1
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
2
|
Liang Q, Wang L, Xu J, Lin A, Wu Y, Tao Q, Zhang B, Min H, Song S, Gao Q. A burns and COVID-19 shared stress responding gene network deciphers CD1C-CD141- DCs as the key cellular components in septic prognosis. Cell Death Discov 2023; 9:258. [PMID: 37488118 PMCID: PMC10366195 DOI: 10.1038/s41420-023-01518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Differential body responses to various stresses, infectious or noninfectious, govern clinical outcomes ranging from asymptoma to death. However, the common molecular and cellular nature of the stress responsome across different stimuli is not described. In this study, we compared the expression behaviors between burns and COVID-19 infection by choosing the transcriptome of peripheral blood from related patients as the analytic target since the blood cells reflect the systemic landscape of immune status. To this end, we identified an immune co-stimulator (CD86)-centered network, named stress-response core (SRC), which was robustly co-expressed in burns and COVID-19. The enhancement of SRC genes (SRCs) expression indicated favorable prognosis and less severity in both conditions. An independent whole blood single-cell RNA sequencing of COVID-19 patients demonstrated that the monocyte-dendritic cell (Mono-DC) wing was the major cellular source of SRC, among which the higher expression of the SRCs in the monocyte was associated with the asymptomatic COVID-19 patients, while the quantity-restricted and function-defected CD1C-CD141-DCs were recognized as the key signature which linked to bad consequences. Specifically, the proportion of the CD1C-CD141-DCs and their SRCs expression were step-wise reduced along with worse clinic conditions while the subcluster of CD1C-CD141-DCs from the critical COVID-19 patients was characterized of IFN signaling quiescence, high mitochondrial metabolism and immune-communication inactivation. Thus, our study identified an expression-synchronized and function-focused gene network in Mono-DC population whose expression status was prognosis-related and might serve as a new target of diagnosis and therapy.
Collapse
Affiliation(s)
- Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Lei Wang
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jing Xu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Anqi Lin
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Yongzheng Wu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Bin Zhang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China
- Central Laboratory, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, 210028, China
| | - Haiyan Min
- Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China.
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, Jiangsu Province, China.
| |
Collapse
|
3
|
ElGindi M, Sapudom J, Garcia Sabate A, Chesney Quartey B, Alatoom A, Al-Sayegh M, Li R, Chen W, Teo J. Effects of an aged tissue niche on the immune potency of dendritic cells using simulated microgravity. NPJ AGING 2023; 9:14. [PMID: 37393393 DOI: 10.1038/s41514-023-00111-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 07/03/2023]
Abstract
Microgravity accelerates the aging of various physiological systems, and it is well acknowledged that aged individuals and astronauts both have increased susceptibility to infections and poor response to vaccination. Immunologically, dendritic cells (DCs) are the key players in linking innate and adaptive immune responses. Their distinct and optimized differentiation and maturation phases play a critical role in presenting antigens and mounting effective lymphocyte responses for long-term immunity. Despite their importance, no studies to date have effectively investigated the effects of microgravity on DCs in their native microenvironment, which is primarily located within tissues. Here, we address a significantly outstanding research gap by examining the effects of simulated microgravity via a random positioning machine on both immature and mature DCs cultured in biomimetic collagen hydrogels, a surrogate for tissue matrices. Furthermore, we explored the effects of loose and dense tissues via differences in collagen concentration. Under these various environmental conditions, the DC phenotype was characterized using surface markers, cytokines, function, and transcriptomic profiles. Our data indicate that aged or loose tissue and exposure to RPM-induced simulated microgravity both independently alter the immunogenicity of immature and mature DCs. Interestingly, cells cultured in denser matrices experience fewer effects of simulated microgravity at the transcriptome level. Our findings are a step forward to better facilitate healthier future space travel and enhance our understanding of the aging immune system on Earth.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Anna Garcia Sabate
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Rui Li
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
- Department of Mechanical and Aerospace Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates.
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
- Department of Mechanical and Aerospace Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
4
|
Morita N, Hoshi M, Tezuka H, Ando T, Yoshida S, Sato F, Yokoi H, Ito H, Saito K. CD8+ Regulatory T Cells Induced by Lipopolysaccharide Improve Mouse Endotoxin Shock. Immunohorizons 2023; 7:353-363. [PMID: 37212786 PMCID: PMC10579971 DOI: 10.4049/immunohorizons.2200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Sepsis is a systemic inflammatory disease caused by a bacterial infection that leads to severe mortality, especially in elderly patients, because of an excessive immune response and impaired regulatory functions. Antibiotic treatment is widely accepted as the first-line therapy for sepsis; however, its excessive use has led to the emergence of multidrug-resistant bacteria in patients with sepsis. Therefore, immunotherapy may be effective in treating sepsis. Although CD8+ regulatory T cells (Tregs) are known to have immunomodulatory effects in various inflammatory diseases, their role during sepsis remains unclear. In this study, we investigated the role of CD8+ Tregs in an LPS-induced endotoxic shock model in young (8-12 wk old) and aged (18-20 mo old) mice. The adoptive transfer of CD8+ Tregs into LPS-treated young mice improved the survival rate of LPS-induced endotoxic shock. Moreover, the number of CD8+ Tregs in LPS-treated young mice increased through the induction of IL-15 produced by CD11c+ cells. In contrast, LPS-treated aged mice showed a reduced induction of CD8+ Tregs owing to the limited production of IL-15. Furthermore, CD8+ Tregs induced by treatment with the rIL-15/IL-15Rα complex prevented LPS-induced body wight loss and tissue injury in aged mice. In this study, to our knowledge, the induction of CD8+ Tregs as novel immunotherapy or adjuvant therapy for endotoxic shock might reduce the uncontrolled immune response and ultimately improve the outcomes of endotoxic shock.
Collapse
Affiliation(s)
- Nanaka Morita
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
| | - Masato Hoshi
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyuki Tezuka
- Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Tatsuya Ando
- Joint Research Laboratory of Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Sayaka Yoshida
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Fumiaki Sato
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyuki Yokoi
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyasu Ito
- Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
5
|
Yang J, Kim J, Kwak C, Poo H. Poly-γ-glutamic acid/Alum adjuvanted pH1N1 vaccine-immunized aged mice exhibit a significant increase in vaccine efficacy with a decrease in age-associated CD8+ T cell proportion in splenocytes. Immun Ageing 2022; 19:22. [PMID: 35606855 PMCID: PMC9124744 DOI: 10.1186/s12979-022-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Background Highly contagious respiratory diseases caused by viral infections are a constantly emerging threat, particularly the elderly with the higher risk of developing serious complications. Vaccines are the best strategy for protection against influenza-related diseases. However, the elderly has lower vaccine efficacy than young population and the age-driven decline of the influenza vaccine efficacy remains unresolved. Objectives This study investigates the effect of an adjuvant, poly-γ-glutamic acid and alum (PGA/Alum) on vaccine efficacy in aged mice (18-months) and its mechanism is investigated using ovalbumin as a model antigen and a commercial pandemic H1N1 (pH1N1) flu vaccine. Antigen trafficking, dendritic cell (DC) activation, and the DC-mediated T cell activation were analyzed via in vivo imaging and flow cytometry. Antigen-specific humoral and cellular immune responses were evaluated in sera and splenocytes from the vaccinated mice. Also, we analyzed gene expression profiles of splenocytes from the vaccinated mice via single-cell transcriptome sequencing and evaluated the protective efficacy against pH1N1 virus challenge. Results Aged mice had lower antigen trafficking and DC activation than younger mice (6-weeks), which was ameliorated by PGA/Alum with increased antigen uptake and DC activation leading to improved antigen-specific IFN-γ+CD8+ T lymphocyte frequencies higher in the vaccinated aged mice, to a similar extent as PGA/Alum adjuvanted vaccine-immunized young mice. The results of single-cell transcriptome sequencing display that PGA/Alum also reduced the proportion of age-associated CD8+ T cell subsets and gene levels of inhibitory regulators in CD8+ T cells, which may play a role in the recovery of CD8+ T cell activation. Finally, PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice were completely protected (100% survival) compared to aged mice immunized with vaccine only (0% survival) after pH1N1 virus challenge, akin to the efficacy of the vaccinated young mice (100% survival). Conclusions PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice showed a significant increase in vaccine efficacy compared to aged mice administered with vaccine only. The enhanced vaccine efficacy by PGA/Alum is associated with significant increases of activation of DCs and effector CD8+ T cells and a decrease in age-associated CD8+ T cell proportion of splenocytes. Collectively, PGA/Alum adjuvanted flu vaccine may be a promising vaccine candidate for the elderly. Supplementary information The online version contains supplementary material available at 10.1186/s12979-022-00282-z.
Collapse
|
6
|
Interaction of aging and Immunosenescence: New therapeutic targets of aging. Int Immunopharmacol 2022; 113:109397. [DOI: 10.1016/j.intimp.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
7
|
Hornigold K, Chu JY, Chetwynd SA, Machin PA, Crossland L, Pantarelli C, Anderson KE, Hawkins PT, Segonds-Pichon A, Oxley D, Welch HCE. Age-related decline in the resistance of mice to bacterial infection and in LPS/TLR4 pathway-dependent neutrophil responses. Front Immunol 2022; 13:888415. [PMID: 36090969 PMCID: PMC9450589 DOI: 10.3389/fimmu.2022.888415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Host defense against bacterial and fungal infections diminishes with age. In humans, impaired neutrophil responses are thought to contribute to this decline. However, it remains unclear whether neutrophil responses are also impaired in old mice. Here, we investigated neutrophil function in old mice, focusing on responses primed by lipopolysaccharide (LPS), an endotoxin released by gram-negative bacteria like E. coli, which signals through toll-like receptor (TLR) 4. We show that old mice have a reduced capacity to clear pathogenic E. coli during septic peritonitis. Neutrophil recruitment was elevated during LPS-induced but not aseptic peritonitis. Neutrophils from old mice showed reduced killing of E. coli. Their reactive oxygen species (ROS) production was impaired upon priming with LPS but not with GM-CSF/TNFα. Phagocytosis and degranulation were reduced in a partially LPS-dependent manner, whereas impairment of NET release in response to S. aureus was independent of LPS. Unexpectedly, chemotaxis was normal, as were Rac1 and Rac2 GTPase activities. LPS-primed activation of Erk and p38 Mapk was defective. PIP3 production was reduced upon priming with LPS but not with GM-CSF/TNFα, whereas PIP2 levels were constitutively low. The expression of 5% of neutrophil proteins was dysregulated in old age. Granule proteins, particularly cathepsins and serpins, as well as TLR-pathway proteins and membrane receptors were upregulated, whereas chromatin and RNA regulators were downregulated. The upregulation of CD180 and downregulation of MyD88 likely contribute to the impaired LPS signaling. In summary, all major neutrophil responses except chemotaxis decline with age in mice, particularly upon LPS priming. This LPS/TLR4 pathway dependence resolves previous controversy regarding effects of age on murine neutrophils and confirms that mice are an appropriate model for the decline in human neutrophil function.
Collapse
Affiliation(s)
- Kirsti Hornigold
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Julia Y. Chu
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | | | - Polly A. Machin
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Laraine Crossland
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Chiara Pantarelli
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Karen E. Anderson
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | | | | | - David Oxley
- Proteomics Facility, The Babraham Institute, Cambridge, United Kingdom
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
- *Correspondence: Heidi C. E. Welch,
| |
Collapse
|
8
|
Abstract
Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Yang Y, Yan M. Mechanisms of Cardiovascular System Injury Induced by COVID-19 in Elderly Patients With Cardiovascular History. Front Cardiovasc Med 2022; 9:859505. [PMID: 35600485 PMCID: PMC9116509 DOI: 10.3389/fcvm.2022.859505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), represents a great threat to healthcare and socioeconomics worldwide. In addition to respiratory manifestations, COVID-19 promotes cardiac injuries, particularly in elderly patients with cardiovascular history, leading to a higher risk of progression to critical conditions. The SARS-CoV-2 infection is initiated as virus binding to angiotensin-converting enzyme 2 (ACE2), which is highly expressed in the heart, resulting in direct infection and dysregulation of the renin-angiotensin system (RAS). Meanwhile, immune response and hyper-inflammation, as well as endothelial dysfunction and thrombosis implicate in COVID-19 infection. Herein, we provide an overview of the proposed mechanisms of cardiovascular injuries in COVID-19, particularly in elderly patients with pre-existing cardiovascular diseases, aiming to set appropriate management and improve their clinical outcomes.
Collapse
|
10
|
Zhou Q, Gu H, Sun S, Zhang Y, Hou Y, Li C, Zhao Y, Ma P, Lv L, Aji S, Sun S, Wang X, Zhan L. Large-Sized Graphene Oxide Nanosheets Increase DC-T-Cell Synaptic Contact and the Efficacy of DC Vaccines against SARS-CoV-2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102528. [PMID: 34396603 PMCID: PMC8420123 DOI: 10.1002/adma.202102528] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC) vaccines are used for cancer and infectious diseases, albeit with limited efficacy. Modulating the formation of DC-T-cell synapses may greatly increase their efficacy. The effects of graphene oxide (GO) nanosheets on DCs and DC-T-cell synapse formation are evaluated. In particular, size-dependent interactions are observed between GO nanosheets and DCs. GOs with diameters of >1 µm (L-GOs) demonstrate strong adherence to the DC surface, inducing cytoskeletal reorganization via the RhoA-ROCK-MLC pathway, while relatively small GOs (≈500 nm) are predominantly internalized by DCs. Furthermore, L-GO treatment enhances DC-T-cell synapse formation via cytoskeleton-dependent membrane positioning of integrin ICAM-1. L-GO acts as a "nanozipper," facilitating the aggregation of DC-T-cell clusters to produce a stable microenvironment for T cell activation. Importantly, L-GO-adjuvanted DCs promote robust cytotoxic T cell immune responses against SARS-CoV-2 spike 1, leading to >99.7% viral RNA clearance in mice infected with a clinically isolated SARS-CoV-2 strain. These findings highlight the potential value of nanomaterials as DC vaccine adjuvants for modulating DC-T-cell synapse formation and provide a basis for the development of effective COVID-19 vaccines.
Collapse
Affiliation(s)
- Qianqian Zhou
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Sujing Sun
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Yangyang Hou
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Chenyan Li
- BGI collegeZhengzhou UniversityHenan Institute of Medical and Pharmaceutical ScienceZhengzhou UniversityZhengzhou450001P. R. China
| | - Yan Zhao
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Ping Ma
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Liping Lv
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Subi Aji
- Cold Spring Biotech CorporationBeijing110000P. R. China
| | - Shihui Sun
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion MedicineBeijing100850P. R. China
- BGI collegeZhengzhou UniversityHenan Institute of Medical and Pharmaceutical ScienceZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
11
|
Hoffman RA, Huang S, Chalasani G, Vallejo AN. Disparate Recruitment and Retention of Plasmacytoid Dendritic Cells to The Small Intestinal Mucosa between Young and Aged Mice. Aging Dis 2021; 12:1183-1196. [PMID: 34341701 PMCID: PMC8279532 DOI: 10.14336/ad.2021.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/19/2021] [Indexed: 11/01/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC), a highly specialized class of innate immune cells that serve as rapid sensors of danger signals in circulation or in lymphoid tissue are well studied. However, there remains knowledge gaps about age-dependent changes of pDC function in the intestinal mucosa. Here, we report that under homeostatic conditions, the proportion of pDC expressing C-C chemokine receptor 9 (CCR9) in the intestinal intraepithelial cell (iIEC) population is comparable between young (2-4 months) and aged (18-24 months) mice, but the absolute numbers of iIEC and pDC are significantly lower in aged mice. Employing the classic model of acute endotoxemia induced by lipopolysaccharide (LPS), we found a decrease in the proportion and absolute number of intraepithelial pDC in both young and aged mice despite the LPS-induced increased expression of the chemokine C-C ligand 25 (CCL25), the ligand of CCR9, in the intestinal mucosa of young mice. In adoptive transfer experiments, a significantly lower number of pDC was retained into the intestinal layer of aged host mice after LPS administration. This was associated with recoverable pDC numbers in the intestinal lumen. Furthermore, co-adoptive transfer of young and aged pDC into young hosts also showed significantly lower retention of aged pDC in the epithelial layer compared to the co-transferred young pDC. Collectively, these data show age-associated changes in mucosal CCL25 gene expression and in pDC number. These may underlie the reported inadequate responses to gastrointestinal pathogens during chronologic aging.
Collapse
Affiliation(s)
| | - Sulan Huang
- Department of Health Promotion and Development,
| | | | - Abbe N Vallejo
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh,
- Division of Rheumatology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
12
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
13
|
He W, Xiao K, Fang M, Xie L. Immune Cell Number, Phenotype, and Function in the Elderly with Sepsis. Aging Dis 2021; 12:277-296. [PMID: 33532141 PMCID: PMC7801284 DOI: 10.14336/ad.2020.0627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a form of life-threatening organ dysfunction caused by dysregulated host responses to an infection that can be partly attributed to immune dysfunction. Although sepsis affects patients of all ages, elderly individuals display increased susceptibility and mortality. This is partly due to immunosenescence, a decline in normal immune system function associated with physiological aging that affects almost all cell types in the innate and adaptive immune systems. In elderly patients with sepsis, these alterations in immune cells such as endothelial cells, neutrophils, monocytes, macrophages, natural killer cells, dendritic cells, T lymphocytes, and B lymphocytes, are largely responsible for their poor prognosis and increased mortality. Here, we review recent studies investigating the events affecting both innate and adaptive immune cells in elderly mice and patients with sepsis, including alterations in their number, phenotype, and function, to shed light on possible new therapeutic strategies.
Collapse
Affiliation(s)
- Wanxue He
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.
| | - Kun Xiao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.
| | - Min Fang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
Borges RC, Hohmann MS, Borghi SM. Dendritic cells in COVID-19 immunopathogenesis: insights for a possible role in determining disease outcome. Int Rev Immunol 2020; 40:108-125. [PMID: 33191813 DOI: 10.1080/08830185.2020.1844195] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This novel coronavirus emerged in China, quickly spreading to more than 200 countries worldwide. Although most patients are only mildly ill or even asymptomatic, some develop severe pneumonia and become critically ill. One of the biggest unanswered questions is why some develop severe disease, whilst others do not. Insight on the interaction between SARS-CoV-2 and the immune system and the contribution of dysfunctional immune responses to disease progression will be instrumental to the understanding of COVID-19 pathogenesis, risk factors for worst outcome, and rational design of effective therapies and vaccines. In this review we have gathered the knowledge available thus far on the epidemiology of SARS-COV-2 infection, focusing on the susceptibility of older individuals, SARS-CoV-2-host cell interaction during infection and the immune response directed at SARS-CoV-2. Dendritic cells act as crucial messengers linking innate and adaptative immunity against viral infections. Thus, this review also brings a focused discussion on the role of dendritic cells and their immune functions during SARS-CoV-2 infection and how immune evasion strategies of SARS-CoV-2 and advancing age mediate dendritic cell dysfunctions that contribute to COVID-19 pathogenesis and increased susceptibility to worst outcomes. This review brings to light the hypothesis that concomitant occurrence of dendritic cell dysfunction/cytopathic effects induced by SARS-CoV-2 and/or aging may influence disease outcome in the elderly. Lastly, a detailed discussion on the effects and mechanisms of action of drugs currently being tested for COVID-19 on the function of dendritic cells is also provided.
Collapse
Affiliation(s)
- Rodrigo Cerqueira Borges
- Avenida Professor Lineu Prestes, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Miriam Sayuri Hohmann
- Departament of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio Marques Borghi
- Departament of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná, Brazil.,Center for Research in Health Sciences, University of Northern Paraná - Unopar, Londrina, Paraná, Brazil
| |
Collapse
|
15
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
16
|
Gounder AP, Boon ACM. Influenza Pathogenesis: The Effect of Host Factors on Severity of Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:341-350. [PMID: 30617115 DOI: 10.4049/jimmunol.1801010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses continue to be a major global health threat. Severity and clinical outcome of influenza disease is determined by both viral and host factors. Viral factors have long been the subject of intense research and many molecular determinants have been identified. However, research into the host factors that protect or predispose to severe and fatal influenza A virus infections is lagging. The goal of this review is to highlight the recent insights into host determinants of influenza pathogenesis.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; .,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
17
|
Stojić-Vukanić Z, Pilipović I, Bufan B, Stojanović M, Leposavić G. Age and sex determine CD4+ T cell stimulatory and polarizing capacity of rat splenic dendritic cells. Biogerontology 2019; 21:83-107. [PMID: 31646402 DOI: 10.1007/s10522-019-09845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The study investigated influence of sex and age on splenic myeloid dendritic cells (DCs) from Dark Agouti rats. Freshly isolated DCs from young males exhibited less mature phenotype and greater endocytic capacity compared with those from age-matched females. Upon LPS stimulation in vitro they were less potent in stimulating allogeneic CD4+ cells in mixed leukocyte reaction (MLR), due to lower expression of MHC II, and greater NO and IL-10 production. In accordance with higher TGF-β production, young male rat DCs were less potent in stimulating IL-17 production in MLR than those from young females. Irrespective of sex, endocytic capacity and responsiveness of DCs to LPS stimulation in culture, judging by their allostimulatory capacity in MLR decreased with age, reflecting decline in MHC II surface density followed by their greater NO production; the effects more prominent in females. Additionally, compared with LPS-stimulated DCs from young rats, those from sex-matched aged rats were more potent in stimulating IL-10 production in MLR, whereas capacity of DCs from aged female and male rats to stimulate IL-17 production remained unaltered and decreased, respectively. This reflected age-related shift in IL-6/TGF-β production level ratio in LPS-stimulated DC cultures towards TGF-β, and sex-specific age-related remodeling CD4+ cell cytokine pathways. Additionally, compared with LPS-stimulated DCs from young rats, those cells from sex-matched aged rats were less potent in stimulating IFN-γ production in MLR, the effect particularly prominent in MLRs encompassing male rat DCs. The study showed that stimulatory and polarizing capacity of DCs depends on rat sex and age.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
18
|
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9:1269. [PMID: 29915601 PMCID: PMC5994698 DOI: 10.3389/fimmu.2018.01269] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Collapse
Affiliation(s)
| | - Tanvi Potluri
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Intrinsic and extrinsic contributors to defective CD8+ T cell responses with aging. Exp Gerontol 2018; 105:140-145. [DOI: 10.1016/j.exger.2018.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
|
20
|
Mori H, Cardiff RD, Borowsky AD. Aging Mouse Models Reveal Complex Tumor-Microenvironment Interactions in Cancer Progression. Front Cell Dev Biol 2018; 6:35. [PMID: 29651417 PMCID: PMC5884881 DOI: 10.3389/fcell.2018.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Mouse models and genetically engineered mouse models (GEMM) are essential experimental tools for the understanding molecular mechanisms within complex biological systems. GEMM are especially useful for inferencing phenocopy information to genetic human diseases such as breast cancer. Human breast cancer modeling in mice most commonly employs mammary epithelial-specific promoters to investigate gene function(s) and, in particular, putative oncogenes. Models are specifically useful in the mammary epithelial cell in the context of the complete mammary gland environment. Gene targeted knockout mice including conditional targeting to specific mammary cells can reveal developmental defects in mammary organogenesis and demonstrate the importance of putative tumor suppressor genes. Some of these models demonstrate a non-traditional type of tumor suppression which involves interplay between the tumor susceptible cell and its host/environment. These GEMM help to reveal the processes of cancer progression beyond those intrinsic to cancer cells. Furthermore, the, analysis of mouse models requires appropriate consideration of mouse strain, background, and environmental factors. In this review, we compare aging-related factors in mouse models for breast cancer. We introduce databases of GEMM attributes and colony functional variations.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Gardner JK, Cornwall SMJ, Musk AW, Alvarez J, Mamotte CDS, Jackaman C, Nowak AK, Nelson DJ. Elderly dendritic cells respond to LPS/IFN-γ and CD40L stimulation despite incomplete maturation. PLoS One 2018; 13:e0195313. [PMID: 29652910 PMCID: PMC5898732 DOI: 10.1371/journal.pone.0195313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/20/2018] [Indexed: 01/10/2023] Open
Abstract
There is evidence that dendritic cells (DCs) undergo age-related changes that modulate their function with their key role being priming antigen-specific effector T cells. This occurs once DCs develop into antigen-presenting cells in response to stimuli/danger signals. However, the effects of aging on DC responses to bacterial lipopolysaccharide (LPS), the pro-inflammatory cytokine interferon (IFN)-γ and CD40 ligand (CD40L) have not yet been systematically evaluated. We examined responses of blood myeloid (m)DC1s, mDC2s, plasmacytoid (p)DCs, and monocyte-derived DCs (MoDCs) from young (21–40 years) and elderly (60–84 years) healthy human volunteers to LPS/IFN-γ or CD40L stimulation. All elderly DC subsets demonstrated comparable up-regulation of co-stimulatory molecules (CD40, CD80 and/or CD86), intracellular pro-inflammatory cytokine levels (IFN-γ, tumour necrosis factor (TNF)-α, IL-6 and/or IL-12), and/or secreted cytokine levels (IFN-α, IFN-γ, TNF-α, and IL-12) to their younger counterparts. Furthermore, elderly-derived LPS/IFN-γ or CD40L-activated MoDCs induced similar or increased levels of CD8+ and CD4+ T cell proliferation, and similar T cell functional phenotypes, to their younger counterparts. However, elderly LPS/IFN-γ-activated MoDCs were unreliable in their ability to up-regulate chemokine (IL-8 and monocyte chemoattractant protein (MCP)-1) and IL-6 secretion, implying an inability to dependably induce an inflammatory response. A key age-related difference was that, unlike young-derived MoDCs that completely lost their ability to process antigen, elderly-derived MoDCs maintained their antigen processing ability after LPS/IFN-γ maturation, measured using the DQ-ovalbumin assay; this response implies incomplete maturation that may enable elderly DCs to continuously present antigen. These differences may impact on the efficacy of anti-pathogen and anti-tumour immune responses in the elderly.
Collapse
Affiliation(s)
- Joanne K. Gardner
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia (WA), Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Scott M. J. Cornwall
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia (WA), Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Arthur W. Musk
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | | | - Cyril D. S. Mamotte
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia (WA), Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Connie Jackaman
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia (WA), Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Anna K. Nowak
- School of Medicine, University of WA, Nedlands, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Perth, WA, Australia
| | - Delia J. Nelson
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia (WA), Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
- * E-mail:
| |
Collapse
|
22
|
Impact of aging on distribution of IgA + and IgG + cells in aggregated lymphoid nodules area in abomasum of Bactrian camels (Camelus bactrianus). Exp Gerontol 2017; 100:36-44. [PMID: 28989079 DOI: 10.1016/j.exger.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/06/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
The aggregated lymphoid nodules area (ALNA) in the abomasum is a special organized lymphoid tissue discovered only in Bactrian camels at present. This study aimed to explore the impact of aging on distribution of IgA+ and IgG+ cells in ALNA in abomasum of Bactrian camels. Twenty-four Alashan Bactrian camels were divided into the following four age groups: young (1-2years), pubertal (3-5years), middle-aged (6-16years) and old (17-20years). IgA+ and IgG+ cells in the lamina propria of ALNA were observed and analyzed using immunohistochemical and statistical techniques. The results showed that, in ALNA, the distribution of IgA+ and IgG+ cells were diffuse, and only a few were in subepithelium dome (SED) and most of them in non-SED. Meanwhile, there were significantly more IgA+ cells than IgG+ cells in SED from the young to the middle aged group, but which reversed in old group (P<0.05). However, the aging significantly decreased the densities of IgA+ and IgG+ cells populations in non-SED (P<0.05); in SED, there were no significant differences between the densities of IgA+ and IgG+ cells, but which were both significantly lower in old group than those in young group (P<0.05). The results demonstrated that, in mucosal effector sites, the aging significantly decreased the densities of IgA+ and IgG+ cells populations and impacted on the defense barriers formed by IgA and IgG, but had no impact on the scattered characteristics. In inductive sites, the aging dramatically declined their densities, and they should have close relationships with immune memory. These findings lay the foundation for further researching the mucosal immune disorder or decline caused by aging, and especially underscore the importance of researching the impact of aging on the relationship between IgA+ and IgG+ cells populations and the microbiota colonized in abomasum of Bactrian camels.
Collapse
|
23
|
Gardner JK, Mamotte CD, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: The potential role of checkpoint inhibitory molecules. Ageing Res Rev 2017; 38:40-51. [PMID: 28736117 DOI: 10.1016/j.arr.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/17/2017] [Accepted: 07/17/2017] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) undergo continuous changes throughout life, and there is evidence that elderly DCs have a reduced capacity to stimulate T cells, which may contribute to impaired anti-tumour immune responses in elderly people with cancer. Changes in checkpoint inhibitory molecules/pathways during aging may be one mechanism that impairs the ability of elderly DCs to activate T cells. However, little is currently known regarding the combined effects of aging and cancer on DC and T cell inhibitory molecules/pathways. In this review, we discuss our current understanding of the influence of aging and cancer on key DC and T cell inhibitory molecules/pathways, the potential underlying cellular and molecular mechanisms contributing to their modulation, and the possibility of therapeutically targeting inhibitory molecules in elderly cancer patients.
Collapse
|
24
|
Zegarska B, Pietkun K, Giemza-Kucharska P, Zegarski T, Nowacki MS, Romańska-Gocka K. Changes of Langerhans cells during skin ageing. Postepy Dermatol Alergol 2017; 34:260-267. [PMID: 28670257 PMCID: PMC5471382 DOI: 10.5114/ada.2017.67849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION During the process of skin ageing, changes occur in all skin layers and all cells, including the Langerhans cells. AIM To assess whether any quantitative difference in the number of CD1a+ LC cells/mm2 and HLA-DR+ LC cells/mm2 as well as in their morphological features can be observed during the course of different types of skin ageing. MATERIAL AND METHODS The study was conducted in a group of 60 women, which was divided into three independent groups: group I with symptoms of menopausal skin ageing, group II with symptoms of photoageing, group III with symptoms of chronological ageing. Skin biopsy samples were taken from the pre-auricular region from all of the participants. The number of CD1a+ LC cells/mm2 and HLA-DR+ LC cells/mm2 as well as their morphological features were evaluated. RESULTS The frequency of CD1a+ LC and HLA-DR+ LC in all the studied groups was diverse. In groups I and III, the LC with large cell bodies and long, multi-branched processes were the majority. In group II, the LC had small cell bodies and their processes were mainly short and unbranched. CONCLUSIONS The obtained results indicate the presence of quantitative and morphological changes of the CD1a+ LC and HLA-DR+ LC during the course of different types of skin ageing.
Collapse
Affiliation(s)
- Barbara Zegarska
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
- Clinica Dermatoestetica, Bydgoszcz, Poland
| | - Katarzyna Pietkun
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | | | - Tomasz Zegarski
- Centre for Physical Education and Sport, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Maciej S. Nowacki
- Chair and Department of Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre-Professor Franciszek Łukaszczyk Memorial Hospital in Bydgoszcz, Poland
| | - Krystyna Romańska-Gocka
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
25
|
Boule LA, Kovacs EJ. Alcohol, aging, and innate immunity. J Leukoc Biol 2017; 102:41-55. [PMID: 28522597 DOI: 10.1189/jlb.4ru1016-450r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and.,The Immunology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Kim JA, Seong RK, Shin OS. Enhanced Viral Replication by Cellular Replicative Senescence. Immune Netw 2016; 16:286-295. [PMID: 27799874 PMCID: PMC5086453 DOI: 10.4110/in.2016.16.5.286] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022] Open
Abstract
Cellular replicative senescence is a major contributing factor to aging and to the development and progression of aging-associated diseases. In this study, we sought to determine viral replication efficiency of influenza virus (IFV) and Varicella Zoster Virus (VZV) infection in senescent cells. Primary human bronchial epithelial cells (HBE) or human dermal fibroblasts (HDF) were allowed to undergo numbers of passages to induce replicative senescence. Induction of replicative senescence in cells was validated by positive senescence-associated β-galactosidase staining. Increased susceptibility to both IFV and VZV infection was observed in senescent HBE and HDF cells, respectively, resulting in higher numbers of plaque formation, along with the upregulation of major viral antigen expression than that in the non-senescent cells. Interestingly, mRNA fold induction level of virus-induced type I interferon (IFN) was attenuated by senescence, whereas IFN-mediated antiviral effect remained robust and potent in virus-infected senescent cells. Additionally, we show that a longevity-promoting gene, sirtuin 1 (SIRT1), has antiviral role against influenza virus infection. In conclusion, our data indicate that enhanced viral replication by cellular senescence could be due to senescence-mediated reduction of virus-induced type I IFN expression.
Collapse
Affiliation(s)
- Ji-Ae Kim
- Brain Korea 21 Plus for Biomedical Science, College of Medicine, Korea University, Seoul 08308, Korea
| | - Rak-Kyun Seong
- Brain Korea 21 Plus for Biomedical Science, College of Medicine, Korea University, Seoul 08308, Korea
| | - Ok Sarah Shin
- Brain Korea 21 Plus for Biomedical Science, College of Medicine, Korea University, Seoul 08308, Korea
| |
Collapse
|
27
|
Abstract
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted.
Collapse
|
28
|
Zacca ER, Crespo MI, Acland RP, Roselli E, Núñez NG, Maccioni M, Maletto BA, Pistoresi-Palencia MC, Morón G. Aging Impairs the Ability of Conventional Dendritic Cells to Cross-Prime CD8+ T Cells upon Stimulation with a TLR7 Ligand. PLoS One 2015; 10:e0140672. [PMID: 26474053 PMCID: PMC4608578 DOI: 10.1371/journal.pone.0140672] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022] Open
Abstract
The aging process is accompanied by altered immune system functioning and an increased risk of infection. Dendritic cells (DCs) are antigen-presenting cells that play a key role in both adaptive and innate immunity, but how aging affects DCs and their influence on immunity has not been thoroughly established. Here we examined the function of conventional DCs (cDCs) in old mice after TLR7 stimulation, focusing on their ability to cross-prime CD8+ T cells. Using polyU, a synthetic ssRNA analog, as TLR7 ligand and OVA as an antigen (Ag) model, we found that cDCs from old mice have a poor ability to stimulate a CD8+ T cell-mediated cytotoxic response. cDCs from old mice exhibit alterations in Ag-processing machinery and TLR7 activation. Remarkably, CD8α+ cDCs from old mice have an impaired ability to activate naïve CD8+ T cells and, moreover, a lower capacity to mature and to process exogenous Ag. Taken together, our results suggest that immunosenescence impacts cDC function, affecting the activation of naïve CD8+ T cells and the generation of effector cytotoxic T cells.
Collapse
Affiliation(s)
- Estefanía R. Zacca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María I. Crespo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rachel P. Acland
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Emiliano Roselli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás G. Núñez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Maccioni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Belkys A. Maletto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C. Pistoresi-Palencia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel Morón
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
29
|
Chougnet CA, Thacker RI, Shehata HM, Hennies CM, Lehn MA, Lages CS, Janssen EM. Loss of Phagocytic and Antigen Cross-Presenting Capacity in Aging Dendritic Cells Is Associated with Mitochondrial Dysfunction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2624-32. [PMID: 26246142 PMCID: PMC4561185 DOI: 10.4049/jimmunol.1501006] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/13/2015] [Indexed: 01/04/2023]
Abstract
Impaired functionality of dendritic cells (DCs) significantly contributes to decreased adaptive immune responses in aged hosts. The expression of MHC-peptide on the DC surface is the critical first step in T cell priming, but few studies have addressed the effect of aging on Ag acquisition, processing, and presentation by DCs. In this study, we show that aged murine DCs were less efficient in the cross-presentation of cell-associated Ag and subsequently in the cross-priming of CD8(+) T cells than were their young counterparts. The decreased cross-presentation was associated with a reduction in the frequency of CD8α DCs and merocytic (CD8α(-)CD11b(-))DCs that could endocytose cell-associated Ag, as well as the number and the size of the endocytosed particles in the DC that did internalize cell-associated materials. Mechanistically, phagocytic capacity has been associated with mitochondrial activity and membrane potential (Δψm). Aged DCs exhibited profound signs of mitochondrial dysfunction, illustrated by lower Δψm, reduced ATP turnover and coupling efficiency, decreased baseline oxidative phosphorylation, and greater proton leak and reactive oxygen species (ROS) production. Mimicking the aged metabolic phenotype in young DCs by pharmacologic manipulation indicated that the reductions in Δψm and ATP impeded the phagocytic capacity whereas ROS interfered with a later step in the cross-presentation process. Conversely, in vitro scavenging of ROS partially restored cross-presentation by aged DCs. Taken together, these data suggest that improvement of aged DC functionality might be feasible in the elderly by targeting metabolic dysfunction or its downstream sequelae, thereby opening new avenues for enhancing vaccine efficiency in this population.
Collapse
Affiliation(s)
- Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Robert I Thacker
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Hesham M Shehata
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Cassandra M Hennies
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Maria A Lehn
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Celine S Lages
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
30
|
The non-canonical Wnt pathway negatively regulates dendritic cell differentiation by inhibiting the expansion of Flt3(+) lymphocyte-primed multipotent precursors. Cell Mol Immunol 2015; 13:593-604. [PMID: 26051474 DOI: 10.1038/cmi.2015.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/23/2022] Open
Abstract
The differentiation of dendritic cells (DC) is affected by the aging process. However, the molecular mechanisms responsible for the alteration of DC development in aged mice have not been clarified. Recently, Wnt5a was reported to be an important aging-related molecule in hematopoietic systems. Here, we hypothesized that the increased expression of Wnt5a in aged hematopoietic precursors led to deficient DC differentiation in aged mice. The percentages and cell numbers of plasmacytoid DC (pDC) and CD172a(-)CD8α(+)conventional DC (cDC) were decreased in aged mice compared to young mice. Further analysis indicated that the hematopoietic precursors that gave rise to DC, including Flt3(+) lymphoid-primed multipotent precursors (LMPP), common lymphoid progenitors (CLP) and common DC precursors (CDP), were all decreased in the bone marrow of aged mice. Overexpression of Wnt5a in hematopoietic precursors strongly affected the differentiation of cDC and pDC in vivo. Treatment of hematopoietic stem cells (HSC) with Wnt5a led to a significant decrease in the differentiation of the LMPP, CLP and CDP populations that was similar to the decrease observed in the bone marrow (BM) HSC of aged mice. Molecular studies demonstrated that Wnt5a negatively regulated the expression of an array of genes important for DC differentiation, including Flt3, Gfi-1, Ikaros, Bcl11a, and IL-7R, by activating the Wnt5a-Cdc42 pathway. Finally, we rejuvenated DC differentiation from aged precursors by blocking the non-canonical Wnt pathway. Our study identified the key roles of the non-canonical Wnt pathway in DC differentiation and DC aging.
Collapse
|
31
|
The stimulatory effect of the TLR4-mediated adjuvant glucopyranosyl lipid A is well preserved in old age. Biogerontology 2015; 17:177-87. [PMID: 25957253 DOI: 10.1007/s10522-015-9576-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/09/2015] [Indexed: 12/16/2022]
Abstract
Many subunit vaccines require adjuvants to improve their limited immunogenicity. Various adjuvant candidates targeting toll-like receptors (TLRs) are currently under development including the synthetic TLR4 agonist glucopyranosyl lipid A (GLA). GLA has been investigated in the context of influenza vaccine, which is of particular importance for the elderly population. This study investigates the effect of GLA on antigen-presenting cells from young (median age 29 years, range 26-33 years) and older (median age 72 years, range 61-78 years) adults. Treatment with GLA efficiently increases the expression of co-stimulatory molecules on human monocyte-derived dendritic cells (DC) as well as on ex vivo myeloid DC. Expression of co-stimulatory molecules is less pronounced on ex vivo monocytes. Production of pro-inflammatory cytokines (IL-6, TNF-α, IL-12) as well as of the anti-inflammatory cytokine IL-10 is induced in monocyte-derived DC. In PBMC cultures myeloid DC and to an even greater extent monocytes produce TNF-α and IL-6 after stimulation with GLA. Production of IL-12 can also be observed in these cultures. There are no age-related differences in the capacity of GLA to induce expression of co-stimulatory molecules or production of cytokines by human antigen-presenting cells. Therefore, TLR4 agonists like GLA are particularly promising candidates as adjuvants of vaccines designed for elderly individuals.
Collapse
|
32
|
Boraschi D, Italiani P. Immunosenescence and vaccine failure in the elderly: Strategies for improving response. Immunol Lett 2014; 162:346-53. [DOI: 10.1016/j.imlet.2014.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
|
33
|
Linton PJ, Thoman ML. Immunosenescence in monocytes, macrophages, and dendritic cells: lessons learned from the lung and heart. Immunol Lett 2014; 162:290-7. [PMID: 25251662 DOI: 10.1016/j.imlet.2014.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 12/24/2022]
Abstract
In the absence of an immune challenge, healthy, aged individuals have a significantly higher basal inflammatory state where circulating levels of cytokines, including IL-6, TNF-α and IL-1β, are elevated [1]. This progressive pro-inflammatory state, termed "inflamm-aging", affects the phenotype/function of cells present in the aged as well as renders the older individuals more susceptible to a poor prognosis after systemic insults. Although it is important to understand the mechanisms that underlie the progression of disease, most preclinical analyses of disease therapies are performed in young adult mice that have an intact, functional immune system. Oftentimes, this is not necessarily representative of the immune disposition in the aged, let alone diseased, aged. Herein, two distinct responses that are not only commonly associated with aging but that also have dendritic cells and/or monocytes and macrophages as key players are discussed: pulmonary infection and myocardial infarction. Although studies of pulmonary infection in the aged have progressed significantly, studies of monocytes and macrophages in inflammation and cardiac injury following ischemia in the aged have not been as forthcoming. Nonetheless, several elegant studies have established the dynamic role of monocytes and macrophages post infarction. These will be discussed in light of what is known with aging.
Collapse
Affiliation(s)
- Phyllis-Jean Linton
- Donald P. Shiley BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650, United States.
| | - Marilyn L Thoman
- Donald P. Shiley BioScience Center, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4650, United States
| |
Collapse
|
34
|
Nutrition, diet and immunosenescence. Mech Ageing Dev 2013; 136-137:116-28. [PMID: 24373813 DOI: 10.1016/j.mad.2013.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 01/10/2023]
Abstract
Ageing is characterized by immunosenescence and the progressive decline in immunity in association with an increased frequency of infections and chronic disease. This complex process affects both the innate and adaptive immune systems with a progressive decline in most immune cell populations and defects in activation resulting in loss of function. Although host genetics and environmental factors, such as stress, exercise and diet can impact on the onset or course of immunosenescence, the mechanisms involved are largely unknown. This review focusses on identifying the most significant aspects of immunosenescence and on the evidence that nutritional intervention might delay this process, and consequently improve the quality of life of the elderly.
Collapse
|
35
|
Influenza virus specific CD8⁺ T cells exacerbate infection following high dose influenza challenge of aged mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:876314. [PMID: 24187666 PMCID: PMC3800650 DOI: 10.1155/2013/876314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
Abstract
Influenza viruses cause severe illnesses and death, mainly in the aged population. Protection afforded by licensed vaccines through subtype-specific neutralizing antibodies is incomplete, especially when the vaccine antigens fail to closely match those of the circulating viral strains. Efforts are underway to generate a so-called universal influenza vaccine expressing conserved viral sequences that induce broad protection to multiple strains of influenza virus through the induction of CD8+ T cells. Here we assess the effect of a potent antiviral CD8+ T cell response on influenza virus infection of young and aged mice. Our results show that CD8+ T cell-inducing vaccines can provide some protection to young mice, but they exacerbate influenza virus-associated disease in aged mice, causing extensive lung pathology and death.
Collapse
|
36
|
You J, Dong H, Mann ER, Knight SC, Yaqoob P. Probiotic modulation of dendritic cell function is influenced by ageing. Immunobiology 2013; 219:138-48. [PMID: 24094416 PMCID: PMC4064698 DOI: 10.1016/j.imbio.2013.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/30/2013] [Accepted: 08/27/2013] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and L. casei Shirota (LcS), on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while B. longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR.
Collapse
Affiliation(s)
- Jialu You
- Department of Food and Nutritional Sciences, The University of Reading, Reading, UK
| | - Honglin Dong
- Department of Food and Nutritional Sciences, The University of Reading, Reading, UK
| | - Elizabeth R Mann
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, HA1 3UJ, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, HA1 3UJ, UK
| | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, The University of Reading, Reading, UK.
| |
Collapse
|
37
|
Dorrington MG, Bowdish DME. Immunosenescence and novel vaccination strategies for the elderly. Front Immunol 2013; 4:171. [PMID: 23825474 PMCID: PMC3695377 DOI: 10.3389/fimmu.2013.00171] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/14/2013] [Indexed: 01/20/2023] Open
Abstract
Vaccination remains the most effective prophylactic intervention for infectious disease in the healthcare professional's toolkit. However, the efficacy and effectiveness of vaccines decrease with age. This becomes most apparent after an individual reaches 65-70 years old, and results from complex changes in the immune system that occur during aging. As such, new vaccine formulations and strategies that can accommodate age-related changes in immunity are required to protect this expanding population. Here, we summarize the consequences of immunosenescence on vaccination and how novel vaccination strategies can be designed to accommodate the aging immune system. We conclude that current vaccination protocols are not sufficient to protect our aging population and, in some cases, are an inefficient use of healthcare resources. However, researchers and clinicians are developing novel vaccination strategies that include modifying who and when we vaccinate and capitalize on existing vaccines, in addition to formulating new vaccines specifically tailored to the elderly in order to remedy this deficiency.
Collapse
Affiliation(s)
- Michael G. Dorrington
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Dawn M. E. Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
38
|
Wong C, Goldstein DR. Impact of aging on antigen presentation cell function of dendritic cells. Curr Opin Immunol 2013; 25:535-41. [PMID: 23806201 DOI: 10.1016/j.coi.2013.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/22/2013] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
Older people exhibit increased mortality to infections and cancer as compared to younger people, indicating that aging impairs immunity. Dendritic cells (DCs) are key for bridging the innate and adaptive arms of the immune system by priming antigen specific T cells. Discerning how aging impacts DC function to initiate adaptive immune responses is of great biomedical importance as this could lead to the development of novel therapeutics to enhance immunity with aging. This review details reports indicating that aging impairs the antigen presenting function of DCs but highlights other studies indicating preserved DC function with aging. How aging impacts antigen presentation by DCs is complex and without a clear unifying biological underpinning.
Collapse
Affiliation(s)
- Christine Wong
- Department of Internal Medicine, Yale University School of Medicine, USA; Department of Immunobiology, Yale University School of Medicine, USA
| | | |
Collapse
|
39
|
Müller L, Fülöp T, Pawelec G. Immunosenescence in vertebrates and invertebrates. IMMUNITY & AGEING 2013; 10:12. [PMID: 23547999 PMCID: PMC3637519 DOI: 10.1186/1742-4933-10-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/14/2013] [Indexed: 12/26/2022]
Abstract
There is an established consensus that it is primarily the adaptive arm of immunity, and the T cell subset in particular, that is most susceptible to the deleterious changes with age known as “immunosenescence”. Can we garner any clues as to why this might be by considering comparative immunology and the evolutionary emergence of adaptive and innate immunity? The immune system is assumed to have evolved to protect the organism against pathogens, but the way in which this is accomplished is different in the innate-vs-adaptive arms, and it is unclear why the latter is necessary. Are there special characteristics of adaptive immunity which might make the system more susceptible to age-associated dysfunction? Given recent accumulating findings that actually there are age-associated changes to innate immunity and that these are broadly similar in vertebrates and invertebrates, we suggest here that it is the special property of memory in the adaptive immune system which results in the accumulation of cells with a restricted receptor repertoire, dependent on the immunological history of the individual’s exposures to pathogens over the lifetime, and which is commonly taken as a hallmark of “immunosenescence”. However, we further hypothesize that this immunological remodelling per se does not necessarily convey a disadvantage to the individual (ie. is not necessarily “senescence” if it is not deleterious). Indeed, under certain circumstances, or potentially even as a rule, this adaptation to the individual host environment may confer an actual survival advantage.
Collapse
Affiliation(s)
- Ludmila Müller
- Max-Planck Institute for Human Development, Berlin, Germany.
| | | | | |
Collapse
|
40
|
Jiang J, Fisher EM, Murasko DM. Intrinsic defects in CD8 T cells with aging contribute to impaired primary antiviral responses. Exp Gerontol 2013; 48:579-86. [PMID: 23473930 DOI: 10.1016/j.exger.2013.02.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 01/09/2023]
Abstract
Aging is associated with altered immune responses, particularly with a diminished CD8 T cell response. Although both intrinsic and extrinsic factors are hypothesized to impact this decreased T cell response, the direct evidence of an intrinsic deficiency in virus-specific CD8 T cells is limited. In this study, a TCR transgenic (Tg) P14 mouse model was utilized to compare the activation and proliferation of the Tg CD8 T cells of young and aged P14 mice upon stimulation with antigen or infection with virus. The proliferation of purified Tg CD8 T cells of aged mice was significantly lower than that of young mice when cultured in vitro with both the LCMV specific peptide and antigen presenting cells from young wild type mice. In addition, expression of the activation markers, CD69, CD25, and CD44, was delayed on Tg T cells of aged mice after stimulation. Importantly, while adoptive transfer of purified Tg CD8 T cells of young or aged mice into young wild type mice resulted in expansion of the Tg CD8 T cells of both ages after LCMV infection, the expansion of the Tg T cells from aged mice was significantly decreased compared with that of the Tg T cells from young mice. However, while the number of IFN-γ secreting Tg CD8 T cells from aged mice was significantly decreased compared to that of young mice, the percentages of Tg CD8 T cells producing IFN-γ were similar in young and aged mice, demonstrating that proliferation, but not function, of the Tg CD8 T cells of aged mice was impaired. Importantly, chronological age alone was not sufficient to predict an altered proliferative response; rather, expression of high levels of CD44 on CD8 T cells of aged mice reflected a decreased proliferative response. These results reveal that alterations intrinsic to CD8 T cells can contribute to the age-associated defects in the primary CD8 T cell response during viral infection.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
41
|
You J, Dong H, Mann ER, Knight SC, Yaqoob P. Ageing impairs the T cell response to dendritic cells. Immunobiology 2013; 218:1077-84. [PMID: 23582781 DOI: 10.1016/j.imbio.2013.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are critical in priming adaptive T-cell responses, but the effects of ageing on interactions between DCs and T cells are unclear. This study investigated the influence of ageing on the maturation of and cytokine production by human blood-enriched DCs, and the impact on T cell responses in an allogeneic mixed leucocyte reaction (MLR). DCs from old subjects (65-75 y) produced significantly less TNF-α and IFN-γ than young subjects (20-30 y) in response to lipopolysaccharide (LPS), but expression of maturation markers and co-stimulatory molecules was preserved. In the MLR, DCs from older subjects induced significantly restricted proliferation of young T cells, activation of CD8+ T cells and expression of IL-12 and IFN-γ in T cells compared with young DCs. T cells from older subjects responded more weakly to DC stimulation compared with young T cells, regardless of whether the DCs were derived from young or older subjects. In conclusion, the capacity of DCs to induce T cell activation is significantly impaired by ageing.
Collapse
Affiliation(s)
- Jialu You
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK
| | | | | | | | | |
Collapse
|
42
|
Lefebvre JS, Maue AC, Eaton SM, Lanthier PA, Tighe M, Haynes L. The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice. Aging Cell 2012; 11:732-40. [PMID: 22607653 PMCID: PMC3444657 DOI: 10.1111/j.1474-9726.2012.00836.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD4 T cells, and especially T follicular helper cells, are critical for the generation of a robust humoral response to an infection or vaccination. Importantly, immunosenescence affects CD4 T-cell function, and the accumulation of intrinsic defects decreases the cognate helper functions of these cells. However, much less is known about the contribution of the aged microenvironment to this impaired CD4 T-cell response. In this study, we have employed a preclinical model to determine whether the aged environment contributes to the defects in CD4 T-cell functions with aging. Using an adoptive transfer model in mice, we demonstrate for the first time that the aged microenvironment negatively impacts at least three steps of the CD4 T-cell response to antigenic stimulation. First, the recruitment of CD4 T cells to the spleen is reduced in aged compared to young hosts, which correlates with dysregulated chemokine expression in the aged organ. Second, the priming of CD4 T cells by DCs is reduced in aged compared to young mice. Finally, naïve CD4 T cells show a reduced transition to a T follicular helper cell phenotype in the aged environment, which impairs the subsequent generation of germinal centers. These studies have provided new insights into how aging impacts the immune system and how these changes influence the development of immunity to infections or vaccinations.
Collapse
Affiliation(s)
- Julie S Lefebvre
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA
| | | | | | | | | | | |
Collapse
|
43
|
Perez SD, Kozic B, Molinaro CA, Thyagarajan S, Ghamsary M, Lubahn CL, Lorton D, Bellinger DL. Chronically lowering sympathetic activity protects sympathetic nerves in spleens from aging F344 rats. J Neuroimmunol 2012; 247:38-51. [PMID: 22546498 DOI: 10.1016/j.jneuroim.2012.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/28/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we investigated how increased sympathetic tone during middle-age affects the splenic sympathetic neurotransmission. Fifteen-month-old (M) F344 rats received rilmenidine (0, 0.5 or 1.5mg/kg/day, i.p. for 90 days) to lower sympathetic tone. Controls for age were untreated 3 or 18M rats. We report that rilmenidine (1) reduced plasma and splenic norepinephrine concentrations and splenic norepinephrine turnover, and partially reversed the sympathetic nerve loss; and (2) increased β-adrenergic receptor (β-AR) density and β-AR-stimulated cAMP production. Collectively, these findings suggest a protective effect of lowering sympathetic tone on sympathetic nerve integrity, and enhanced sympathetic neurotransmission in secondary immune organs.
Collapse
Affiliation(s)
- Sam D Perez
- Department of Physiology & Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Inui N, Hasegawa H, Suda T, Nakamura Y, Watanabe H, Chida K. Expression and Function of Multidrug Resistance Protein 1 and Multidrug Resistance-Associated Protein 1 in Lung Dendritic Cells From Aging Mice. J Gerontol A Biol Sci Med Sci 2012; 67:1049-55. [DOI: 10.1093/gerona/gls069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
45
|
Alvarez-Rodriguez L, Lopez-Hoyos M, Garcia-Unzueta M, Amado JA, Cacho PM, Martinez-Taboada VM. Age and low levels of circulating vitamin D are associated with impaired innate immune function. J Leukoc Biol 2012; 91:829-38. [PMID: 22345707 DOI: 10.1189/jlb.1011523] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study investigated in vivo the influence of age and vitamin D status on innate immune function in HC. Serum 25OHD was measured in 71 HC. TLR expression on various subpopulations of PBMCs, as well as TLR function by stimulating PBMCs with specific ligands, was assessed by flow cytometry. Circulating cathelicidin levels were determined by ELISA. Serum 25OHD levels decreased with age, and there was a significant inverse correlation between 25OHD levels and age. There was a negative correlation between serum 25OHD levels and MFI expression of TLR7 on B cells, T cells, and monocytes. TLR7 function, addressed by in vitro stimulation with a specific agonist, was significantly correlated with serum 25OHD levels, and this was especially a result of the results in HC older than 60 years. MFI expression of TLR5 on T cells and TLR2 on monocytes was also negatively correlated with serum 25OHD levels. TLR1 (monocytes) and TLR2 (monocytes) expression was positively correlated with age. Furthermore, TLR4 and TLR8 function was negatively correlated with age. Circulating cathelicidin levels decreased with age and were positively correlated with 25OHD levels. Aging is accompanied by changes in expression and function of several TLRs. Serum 25OHD levels decrease with age and are also associated with a change in expression and defective function of certain TLRs, especially those involved in viral response.
Collapse
Affiliation(s)
- Lorena Alvarez-Rodriguez
- Hospital Universitario Marqués de Valdecilla, Facultad de Medicina, Universidad de Cantabria, Avda. Valdecilla s/n, 39008, Santander, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Stout-Delgado HW, Vaughan SE, Shirali AC, Jaramillo RJ, Harrod KS. Impaired NLRP3 inflammasome function in elderly mice during influenza infection is rescued by treatment with nigericin. THE JOURNAL OF IMMUNOLOGY 2012; 188:2815-24. [PMID: 22327078 DOI: 10.4049/jimmunol.1103051] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The NLRP3 inflammasome is activated in the lung during influenza viral infection; however, the impact of aging on inflammasome function during influenza infection has not been examined. In this study, we show that elderly mice infected with a mouse-adapted strain of influenza produced lower levels of IL-1β during in vitro and in vivo infection. Dendritic cells from elderly mice exhibited decreased expression of ASC, NLRP3, and capase-1 but increased expression of pro-IL-1β, pro-IL-18, and pro-IL-33 compared with dendritic cells from young infected mice. Treatment with nigericin during influenza infection augmented IL-1β production, increased caspase-1 activity, and decreased morbidity and mortality in elderly mice. Our study demonstrates for the first time, to our knowledge, that during influenza viral infection, elderly mice have impaired NLRP3 inflammasome activity and that treatment with nigericin rescues NLRP3 activation in elderly hosts.
Collapse
Affiliation(s)
- Heather W Stout-Delgado
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87114, USA.
| | | | | | | | | |
Collapse
|
47
|
Tan SY, Cavanagh LL, d'Advigor W, Shackel N, Fazekas de St Groth B, Weninger W. Phenotype and functions of conventional dendritic cells are not compromised in aged mice. Immunol Cell Biol 2012; 90:722-32. [PMID: 22231652 DOI: 10.1038/icb.2011.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging has profound effects on the immune system, including thymic involution, reduced diversity of the T cell receptor repertoire, reduced effector T cell and B cell function and chronic increase of proinflammatory cytokine production by innate immune cells. The precise effects of aging on conventional dendritic cells (cDC), the main antigen presenting cells of the immune system, however, are not well understood. We found that in aged mice the number of cDC in the spleen and lymph nodes remained stable, whereas the number of cDC in the lungs increased with age. Whereas cDC in mice showed similar cycling kinetics in all organs tested, cDC reconstitution by aged bone marrow precursors was relatively higher than that of their young counterparts. With the exception of CD86, young and aged cDC did not differ in their expression of co-stimulatory molecules at steady state. Most toll-like receptor (TLR) ligands induced comparable upregulation of co-stimulatory molecules CD40, CD86 and B7H1 on young and aged cDC, whereas TLR2 and TLR5 stimulation resulted in reduced upregulation of CD80 and CD86 on aged cDC in vitro. In vivo, influenza infection-induced upregulation of CD86, but not other co-stimulatory molecules, was lower in aged DC. Young and aged DC were equally capable of direct and cross presentation of antigens in vitro. Transcriptome analysis did not reveal any significant difference between young and aged cDC. These data show that unlike T and B cells, the maintenance of cDC throughout the life of a healthy animal is relatively robust during the aging process.
Collapse
Affiliation(s)
- Sioh-Yang Tan
- Immune Imaging Program, The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Interleukin-6, -7, -8 and -10 predict outcome in acute myocardial infarction complicated by cardiogenic shock. Clin Res Cardiol 2012; 101:375-84. [DOI: 10.1007/s00392-011-0403-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/13/2011] [Indexed: 01/08/2023]
|
49
|
Abstract
Utilization rates of organs from elderly donors have shown the highest proportional increase during the last decade. Clinical reports support the concept of transplanting older organs. However, the engraftment of such organs has been linked to accelerated immune responses based on ageing changes per se and a proinflammatory environment subsequent to compromised injury and repair mechanism. We analyzed the clinical consequences of transplanting older donor organs and present mechanistic aspects correlating age, injury repair and effects on host immunoresponsiveness.
Collapse
Affiliation(s)
- R Oberhuber
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
50
|
Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev 2011; 10:336-45. [PMID: 20619360 DOI: 10.1016/j.arr.2010.06.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/12/2022]
Abstract
Aging is a paradox of reduced immunity and chronic inflammation. Dendritic cells are central orchestrators of the immune response with a key role in the generation of immunity and maintenance of tolerance. The functions of DCs are compromised with age. There is no major effect on the numbers and phenotype of DC subsets in aged subjects; nevertheless, their capacity to phagocytose antigens and migrate is impaired with age. There is aberrant cytokine secretion by various DC subsets with CDCs secreting increased basal level of pro-inflammatory cytokines but the response on stimulation to foreign antigens is decreased. In contrast, the response to self-antigens is increased suggesting erosion of peripheral self tolerance. PDC subset also secretes reduced IFN-α in response to viruses. The capacity of DCs to prime T cell responses is also affected. Aging thus has a profound affect on DC functions. Present review summarizes the effect of advancing age on DC functions in humans in the context of both immunity and tolerance.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Med. Sci. I C-240A, University of California, Irvine 92697, CA, USA.
| | | |
Collapse
|