1
|
Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth Factors and Their Application in the Therapy of Hereditary Neurodegenerative Diseases. Biomedicines 2024; 12:1906. [PMID: 39200370 PMCID: PMC11351319 DOI: 10.3390/biomedicines12081906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Hereditary neurodegenerative diseases (hNDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and others are primarily characterized by their progressive nature, severely compromising both the cognitive and motor abilities of patients. The underlying genetic component in hNDDs contributes to disease risk, creating a complex genetic landscape. Considering the fact that growth factors play crucial roles in regulating cellular processes, such as proliferation, differentiation, and survival, they could have therapeutic potential for hNDDs, provided appropriate dosing and safe delivery approaches are ensured. This article presents a detailed overview of growth factors, and explores their therapeutic potential in treating hNDDs, emphasizing their roles in neuronal survival, growth, and synaptic plasticity. However, challenges such as proper dosing, delivery methods, and patient variability can hinder their clinical application.
Collapse
Affiliation(s)
- Shaza Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Haidar Fayoud
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (S.I.); (H.F.)
| | - Alisa Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Valeriya Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
2
|
Kakoty V, Sarathlal KC, Kaur P, Wadhwa P, Vishwas S, Khan FR, Alhazmi AYM, Almasoudi HH, Gupta G, Chellappan DK, Paudel KR, Kumar D, Dua K, Singh SK. Unraveling the role of glial cell line-derived neurotrophic factor in the treatment of Parkinson's disease. Neurol Sci 2024; 45:1409-1418. [PMID: 38082050 DOI: 10.1007/s10072-023-07253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/02/2023] [Indexed: 03/16/2024]
Abstract
Parkinson's disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson's disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson's disease-related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson's disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - K C Sarathlal
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Palwinder Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2050, Australia
| | - Dileep Kumar
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kamal Dua
- School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Gan X, Ren J, Huang T, Wu K, Li S, Duan Y, Wang Z, Si W, Wei J. Pathological α-synuclein accumulation, CSF metabolites changes and brain microstructures in cynomolgus monkeys treated with 6-hydroxydopamine. Neurotoxicology 2023; 94:172-181. [PMID: 36476940 DOI: 10.1016/j.neuro.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The lack of evidence indicating the accumulation of phosphorylated α-synuclein (P-α-syn), a neuropathological hallmark of Parkinson disease (PD), limits the application of 6-OHDA animal models. In cynomolgus monkeys received unilateral 6-hydroxydopamine (6-OHDA) injection, we identified nigrostriatal dysfunction related behavioral defects, such as the increase of PD score, decrease of locomotor activities, and exhibition of typical rotations. We found the dopaminergic neurons were significantly reduced and had fragmented morphology in substantia nigra (SN). Furthermore, insoluble P-α-syn aggregates were observed. The P-α-syn aggregates were extracellular distributed and had typical morphology of inclusion. Immunofluorescence staining showed that the P-α-syn colocalized with ubiquitin (Ub) and p62. We also found there were more actived astrocytes and microglial in SN and striatum, reflecting neuroinflammations increase in nigrostriatal pathway. At last, to determine the long-term consequence of dopamine (DA) neuron loss induced by 6-OHDA injection, the changes of cerebrospinal fluid (CSF) neurotransmitters over time as well as the brain microstructure alternations were examined. The dopamine-related metabolites were decreased after 6-OHDA injection reflecting dopaminergic neuron loss. The levels of γ-aminobutyric acid (GABA) and acetylcholine (Ach) showed an increasing trend but not significant. By diffusion tensor Magnetic Resonance Imaging (MRI) image scans, the fractional anisotropy (FA) value in the ipsilateral SN and caudate was found to reduce, which indicated neural fiber injury. Therefore, these results suggested that α-syn pathology might participate in process of 6-OHDA injuring DA neurons, and may expand the application of 6-OHDA monkeys on investigations into the pathogenesis of PD.
Collapse
Affiliation(s)
- Xue Gan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiahan Ren
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Kunhua Wu
- Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650224, China
| | - Shulin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson's disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13:986668. [PMID: 36339626 PMCID: PMC9632735 DOI: 10.3389/fphar.2022.986668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is the second most common progressive neurodegenerative disease diagnosed mainly based on clinical symptoms caused by loss of nigrostriatal dopaminergic neurons. Although currently available pharmacological therapies provide symptomatic relief, however, the disease continues to progress eventually leading to severe motor and cognitive decline and reduced quality of life. The hallmark pathology of Parkinson's disease includes intraneuronal inclusions known as Lewy bodies and Lewy neurites, including fibrillar α-synuclein aggregates. These aggregates can progressively spread across synaptically connected brain regions leading to emergence of disease symptoms with time. The α-synuclein level is considered important in its fibrillization and aggregation. Nucleic acid therapeutics have recently been shown to be effective in treating various neurological diseases, raising the possibility of developing innovative molecular therapies for Parkinson's disease. In this review, we have described the advancements in genetic dysregulations in Parkinson's disease along with the disease-modifying strategies involved in genetic regulation with particular focus on downregulation of α-synuclein gene using various novel technologies, notably antisense oligonucleotides, microRNA, short interfering RNA, short hairpin RNAs, DNA aptamers, and gene therapy of vector-assisted delivery system-based therapeutics. In addition, the current status of preclinical and clinical development for nucleic acid-based therapies for Parkinson's disease have also been discussed along with their limitations and opportunities.
Collapse
Affiliation(s)
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
5
|
Lasbleiz C, Mestre-Francés N, Devau G, Luquin MR, Tenenbaum L, Kremer EJ, Verdier JM. Combining Gene Transfer and Nonhuman Primates to Better Understand and Treat Parkinson's Disease. Front Mol Neurosci 2019; 12:10. [PMID: 30804750 PMCID: PMC6378268 DOI: 10.3389/fnmol.2019.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/14/2019] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive CNS disorder that is primarily associated with impaired movement. PD develops over decades and is linked to the gradual loss of dopamine delivery to the striatum, via the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). While the administration of L-dopa and deep brain stimulation are potent therapies, their costs, side effects and gradual loss of efficacy underlines the need to develop other approaches. Unfortunately, the lack of pertinent animal models that reproduce DA neuron loss and behavior deficits—in a timeline that mimics PD progression—has hindered the identification of alternative therapies. A complementary approach to transgenic animals is the use of nonhuman primates (NHPs) combined with the overexpression of disease-related genes using viral vectors. This approach may induce phenotypes that are not influenced by developmental compensation mechanisms, and that take into account the personality of animals. In this review article, we discuss the combination of gene transfer and NHPs to develop “genetic” models of PD that are suitable for testing therapeutic approaches.
Collapse
Affiliation(s)
- Christelle Lasbleiz
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Nadine Mestre-Francés
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Gina Devau
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | | | - Liliane Tenenbaum
- Laboratory of Molecular Neurotherapies and NeuroModulation, Clinical Neuroscience Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jean-Michel Verdier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| |
Collapse
|
6
|
Paul G, Sullivan AM. Trophic factors for Parkinson's disease: Where are we and where do we go from here? Eur J Neurosci 2019; 49:440-452. [DOI: 10.1111/ejn.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Gesine Paul
- Translational Neurology GroupDepartment of Clinical ScienceLund University Lund Sweden
- Wallenberg Center for Molecular MedicineLund University Lund Sweden
- Department of NeurologyScania University Hospital Lund Sweden
| | - Aideen M. Sullivan
- Department of Anatomy and NeuroscienceUniversity College Cork Cork Ireland
| |
Collapse
|
7
|
Axelsen TM, Woldbye DP. Gene Therapy for Parkinson's Disease, An Update. JOURNAL OF PARKINSON'S DISEASE 2018; 8:195-215. [PMID: 29710735 PMCID: PMC6027861 DOI: 10.3233/jpd-181331] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
The current mainstay treatment of Parkinson's disease (PD) consists of dopamine replacement therapy which, in addition to causing several side effects, does not delay disease progression. The field of gene therapy offers a potential means to improve current therapy. The present review gives an update of the present status of gene therapy for PD. Both non-disease and disease modifying transgenes have been tested for PD gene therapy in animal and human studies. Non-disease modifying treatments targeting dopamine or GABA synthesis have been successful and promising at improving PD symptomatology in randomized clinical studies, but substantial testing remains before these can be implemented in the standard clinical treatment repertoire. As for disease modifying targets that theoretically offer the possibility of slowing the progression of disease, several neurotrophic factors show encouraging results in preclinical models (e.g., neurturin, GDNF, BDNF, CDNF, VEGF-A). However, so far, clinical trials have only tested neurturin, and, unfortunately, no trial has been able to meet its primary endpoint. Future clinical trials with neurotrophic factors clearly deserve to be conducted, considering the still enticing goal of actually slowing the disease process of PD. As alternative types of gene therapy, opto- and chemogenetics might also find future use in PD treatment and novel genome-editing technology could also potentially be applied as individualized gene therapy for genetic types of PD.
Collapse
Affiliation(s)
- Tobias M. Axelsen
- Department of Neurology, Herlev University Hospital, Herlev, Denmark
| | - David P.D. Woldbye
- Department of Neuroscience, Panum Institute, Mærsk Tower, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
8
|
Soderstrom K, O'Malley J, Steece-Collier K, Kordower JH. Neural Repair Strategies for Parkinson's Disease: Insights from Primate Models. Cell Transplant 2017; 15:251-65. [PMID: 16719060 DOI: 10.3727/000000006783982025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nonhuman primate models of Parkinson's disease (PD) have been invaluable to our understanding of the human disease and in the advancement of novel therapies for its treatment. In this review, we attempt to give a brief overview of the animal models of PD currently used, with a more comprehensive focus on the advantages and disadvantages presented by their use in the nonhuman primate. In particular, discussion addresses the 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydopyridine (MPTP), rotenone, paraquat, and maneb parkinsonian models. Additionally, the role of primate PD models in the development of novel therapies, such as trophic factor delivery, grafting, and deep brain stimulation, are described. Finally, the contribution of primate PD models to our understanding of the etiology and pathology of human PD is discussed.
Collapse
Affiliation(s)
- Katherine Soderstrom
- Department of Neurological Science, Research Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
9
|
Lin JY, Xie CL, Zhang SF, Yuan W, Liu ZG. Current Experimental Studies of Gene Therapy in Parkinson's Disease. Front Aging Neurosci 2017; 9:126. [PMID: 28515689 PMCID: PMC5413509 DOI: 10.3389/fnagi.2017.00126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) was characterized by late-onset, progressive dopamine neuron loss and movement disorders. The progresses of PD affected the neural function and integrity. To date, most researches had largely addressed the dopamine replacement therapies, but the appearance of L-dopa-induced dyskinesia hampered the use of the drug. And the mechanism of PD is so complicated that it's hard to solve the problem by just add drugs. Researchers began to focus on the genetic underpinnings of Parkinson's disease, searching for new method that may affect the neurodegeneration processes in it. In this paper, we reviewed current delivery methods used in gene therapies for PD, we also summarized the primary target of the gene therapy in the treatment of PD, such like neurotrophic factor (for regeneration), the synthesis of neurotransmitter (for prolong the duration of L-dopa), and the potential proteins that might be a target to modulate via gene therapy. Finally, we discussed RNA interference therapies used in Parkinson's disease, it might act as a new class of drug. We mainly focus on the efficiency and tooling features of different gene therapies in the treatment of PD.
Collapse
Affiliation(s)
- Jing-Ya Lin
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai JiaoTong UniversityShanghai, China
| | - Cheng-Long Xie
- Department of Neurology, The first Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical UniversityWenzhou, China
| | - Su-Fang Zhang
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai JiaoTong UniversityShanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong UniversityShanghai, China
| | - Zhen-Guo Liu
- Department of Neurology, Xinhua Hospital Affiliated to the Medical School of Shanghai JiaoTong UniversityShanghai, China
| |
Collapse
|
10
|
Tenenbaum L, Humbert-Claude M. Glial Cell Line-Derived Neurotrophic Factor Gene Delivery in Parkinson's Disease: A Delicate Balance between Neuroprotection, Trophic Effects, and Unwanted Compensatory Mechanisms. Front Neuroanat 2017; 11:29. [PMID: 28442998 PMCID: PMC5385337 DOI: 10.3389/fnana.2017.00029] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and Neurturin (NRTN) bind to a receptor complex consisting of a member of the GDNF family receptor (GFR)-α and the Ret tyrosine kinase. Both factors were shown to protect nigro-striatal dopaminergic neurons and reduce motor symptoms when applied terminally in toxin-induced Parkinson's disease (PD) models. However, clinical trials based on intraputaminal GDNF protein administration or recombinant adeno-associated virus (rAAV)-mediated NRTN gene delivery have been disappointing. In this review, several factors that could have limited the clinical benefits are discussed. Retrograde transport of GDNF/NRTN to the dopaminergic neurons soma is thought to be necessary for NRTN/GFR-α/Ret signaling mediating the pro-survival effect. Therefore, the feasibility of treating advanced patients with neurotrophic factors is questioned by recent data showing that: (i) tyrosine hydroxylase-positive putaminal innervation has almost completely disappeared at 5 years post-diagnosis and (ii) in patients enrolled in the rAAV-NRTN trial more than 5 years post-diagnosis, NRTN was almost not transported to the substantia nigra pars compacta. In addition to its anti-apoptotic and neurotrophic properties, GDNF also interferes with dopamine homeostasis via time and dose-dependent effects such as: stimulation of dopamine neuron excitability, inhibition of dopamine transporter activity, tyrosine hydroxylase phosphorylation, and inhibition of tyrosine hydroxylase transcription. Depending on the delivery parameters, the net result of this intricate network of regulations could be either beneficial or deleterious. In conclusion, further unraveling of the mechanism of action of GDNF gene delivery in relevant animal models is still needed to optimize the clinical benefits of this new therapeutic approach. Recent developments in the design of regulated viral vectors will allow to finely adjust the GDNF dose and period of administration. Finally, new clinical studies in less advanced patients are warranted to evaluate the potential of AAV-mediated neurotrophic factors gene delivery in PD. These will be facilitated by the demonstration of the safety of rAAV administration into the human brain.
Collapse
Affiliation(s)
- Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Clinical Neuroscience Department, Center for Neuroscience Research, Lausanne University HospitalLausanne, Switzerland
| | - Marie Humbert-Claude
- Laboratory of Cellular and Molecular Neurotherapies, Clinical Neuroscience Department, Center for Neuroscience Research, Lausanne University HospitalLausanne, Switzerland
| |
Collapse
|
11
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
12
|
Stayte S, Rentsch P, Tröscher AR, Bamberger M, Li KM, Vissel B. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo. PLoS One 2017; 12:e0167211. [PMID: 28121982 PMCID: PMC5266209 DOI: 10.1371/journal.pone.0167211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023] Open
Abstract
Parkinson’s disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson’s disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson’s disease.
Collapse
Affiliation(s)
- Sandy Stayte
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Peggy Rentsch
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | - Kong M. Li
- Pharmacology Department, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Bryce Vissel
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
13
|
Kirik D, Cederfjäll E, Halliday G, Petersén Å. Gene therapy for Parkinson's disease: Disease modification by GDNF family of ligands. Neurobiol Dis 2017; 97:179-188. [DOI: 10.1016/j.nbd.2016.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022] Open
|
14
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Majláth Z, Török N, Toldi J, Vécsei L. Promising therapeutic agents for the treatment of Parkinson’s disease. Expert Opin Biol Ther 2016; 16:787-99. [DOI: 10.1517/14712598.2016.1164687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16027. [PMID: 27069954 PMCID: PMC4813607 DOI: 10.1038/mtm.2016.27] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
Abstract
Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.
Collapse
|
17
|
Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson's Disease. PLoS One 2016; 11:e0149776. [PMID: 26901822 PMCID: PMC4763937 DOI: 10.1371/journal.pone.0149776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson’s disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF.
Collapse
|
18
|
Aron Badin R, Vadori M, Cozzi E, Hantraye P. Translational research for Parkinson׳s disease: The value of pre-clinical primate models. Eur J Pharmacol 2015; 759:118-26. [DOI: 10.1016/j.ejphar.2015.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
|
19
|
Viral vector delivery of neurotrophic factors for Parkinson's disease therapy. Expert Rev Mol Med 2015; 17:e8. [DOI: 10.1017/erm.2015.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the progressive loss of midbrain dopaminergic neurons, which causes motor impairments. Current treatments involve dopamine replacement to address the disease symptoms rather than its cause. Factors that promote the survival of dopaminergic neurons have been proposed as novel therapies for PD. Several dopaminergic neurotrophic factors (NTFs) have been examined for their ability to protect and/or restore degenerating dopaminergic neurons, both in animal models and in clinical trials. These include glial cell line-derived neurotrophic factor, neurturin, cerebral dopamine neurotrophic factor and growth/differentiation factor 5. Delivery of these NTFs via injection or infusion to the brain raises several practical problems. A new delivery approach for NTFs involves the use of recombinant viral vectors to enable long-term expression of these factors in brain cells. Vectors used include those based on adenoviruses, adeno-associated viruses and lentiviruses. Here we review progress to date on the potential of each of these four NTFs as novel therapeutic strategies for PD, as well as the challenges that have arisen, from pre-clinical analysis to clinical trials. We conclude by discussing recently-developed approaches to optimise the delivery of NTF-carrying viral vectors to the brain.
Collapse
|
20
|
Stayte S, Rentsch P, Li KM, Vissel B. Activin A protects midbrain neurons in the 6-hydroxydopamine mouse model of Parkinson's disease. PLoS One 2015; 10:e0124325. [PMID: 25902062 PMCID: PMC4406584 DOI: 10.1371/journal.pone.0124325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/02/2015] [Indexed: 01/11/2023] Open
Abstract
Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor β superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naïve mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain.
Collapse
Affiliation(s)
- Sandy Stayte
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Peggy Rentsch
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia
| | - Kong M. Li
- Pharmacology Department, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Bryce Vissel
- Neuroscience Department, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
21
|
Stayte S, Vissel B. Advances in non-dopaminergic treatments for Parkinson's disease. Front Neurosci 2014; 8:113. [PMID: 24904259 PMCID: PMC4033125 DOI: 10.3389/fnins.2014.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/30/2014] [Indexed: 01/05/2023] Open
Abstract
Since the 1960's treatments for Parkinson's disease (PD) have traditionally been directed to restore or replace dopamine, with L-Dopa being the gold standard. However, chronic L-Dopa use is associated with debilitating dyskinesias, limiting its effectiveness. This has resulted in extensive efforts to develop new therapies that work in ways other than restoring or replacing dopamine. Here we describe newly emerging non-dopaminergic therapeutic strategies for PD, including drugs targeting adenosine, glutamate, adrenergic, and serotonin receptors, as well as GLP-1 agonists, calcium channel blockers, iron chelators, anti-inflammatories, neurotrophic factors, and gene therapies. We provide a detailed account of their success in animal models and their translation to human clinical trials. We then consider how advances in understanding the mechanisms of PD, genetics, the possibility that PD may consist of multiple disease states, understanding of the etiology of PD in non-dopaminergic regions as well as advances in clinical trial design will be essential for ongoing advances. We conclude that despite the challenges ahead, patients have much cause for optimism that novel therapeutics that offer better disease management and/or which slow disease progression are inevitable.
Collapse
Affiliation(s)
- Sandy Stayte
- Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney NSW, Australia ; Faculty of Medicine, University of New South Wales, Sydney NSW, Australia
| | - Bryce Vissel
- Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney NSW, Australia ; Faculty of Medicine, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
22
|
Lu-Nguyen NB, Broadstock M, Schliesser MG, Bartholomae CC, von Kalle C, Schmidt M, Yáñez-Muñoz RJ. Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease. Hum Gene Ther 2014; 25:631-41. [PMID: 24635742 DOI: 10.1089/hum.2014.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Standard integration-proficient lentiviral vectors (IPLVs) are effective at much lower doses than other vector systems and have shown promise for gene therapy of Parkinson's disease (PD). Their main drawback is the risk of insertional mutagenesis. The novel biosafety-enhanced integration-deficient lentiviral vectors (IDLVs) may offer a significant enhancement in biosafety, but have not been previously tested in a model of a major disease. We have assessed biosafety and transduction efficiency of IDLVs in a rat model of PD, using IPLVs as a reference. Genomic insertion of lentivectors injected into the lesioned striatum was studied by linear amplification-mediated polymerase chain reaction (PCR), followed by deep sequencing and insertion site analysis, demonstrating lack of significant IDLV integration. Reporter gene expression studies showed efficient, long-lived, and transcriptionally targeted expression from IDLVs injected ahead of lesioning in the rat striatum, although at somewhat lower expression levels than from IPLVs. Transgenic human glial cell line-derived neurotrophic factor (hGDNF) expression from IDLVs was used for a long-term investigation of lentivector-mediated, transcriptionally targeted neuroprotection in this PD rat model. Vectors were injected before striatal lesioning, and the results showed improvements in nigral dopaminergic neuron survival and behavioral tests regardless of lentiviral integration proficiency, although they confirmed lower expression levels of hGDNF from IDLVs. These data demonstrate the effectiveness of IDLVs in a model of a major disease and indicate that these vectors could provide long-term PD treatment at low dose, combining efficacy and biosafety for targeted central nervous system applications.
Collapse
Affiliation(s)
- Ngoc B Lu-Nguyen
- 1 School of Biological Sciences, Royal Holloway, University of London , Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterized primarily by the degeneration of nigrostriatal dopaminergic neurons and diminution of the neurotransmitter dopamine. Though dopamine replacement therapies such as levodopa can improve the symptoms of PD, the benefits may be overshadowed by side effects and the onset of symptoms not responsive to dopaminergic treatments (e.g., autonomic symptoms, gait and balance problems, and cognitive impairment). Furthermore, no therapies have proven to slow the neurodegenerative process. Novel approaches to address these difficult problems, and others, are being sought. Over the last decade, several innovative gene therapies for PD have entered human clinical trials in an effort to address both symptomatic and potential disease-modifying effects. Though the results of these trials have been mixed, the therapies have generally been safe and well-tolerated, suggesting gene therapy may be a viable treatment for PD in the future. This article will review past and current clinical trials of gene therapies for PD. In addition, novel preclinical approaches to gene therapy for PD will be described.
Collapse
Affiliation(s)
- Patricia J. Allen
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Andrew Feigin
- Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| |
Collapse
|
24
|
Chtarto A, Bockstael O, Tshibangu T, Dewitte O, Levivier M, Tenenbaum L. A next step in adeno-associated virus-mediated gene therapy for neurological diseases: regulation and targeting. Br J Clin Pharmacol 2013; 76:217-32. [PMID: 23331189 DOI: 10.1111/bcp.12065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/07/2012] [Indexed: 02/04/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described.
Collapse
Affiliation(s)
- Abdelwahed Chtarto
- Laboratory of Experimental Neurosurgery, Free University of Brussels (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Kordower JH, Bjorklund A. Trophic factor gene therapy for Parkinson's disease. Mov Disord 2013; 28:96-109. [PMID: 23390096 DOI: 10.1002/mds.25344] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/05/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative movement disorder for which there is presently no cure. Pharmacological remedies targeting the dopaminergic network are relatively effective at ameliorating motor deficits, especially in the early stages of the disease, but none of these therapies are curative and many generate their own problems. Recent advances in PD research have demonstrated that gene delivery of trophic factors, glial cell line-derived neurotrophic factor (GDNF) and neurturin, in particular, can provide structural and functional recovery in rodent and nonhuman primate models of PD. Similar success has been gleaned in open-label clinical trials, although this has yet to be realized in double-blinded analyses. This work reviews the field of trophic factor gene delivery for PD.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
26
|
Bäck S, Peränen J, Galli E, Pulkkila P, Lonka-Nevalaita L, Tamminen T, Voutilainen MH, Raasmaja A, Saarma M, Männistö PT, Tuominen RK. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease. Brain Behav 2013; 3:75-88. [PMID: 23532969 PMCID: PMC3607149 DOI: 10.1002/brb3.117] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/29/2012] [Accepted: 12/16/2012] [Indexed: 11/10/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) protein has been shown to protect the nigrostriatal dopaminergic pathway when given as intrastriatal infusions in rat and mouse models of Parkinson's disease (PD). In this study, we assessed the neuroprotective effect of CDNF delivered with a recombinant adeno-associated viral (AAV) serotype 2 vector in a rat 6-hydroxydopamine (6-OHDA) model of PD. AAV2 vectors encoding CDNF, glial cell line-derived neurotrophic factor (GDNF), or green fluorescent protein were injected into the rat striatum. Protein expression analysis showed that our AAV2 vector efficiently delivered the neurotrophic factor genes into the brain and gave rise to a long-lasting expression of the proteins. Two weeks after AAV2 vector injection, 6-OHDA was injected into the rat striatum, creating a progressive degeneration of the nigrostriatal dopaminergic system. Treatment with AAV2-CDNF resulted in a marked decrease in amphetamine-induced ipsilateral rotations while it provided only partial protection of tyrosine hydroxylase (TH)-immunoreactive cells in the rat substantia nigra pars compacta and TH-reactive fibers in the striatum. Results from this study provide additional evidence that CDNF can be considered a potential treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Susanne Bäck
- Division of Pharmacology and Toxicology Faculty of Pharmacy, University of Helsinki Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ando K, Obayashi S, Nagai Y, Oh-Nishi A, Minamimoto T, Higuchi M, Inoue T, Itoh T, Suhara T. PET analysis of dopaminergic neurodegeneration in relation to immobility in the MPTP-treated common marmoset, a model for Parkinson's disease. PLoS One 2012; 7:e46371. [PMID: 23056291 PMCID: PMC3466292 DOI: 10.1371/journal.pone.0046371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/29/2012] [Indexed: 01/12/2023] Open
Abstract
Background Positron Emission Tomography (PET) measurement was applied to the brain of the common marmoset, a small primate species, treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The marmoset shows prominent Parkinson’s disease (PD) signs due to dopaminergic neural degeneration. Recently, the transgenic marmoset (TG) carrying human PD genes is developing. For phenotypic evaluations of TG, non-invasive PET measurement is considered to be substantially significant. As a reference control for TG, the brain of the MPTP-marmoset as an established and valid model was scanned by PET. Behavioral analysis was also performed by recording locomotion of the MPTP-marmoset, as an objective measure of PD signs. Methodology/Principal Findings Marmosets received several MPTP regimens (single MPTP regimen: 2 mg/kg, s.c., per day for 3 consecutive days) were used for PET measurement and behavioral observation. To measure immobility as a central PD sign, locomotion of marmosets in their individual living cages were recorded daily by infrared sensors. Daily locomotion counts decreased drastically after MPTP regimens and remained diminished for several months or more. PET scan of the brain, using [11C]PE2I as a ligand of the dopamine (DA) transporter, was performed once several months after the last MPTP regimen. The mean binding potential (BPND) in the striatum (putamen and caudate) of the MPTP-marmoset group was significantly lower than that of the MPTP-free control group (n = 5 for each group). In the MPTP-marmosets, the decrease of BPND in the striatum closely correlated with the decrease in locomotion counts (r = 0.98 in putamen and 0.91 in caudate). Conclusion/Significance The present characterization of neural degeneration using non-invasive PET imaging and of behavioral manifestation in the MPTP marmoset mimics typical PD characteristics and can be useful in evaluating the phenotype of TG marmosets being developed.
Collapse
Affiliation(s)
- Kiyoshi Ando
- Central Institute for Experimental Animals, Kawasakiku, Kawasaki, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fiandaca MS, Bankiewicz KS, Federoff HJ. Gene therapy for the treatment of Parkinson's disease: the nature of the biologics expands the future indications. Pharmaceuticals (Basel) 2012; 5:553-90. [PMID: 24281662 PMCID: PMC3763661 DOI: 10.3390/ph5060553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022] Open
Abstract
The pharmaceutical industry's development of therapeutic medications for the treatment of Parkinson's disease (PD) endures, as a result of the continuing need for better agents, and the increased clinical demand due to the aging population. Each new drug offers advantages and disadvantages to patients when compared to other medical offerings or surgical options. Deep brain stimulation (DBS) has become a standard surgical remedy for the effective treatment of select patients with PD, for whom most drug regimens have failed or become refractory. Similar to DBS as a surgical option, gene therapy for the treatment of PD is evolving as a future option. In the four different PD gene therapy approaches that have reached clinical trials investigators have documented an excellent safety profile associated with the stereotactic delivery, viral vectors and doses utilized, and transgenes expressed. In this article, we review the clinically relevant gene therapy strategies for the treatment of PD, concentrating on the published preclinical and clinical results, and the likely mechanisms involved. Based on these presentations, we advance an analysis of how the nature of the gene therapy used may eventually expand the scope and utility for the management of PD.
Collapse
Affiliation(s)
- Massimo S. Fiandaca
- Translational NeuroTherapy Center, Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Mission Center Building, San Francisco, CA 94103, USA; (K.S.B.)
| | - Krystof S. Bankiewicz
- Translational NeuroTherapy Center, Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Mission Center Building, San Francisco, CA 94103, USA; (K.S.B.)
| | - Howard J. Federoff
- Departments of Neurology and Neuroscience, Georgetown University Medical Center, 4000 Reservoir Road, Washington, DC 20007, USA; (H.J.F.)
| |
Collapse
|
29
|
Du Y, Zhang X, Tao Q, Chen S, Le W. Adeno-associated virus type 2 vector-mediated glial cell line-derived neurotrophic factor gene transfer induces neuroprotection and neuroregeneration in a ubiquitin-proteasome system impairment animal model of Parkinson's disease. NEURODEGENER DIS 2012; 11:113-28. [PMID: 22626907 DOI: 10.1159/000334527] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The impairment of the ubiquitin-proteasome system (UPS) is a cellular mechanism underlying the neurodegenerative process in Parkinson's disease (PD). A mouse model induced by the selective proteasome inhibitor lactacystin targeting on substantia nigra has been demonstrated to be valuable in investigating etiopathogenesis and neuroprotection for PD. OBJECTIVE In the present study, we used adeno-associated virus type 2 vector (AAV2) encoding glial cell line-derived neurotrophic factor (GDNF) injected into the striatum of this animal model to test the effectiveness and possible mechanisms of GDNF gene therapy. RESULTS Our results showed that AAV2-mediated GDNF gene therapy significantly attenuated lactacystin-induced loss of nigral dopamine (DA) neurons and striatal DA levels. Furthermore, we found that GDNF protein is mostly expressed in astrocytes in the subventricular zone (SVZ) and dentate gyrus (DG). AAV2-mediated GDNF therapy can induce neurogenesis in the SVZ and DG, and increase the number of nigral newborn DA neurons. CONCLUSION These data indicate that AAV2-mediated GDNF gene therapy can protect the nigral DA neurons from the UPS impairment-induced degeneration, which may partly result from the nigral DA neuron regeneration in the brain, and such experimental results may have implications for the treatment of PD.
Collapse
Affiliation(s)
- Yunlan Du
- Institute of Neurology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
30
|
Kells AP, Forsayeth J, Bankiewicz KS. Glial-derived neurotrophic factor gene transfer for Parkinson's disease: anterograde distribution of AAV2 vectors in the primate brain. Neurobiol Dis 2011; 48:228-35. [PMID: 22019719 DOI: 10.1016/j.nbd.2011.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/26/2011] [Accepted: 10/06/2011] [Indexed: 01/08/2023] Open
Abstract
Delivery of neurotrophic factors to treat neurodegenerative diseases has not been efficacious in clinical trials despite their known potency for promoting neuronal growth and survival. Direct gene delivery to the brain offers an approach for establishing sustained expression of neurotrophic factors but is dependent on accurate surgical procedures to target specific anatomical regions of the brain. Serotype-2 adeno-associated viral (AAV2) vectors have been investigated in multiple clinical studies for neurological diseases without adverse effects; however the absence of significant clinical efficacy after neurotrophic factor gene transfer has been largely attributed to insufficient coverage of the target region. Our pre-clinical development of AAV2-glial-derived neurotrophic factor (GDNF) for Parkinson's disease involved real-time image guided delivery and optimization of delivery techniques to maximize gene transfer in the putamen. We have demonstrated that AAV2 vectors are anterogradely transported in the primate brain with GDNF expression observed in the substantia nigra after putaminal delivery in both intact and nigrostriatal lesioned primates. Direct midbrain delivery of AAV2-GDNF resulted in extensive anterograde transport to multiple brain regions and significant weight loss.
Collapse
Affiliation(s)
- Adrian P Kells
- University of California San Francisco, Department of Neurological Surgery, Box 0555, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
31
|
Wakeman DR, Dodiya HB, Kordower JH. Cell transplantation and gene therapy in Parkinson's disease. ACTA ACUST UNITED AC 2011; 78:126-58. [PMID: 21259269 DOI: 10.1002/msj.20233] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder affecting, in part, dopaminergic motor neurons of the ventral midbrain and their terminal projections that course to the striatum. Symptomatic strategies focused on dopamine replacement have proven effective at remediating some motor symptoms during the course of disease but ultimately fail to deliver long-term disease modification and lose effectiveness due to the emergence of side effects. Several strategies have been experimentally tested as alternatives for Parkinson's disease, including direct cell replacement and gene transfer through viral vectors. Cellular transplantation of dopamine-secreting cells was hypothesized as a substitute for pharmacotherapy to directly provide dopamine, whereas gene therapy has primarily focused on restoration of dopamine synthesis or neuroprotection and restoration of spared host dopaminergic circuitry through trophic factors as a means to enhance sustained controlled dopamine transmission. This seems now to have been verified in numerous studies in rodents and nonhuman primates, which have shown that grafts of fetal dopamine neurons or gene transfer through viral vector delivery can lead to improvements in biochemical and behavioral indices of dopamine deficiency. However, in clinical studies, the improvements in parkinsonism have been rather modest and variable and have been plagued by graft-induced dyskinesias. New developments in stem-cell transplantation and induced patient-derived cells have opened the doors for the advancement of cell-based therapeutics. In addition, viral-vector-derived therapies have been developed preclinically with excellent safety and efficacy profiles, showing promise in clinical trials thus far. Further progress and optimization of these therapies will be necessary to ensure safety and efficacy before widespread clinical use is deemed appropriate.
Collapse
|
32
|
Airavaara M, Chiocco MJ, Howard DB, Zuchowski KL, Peränen J, Liu C, Fang S, Hoffer BJ, Wang Y, Harvey BK. Widespread cortical expression of MANF by AAV serotype 7: localization and protection against ischemic brain injury. Exp Neurol 2010; 225:104-13. [PMID: 20685313 PMCID: PMC2925275 DOI: 10.1016/j.expneurol.2010.05.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 02/08/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a secreted protein which reduces endoplasmic reticulum (ER) stress and has neurotrophic effects on dopaminergic neurons. Intracortical delivery of recombinant MANF protein protects tissue from ischemic brain injury in vivo. In this study, we examined the protective effect of adeno-associated virus serotype 7 encoding MANF in a rodent model of stroke. An AAV vector containing human MANF cDNA (AAV-MANF) was constructed and verified for expression of MANF protein. AAV-MANF or an AAV control vector was administered into three sites in the cerebral cortex of adult rats. One week after the vector injections, the right middle cerebral artery (MCA) was ligated for 60min. Behavioral monitoring was conducted using body asymmetry analysis, neurological testing, and locomotor activity. Standard immunohistochemical and western blotting procedures were conducted to study MANF expression. Our data showed that AAV-induced MANF expression is redistributed in neurons and glia in cerebral cortex after ischemia. Pretreatment with AAV-MANF reduced the volume of cerebral infarction and facilitated behavioral recovery in stroke rats. In conclusion, our data suggest that intracortical delivery of AAV-MANF increases MANF protein production and reduces ischemic brain injury. Ischemia also caused redistribution of AAV-mediated MANF protein suggesting an injury-induced release.
Collapse
Affiliation(s)
- Mikko Airavaara
- Neural Protection and Regeneration Section, National Institute on Drug Abuse, IRP, NIH, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xing B, Xin T, Zhao L, Hunter RL, Chen Y, Bing G. Glial cell line-derived neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide neurotoxicity. J Neuroimmunol 2010; 225:43-51. [PMID: 20471698 PMCID: PMC2924924 DOI: 10.1016/j.jneuroim.2010.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/18/2010] [Accepted: 04/19/2010] [Indexed: 02/01/2023]
Abstract
Aberrant microglia activation causes dopaminergic neuronal loss and nitric oxide produced by microglia plays a critical role in dopaminergic neuronal degeneration. However, no study has determined if GDNF protects dopaminergic neurons via inhibiting nitric oxide generation in Parkinson's disease animal model. We report that GDNF not only reduces lipopolysaccharide-induced degeneration of dopaminergic neurons, suppresses microglia activation and nitric oxide generation, but also reverses the inhibition of phosphoinositide 3-kinase (PI3K) in dopaminergic neurons and microglia. It suggests that the neuroprotective effect of GDNF on dopaminergic neurons may be related to its suppression of microglia activation-mediated nitric oxide via releasing the inhibition of PI3K in both neurons and microglia.
Collapse
Affiliation(s)
- Bin Xing
- Department of Anatomy & Neurobiology, Rose 800 Street, University of Kentucky, Lexington, KY 40536, USA
| | - Tao Xin
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China 250012
| | - Lingling Zhao
- Xiangya Third Hospital, Central South University, Changsha, Hunan, P.R. China, 410013
| | - Randy L Hunter
- Department of Anatomy & Neurobiology, Rose 800 Street, University of Kentucky, Lexington, KY 40536, USA
| | - Yan Chen
- Department of Anatomy & Neurobiology, Rose 800 Street, University of Kentucky, Lexington, KY 40536, USA
| | - Guoying Bing
- Department of Anatomy & Neurobiology, Rose 800 Street, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
34
|
Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P, Narrow WC, Bowers WJ, Federoff HJ, Forsayeth J, Bankiewicz KS. Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci 2010; 30:9567-77. [PMID: 20631185 PMCID: PMC2914692 DOI: 10.1523/jneurosci.0942-10.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/15/2010] [Accepted: 06/02/2010] [Indexed: 11/21/2022] Open
Abstract
Clinical studies to date have failed to establish therapeutic benefit of glial cell-derived neurotrophic factor (GDNF) in Parkinson's disease (PD). In contrast to previous nonclinical neuroprotective reports, this study shows clinically relevant and long-lasting regeneration of the dopaminergic system in rhesus macaques lesioned with 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine 3-6 months before GDNF gene delivery (AAV2-GDNF). The observed progressive amelioration of functional deficits, recovery of dopamine, and regrowth of fibers to the striatal neuropil demonstrate that high GDNF expression in the putamen promotes restoration of the dopaminergic system in a primate model of advanced PD. Extensive distribution of GDNF within the putamen and transport to the severely lesioned substantia nigra, after convection-enhanced delivery of AAV2-GDNF into the putamen, indicates anterograde transport via striatonigral connections and is anticipated to occur in PD patients. Overall, these data demonstrate nonclinical neurorestoration after putaminal infusion of AAV2-GDNF and suggest that clinical investigation in PD patients is warranted.
Collapse
Affiliation(s)
- Adrian P. Kells
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94103
| | - Jamie Eberling
- Department of Molecular Imaging and Neuroscience, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Xiaomin Su
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94103
| | - Philip Pivirotto
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94103
| | - John Bringas
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94103
| | - Piotr Hadaczek
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94103
| | - Wade C. Narrow
- Department of Neurology, Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York 14642, and
| | - William J. Bowers
- Department of Neurology, Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Howard J. Federoff
- Departments of Neurology and Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94103
| | - Krystof S. Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94103
| |
Collapse
|
35
|
Abstract
The once fantastic theoretical concept that patients with Parkinson's disease (PD) would receive gene therapy in an attempt to alleviate their symptoms and potentially modify the course of their disease has become a reality. On the basis of positive preclinical data, four different gene therapy approaches are currently in Phase I or Phase II clinical trials. Some approaches are intended to increase levels of endogenous dopamine or enhance the function of the prodrug levodopa. Others are intended to normalize basal ganglia circuitry by reducing the PD-related overactivity of specific brain structures such as the subthalamic nucleus. Each is intended for symptomatic benefit. Finally, gene delivery of trophic factors that not only augment dopaminergic function but are potentially disease modifying has a strong preclinical database and are also in clinical trials. Each of these approaches is discussed in the present review.
Collapse
Affiliation(s)
- Tomas Bjorklund
- Brain Repair and Imaging in Neural Systems, Department of Experimental and Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
36
|
Abstract
Growth factors are potentially major players in therapeutic interventions for neurodegenerative disorders like Parkinson's disease (PD) because of their potential to not merely provide symptomatic relief but also be disease modifying agents. Many extensively utilized therapies such as the prodrug levodopa, while unquestionably effective, are intended for symptomatic benefit. Such therapies do little to stifle the progressive nature of these diseases thereby placing temporal restrictions on their effectiveness. Growth factors, by virtue of their distinct neuroprotective properties, have the cumulative effect of curbing disease progression and allaying existing symptoms. The purpose of this review is to discuss some of the growth factors commonly used in animal models of PD and those already used in clinical trials.
Collapse
|
37
|
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative movement disorder for which there is currently no effective therapy. Over the past several decades, there has been a considerable interest in neuroprotective therapies using trophic factors to alleviate the symptoms of PD. Neurotrophic factors (NTFs) are a class of molecules that influence a number of neuronal functions, including cell survival and axonal growth. Experimental studies in animal models suggest that members of neurotrophin family and GDNF family of ligands (GFLs) have the potent ability to protect degenerating dopamine neurons as well as promote regeneration of the nigrostriatal dopamine system. In clinical trials, although no serious adverse events related to the NTF therapy has been reported in patients, they remain inconclusive. In this chapter, we attempt to give a brief overview on several different growth factors that have been explored for use in animal models of PD and those already used in PD patients.
Collapse
|
38
|
Yang X, Mertens B, Lehtonen E, Vercammen L, Bockstael O, Chtarto A, Levivier M, Brotchi J, Michotte Y, Baekelandt V, Sarre S, Tenenbaum L. Reversible neurochemical changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a partial Parkinson's disease rat model. J Gene Med 2009; 11:899-912. [PMID: 19639608 DOI: 10.1002/jgm.1377] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Efficient protection of dopaminergic neurons against a subsequent 6-hydroxydopamine lesion by glial cell line-derived neurotrophic factor (GDNF) gene delivery has been demonstrated. By contrast, the neurorestorative effects of GDNF administered several weeks after the toxin have been less characterized. In particular, whether these were permanent or dependent on the continuous presence of GDNF remains elusive. METHODS A tetracycline-inducible adeno-associated virus (AAV)-1 vector expressing human GDNF cDNA was administered unilaterally in the rat striatum 5 weeks after 6-hydroxydopamine. Rats were treated with doxycycline (dox) or untreated from the day of vector injection until sacrifice (4 or 14 weeks). A sub-group was dox-treated for 7 weeks then untreated until 14 weeks. The motor behavior was assessed by amphetamine-induced rotations and spontaneous forelimb asymmetry. The amounts of tyrosine hydroxylase (TH), serine-40-phosphorylated TH (S40-TH) and aromatic amino acid decarboxylase (AADC) proteins were compared by western blotting and the dopamine levels quantified by high-performance liquid chromatography. RESULTS Dox-dependent behavioral improvements were demonstrated 4 weeks post-vector injection. At later time points, spontaneous partial recovery was observed in all rats, but no further improvement was found in dox-treated animals. TH levels were significantly increased in dox-treated rats at all time points. By contrast, striatal dopamine and S40-TH were increased at 4 weeks, but not 14 weeks, and AADC remained unchanged. Dox withdrawal after 7 weeks, resulted in TH levels comparable to the controls at 14 weeks. CONCLUSIONS Delayed GDNF gene delivery only transiently improved dopaminergic function. Over the long term, TH was more abundant, but not functional, and the increase was lost when GDNF gene expression was switched off.
Collapse
Affiliation(s)
- Xin Yang
- Laboratory of Experimental Neurosurgery, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Emborg ME, Moirano J, Raschke J, Bondarenko V, Zufferey R, Peng S, Ebert AD, Joers V, Roitberg B, Holden JE, Koprich J, Lipton J, Kordower JH, Aebischer P. Response of aged parkinsonian monkeys to in vivo gene transfer of GDNF. Neurobiol Dis 2009; 36:303-11. [PMID: 19660547 PMCID: PMC2989601 DOI: 10.1016/j.nbd.2009.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/22/2023] Open
Abstract
This study assessed the potential for functional and anatomical recovery of the diseased aged primate nigrostriatal system, in response to trophic factor gene transfer. Aged rhesus monkeys received a single intracarotid infusion of MPTP, followed one week later by MRI-guided stereotaxic intrastriatal and intranigral injections of lentiviral vectors encoding for glial derived neurotrophic factor (lenti-GDNF) or beta-galactosidase (lenti-LacZ). Functional analysis revealed that the lenti-GDNF, but not lenti-LacZ treated monkeys displayed behavioral improvements that were associated with increased fluorodopa uptake in the striatum ipsilateral to lenti-GDNF treatment. GDNF ELISA of striatal brain samples confirmed increased GDNF expression in lenti-GDNF treated aged animals that correlated with functional improvements and preserved nigrostriatal dopaminergic markers. Our results indicate that the aged primate brain challenged by MPTP administration has the potential to respond to trophic factor delivery and that the degree of neuroprotection depends on GDNF levels.
Collapse
Affiliation(s)
- M E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin - Madison, 1223 Capitol Court, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 2009; 61:14-26. [PMID: 19840853 DOI: 10.1016/j.phrs.2009.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/11/2009] [Accepted: 10/11/2009] [Indexed: 01/11/2023]
Abstract
The clinical manifestation of most diseases of the central nervous system results from neuronal dysfunction or loss. Diseases such as stroke, epilepsy and neurodegeneration (e.g. Alzheimer's disease and Parkinson's disease) share common cellular and molecular mechanisms (e.g. oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction) that contribute to the loss of neuronal function. Neurotrophic factors (NTFs) are secreted proteins that regulate multiple aspects of neuronal development including neuronal maintenance, survival, axonal growth and synaptic plasticity. These properties of NTFs make them likely candidates for preventing neurodegeneration and promoting neuroregeneration. One approach to delivering NTFs to diseased cells is through viral vector-mediated gene delivery. Viral vectors are now routinely used as tools for studying gene function as well as developing gene-based therapies for a variety of diseases. Currently, many clinical trials using viral vectors in the nervous system are underway or completed, and seven of these trials involve NTFs for neurodegeneration. In this review, we discuss viral vector-mediated gene transfer of NTFs to treat neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Seung T Lim
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, United States
| | | | | |
Collapse
|
41
|
Burman KJ, Rosa MG. Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus). J Comp Neurol 2009; 514:11-29. [DOI: 10.1002/cne.21976] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder for which there is currently no effective neuroprotective therapy. Patients are typically treated with a combination of drug therapies and/or receive deep brain stimulation to combat behavioral symptoms. The ideal candidate therapy would be the one which prevents neurodegeneration in the brain, thereby halting the progression of debilitating disease symptoms. Neurotrophic factors have been in the forefront of PD research, and clinical trials have been initiated using members of the GDNF family of ligands (GFLs). GFLs have been shown to be trophic to ventral mesencephalic cells, thereby making them good candidates for PD research. This paper examines the use of GDNF and neurturin, two members of the GFL, in both animal models of PD and clinical trials.
Collapse
Affiliation(s)
- Shilpa Ramaswamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
43
|
Abstract
he development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinsons disease, Huntingtons disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research.
Collapse
|
44
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a secreted protein, best known for its role in the development of the central and peripheral nervous systems and the survival of adult dopaminergic neurons. More recently, accumulating evidence suggests that GDNF plays a unique role in negatively regulating the actions of drugs of abuse. In this article, we review these data and highlight the possibility that the GDNF pathway may be a promising target for the treatment of addiction.
Collapse
|
45
|
Transgene Expression, Bioactivity, and Safety of CERE-120 (AAV2-Neurturin) Following Delivery to the Monkey Striatum. Mol Ther 2008; 16:1737-44. [DOI: 10.1038/mt.2008.170] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
46
|
Lane EL, Handley OJ, Rosser AE, Dunnett SB. Potential cellular and regenerative approaches for the treatment of Parkinson's disease. Neuropsychiatr Dis Treat 2008; 4:835-45. [PMID: 19183776 PMCID: PMC2626922 DOI: 10.2147/ndt.s2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Parkinson's disease is most commonly treated with a range of pharmacotherapeutics, with the more recent introduction of surgical techniques including deep-brain stimulation. These have limited capabilities to improve symptoms of the disease in more advanced stages, thus new therapeutic strategies including the use of viral vectors and stem cells are in development. Providing a continuous supply of dopamine to the striatum in an attempt to improve the treatment of motor symptoms using enzymes in the dopamine synthesis and machinery is one approach. Alternatively, there are tools which may serve to both protect and encourage outgrowth of surviving neurons using growth factors or to directly replace lost innervation by transplantation of primary tissue or stem cell-derived dopaminergic neurons. We summarize some of the potential therapeutic approaches and also consider the recent EU directives on practical aspects of handling viral vectors, cells and tissues, and in the running of clinical trials in Europe which impact on their development.
Collapse
Affiliation(s)
- Emma L Lane
- Brain Repair Group, School of Biosciences, Cardiff University, CF10 3US, UK
| | - Olivia J Handley
- Brain Repair Group, School of Biosciences, Cardiff University, CF10 3US, UK
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, CF10 3US, UK
| | - Stephen B Dunnett
- Brain Repair Group, School of Biosciences, Cardiff University, CF10 3US, UK
| |
Collapse
|
47
|
Luan L, Ding F, Ai Y, Andersen A, Hardy P, Forman E, Gerhardt GA, Gash DM, Grondin R, Zhang Z. Pharmacological MRI (phMRI) Monitoring of Treatment in Hemiparkinsonian Rhesus Monkeys. Cell Transplant 2008. [DOI: 10.3727/096368908784423319] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is a great need for the development of noninvasive, highly sensitive, and widely available imaging methods that can potentially be used to longitudinally monitor treatment of Parkinson's disease (PD). Here we report the monitoring of GDNF-induced functional changes of the basal ganglia in hemiparkinsonian monkeys via pharmacological MRI measuring the blood oxygenation level-dependent (BOLD) response to a direct dopamine agonist (apomorphine, APO). After testing BOLD responsiveness to APO in their normal state, two additional scans were taken with the same dose of APO stimulation after induced parkinsonism. Then all animals were chronically treated with GDNF for 18 weeks by a programmable pump and catheter system. The catheter was surgically implanted into the right putamen and connected to the pump via flexible polyurethane tubing. phMRI scans were taken at both 6 and 18 weeks while they received 22.5 μg of GDNF per day. In addition, behavioral changes were monitored throughout the entire study. The primary finding of this study was that APO-evoked activations in the DA denervated putamen were attenuated by the chronic intraputamenal infusion of GDNF accompanied by improvements of parkinsonian features, movement speed, and APO-induced rotation compared to data collected before the chronic GDNF treatment. The results suggest that phMRI methods in combination with administration of a selective DA agonist may be useful for monitoring neurorestorative therapies in PD patients in the future.
Collapse
Affiliation(s)
- Liming Luan
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China
| | - Feng Ding
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China
| | - Yi Ai
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Anders Andersen
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Peter Hardy
- Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Eric Forman
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Greg A. Gerhardt
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Don M. Gash
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Richard Grondin
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zhiming Zhang
- Department of Anatomy & Neurobiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Morris K. Udall Parkinson's Disease Research Center of Excellence, College of Medicine, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
48
|
Abstract
Non-human primates have a small but important role in basic and translational biomedical research, owing to similarities with human beings in physiology, cognitive capabilities, neuroanatomy, social complexity, reproduction, and development. Although non-human primates have contributed to many areas of biomedical research, we review here their unique contributions to work in neuroscience, and focus on four domains: Alzheimer's disease, neuroAIDS, Parkinson's disease, and stress. Our discussion includes, for example, the role of non-human primates in development of new treatments (eg, stem cells, gene transfer) before phase I clinical trials in patients; basic research on disease pathogenesis; and understanding neurobehavioural outcomes resulting from genotype-environment interactions.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center and Department of Psychology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
49
|
Porras G, Bezard E. Preclinical development of gene therapy for Parkinson's disease. Exp Neurol 2008; 209:72-81. [PMID: 17904121 DOI: 10.1016/j.expneurol.2007.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/12/2007] [Accepted: 08/07/2007] [Indexed: 12/22/2022]
Abstract
Multiple targets and pathways may be amenable to the development of gene therapy approaches for Parkinson's disease. This article discusses some of the cellular and brain circuit pathways relevant to Parkinson's disease that would be clinically amenable to gene therapy. Approaches could be classified according to two main categories, i.e. symptomatic vs. neuroprotective/neurorestorative strategies. Examples of the different possibilities currently in development are given and feature both dopaminergic and non-dopaminergic symptomatic treatments of parkinsonian symptoms and/or L-DOPA-induced side effects, anti-apoptotic neuroprotective strategies and growth-factor delivery for neuroprotection/neurorestoration. While gene therapy has been mostly used so far for enhancing the expression of the target gene, the use of dominant negative or siRNA opens new possibilities. This, combined with the key feature of gene delivery that offers access to intracellular signalling pathways, is likely to further expand the number of proposed targets to be studied.
Collapse
Affiliation(s)
- Grégory Porras
- CNRS UMR 5227, Universite Victor Segalen-Bordeaux 2, 33076, Bordeaux, France
| | | |
Collapse
|
50
|
Korecka JA, Verhaagen J, Hol EM. Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen Med 2007; 2:425-46. [PMID: 17635050 DOI: 10.2217/17460751.2.4.425] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease and Alzheimer's disease are the most common neurodegenerative diseases in the elderly population. Given that age is the most important risk factor in these diseases, the number of patients is expected to rise dramatically in the coming years. Therefore, an effective therapy for these diseases is highly sought. Current treatment brings only temporary symptomatic relief and does not result in halting the progression of these diseases. The increasing knowledge on the molecular mechanisms that underlie these diseases enables the design of novel therapies, targeted at degenerating neurons by creating an optimal regenerative cellular environment. Here, we review the progress made in the field of cell-replacement and gene-therapy strategies. New developments in the application of embryonic stem cells and adult neuronal progenitors are discussed. We also discuss the use of genetically engineered cells in neuronal rescuing strategies that have recently advanced into the clinic. The first trials for the treatment of Alzheimer's disease and Parkinson's disease with this approach are ongoing.
Collapse
Affiliation(s)
- Joanna A Korecka
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | |
Collapse
|