1
|
Chlastáková A, Kaščáková B, Kotál J, Langhansová H, Kotsyfakis M, Kutá Smatanová I, Tirloni L, Chmelař J. Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules. Front Immunol 2023; 14:1116324. [PMID: 36756125 PMCID: PMC9901544 DOI: 10.3389/fimmu.2023.1116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.
Collapse
Affiliation(s)
- Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Barbora Kaščáková
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Ivana Kutá Smatanová
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,*Correspondence: Jindřich Chmelař,
| |
Collapse
|
2
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Oulghazi S, Wegner SK, Spohn G, Müller N, Harenkamp S, Stenzinger A, Papayannopoulou T, Bonig H. Adaptive Immunity and Pathogenesis of Diabetes: Insights Provided by the α4-Integrin Deficient NOD Mouse. Cells 2020; 9:cells9122597. [PMID: 33291571 PMCID: PMC7761835 DOI: 10.3390/cells9122597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The spontaneously diabetic “non-obese diabetic” (NOD) mouse is a faithful model of human type-1 diabetes (T1D). Methods: Given the pivotal role of α4 integrin (CD49d) in other autoimmune diseases, we generated NOD mice with α4-deficient hematopoiesis (NOD.α4-/-) to study the role of α4 integrin in T1D. Results: NOD.α4-/- mice developed islet-specific T-cells and antibodies, albeit quantitatively less than α4+ counterparts. Nevertheless, NOD.α4-/- mice were completely and life-long protected from diabetes and insulitis. Moreover, transplantation with isogeneic α4-/- bone marrow prevented progression to T1D of pre-diabetic NOD.α4+ mice despite significant pre-existing islet cell injury. Transfer of α4+/CD3+, but not α4+/CD4+ splenocytes from diabetic to NOD.α4-/- mice induced diabetes with short latency. Despite an only modest contribution of adoptively transferred α4+/CD3+ cells to peripheral blood, pancreas-infiltrating T-cells were exclusively graft derived, i.e., α4+. Microbiota of diabetes-resistant NOD.α4-/- and pre-diabetic NOD.α4+ mice were identical. Co- housed diabetic NOD.α4+ mice showed the characteristic diabetic dysbiosis, implying causality of diabetes for dysbiosis. Incidentally, NOD.α4-/- mice were protected from autoimmune sialitis. Conclusion: α4 is a potential target for primary or secondary prevention of T1D.
Collapse
Affiliation(s)
- Salim Oulghazi
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
| | - Sarah K. Wegner
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
| | - Gabriele Spohn
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Nina Müller
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Sabine Harenkamp
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
| | - Albrecht Stenzinger
- Institute for Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany;
| | - Thalia Papayannopoulou
- Department of Medicine/Division of Hematology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, School of Medicine, Goethe University, Sandhofstraße 1, 60528 Frankfurt, Germany or (S.O.); (S.K.W.)
- Institute Frankfurt, German Red Cross Blood Service BaWüHe, Sandhofstraße 1, 60528 Frankfurt, Germany; (G.S.); (N.M.); (S.H.)
- Department of Medicine/Division of Hematology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA;
- Correspondence: ; Tel.: +49-69-6782177
| |
Collapse
|
4
|
Kramer F, Martinson AM, Papayannopoulou T, Kanter JE. Myocardial Infarction Does Not Accelerate Atherosclerosis in a Mouse Model of Type 1 Diabetes. Diabetes 2020; 69:2133-2143. [PMID: 32694213 PMCID: PMC7506833 DOI: 10.2337/db20-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022]
Abstract
In addition to increasing the risk of an initial myocardial infarction (MI), diabetes increases the risk of a recurrent MI. Previous work suggests that an experimental MI can accelerate atherosclerosis via monocytosis. To test whether diabetes and experimental MI synergize to accelerate atherosclerosis, we performed ligation of the left anterior descending coronary artery to induce experimental MI or sham surgery in nondiabetic and diabetic mice with preexisting atherosclerosis. All mice subjected to experimental MI had significantly reduced left ventricular function. In our model, in comparisons with nondiabetic sham mice, neither diabetes nor MI resulted in monocytosis. Neither diabetes nor MI led to increased atherosclerotic lesion size, but diabetes accelerated lesion progression, exemplified by necrotic core expansion. The necrotic core expansion was dependent on monocyte recruitment, as mice with myeloid cells deficient in the adhesion molecule integrin α4 were protected from necrotic core expansion. In summary, diabetes, but not MI, accelerates lesion progression, suggesting that the increased risk of recurrent MI in diabetes is due to a higher lesional burden and/or elevated risk factors rather than the acceleration of the underlying pathology from a previous MI.
Collapse
Affiliation(s)
- Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| | - Amy M Martinson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
5
|
Bogert NV, Furkel J, Din S, Braren I, Eckstein V, Müller JA, Uhlmann L, Katus HA, Konstandin MH. A novel approach to genetic engineering of T-cell subsets by hematopoietic stem cell infection with a bicistronic lentivirus. Sci Rep 2020; 10:13740. [PMID: 32792615 PMCID: PMC7426960 DOI: 10.1038/s41598-020-70793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/04/2020] [Indexed: 11/23/2022] Open
Abstract
Lentiviral modification of hematopoietic stem cells (HSCs) paved the way for in vivo experimentation and therapeutic approaches in patients with genetic disease. A disadvantage of this method is the use of a ubiquitous promoter leads not only to genetic modification of the leukocyte subset of interest e.g. T-cells, but also all other subsequent leukocyte progeny of the parent HSCs. To overcome this limitation we tested a bicistronic lentivirus, enabling subset specific modifications. Designed novel lentiviral constructs harbor a global promoter (mPGK) regulating mCherry for HSCs selection and a T-cell specific promoter upstream of eGFP. Two T-cell specific promoters were assessed: the distal Lck—(dLck) and the CD3δ-promoter. Transduced HSCs were FACS sorted by mCherry expression and transferred into sublethally irradiated C57/BL6 mice. Successful transplantation and T-cell specific expression of eGFP was monitored by peripheral blood assessment. Furthermore, recruitment response of lentiviral engineered leukocytes to the site of inflammation was tested in a peritonitis model without functional impairment. Our constructed lentivirus enables fast generation of subset specific leukocyte transgenesis as shown in T-cells in vivo and opens new opportunities to modify other HSCs derived subsets in the future.
Collapse
Affiliation(s)
- N V Bogert
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany.
| | - J Furkel
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - S Din
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - I Braren
- Vector Core Facility, University Hospital Hamburg-Eppendorf, University Hamburg, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Hamburg, Germany
| | - V Eckstein
- Department of Hematology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - J A Müller
- Department of Hematology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - L Uhlmann
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - H A Katus
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - M H Konstandin
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
6
|
NG2 Proteoglycan Enhances Brain Tumor Progression by Promoting Beta-1 Integrin Activation in both Cis and Trans Orientations. Cancers (Basel) 2017; 9:cancers9040031. [PMID: 28362324 PMCID: PMC5406706 DOI: 10.3390/cancers9040031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
By physically interacting with beta-1 integrins, the NG2 proteoglycan enhances activation of the integrin heterodimers. In glioma cells, co-localization of NG2 and 31 integrin in individual cells (cis interaction) can be demonstrated by immunolabeling, and the NG2-integrin interaction can be confirmed by co-immunoprecipitation. NG2-dependent integrin activation is detected via use of conformationally sensitive monoclonal antibodies that reveal the activated state of the beta-1 subunit in NG2-positive versus NG2-negative cells. NG2-dependent activation of beta-1 integrins triggers downstream activation of FAK and PI3K/Akt signaling, resulting in increased glioma cell proliferation, motility, and survival. Similar NG2-dependent cis activation of beta-1 integrins occurs in microvascular pericytes, leading to enhanced proliferation and motility of these vascular cells. Surprisingly, pericyte NG2 is also able to promote beta-1 integrin activation in closely apposed endothelial cells (trans interaction). Enhanced beta-1 signaling in endothelial cells promotes endothelial maturation by inducing the formation of endothelial junctions, resulting in increased barrier function of the endothelium and increased basal lamina assembly. NG2-dependent beta-1 integrin signaling is therefore important for tumor progression by virtue of its affects not only on the tumor cells themselves, but also on the maturation and function of tumor blood vessels.
Collapse
|
7
|
Stallcup WB, You WK, Kucharova K, Cejudo-Martin P, Yotsumoto F. NG2 Proteoglycan-Dependent Contributions of Pericytes and Macrophages to Brain Tumor Vascularization and Progression. Microcirculation 2016; 23:122-33. [PMID: 26465118 DOI: 10.1111/micc.12251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
The NG2 proteoglycan promotes tumor growth as a component of both tumor and stromal cells. Using intracranial, NG2-negative B16F10 melanomas, we have investigated the importance of PC and Mac NG2 in brain tumor progression. Reduced melanoma growth in Mac-NG2ko and PC-NG2ko mice demonstrates the importance of NG2 in both stromal compartments. In each genotype, the loss of PC-endothelial cell interaction diminishes the formation of endothelial junctions and assembly of the basal lamina. Tumor vessels in Mac-NG2ko mice have smaller diameters, reduced patency, and increased leakiness compared to PC-NG2ko mice, thus decreasing tumor blood supply and increasing hypoxia. While the reduced PC interaction with endothelial cells in PC-NG2ko mice results from the loss of PC activation of β1 integrin signaling in endothelial cells, reduced PC-endothelial cell interaction in Mac-NG2ko mice results from 90% reduced Mac recruitment. The absence of Mac-derived signals in Mac-NG2ko mice causes the loss of PC association with endothelial cells. Reduced Mac recruitment may be due to diminished activation of integrins in the absence of NG2, causing decreased Mac interaction with endothelial adhesion molecules that are needed for extravasation. These results reflect the complex interplay that occurs between Mac, PC, and endothelial cells during tumor vascularization.
Collapse
Affiliation(s)
- William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Weon-Kyoo You
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA.,Biologics Business, Research and Development Center, Hanwha Chemical, Daejon, South Korea
| | - Karolina Kucharova
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Pilar Cejudo-Martin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Fusanori Yotsumoto
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA.,Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
8
|
Banerjee ER. Dissecting asthma pathogenesis through study of patterns of cellular traffic indicative of molecular switches operative in inflammation. ACTA ACUST UNITED AC 2015; 2:1. [PMID: 27512648 PMCID: PMC4959125 DOI: 10.7603/s40855-015-0001-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/20/2015] [Indexed: 11/26/2022]
Abstract
Background: Inflammation and degeneration are the two edged swords that impale a pulmonary system with the maladies like asthma and idiopathic pulmonary fibrosis. To explore critical role players that orchestrate the etiology and pathogenesis of these diseases, we used various lung disease models in mice in specific genetic knockout templates. Materials and methods: Acute and chronic allergic asthma and idiopathic pulmonary fibrosis model in mouse was developed in various genetic knockout templates namely α4Δ/ Δ(α41-/-), β2-/-, and α4-/- β2 mice, and the following parameters were measured to assess development of composite asthma phenotype- (i) airway hyperresponsiveness to methacholine by measuring lung resistance and compliance by invasive and Penh by non-invasive plethysmography as well as lung resistance and compliance using invasive plethysmography, (ii) in situ inflammation status in lung parenchyma and lung interstitium and also resultant airway remodelling measured by histochemical staining namely Masson’s Trichrome staining and Hematoxylin&Eosin staining, (iii) formation of metaplastic goblet cells around lung airways by Alcian blue dye, (iv) measurement of Th1 and Th2 cytokines in serum and bronchoalveolar lavage fluid (BALf), (v) serum allergen-specific IgE. Specifically, ovalbumin-induced acute allergic asthma model in mice was generated in WT (wildtype) and KO (knockout) models and readouts of the composite asthma phenotype viz. airway hypersensitivity, serum OVA-specific IgE and IgG, Th2 cytokine in bronchoalveolar lavage fluid (BALf) and lymphocyte cell subsets viz. T, B cells, monocytes, macrophages, basophils, mast cells and eosinophils (by FACS and morphometry in H&E stained cell smears) were assessed in addition to lung and lymph node histology. Results: We noticed a pattern of cellular traffic between bone marrow (BM)→ peripheral blood (PB) → lung parenchyma (LP) → (BALf) in terms of cellular recruitment of key cell sub-types critical for onset and development of the diseases which is different for maintenance and exacerbations in chronic cyclically occurring asthma that leads to airway remodelling. While inflammation is the central theme of this particular disease, degeneration and shift in cellular profile, subtly modifying the clinical nature of the disease were also noted. In addition we recorded the pattern of cell movement between the secondary lymphoid organs namely, the cervical, axillary, ingunal, and mesenteric lymph nodes vis-à-vis spleen and their sites of poiesis BM, PB and lung tissue. While mechanistic role is the chief domain of the integrins (α4 i.e. VLA-4 or α4β1, VCAM-1; β2 i.e. CD18 or ICAM-1). Concluding remarks: The present paper thoroughly compares and formulates the pattern of cellular traffic among the three nodes of information throughput in allergic asthma immunobiology, namely, primary lymphoid organs (PLO), secondary lymphoid organs (SLO), and tissue spaces and cells where inflammation and degeneration is occurring within the purview of the disease pathophysiological onset and ancillary signals in the above models and reports some interesting findings with respect to adult lung stem cell niches and its resident progenitors and their role in pathogenesis and disease amelioration.
Collapse
Affiliation(s)
- Ena Ray Banerjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, 700019 Kolkata, West Bengal India
| |
Collapse
|
9
|
Yotsumoto F, You WK, Cejudo-Martin P, Kucharova K, Sakimura K, Stallcup WB. NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology 2015; 4:e1001204. [PMID: 26137396 PMCID: PMC4485789 DOI: 10.1080/2162402x.2014.1001204] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 11/03/2022] Open
Abstract
Early stage growth of intracranial B16F10 tumors is reduced by 87% in myeloid-specific NG2 null (Mac-NG2ko) mice and by 77% in pericyte-specific NG2 null (PC-NG2ko) mice, demonstrating the importance of the NG2 proteoglycan in each of these stromal compartments. In both genotypes, loss of pericyte-endothelial cell interaction results in numerous structural defects in tumor blood vessels, including decreased formation of endothelial cell junctions and decreased assembly of the vascular basal lamina. All vascular deficits are larger in Mac-NG2ko mice than in PC-NG2ko mice, correlating with the greater decrease in pericyte-endothelial cell interaction in Mac-NG2ko animals. Accordingly, tumor vessels in Mac-NG2ko mice have a smaller diameter, lower degree of patency, and higher degree of leakiness than tumor vessels in PC-NG2ko mice, leading to less efficient tumor blood flow and to increased intratumoral hypoxia. While reduced pericyte interaction with endothelial cells in PC-NG2ko mice is caused by loss of NG2-dependent pericyte activation of β1 integrin signaling in endothelial cells, reduced pericyte-endothelial cell interaction in Mac-NG2ko mice is due to a 90% reduction in NG2-dependent macrophage recruitment to tumors. The absence of a macrophage-derived signal(s) in Mac-NG2ko mice results in the loss of pericyte ability to associate with endothelial cells, possibly due to reduced expression of N-cadherin by both pericytes and endothelial cells.
Collapse
Affiliation(s)
- Fusanori Yotsumoto
- Sanford-Burnham Medical Research Institute; Cancer Center ; La Jolla, CA USA ; Department of Biochemistry; Faculty of Medicine ; Fukuoka University , Fukuoka, Japan
| | - Weon-Kyoo You
- Sanford-Burnham Medical Research Institute; Cancer Center ; La Jolla, CA USA ; Biologics Business; Research and Development Center ; Hanwha Chemical ; Daejeon, South Korea
| | - Pilar Cejudo-Martin
- Sanford-Burnham Medical Research Institute; Cancer Center ; La Jolla, CA USA
| | - Karolina Kucharova
- Sanford-Burnham Medical Research Institute; Cancer Center ; La Jolla, CA USA
| | - Kenji Sakimura
- Department of Cellular Neurobiology; Brain Research Institute ; Niigata University , Niigata, Japan
| | - William B Stallcup
- Sanford-Burnham Medical Research Institute; Cancer Center ; La Jolla, CA USA
| |
Collapse
|
10
|
Cantor JM, Rose DM, Slepak M, Ginsberg MH. Fine-tuning Tumor Immunity with Integrin Trans-regulation. Cancer Immunol Res 2015; 3:661-7. [PMID: 25600437 DOI: 10.1158/2326-6066.cir-13-0226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/10/2015] [Indexed: 12/30/2022]
Abstract
Inefficient T-cell homing to tissues limits adoptive T-cell immunotherapy of solid tumors. αLβ2 and α4β1 integrins mediate trafficking of T cells into tissues via engagement of ICAM-1 and VCAM-1, respectively. Inhibiting protein kinase A (PKA)-mediated phosphorylation of α4 integrin in cells results in an increase in αLβ2-mediated migration on mixed ICAM-1-VCAM-1 substrates in vitro, a phenomenon termed "integrin trans-regulation." Here, we created an α4(S988A)-bearing mouse, which precludes PKA-mediated α4 phosphorylation, to examine the effect of integrin trans-regulation in vivo. The α4(S988A) mouse exhibited a dramatic and selective increase in migration of lymphocytes, but not myeloid cells, to sites of inflammation. Importantly, we found that the α4(S988A) mice exhibited a marked increase in T-cell entry into and reduced growth of B16 melanomas, consistent with antitumor roles of infiltrating T cells and progrowth functions of tumor-associated macrophages. Thus, increased α4 trans-regulation of αLβ2 integrin function biases leukocyte emigration toward lymphocytes relative to myeloid cells and enhances tumor immunity.
Collapse
Affiliation(s)
- Joseph M Cantor
- Department of Medicine, University of California, San Diego, La Jolla, California.
| | - David M Rose
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Marina Slepak
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California.
| |
Collapse
|
11
|
Lerman YV, Kim M. Neutrophil migration under normal and sepsis conditions. Cardiovasc Hematol Disord Drug Targets 2015; 15:19-28. [PMID: 25567338 PMCID: PMC5111082 DOI: 10.2174/1871529x15666150108113236] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/22/2014] [Accepted: 10/12/2014] [Indexed: 05/13/2023]
Abstract
Neutrophil migration is critical for pathogen clearance and host survival during severe sepsis. Interaction of neutrophil adhesion receptors with ligands on endothelial cells results in firm adhesion of the circulating neutrophils, followed by neutrophil activation and directed migration to sites of infection through the basement membrane and interstitial extracellular matrix. Proteolytic enzymes and reactive oxygen species are produced and released by neutrophils in response to a variety of inflammatory stimuli. Although these mediators are important for host defense, they also promote tissue damage. Excessive neutrophil migration during the early stages of sepsis may lead to an exaggerated inflammatory response with associated tissue damage and subsequent organ dysfunction. On the other hand, dysregulation of migration and insufficient migratory response that occurs during the latter stages of severe sepsis contributes to neutrophils' inability to contain and control infection and impaired wound healing. This review discusses the major steps and associated molecules involved in the balance of neutrophil trafficking, the precise regulation of which during sepsis spells life or death for the host.
Collapse
Affiliation(s)
| | - Minsoo Kim
- Department of Microbiology & Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA.
| |
Collapse
|
12
|
Banerjee ER, Henderson WR. Role of T cells in a gp91phox knockout murine model of acute allergic asthma. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2013; 9:6. [PMID: 23390895 PMCID: PMC3643823 DOI: 10.1186/1710-1492-9-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/29/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Molecular regulation of inflammation, especially, the role of effector cells in NADPH oxidase-mediated redox reactions for producing O2- (superoxide anion) is a critical step. This study explores the roles of macrophages and neutrophils and their cross-talk with extra-cellular matrix components in the light of the role essayed by T cells. Materials and Methods and Treatment: To clarify the role of NADPH oxidase in the pathophysiology of T cell-initiatedmacrophage-associated allergic asthma, we induced allergen dependent inflammation in a gp91phox-/- SKO (single knockout) and a gp91phox-/- MMP-12-/- DKO (double knockout) mouse and analysed trafficking and functionality of various cell types, the T cell function and T cell-macrophage interaction being given special emphasis. RESULTS Composite asthma symptoms expressed in a more aggravated manner in both the KO (SKO and DKO) mice compared to WT indicating that some redundancy may exist in the response pathways of gp91phox and MMP-12. On the one hand, upregulation in macrophage functions such as proliferation, mixed lymphocyte reaction, and MCP-1 directed chemotaxis, may indicate that a regulatory cross-talk is switched on between T cell and macrophage and on the other, downregulation of respiratory burst response hints at a dichotomy in their signaling pathways. Increased B7.1 but reduced B7.2 and MHC class II expression on KO alveolar macrophages may suggest that a switching on-off mechanism is operative where alteration of co-stimulatory molecule expression selectively activating T cell is a critical step. INFERENCE T cell mediated functions such as Th2 cytokine secretion, and T cell proliferation in response to OVA were upregulated synchronous with the overall robustness of the asthma phenotype. CONCLUSIONS As far as cell-cell interaction is concerned, the data is indicative of the existence of a plethora of networks where molecular switches may exist that selectively induce activation and deactivation of regulatory pathways that ultimately manifest in the overall response. gp91phox and MMP-12 either redundantly or synergistically but not additively, provide a regulatory checkpoint for restricting T cell cross-talk with macrophages and keep excessive tissue damage and ECM degradation during acute allergic inflammation under control.
Collapse
Affiliation(s)
- Ena Ray Banerjee
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Allergy and Inflammation, University of Washington, Room 254, 850 Republican Street, Seattle, WA 98109, USA
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - William R Henderson
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Allergy and Inflammation, University of Washington, Room 254, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
13
|
Banerjee ER, Henderson WR. Defining the molecular role of gp91phox in the immune manifestation of acute allergic asthma using a preclinical murine model. Clin Mol Allergy 2012; 10:2. [PMID: 22216879 PMCID: PMC3266200 DOI: 10.1186/1476-7961-10-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/04/2012] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The phenomena manifested during inflammation require interplay between circulating effector cells, local resident cells, soluble mediators and genetic host factors to establish, develop and maintain itself. Of the molecues involed in the initiation and perpetuation of acute allergic inflammation in asthma, the involvement of effector cells in redox reactions for producing O2- (superoxide anion) through the mediation of NADPH oxidase is a critical step. Prior data suggest that reactive oxygen species (ROS) produced by NADPH oxidase homologues in non-phagocytic cells play an important role in the regulation of signal transduction, while macrophages use a membrane-associated NADPH oxidase to generate an array of oxidizing intermediates which inactivate MMPs on or near them. MATERIALS AND METHODS AND TREATMENT To clarify the role of gp91phox subunit of NADPH oxidase in the development and progression of an acute allergic asthma phenotype, we induced allergen dependent inflammation in a gp91phox-/- single knockout and a gp91phox-/-MMP-12-/- double knockout mouse models. RESULTS In the knockout mice, both inflammation and airway hyperreactivity were more extensive than in wildtype mice post-OVA. Although OVA-specific IgE in plasma were comparable in wildtype and knockout mice, enhanced inflammatory cell recruitment from circulation and cytokine release in lung and BALf, accompanied by higher airway resistance as well as Penh in response to methacholine, indicate a regulatory role for NADPH oxidase in development of allergic asthma. While T cell mediated functions like Th2 cytokine secretion, and proliferation to OVA were upregulated synchronous with the overall robustness of the asthma phenotype, macrophage upregulation in functions such as proliferation, and mixed lymphocyte reaction indicate a regulatory role for gp91phox and an overall non-involvement or synergistic involvement of MMP12 in the response pathway (comparing data from gp91phox-/- and gp91phox-/-MMP-12-/- mice).
Collapse
Affiliation(s)
- Ena Ray Banerjee
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Allergy and Inflammation, University of Washington, Room 254, 815 Mercer Street, Seattle, WA 98195, USA.
| | | |
Collapse
|
14
|
Gomez IG, Tang J, Wilson CL, Yan W, Heinecke JW, Harlan JM, Raines EW. Metalloproteinase-mediated Shedding of Integrin β2 promotes macrophage efflux from inflammatory sites. J Biol Chem 2011; 287:4581-9. [PMID: 22170060 DOI: 10.1074/jbc.m111.321182] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Macrophage exiting from inflammatory sites is critical to limit the local innate immune response. With tissue insult, resident tissue macrophages rapidly efflux to lymph nodes where they modulate the adaptive immune response, and inflammatory macrophages attracted to the site of injury then exit during the resolution phase. However, the mechanisms that regulate macrophage efflux are poorly understood. This study has investigated soluble forms of integrin β2 whose levels are elevated in experimental peritonitis at times when macrophages are exiting the peritoneum, suggesting that its proteolytic shedding may be involved in macrophage efflux. Both constitutive and inducible metalloproteinase-dependent shedding of integrin β2 from mouse macrophages are demonstrated. Soluble integrin β2 is primarily released as a heterodimeric complex with αM that retains its ability to bind its ligands intracellular adhesion molecule-1, fibrin, and collagen and thus may serve as a soluble antagonist. In a model of accelerated exiting, administration of a metalloproteinase inhibitor prevents macrophage efflux by 50% and impedes loss of macrophage integrin β2 from the cell surface. Exiting of peritoneal macrophages in mice lacking integrin β2 is accelerated, and antibody disruption of integrin β2-substrate interactions can reverse 50% of the metalloprotease inhibitor blockade of macrophage exiting. Thus, our study demonstrates the ability of metalloproteinase-mediated shedding of integrin β2 to promote macrophage efflux from inflammatory sites, and the release of soluble integrin heterodimers may also limit local inflammation.
Collapse
Affiliation(s)
- Ivan G Gomez
- Dept. of Pathology, University of Washington, Harborview Medical Center, 325 9th Ave., Box 359675, Seattle, WA 98104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci U S A 2011; 108:2258-63. [PMID: 21257905 DOI: 10.1073/pnas.1018064108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
According to the multistep model of cell migration, chemokine receptor engagement (step 2) triggers conversion of rolling interactions (step 1) into firm adhesion (step 3), yielding transendothelial migration. We recently reported that glycosyltransferase-programmed stereosubstitution (GPS) of CD44 on human mesenchymal stem cells (hMSCs) creates the E-selectin ligand HCELL (hematopoietic cell E-selectin/L-selectin ligand) and, despite absence of CXCR4, systemically administered HCELL(+)hMSCs display robust osteotropism visualized by intravital microscopy. Here we performed studies to define the molecular effectors of this process. We observed that engagement of hMSC HCELL with E-selectin triggers VLA-4 adhesiveness, resulting in shear-resistant adhesion to ligand VCAM-1. This VLA-4 activation is mediated via a Rac1/Rap1 GTPase signaling pathway, resulting in transendothelial migration on stimulated human umbilical vein endothelial cells without chemokine input. These findings indicate that hMSCs coordinately integrate CD44 ligation and integrin activation, circumventing chemokine-mediated signaling, yielding a step 2-bypass pathway of the canonical multistep paradigm of cell migration.
Collapse
|
16
|
Sampaio ALF, Zahn G, Leoni G, Vossmeyer D, Christner C, Marshall JF, Perretti M. Inflammation-dependent α5β1 (very late antigen-5) expression on leukocytes reveals a functional role for this integrin in acute peritonitis. J Leukoc Biol 2010; 87:877-84. [DOI: 10.1189/jlb.1009670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood 2009; 115:2380-90. [PMID: 19965672 DOI: 10.1182/blood-2009-07-233031] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Integrins contribute to lymphopoiesis, whereas Toll-like receptors (TLRs) facilitate the myeloid replenishment during inflammation. The combined role of TLRs and integrin on hematopoiesis remains unclear. gp96 (grp94, HSP90b1) is an endoplasmic reticulum master chaperone for multiple TLRs. We report herein that gp96 is also essential for expression of 14 hematopoietic system-specific integrins. Genetic deletion of gp96 thus enables us to determine the collective roles of gp96, integrins, and TLRs in hematopoiesis. We found that gp96-null hematopoietic stem cells could support long-term myelopoiesis. B- and T-cell development, however, was severely compromised with transitional block from pro-B to pre-B cells and the inability of thymocytes to develop beyond the CD4(-)CD8(-) stage. These defects were cell-intrinsic and could be recapitulated on bone marrow stromal cell culture. Furthermore, defective lymphopoiesis correlated strongly with failure of hematopoietic progenitors to form close contact with stromal cell niche and was not the result of the defect in the assembly of antigen receptor or interleukin-7 signaling. These findings define gp96 as the only known molecular chaperone to specifically regulate T- and B-cell development.
Collapse
|
18
|
Jiang Y, Bonig H, Ulyanova T, Chang K, Papayannopoulou T. On the adaptation of endosteal stem cell niche function in response to stress. Blood 2009; 114:3773-82. [PMID: 19724056 PMCID: PMC2773492 DOI: 10.1182/blood-2009-05-219840] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/13/2009] [Indexed: 12/28/2022] Open
Abstract
Although the influence of microenvironmental "niche" on the function of a variety of stem cells is undisputed, the details of hematopoietic stem cell/niche interactions at the cellular and molecular level have sparked a continuous debate. We studied the microanatomic partitioning of transplanted normal and alpha4 integrin-deficient Lin-kit+ cells in trabecular and compact bone before and after irradiation and present robust quantitative data on both. We found that (1) the microanatomic distribution of normal highly enriched progenitor cells is random in nonirradiated recipients based on area distribution analyses, (2) in contrast, in irradiated hosts normal cells distribute preferentially near the endosteum, (3) the overall cell seeding efficiency was higher in trabecular versus compact bone both before and after irradiation, and (4) alpha4 integrin-deficient cells not only lodge with reduced overall efficiency confirming previous data, but fail to preferentially partition themselves into endosteal regions in irradiated hosts, as normal cells do. A similar phenotype was observed with cells rendered G(i)-protein signaling incompetent by pertussis toxin treatment, supporting an active stromal-derived factor 1 (SDF-1) gradient near endosteum after irradiation.
Collapse
Affiliation(s)
- Yi Jiang
- University of Washington, Department of Medicine/Hematology, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
19
|
Rittling SR, Zetterberg C, Yagiz K, Skinner S, Suzuki N, Fujimura A, Sasaki H. Protective role of osteopontin in endodontic infection. Immunology 2009; 129:105-14. [PMID: 19824920 DOI: 10.1111/j.1365-2567.2009.03159.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endodontic infections are polymicrobial infections resulting in bone destruction and tooth loss. The host response to these infections is complex, including both innate and adaptive mechanisms. Osteopontin (OPN), a secreted, integrin-binding protein, functions in the regulation of immune responses and enhancement of leucocyte migration. We have assessed the role of OPN in the host response to endodontic infection using a well-characterized mouse model. Periapical bone loss associated with endodontic infection was significantly more severe in OPN-deficient mice compared with wild-type 3 weeks after infection, and was associated with increased areas of inflammation. Expression of cytokines associated with bone loss, interleukin-1alpha (IL-1alpha) and RANKL, was increased 3 days after infection. There was little effect of OPN deficiency on the adaptive immune response to these infections, as there was no effect of genotype on the ratio of bacteria-specific immunoglobulin G1 and G2a in the serum of infected mice. Furthermore, there was no difference in the expression of cytokines associated with T helper type 1/type2 balance: IL-12, IL-10 and interferon-gamma. In infected tissues, neutrophil infiltration into the lesion area was slightly increased in OPN-deficient animals 3 days after infection: this was confirmed by a significant increase in expression of neutrophil elastase in OPN-deficient samples at this time-point. We conclude that OPN has a protective effect on polymicrobial infection, at least partially because of alterations in phagocyte recruitment and/or persistence at the sites of infection, and that this molecule has a potential therapeutic role in polymicrobial infections.
Collapse
Affiliation(s)
- Susan R Rittling
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Absence of alpha 4 but not beta 2 integrins restrains development of chronic allergic asthma using mouse genetic models. Exp Hematol 2009; 37:715-727.e3. [PMID: 19463772 DOI: 10.1016/j.exphem.2009.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Chronic asthma is characterized by ongoing recruitment of inflammatory cells and airway hyperresponsiveness leading to structural airway remodeling. Although alpha 4 beta 1 and beta2 integrins regulate leukocyte migration in inflammatory diseases and play decisive roles in acute asthma, their role has not been explored under the chronic asthma setting. To extend our earlier studies with alpha 4(Delta/Delta) and beta2(-/-) mice, which showed that both alpha 4 and beta2 integrins have nonredundant regulatory roles in acute ovalbumin (OVA)-induced asthma, we explored to what extent these molecular pathways control development of structural airway remodeling in chronic asthma. MATERIALS AND METHODS Control, alpha 4(Delta/Delta), and beta2(-/-) mouse groups, sensitized by intraperitoneal OVA as allergen, received intratracheal OVA periodically over days 8 to 55 to induce a chronic asthma phenotype. Post-OVA assessment of inflammation and pulmonary function (airway hyperresponsiveness), together with airway modeling measured by goblet cell metaplasia, collagen content of lung, and transforming growth factor beta1 expression in lung homogenates, were evaluated. RESULTS In contrast to control and beta2(-/-) mice, alpha 4(Delta/Delta) mice failed to develop and maintain the composite chronic asthma phenotype evaluated as mentioned and subepithelial collagen content was comparable to baseline. These data indicate that beta2 integrins, although required for inflammatory migration in acute asthma, are dispensable for structural remodeling in chronic asthma. CONCLUSION alpha 4 integrins appear to have a regulatory role in directing transforming growth factor beta-induced collagen deposition and structural alterations in lung architecture likely through interactions of Th2 cells, eosinophils, or mast cells with endothelium, resident airway cells, and/or extracellular matrix.
Collapse
|
21
|
Abstract
Although critical for cell adhesion and migration during normal immune-mediated reactions, leukocyte integrins are also involved in the pathogenesis of diverse clinical conditions including autoimmune diseases and chronic inflammation. Leukocyte integrins therefore have been targets for anti-adhesive therapies to treat the inflammatory disorders. Recently, the therapeutic potential of integrin antagonists has been demonstrated in psoriasis and multiple sclerosis. However, current therapeutics broadly affect integrin functions and, thus, yield unfavorable side effects. This review discusses the major leukocyte integrins and the anti-adhesion strategies for treating immune diseases.
Collapse
|
22
|
Banerjee A, Lee JH, Ramaiah SK. Interaction of osteopontin with neutrophil alpha(4)beta(1) and alpha(9)beta(1) integrins in a rodent model of alcoholic liver disease. Toxicol Appl Pharmacol 2008; 233:238-46. [PMID: 18778724 DOI: 10.1016/j.taap.2008.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/24/2008] [Accepted: 08/05/2008] [Indexed: 12/17/2022]
Abstract
Previous studies from our laboratory have reported that osteopontin (OPN) mediated higher hepatic neutrophil infiltration makes female rats more susceptible to alcoholic steatohepatitis (ASH) than their male counterparts. The objective of the current work was to investigate the patho-mechanism by which OPN attracts the hepatic neutrophils in ASH. We hypothesized that OPN-mediated hepatic neutrophil infiltration is a result of signaling by N-terminal integrin binding motif (SLAYGLR) of OPN through its receptor alpha(9)beta(1) (VLA9) and alpha(4)beta(1) (VLA4) integrins on neutrophils. Compared to the males, females in the ASH group exhibited higher expression of alpha(4)beta(1) and alpha(9)beta(1) protein and mRNA and a significant decrease in the expression of these integrins was observed in rats treated with neutralizing OPN antibody. Immunoprecipitation experiments suggested the binding of OPN to alpha(4)beta(1) and alpha(9)beta(1) integrins. OPN-mediated neutrophil infiltration was also confirmed using Boyden chamber assays, and antibodies directed against alpha(4) and beta(1) integrins was found to significantly inhibit neutrophilic migration in vitro. In conclusion, these data suggest that SLAYGLR-mediated alpha(4)beta(1) and alpha(9)beta(1) integrin signaling may be responsible for higher hepatic neutrophil infiltration and higher liver injury in the rat ASH model.
Collapse
Affiliation(s)
- Atrayee Banerjee
- Department of Toxicology & Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|