1
|
Yu G, Zhao W, Wang Y, Xu N. Molecular farming expression of recombinant fusion proteins applied to skincare strategies. PeerJ 2024; 12:e17957. [PMID: 39308805 PMCID: PMC11416094 DOI: 10.7717/peerj.17957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
This review discusses the current research progress in molecular farming technology in the field of skincare, with an emphasis on molecular farming expression strategies. The strategies of transdermal drug delivery and their advantages are also highlighted. The expression of cosmetically relevant fused proteins has become an important way to enhance the efficacy of the proteins. Therefore, we also discuss the feasibility and strategies for expressing fusion proteins in A. thaliana, specifically the fusion of Epidermal growth factor (EGF) to a cell-penetrating peptide (CPP), in which the production can be greatly enhanced via plant expression systems since these systems offer higher biosecurity, flexibility, and expansibility than prokaryotic, animal and mammalian expression systems. While the fusion of EGF to CCP can enhance its transdermal ability, the effects of the fusion protein on skin repair, melasma, whitening, and anti-aging are poorly explored. Beyond this, fusing proteins with transdermal peptides presents multiple possibilities for the development of tissue repair and regeneration therapeutics, as well as cosmetics and beauty products. As certain plant extracts are known to contain proteins beneficial for skin health, the expression of these proteins in plant systems will better maintain their integrity and biological activities, thereby facilitating the development of more effective skincare products.
Collapse
Affiliation(s)
- Guangdong Yu
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| | - Wengang Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| | - Yunpeng Wang
- Jilin Academy of Agricultural Sciences, Northeast Innovation Center of China Agricultural Science and Technology, Ji Lin, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wen Zhou, China
| |
Collapse
|
2
|
Traa A, Shields H, AlOkda A, Rudich ZD, Ko B, Van Raamsdonk JM. Endosomal trafficking protein TBC-2 is required for the longevity of long-lived mitochondrial mutants. FRONTIERS IN AGING 2023; 4:1145198. [PMID: 37261067 PMCID: PMC10228650 DOI: 10.3389/fragi.2023.1145198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Mutations that result in a mild impairment of mitochondrial function can extend longevity. Previous studies have shown that the increase in lifespan is dependent on stress responsive transcription factors, including DAF-16/FOXO, which exhibits increased nuclear localization in long-lived mitochondrial mutants. We recently found that the localization of DAF-16 within the cell is dependent on the endosomal trafficking protein TBC-2. Based on the important role of DAF-16 in both longevity and resistance to stress, we examined the effect of disrupting tbc-2 on lifespan and stress resistance in the long-lived mitochondrial mutants nuo-6 and isp-1 in Caenorhabditis elegans. Loss of tbc-2 markedly reduced the long lifespans of both mitochondrial mutants. Disruption of tbc-2 also decreased resistance to chronic oxidative stress in nuo-6 and isp-1 mutants but had little or no detrimental effect on resistance to other stressors. In contrast, tbc-2 inhibition had no effect on oxidative stress resistance or lifespan in isp-1 worms when DAF-16 is absent, suggesting that the effect of tbc-2 on mitochondrial mutant lifespan may be mediated by mislocalization of DAF-16. However, this result is complicated by the fact that deletion of daf-16 markedly decreases both phenotypes in isp-1 worms, which could result in a floor effect. In exploring the contribution of DAF-16 further, we found that disruption of tbc-2 did not affect the nuclear localization of DAF-16 in isp-1 worms or prevent the upregulation of DAF-16 target genes in the long-lived mitochondrial mutants. This suggests the possibility that the effect of tbc-2 on lifespan and stress resistance in the long-lived mitochondrial mutants is at least partially independent of its effects on DAF-16 localization. Overall, this work demonstrates the importance of endosomal trafficking for the extended longevity and enhanced stress resistance resulting from mild impairment of mitochondrial function.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Hazel Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zenith D. Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Traa A, Soo SK, AlOkda A, Ko B, Rocheleau CE, Van Raamsdonk JM. Endosomal trafficking protein TBC-2 modulates stress resistance and lifespan through DAF-16-dependent and independent mechanisms. Aging Cell 2023; 22:e13762. [PMID: 36794357 PMCID: PMC10014066 DOI: 10.1111/acel.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023] Open
Abstract
The FOXO transcription factor, DAF-16, plays an integral role in insulin/IGF-1 signaling (IIS) and stress response. In conditions of stress or decreased IIS, DAF-16 moves to the nucleus where it activates genes that promote survival. To gain insight into the role of endosomal trafficking in resistance to stress, we disrupted tbc-2, which encodes a GTPase activating protein that inhibits RAB-5 and RAB-7. We found that tbc-2 mutants have decreased nuclear localization of DAF-16 in response to heat stress, anoxia, and bacterial pathogen stress, but increased nuclear localization of DAF-16 in response to chronic oxidative stress and osmotic stress. tbc-2 mutants also exhibit decreased upregulation of DAF-16 target genes in response to stress. To determine whether the rate of nuclear localization of DAF-16 affected stress resistance in these animals, we examined survival after exposure to multiple exogenous stressors. Disruption of tbc-2 decreased resistance to heat stress, anoxia, and bacterial pathogen stress in both wild-type worms and stress-resistant daf-2 insulin/IGF-1 receptor mutants. Similarly, deletion of tbc-2 decreases lifespan in both wild-type worms and daf-2 mutants. When DAF-16 is absent, the loss of tbc-2 is still able to decrease lifespan but has little or no impact on resistance to most stresses. Combined, this suggests that disruption of tbc-2 affects lifespan through both DAF-16-dependent and DAF-16-independent pathways, while the effect of tbc-2 deletion on resistance to stress is primarily DAF-16-dependent. Overall, this work demonstrates the importance of endosomal trafficking for the proper nuclear localization of DAF-16 during stress and that perturbation of normal endosomal trafficking is sufficient to decrease both stress resistance and lifespan.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian E Rocheleau
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
5
|
Verghese J, Ayers E, Sathyan S, Lipton RB, Milman S, Barzilai N, Wang C. Trajectories of frailty in aging: Prospective cohort study. PLoS One 2021; 16:e0253976. [PMID: 34252094 PMCID: PMC8274857 DOI: 10.1371/journal.pone.0253976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Emerging evidence suggests that there is significant variability in the progression of frailty in aging. We aimed to identify latent subpopulations of frailty trajectories, and examine their clinical and biological correlates. Methods We characterized frailty using a 41-item cumulative deficit score at baseline and annual visits up to 12 years in 681 older adults (55% women, mean age 74·6 years). Clinical risk profile and walking while talking performance as a clinical marker of trajectories were examined. Mortality risk associated with trajectories was evaluated using Cox regression adjusted for established survival predictors, and reported as hazard ratios (HR). Proteome-wide analysis was done. Findings Latent class modeling identified 4 distinct frailty trajectories: relatively stable (34·4%) as well as mild (36·1%), moderate (24·1%) and severely frail (5·4%). Four distinct classes of frailty trajectories were also shown in an independent sample of 515 older adults (60% women, 68% White, 26% Black). The stable group took a median of 31 months to accumulate one additional deficit compared to 20 months in the severely frail group. The worst trajectories were associated with modifiable risk factors such as low education, living alone, obesity, and physical inactivity as well as slower walking while talking speed. In the pooled sample, mild (HR 2·33, 95% CI 1·30–4·18), moderate (HR 2·49, 95% CI 1·33–4·66), and severely frail trajectories (HR 5·28, 95% CI 2·68–10·41) had higher mortality compared to the stable group. Proteomic analysis showed 11 proteins in lipid metabolism and growth factor pathways associated with frailty trajectories. Conclusion Frailty shows both stable and accelerated patterns in aging, which can be distinguished clinically and biologically.
Collapse
Affiliation(s)
- Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| | - Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sanish Sathyan
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Richard B. Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sofiya Milman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Cuiling Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
6
|
Scarano A, Sbarbati A, Amore R, Iorio EL, Ferraro G, Marchetti M, Amuso D. The role of hyaluronic acid and amino acid against the aging of the human skin: A clinical and histological study. J Cosmet Dermatol 2020; 20:2296-2304. [PMID: 33090687 DOI: 10.1111/jocd.13811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND In esthetic medicine, different techniques have been used against the aging of the human skin especially in the facial area. Hyaluronic acid is used for improving the quantity of water and extracellular matrix molecule. The aim of this study is a clinical and histological evaluation of the effect of low-molecular-weight hyaluronic acid fragments mixed with amino acid (HAAM) on the rejuvenation the face skin treated with intradermal microinjections. METHODS Twenty women with mean age 45 range from 35 to 64 were studied, thereof 8 in menopause and 12 of childbearing age. The patients were treated with the HAAM products by mesotherapy technique; before and after 3 months of the therapeutic procedure, each patient underwent small biopsies with a circular punch biopsy. RESULTS The clinical results of the present study showed that the administration of the dermal filler containing fragments of hyaluronic acid between 20 and 38 monomers and amino acid via dermis injection technique produces an esthetic improvement in the faces of the treated patients, while the histological evaluation shows an increased fibroblast activity with the production of type III reticular collagen and increased number of vessels and epidermis thickness. CONCLUSIONS The clinical and histological assessment showed that subcutaneous HAAM infiltration has a significant impact on the dermis and clinical aspects of the face.
Collapse
Affiliation(s)
- Antonio Scarano
- Aesthetic Medicine, Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Andrea Sbarbati
- Aesthetic Medicine and Wellness, University of Palermo, Palermo, Italy
| | - Roberto Amore
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Eugenio Luigi Iorio
- Aesthetic Medicine, Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Giueseppe Ferraro
- Department of Plastic, Reconstructive and Aesthetic Surgery, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Marco Marchetti
- School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Amuso
- Aesthetic Medicine and Wellness, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Healthspan pathway maps in C. elegans and humans highlight transcription, proliferation/biosynthesis and lipids. Aging (Albany NY) 2020; 12:12534-12581. [PMID: 32634117 PMCID: PMC7377848 DOI: 10.18632/aging.103514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
The molecular basis of aging and of aging-associated diseases is being unraveled at an increasing pace. An extended healthspan, and not merely an extension of lifespan, has become the aim of medical practice. Here, we define health based on the absence of diseases and dysfunctions. Based on an extensive review of the literature, in particular for humans and C. elegans, we compile a list of features of health and of the genes associated with them. These genes may or may not be associated with survival/lifespan. In turn, survival/lifespan genes that are not known to be directly associated with health are not considered. Clusters of these genes based on molecular interaction data give rise to maps of healthspan pathways for humans and for C. elegans. Overlaying healthspan-related gene expression data onto the healthspan pathway maps, we observe the downregulation of (pro-inflammatory) Notch signaling in humans and of proliferation in C. elegans. We identify transcription, proliferation/biosynthesis and lipids as a common theme on the annotation level, and proliferation-related kinases on the gene/protein level. Our literature-based data corpus, including visualization, should be seen as a pilot investigation of the molecular underpinnings of health in two different species. Web address: http://pathways.h2020awe.eu.
Collapse
|
8
|
Epidermal Growth Factor Signaling Promotes Sleep through a Combined Series and Parallel Neural Circuit. Curr Biol 2019; 30:1-16.e13. [PMID: 31839447 DOI: 10.1016/j.cub.2019.10.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022]
Abstract
Sleep requires sleep-active neurons that depolarize to inhibit wake circuits. Sleep-active neurons are under the control of homeostatic mechanisms that determine sleep need. However, little is known about the molecular and circuit mechanisms that translate sleep need into the depolarization of sleep-active neurons. During many stages and conditions in C. elegans, sleep requires a sleep-active neuron called RIS. Here, we defined the transcriptome of RIS and discovered that genes of the epidermal growth factor receptor (EGFR) signaling pathway are expressed in RIS. Because of cellular stress, EGFR directly activates RIS. Activation of EGFR signaling in the ALA neuron has previously been suggested to promote sleep independently of RIS. Unexpectedly, we found that ALA activation promotes RIS depolarization. Our results suggest that ALA is a drowsiness neuron with two separable functions: (1) it inhibits specific behaviors, such as feeding, independently of RIS, (2) and it activates RIS. Whereas ALA plays a strong role in surviving cellular stress, surprisingly, RIS does not. In summary, EGFR signaling can depolarize RIS by an indirect mechanism through activation of the ALA neuron that acts upstream of the sleep-active RIS neuron and through a direct mechanism using EGFR signaling in RIS. ALA-dependent drowsiness, rather than RIS-dependent sleep bouts, appears to be important for increasing survival after cellular stress, suggesting that different types of behavioral inhibition play different roles in restoring health. VIDEO ABSTRACT.
Collapse
|
9
|
Kunugi H, Mohammed Ali A. Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans. Int J Mol Sci 2019; 20:ijms20194662. [PMID: 31547049 PMCID: PMC6802361 DOI: 10.3390/ijms20194662] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Aging is a natural phenomenon that occurs in all living organisms. In humans, aging is associated with lowered overall functioning and increased mortality out of the risk for various age-related diseases. Hence, researchers are pushed to find effective natural interventions that can promote healthy aging and extend lifespan. Royal jelly (RJ) is a natural product that is fed to bee queens throughout their entire life. Thanks to RJ, bee queens enjoy an excellent reproductive function and lengthened lifespan compared with bee workers, despite the fact that they have the same genome. This review aimed to investigate the effect of RJ and/or its components on lifespan/healthspan in various species by evaluating the most relevant studies. Moreover, we briefly discussed the positive effects of RJ on health maintenance and age-related disorders in humans. Whenever possible, we explored the metabolic, molecular, and cellular mechanisms through which RJ can modulate age-related mechanisms to extend lifespan. RJ and its ingredients—proteins and their derivatives e.g., royalactin; lipids e.g., 10-hydroxydecenoic acid; and vitamins e.g., pantothenic acid—improved healthspan and extended lifespan in worker honeybees Apis mellifera, Drosophila Melanogaster flies, Gryllus bimaculatus crickets, silkworms, Caenorhabditis elegans nematodes, and mice. The longevity effect was attained via various mechanisms: downregulation of insulin-like growth factors and targeting of rapamycin, upregulation of the epidermal growth factor signaling, dietary restriction, and enhancement of antioxidative capacity. RJ and its protein and lipid ingredients have the potential to extend lifespan in various creatures and prevent senescence of human tissues in cell cultures. These findings pave the way to inventing specific RJ anti-aging drugs. However, much work is needed to understand the effect of RJ interactions with microbiome, diet, activity level, gender, and other genetic variation factors that affect healthspan and longevity.
Collapse
Affiliation(s)
- Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt.
| |
Collapse
|
10
|
Weeks JC, Robinson KJ, Lockery SR, Roberts WM. Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device. Int J Parasitol Drugs Drug Resist 2018; 8:607-628. [PMID: 30503202 PMCID: PMC6287544 DOI: 10.1016/j.ijpddr.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022]
Abstract
Many anthelmintic drugs used to treat parasitic nematode infections target proteins that regulate electrical activity of neurons and muscles: ion channels (ICs) and neurotransmitter receptors (NTRs). Perturbation of IC/NTR function disrupts worm behavior and can lead to paralysis, starvation, immune attack and expulsion. Limitations of current anthelmintics include a limited spectrum of activity across species and the threat of drug resistance, highlighting the need for new drugs for human and veterinary medicine. Although ICs/NTRs are valuable anthelmintic targets, electrophysiological recordings are not commonly included in drug development pipelines. We designed a medium-throughput platform for recording electropharyngeograms (EPGs)-the electrical signals emitted by muscles and neurons of the pharynx during pharyngeal pumping (feeding)-in Caenorhabditis elegans and parasitic nematodes. The current study in C. elegans expands previous work in several ways. Detecting anthelmintic bioactivity in drugs, compounds or natural products requires robust, sustained pharyngeal pumping under baseline conditions. We generated concentration-response curves for stimulating pumping by perfusing 8-channel microfluidic devices (chips) with the neuromodulator serotonin, or with E. coli bacteria (C. elegans' food in the laboratory). Worm orientation in the chip (head-first vs. tail-first) affected the response to E. coli but not to serotonin. Using a panel of anthelmintics-ivermectin, levamisole and piperazine-targeting different ICs/NTRs, we determined the effects of concentration and treatment duration on EPG activity, and successfully distinguished control (N2) and drug-resistant worms (avr-14; avr-15; glc-1, unc-38 and unc-49). EPG recordings detected anthelmintic activity of drugs that target ICs/NTRs located in the pharynx as well as at extra-pharyngeal sites. A bus-8 mutant with enhanced permeability was more sensitive than controls to drug treatment. These results provide a useful framework for investigators who would like to more easily incorporate electrophysiology as a routine component of their anthelmintic research workflow.
Collapse
Affiliation(s)
- Janis C Weeks
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - Kristin J Robinson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - William M Roberts
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| |
Collapse
|
11
|
Cornwell AB, Llop JR, Salzman P, Thakar J, Samuelson AV. The Replica Set Method: A High-throughput Approach to Quantitatively Measure Caenorhabditis elegans Lifespan. J Vis Exp 2018. [PMID: 30010651 DOI: 10.3791/57819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Replica Set method is an approach to quantitatively measure lifespan or survival of Caenorhabditis elegans nematodes in a high-throughput manner, thus allowing a single investigator to screen more treatments or conditions over the same amount of time without loss of data quality. The method requires common equipment found in most laboratories working with C. elegans and is thus simple to adopt. The approach centers on assaying independent samples of a population at each observation point, rather than a single sample over time as with traditional longitudinal methods. Scoring entails adding liquid to the wells of a multi-well plate, which stimulates C. elegans to move and facilitates quantifying changes in healthspan. Other major benefits of the Replica Set method include reduced exposure of agar surfaces to airborne contaminants (e.g. mold or fungus), minimal handling of animals, and robustness to sporadic mis-scoring (such as calling an animal as dead when it is still alive). To appropriately analyze and visualize the data from a Replica Set style experiment, a custom software tool was also developed. Current capabilities of the software include plotting of survival curves for both Replica Set and traditional (Kaplan-Meier) experiments, as well as statistical analysis for Replica Set. The protocols provided here describe the traditional experimental approach and the Replica Set method, as well as an overview of the corresponding data analysis.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center
| | - Jesse R Llop
- Department of Biomedical Genetics, University of Rochester Medical Center
| | - Peter Salzman
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center; Non-Clinical Statistics, Bristol-Myers Squibb
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester Medical Center
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center;
| |
Collapse
|
12
|
Feng Z, Hanson RW, Berger NA, Trubitsyn A. Reprogramming of energy metabolism as a driver of aging. Oncotarget 2017; 7:15410-20. [PMID: 26919253 PMCID: PMC4941250 DOI: 10.18632/oncotarget.7645] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis
Collapse
Affiliation(s)
- Zhaoyang Feng
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard W Hanson
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nathan A Berger
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander Trubitsyn
- Institute of Biology and Soil Sciences of Far Eastern Brach of Russian Academy of Science, Vladivostok, Russia
| |
Collapse
|
13
|
Donlon TA, Morris BJ, He Q, Chen R, Masaki KH, Allsopp RC, Willcox DC, Tranah GJ, Parimi N, Evans DS, Flachsbart F, Nebel A, Kim DH, Park J, Willcox BJ. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity. J Gerontol A Biol Sci Med Sci 2017; 72:1038-1044. [PMID: 27365368 PMCID: PMC5861942 DOI: 10.1093/gerona/glw116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/07/2016] [Indexed: 12/19/2022] Open
Abstract
Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p < .05 level for 2 SNPs in CTGF and 7 in EGFR. Two in CTGF and two in EGFR remained significant after Bonferroni correction. The SNPs of both CTGF and EGFR were in a haplotype block in each respective gene. Haplotype analysis confirmed the suggestive association found by χ2 analysis. We noted an excess of heterozygotes among the longevity cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu
| | - Brian J Morris
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| | - Qimei He
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
| | - Randi Chen
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
| | - Kamal H Masaki
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| | - Richard C Allsopp
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii
| | - D Craig Willcox
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
- Department of Human Welfare, Okinawa International University, Japan
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco
| | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco
| | | | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Germany
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joobae Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Bradley J Willcox
- Department of Research, Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS), Kuakini Medical Center, Hawaii
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu
| |
Collapse
|
14
|
Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis. G3-GENES GENOMES GENETICS 2016; 6:3533-3540. [PMID: 27605519 PMCID: PMC5100852 DOI: 10.1534/g3.116.034850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions.
Collapse
|
15
|
Brunquell J, Morris S, Lu Y, Cheng F, Westerheide SD. The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans. BMC Genomics 2016; 17:559. [PMID: 27496166 PMCID: PMC4975890 DOI: 10.1186/s12864-016-2837-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/15/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The heat shock response, induced by cytoplasmic proteotoxic stress, is one of the most highly conserved transcriptional responses. This response, driven by the heat shock transcription factor HSF1, restores proteostasis through the induction of molecular chaperones and other genes. In addition to stress-dependent functions, HSF1 has also been implicated in various stress-independent functions. In C. elegans, the HSF1 homolog HSF-1 is an essential protein that is required to mount a stress-dependent response, as well as to coordinate various stress-independent processes including development, metabolism, and the regulation of lifespan. In this work, we have performed RNA-sequencing for C. elegans cultured in the presence and absence of hsf-1 RNAi followed by treatment with or without heat shock. This experimental design thus allows for the determination of both heat shock-dependent and -independent biological targets of HSF-1 on a genome-wide level. RESULTS Our results confirm that C. elegans HSF-1 can regulate gene expression in both a stress-dependent and -independent fashion. Almost all genes regulated by HS require HSF-1, reinforcing the central role of this transcription factor in the response to heat stress. As expected, major categories of HSF-1-regulated genes include cytoprotection, development, metabolism, and aging. Within both the heat stress-dependent and -independent gene groups, significant numbers of genes are upregulated as well as downregulated, demonstrating that HSF-1 can both activate and repress gene expression either directly or indirectly. Surprisingly, the cellular process most highly regulated by HSF-1, both with and without heat stress, is cuticle structure. Via network analyses, we identify a nuclear hormone receptor as a common link between genes that are regulated by HSF-1 in a HS-dependent manner, and an epidermal growth factor receptor as a common link between genes that are regulated by HSF-1 in a HS-independent manner. HSF-1 therefore coordinates various physiological processes in C. elegans, and HSF-1 activity may be coordinated across tissues by nuclear hormone receptor and epidermal growth factor receptor signaling. CONCLUSION This work provides genome-wide HSF-1 regulatory networks in C. elegans that are both heat stress-dependent and -independent. We show that HSF-1 is responsible for regulating many genes outside of classical heat stress-responsive genes, including genes involved in development, metabolism, and aging. The findings that a nuclear hormone receptor may coordinate the HS-induced HSF-1 transcriptional response, while an epidermal growth factor receptor may coordinate the HS-independent response, indicate that these factors could promote cell non-autonomous signaling that occurs through HSF-1. Finally, this work highlights the genes involved in cuticle structure as important HSF-1 targets that may play roles in promoting both cytoprotection as well as longevity.
Collapse
Affiliation(s)
- Jessica Brunquell
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620 USA
| | - Stephanie Morris
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620 USA
| | - Yin Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612 USA
- Department of Epidemiology and Biostatistics, College of Public Health , University of South Florida, Tampa, FL 33620 USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612 USA
- Department of Epidemiology and Biostatistics, College of Public Health , University of South Florida, Tampa, FL 33620 USA
| | - Sandy D. Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620 USA
| |
Collapse
|
16
|
Gerber PA, Buhren BA, Schrumpf H, Hevezi P, Bölke E, Sohn D, Jänicke RU, Belum VR, Robert C, Lacouture ME, Homey B. Mechanisms of skin aging induced by EGFR inhibitors. Support Care Cancer 2016; 24:4241-8. [PMID: 27165055 DOI: 10.1007/s00520-016-3254-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/26/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND The mechanisms of skin aging have not been completely elucidated. Anecdotal data suggests that EGFR inhibition accelerates aging-like skin changes. OBJECTIVE The objective of the study was to evaluate the clinical characteristics and investigate the cellular and molecular mechanisms underlying skin changes associated with the use of EFGRIs. PATIENTS AND METHODS Patients during prolonged treatment with EGFRIs (>3 months) were analyzed for aging-like skin changes. Baseline EGFR expression was compared in young (<25 years old) vs. old (> 65 years old) skin. In addition, the regulation of extracellular matrix, senescence-associated genes, and cell cycle status was measured in primary human keratinocytes treated with erlotinib in vitro. RESULTS There were progressive signs of skin aging, including xerosis cutis, atrophy, rhytide formation, and/or actinic purpura in 12 patients. Keratinocytes treated with erlotinib in vitro showed a significant down-modulation of hyaluronan synthases (HAS2 and HAS3), whereas senescence-associated genes (p21, p53, IL-6, maspin) were upregulated, along with a G1 cell cycle arrest and stronger SA β-Gal activity. There was significantly decreased baseline expression in EGFR density in aged skin, when compared to young controls. CONCLUSIONS EGFR inhibition results in molecular alterations in keratinocytes that may contribute to the observed skin aging of patients treated with respective targeted agents.
Collapse
Affiliation(s)
- Peter Arne Gerber
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany.
| | - Bettina Alexandra Buhren
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany
| | - Holger Schrumpf
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany
| | - Peter Hevezi
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany
| | - Edwin Bölke
- Clinic and Polyclinic, Radiation Therapy and Radiooncology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Radiation Therapy and Radiooncology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Radiation Therapy and Radiooncology, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Viswanath Reddy Belum
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Robert
- Dermatology Service and Paris-Sud University, Gustave Roussy Cancer Campus, Villejuif-Paris Sud, Paris, France
| | - Mario E Lacouture
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, University of Düsseldorf, Moorenstrasse 5, D-40225, Duesseldorf, Germany
| |
Collapse
|
17
|
Detienne G, De Haes W, Ernst UR, Schoofs L, Temmerman L. Royalactin extends lifespan of Caenorhabditis elegans through epidermal growth factor signaling. Exp Gerontol 2014; 60:129-35. [PMID: 25456847 DOI: 10.1016/j.exger.2014.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 01/29/2023]
Abstract
Royalactin is a glycoprotein essential for the development of long-lived queen honeybees. Only larvae fed with royal jelly, containing royalactin, develop into queens. Royalactin plays a central role in this process by switching on the epidermal growth factor (EGF) receptor signaling pathway which ultimately leads to epigenetic changes and a long-lived queen phenotype. Recently it was shown that royalactin by itself also extends lifespan in Drosophila melanogaster. Yet, the mechanism by which royalactin promotes longevity remains largely unknown. We set out to characterize the effects of royalactin on Caenorhabditis elegans lifespan, and clarify the possible involvement of EGF signaling in this process. We demonstrate that royalactin extends lifespan of this nematode and that both EGF (LIN-3) and its receptor (LET-23) are essential to this process. To our knowledge, this is the first report of royalactin-mediated lifespan extension in a non-insect species. Additionally, we show that royalactin enhances locomotion in adult nematodes, implying that royalactin also influences healthspan. Our results suggest that royalactin is an important lifespan-extending factor in royal jelly and acts by promoting EGF signaling in C. elegans. Further work will now be needed to clarify which (secondary) signaling pathways are activated by royalactin, and how this ultimately translates into an extended health- and lifespan.
Collapse
Affiliation(s)
- Giel Detienne
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Wouter De Haes
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Ulrich R Ernst
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
18
|
Baqri RM, Pietron AV, Gokhale RH, Turner BA, Kaguni LS, Shingleton AW, Kunes S, Miller KE. Mitochondrial chaperone TRAP1 activates the mitochondrial UPR and extends healthspan in Drosophila. Mech Ageing Dev 2014; 141-142:35-45. [PMID: 25265088 DOI: 10.1016/j.mad.2014.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 08/22/2014] [Accepted: 09/19/2014] [Indexed: 01/06/2023]
Abstract
The molecular mechanisms influencing healthspan are unclear but mitochondrial function, resistance to oxidative stress and proteostasis are recurring themes. Tumor necrosis factor Receptor Associated Protein 1 (TRAP1), the mitochondrial analog of Hsp75, regulates levels of reactive oxygen species in vitro and is found expressed at higher levels in tumor cells where it is thought to play a pro-survival role. While TRAP1-directed compartmentalized protein folding is a promising target for cancer therapy, its role at the organismal level is unclear. Here we report that overexpression of TRAP1 in Drosophila extends healthspan by enhancing stress resistance, locomotor activity and fertility while depletion of TRAP1 has the opposite effect, with little effect on lifespan under both conditions. In addition, modulating TRAP1 expression promotes the nuclear translocation of homeobox protein Dve and increases expression of genes associated with the mitochondrial unfolded protein response (UPR(mt)), indicating an activation of this proteostasis pathway. Notably, independent genetic knockdown of components of the UPR(mt) pathway dampen the enhanced stress resistance observed in TRAP1 overexpression flies. Together these studies suggest that TRAP1 regulates healthspan, potentially through activation of the UPR(mt).
Collapse
Affiliation(s)
- Rehan M Baqri
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA; Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Arielle V Pietron
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA
| | - Rewatee H Gokhale
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA
| | - Brittany A Turner
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA; Department of Biochemistry and Molecular Biology, 319 Biochemistry Building, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, 319 Biochemistry Building, Michigan State University, East Lansing, MI 48824-1319, USA; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Alexander W Shingleton
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA
| | - Sam Kunes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kyle E Miller
- Department of Zoology, Michigan State University, 203 Natural Sciences Building, East Lansing, MI 48824-1115, USA; Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1115, USA; Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
19
|
Shai N, Shemesh N, Ben-Zvi A. Remodeling of Proteostasis Upon Transition to Adulthood is Linked to Reproduction Onset. Curr Genomics 2014; 15:122-9. [PMID: 24822030 PMCID: PMC4009840 DOI: 10.2174/1389202915666140221005023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
Protein folding and clearance networks sense and respond to misfolded and aggregation-prone proteins by activating
cytoprotective cell stress responses that safeguard the proteome against damage, maintain the health of the cell, and
enhance lifespan. Surprisingly, cellular proteostasis undergoes a sudden and widespread failure early in Caenorhabditis
elegans adulthood, with marked consequences on proteostasis functions later in life. These changes in the regulation of
quality control systems, such as chaperones, the ubiquitin proteasome system and cellular stress responses, are controlled
cell-nonautonomously by the proliferation of germline stem cells. Here, we review recent studies examining changes in
proteostasis upon transition to adulthood and how proteostasis is modulated by reproduction onset, focusing on C. elegans.
Based on these and our own findings, we propose that the regulation of quality control systems is actively remodeled
at the point of transition between development and adulthood to influence the subsequent course of aging.
Collapse
Affiliation(s)
- Nadav Shai
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Netta Shemesh
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anat Ben-Zvi
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
20
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2014. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015.pubmed:24316036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
21
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2013; 50:72-81. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/03/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
22
|
Eckley DM, Rahimi S, Mantilla S, Orlov NV, Coletta CE, Wilson MA, Iser WB, Delaney JD, Zhang Y, Wood W, Becker KG, Wolkow CA, Goldberg IG. Molecular characterization of the transition to mid-life in Caenorhabditis elegans. AGE (DORDRECHT, NETHERLANDS) 2013; 35:689-703. [PMID: 22610697 PMCID: PMC3636400 DOI: 10.1007/s11357-012-9401-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/09/2012] [Indexed: 06/01/2023]
Abstract
We present an initial molecular characterization of a morphological transition between two early aging states. In previous work, an age score reflecting physiological age was developed using a machine classifier trained on images of worm populations at fixed chronological ages throughout their lifespan. The distribution of age scores identified three stable post-developmental states and transitions. The first transition occurs at day 5 post-hatching, where a significant percentage of the population exists in both state I and state II. The temperature dependence of the timing of this transition (Q 10 ~ 1.17) is too low to be explained by a stepwise process with an enzymatic or chemical rate-limiting step, potentially implicating a more complex mechanism. Individual animals at day 5 were sorted into state I and state II groups using the machine classifier and analyzed by microarray expression profiling. Despite being isogenic, grown for the same amount of time, and indistinguishable by eye, these two morphological states were confirmed to be molecularly distinct by hierarchical clustering and principal component analysis of the microarray results. These molecular differences suggest that pharynx morphology reflects the aging state of the whole organism. Our expression profiling yielded a gene set that showed significant overlap with those from three previous age-related studies and identified several genes not previously implicated in aging. A highly represented group of genes unique to this study is involved in targeted ubiquitin-mediated proteolysis, including Skp1-related (SKR), F-box-containing, and BTB motif adaptors.
Collapse
Affiliation(s)
- D. Mark Eckley
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Salim Rahimi
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Sandra Mantilla
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Nikita V. Orlov
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Christopher E. Coletta
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Mark A. Wilson
- />Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Wendy B. Iser
- />Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - John D. Delaney
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Yongqing Zhang
- />Gene Expression and Genomics Unit, Central Laboratory Service Section, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - William Wood
- />Gene Expression and Genomics Unit, Central Laboratory Service Section, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Kevin G. Becker
- />Gene Expression and Genomics Unit, Central Laboratory Service Section, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Catherine A. Wolkow
- />Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Ilya G. Goldberg
- />Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| |
Collapse
|
23
|
|