). CONCLUSIONS These data suggest that altered macrophage antiviral resistance to HSV-1 may contribute to gender differences in in vivo resistance to HSV-1 respiratory infection at rest, as well as following moderate and exhaustive exercise.
Collapse
Affiliation(s)
- Adrienne S Brown
- Division of Applied Physiology, Arnold School of Public Health, School of Medicine, University of South Carolina, Columbia, 29208, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sebastián C, Espia M, Serra M, Celada A, Lloberas J. MacrophAging: a cellular and molecular review. Immunobiology 2005; 210:121-6. [PMID: 16164018 DOI: 10.1016/j.imbio.2005.05.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aging is associated with the deterioration of several physiological functions, which leads to aged-related pathologies and, ultimately, to death. The immune system is affected by aging, causing an increased susceptibility to infections and mortality, as well as a major incidence of immune diseases and cancer in the elderly. Because macrophages are an essential component of both innate and adaptive immunity, altered function of these phagocytic cells with aging may play a key role in immunosenescence. Here we summarize data about the effects of aging on macrophages and we discuss the molecular events that could be involved in this process.
Collapse
Affiliation(s)
- Carlos Sebastián
- Institute of Biomedical Research, Barcelona Science Park, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
46
|
Kohut ML, Martin AE, Senchina DS, Lee W. Glucocorticoids produced during exercise may be necessary for optimal virus-induced IL-2 and cell proliferation whereas both catecholamines and glucocorticoids may be required for adequate immune defense to viral infection. Brain Behav Immun 2005; 19:423-35. [PMID: 15935613 DOI: 10.1016/j.bbi.2005.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/07/2005] [Accepted: 04/16/2005] [Indexed: 11/21/2022] Open
Abstract
Prolonged, exhaustive exercise has been associated with impaired immune responsiveness and increased susceptibility to infection. We have shown that one bout of exercise to fatigue followed by viral challenge increases mortality. Stress hormones such as corticosteroids and catecholamines have been suggested as potential mediators of exhaustive exercise-induced immunosuppression. The purpose of this study was to determine whether the administration of pharmacological agents to block the effect of catecholamines or corticosteroids would minimize the immunosuppression associated with this type of exercise. Mice either exercised to fatigue or were exposed to control conditions, and mice received an i.p. injection of either nadolol (beta-adrenergic receptor antagonist), RU486 (glucocorticoid type II receptor antagonist), or vehicle. Fifteen minutes post-exercise, mice were exposed to viral infection (Herpes simplex virus; HSV) via an intranasal route, and cells were collected 3 days post-infection. The results showed that exercise suppressed HSV-specific cell proliferation, HSV-specific IL-2, and IFN-gamma, but did not alter these same immune parameters when the mitogen ConA was used to stimulate cells. In addition, exercise reduced NK cell cytotoxicity, alveolar cell TNFalpha, and peritoneal IL-1beta, but did not affect IL-10. The pharmacological blockade did not attenuate the exercise-associated immunosuppression. In fact, RU486 treatment exacerbated the exercise-induced decline in HSV-induced IL-2 production and cell proliferation. RU486 and nadolol treatment also tended to decrease IL-10, IFN-gamma, TNFalpha (nadolol only), and IL-1beta (RU486 only) in both exercise and control mice, suggesting that stress hormones may be necessary during infection for optimal responsiveness. These findings suggest that suppression of immune defenses during viral infection persists for at least 3 days post-exercise, and stress hormones may be essential for optimal immune defense to viral challenge, rather than detrimental.
Collapse
Affiliation(s)
- M L Kohut
- Immunobiology Program, Department of Health and Human Performance, Iowa State University, Ames, 50011-1160, USA.
| | | | | | | |
Collapse
|
47
|
Gupta S, Su H, Bi R, Agrawal S, Gollapudi S. Life and death of lymphocytes: a role in immunesenescence. Immun Ageing 2005; 2:12. [PMID: 16115325 PMCID: PMC1236953 DOI: 10.1186/1742-4933-2-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 08/23/2005] [Indexed: 12/21/2022]
Abstract
Human aging is associated with progressive decline in immune functions, increased frequency of infections. Among immune functions, a decline in T cell functions during aging predominates. In this review, we will discuss the molecular signaling in two major pathways of apoptosis, namely death receptor pathway and mitochondrial pathway, and their alterations in both T and B lymphocytes in human aging with a special emphasis on naïve and different memory subsets of CD8+ T cells. We will also discuss a possible role of lymphocyte apoptosis in immune senescence.
Collapse
Affiliation(s)
- Sudhir Gupta
- Laboratories of Cellular and Molecular Immunology and Molecular Biology, Division of Basic and Clinical Immunology, University of California, Irvine, California 92697, USA
| | - Houfen Su
- Laboratories of Cellular and Molecular Immunology and Molecular Biology, Division of Basic and Clinical Immunology, University of California, Irvine, California 92697, USA
| | - Ruifen Bi
- Laboratories of Cellular and Molecular Immunology and Molecular Biology, Division of Basic and Clinical Immunology, University of California, Irvine, California 92697, USA
| | - Sudhanshu Agrawal
- Laboratories of Cellular and Molecular Immunology and Molecular Biology, Division of Basic and Clinical Immunology, University of California, Irvine, California 92697, USA
| | - Sastry Gollapudi
- Laboratories of Cellular and Molecular Immunology and Molecular Biology, Division of Basic and Clinical Immunology, University of California, Irvine, California 92697, USA
| |
Collapse
|
48
|
Stout RD, Suttles J. Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age-associated microenvironmental changes. Immunol Rev 2005; 205:60-71. [PMID: 15882345 PMCID: PMC1201508 DOI: 10.1111/j.0105-2896.2005.00260.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The macrophage lineage displays extreme functional and phenotypic heterogeneity, which appears to be because, in large part, of the ability of macrophages to functionally adapt to changes in their tissue microenvironment. This functional plasticity of macrophages plays a critical role in their ability to respond to tissue damage and/or infection and to contribute to clearance of damaged tissue and invading microorganisms, to recruitment of the adaptive immune system, and to resolution of the wound and of the immune response. Evidence has accumulated that environmental influences, such as stromal function and imbalances in hormones and cytokines, contribute significantly to the dysfunction of the adaptive immune system. The innate immune system also appears to be dysfunctional in aged animals and humans. In this review, the hypothesis is presented and discussed that the observed age-associated 'dysfunction' of macrophages is the result of their functional adaptation to the age-associated changes in tissue environments. The resultant loss of orchestration of the manifold functional capabilities of macrophages would undermine the efficacy of both the innate and adaptive immune systems. The macrophages appear to maintain functional plasticity during this dysregulation, making them a prime target of cytokine therapy that could enhance both innate and adaptive immune systems.
Collapse
Affiliation(s)
- Robert D Stout
- Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40292, USA.
| | | |
Collapse
|