1
|
Guo C, Wang T, Huang H, Wang X, Jiang Y, Li J. Plasminogen degrades α-synuclein, Tau and TDP-43 and decreases dopaminergic neurodegeneration in mouse models of Parkinson's disease. Sci Rep 2024; 14:8581. [PMID: 38615036 PMCID: PMC11016066 DOI: 10.1038/s41598-024-59090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and it is characterized by the intracellular and extracellular accumulation of α-synuclein (α-syn) and Tau, which are major components of cytosolic protein inclusions called Lewy bodies, in the brain. Currently, there is a lack of effective methods that preventing PD progression. It has been suggested that the plasminogen activation system, which is a major extracellular proteolysis system, is involved in PD pathogenesis. We investigated the functional roles of plasminogen in vitro in an okadaic acid-induced Tau hyperphosphorylation NSC34 cell model, ex vivo using brains from normal controls and methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, and in vivo in a widely used MPTP-induced PD mouse model and an α-syn overexpression mouse model. The in vitro, ex vivo and in vivo results showed that the administered plasminogen crossed the blood‒brain barrier (BBB), entered cells, and migrated to the nucleus, increased plasmin activity intracellularly, bound to α-syn through lysine binding sites, significantly promoted α-syn, Tau and TDP-43 clearance intracellularly and even intranuclearly in the brain, decreased dopaminergic neurodegeneration and increased the tyrosine hydroxylase levels in the substantia nigra and striatum, and improved motor function in PD mouse models. These findings indicate that plasminogen plays a wide range of pivotal protective roles in PD and therefore may be a promising drug candidate for PD treatment.
Collapse
Affiliation(s)
- Chunying Guo
- Department of Applied Research, Talengen Institute of Life Sciences, Room C602G, 289 Digital Peninsula, Shunfeng Industrial Park, No. 2 Red Willow Road, Futian District, Shenzhen, People's Republic of China
- Department of Applied Research, Ruijian Xingze Biomedical Co. Ltd, Dongguan, People's Republic of China
- Department of Basic Research, Talengen Laboratory of Sciences, Shenzhen, People's Republic of China
| | - Ting Wang
- Department of Applied Research, Talengen Institute of Life Sciences, Room C602G, 289 Digital Peninsula, Shunfeng Industrial Park, No. 2 Red Willow Road, Futian District, Shenzhen, People's Republic of China
- Department of Applied Research, Ruijian Xingze Biomedical Co. Ltd, Dongguan, People's Republic of China
- Department of Basic Research, Talengen Laboratory of Sciences, Shenzhen, People's Republic of China
| | - Haiyan Huang
- Department of Applied Research, Talengen Institute of Life Sciences, Room C602G, 289 Digital Peninsula, Shunfeng Industrial Park, No. 2 Red Willow Road, Futian District, Shenzhen, People's Republic of China
- Department of Applied Research, Ruijian Xingze Biomedical Co. Ltd, Dongguan, People's Republic of China
- Department of Basic Research, Talengen Laboratory of Sciences, Shenzhen, People's Republic of China
| | - Xiaolu Wang
- Department of Applied Research, Talengen Institute of Life Sciences, Room C602G, 289 Digital Peninsula, Shunfeng Industrial Park, No. 2 Red Willow Road, Futian District, Shenzhen, People's Republic of China
- Department of Applied Research, Ruijian Xingze Biomedical Co. Ltd, Dongguan, People's Republic of China
- Department of Basic Research, Talengen Laboratory of Sciences, Shenzhen, People's Republic of China
| | - Yugui Jiang
- Department of Applied Research, Talengen Institute of Life Sciences, Room C602G, 289 Digital Peninsula, Shunfeng Industrial Park, No. 2 Red Willow Road, Futian District, Shenzhen, People's Republic of China
- Department of Applied Research, Ruijian Xingze Biomedical Co. Ltd, Dongguan, People's Republic of China
- Department of Basic Research, Talengen Laboratory of Sciences, Shenzhen, People's Republic of China
| | - Jinan Li
- Department of Applied Research, Talengen Institute of Life Sciences, Room C602G, 289 Digital Peninsula, Shunfeng Industrial Park, No. 2 Red Willow Road, Futian District, Shenzhen, People's Republic of China.
- Department of Applied Research, Ruijian Xingze Biomedical Co. Ltd, Dongguan, People's Republic of China.
- Department of Basic Research, Talengen Laboratory of Sciences, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Mousavi SL, Rezayof A, Alijanpour S, Delphi L, Hosseinzadeh Sahafi O. Activation of mediodorsal thalamic dopamine receptors inhibited nicotine-induced anxiety in rats: A possible role of corticolimbic NMDA neurotransmission and BDNF expression. Pharmacol Biochem Behav 2023; 232:173650. [PMID: 37778541 DOI: 10.1016/j.pbb.2023.173650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The present study aimed to evaluate the functional interaction between the dopaminergic and glutamatergic systems of the mediodorsal thalamus (MD), the ventral hippocampus (VH), and the prefrontal cortex (PFC) in nicotine-induced anxiogenic-like behaviors. Brain-derived neurotrophic factor (BDNF) level changes were measured in the targeted brain areas following the drug treatments. The percentage of time spent in the open arm (% OAT) and open arm entry (% OAE) were calculated in the elevated plus maze (EPM) to measure anxiety-related behaviors in adult male Wistar rats. Systemic administration of nicotine at a dose of 0.5 mg/kg induced an anxiogenic-like response associated with decreased BDNF levels in the hippocampus and the PFC. Intra-MD microinjection of apomorphine (0.1-0.3 μg/rat) induced an anxiogenic-like response, while apomorphine inhibited nicotine-induced anxiogenic-like behaviors associated with increased hippocampal and PFC BDNF expression levels. Interestingly, the blockade of the VH or the PFC NMDA receptors via the microinjection of D-AP5 (0.3-0.5 μg/rat) into the targeted sites reversed the inhibitory effect of apomorphine (0.5 μg/rat, intra-MD) on the nicotine response and led to the decrease of BDNF levels in the hippocampus and the PFC. Also, the microinjection of a higher dose of D-AP5 (0.5 μg/rat, intra-PFC) alone produced an anxiogenic effect. These findings suggest that the functional interaction between the MD dopaminergic D1/D2-like and the VH/PFC glutamatergic NMDA receptors may be partially involved in the anxiogenic-like effects of nicotine, likely via the alteration of BDNF levels in the hippocampus and the PFC.
Collapse
Affiliation(s)
- Seyedeh Leila Mousavi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Jin H, Shen H, Liu C, Wang L, Mao C, Chen J, Liu CF, Zhang Y. Decreased serum BDNF contributes to the onset of REM sleep behavior disorder in Parkinson's disease patients. Neurosci Lett 2023; 812:137380. [PMID: 37423466 DOI: 10.1016/j.neulet.2023.137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. BDNF enhances the survival of dopaminergic neurons and improves dopaminergic neurotransmission and motor performance in patients with Parkinson's disease (PD). However, the association between BDNF levels and rapid eye movement (REM) sleep behavior disorder (RBD) in PD patients has received limited attention. METHODS We employed the Rapid Eye Movement Sleep Behavior Disorder Questionnaire-Hong Kong version (RBDQ-HK) and the Rapid Eye Movement Sleep Behavior Disorder Screening Questionnaire (RBDSQ) for RBD diagnosis. Patients were categorized into three groups: healthy controls (n = 53), PD patients without RBD (PD-nRBD; n = 56), and PD patients with RBD (PD-RBD; n = 45). Serum BDNF concentrations, demographic information, medical history, and motor/non-motor manifestations were compared between the three groups. Logistic regression analysis was performed to identify independent factors associated with PD and RBD. P-trend analysis was used to assess the relationship between BDNF levels and the risk of PD and RBD onset. Interaction effects were analyzed between BDNF, patients' age, and gender on the risk of RBD onset in PD patients. RESULTS Our findings indicate that serum BDNF levels were significantly lower in PD patients compared to healthy controls (p < 0.001). PD-RBD patients exhibited higher motor symptom scores (UPDRS III) than PD-nRBD patients (p = 0.021). Additionally, the PD-RBD group demonstrated lower cognitive function scores as measured by the Montreal Cognitive Assessment (MoCA) (p < 0.001) and Mini-Mental State Examination (MMSE) (p = 0.015). PD-RBD patients displayed significantly lower BDNF levels compared to both PD-nRBD and healthy control groups (p < 0.001). Univariate and multivariate logistic regression analyses showed that reduced BDNF levels were associated with an increased risk of RBD in PD patients (p = 0.005). P-trend analysis further confirmed the progressive relationship between decreased BDNF levels and the risk of PD and RBD onset. Furthermore, our interaction analysis highlighted the importance of monitoring younger PD patients with low serum BDNF levels for potential RBD onset. CONCLUSIONS This study illustrates that decreased serum BDNF levels may be linked to the development of RBD in PD patients, highlighting the potential utility of BDNF as a biomarker in clinical practice.
Collapse
Affiliation(s)
- Hong Jin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Shen
- Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, China; Hengjie Community Health Service Center of Shuangta Street, Suzhou Gusu District, Suzhou, China
| | - Chang Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lanxiang Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Ilchibaeva T, Tsybko A, Lipnitskaya M, Eremin D, Milutinovich K, Naumenko V, Popova N. Brain-Derived Neurotrophic Factor (BDNF) in Mechanisms of Autistic-like Behavior in BTBR Mice: Crosstalk with the Dopaminergic Brain System. Biomedicines 2023; 11:biomedicines11051482. [PMID: 37239153 DOI: 10.3390/biomedicines11051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Disturbances in neuroplasticity undoubtedly play an important role in the development of autism spectrum disorders (ASDs). Brain neurotransmitters and brain-derived neurotrophic factor (BDNF) are known as crucial players in cerebral and behavioral plasticity. Such an important neurotransmitter as dopamine (DA) is involved in the behavioral inflexibility of ASD. Additionally, much evidence from human and animal studies implicates BDNF in ASD pathogenesis. Nonetheless, crosstalk between BDNF and the DA system has not been studied in the context of an autistic-like phenotype. For this reason, the aim of our study was to compare the effects of either the acute intracerebroventricular administration of a recombinant BDNF protein or hippocampal adeno-associated-virus-mediated BDNF overexpression on autistic-like behavior and expression of key DA-related and BDNF-related genes in BTBR mice (a widely recognized model of autism). The BDNF administration failed to affect autistic-like behavior but downregulated Comt mRNA in the frontal cortex and hippocampus; however, COMT protein downregulation in the hippocampus and upregulation in the striatum were insignificant. BDNF administration also reduced the receptor TrkB level in the frontal cortex and midbrain and the BDNF/proBDNF ratio in the striatum. In contrast, hippocampal BDNF overexpression significantly diminished stereotypical behavior and anxiety; these alterations were accompanied only by higher hippocampal DA receptor D1 mRNA levels. The results indicate an important role of BDNF in mechanisms underlying anxiety and repetitive behavior in ASDs and implicates BDNF-DA crosstalk in the autistic-like phenotype of BTBR mice.
Collapse
Affiliation(s)
- Tatiana Ilchibaeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Anton Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Marina Lipnitskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Dmitry Eremin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Milutinovich
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vladimir Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Nina Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Embryoid Body Cells from Human Embryonic Stem Cells Overexpressing Dopaminergic Transcription Factors Survive and Initiate Neurogenesis via Neural Rosettes in the Substantia Nigra. Brain Sci 2023; 13:brainsci13020329. [PMID: 36831872 PMCID: PMC9954545 DOI: 10.3390/brainsci13020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Transplantation of immature dopaminergic neurons or neural precursors derived from embryonic stem cells (ESCs) into the substantia nigra pars compacta (SNpc) is a potential therapeutic approach for functional restitution of the nigrostriatal pathway in Parkinson's disease (PD). However, further studies are needed to understand the effects of the local microenvironment on the transplanted cells to improve survival and specific differentiation in situ. We have previously reported that the adult SNpc sustains a neurogenic microenvironment. Non-neuralized embryoid body cells (EBCs) from mouse ESCs (mESCs) overexpressing the dopaminergic transcription factor Lmx1a gave rise to many tyrosine hydroxylase (Th+) cells in the intact and damaged adult SNpc, although only for a short-term period. Here, we extended our study by transplanting EBCs from genetically engineered naive human ESC (hESC), overexpressing the dopaminergic transcription factors LMX1A, FOXA2, and OTX2 (hESC-LFO), in the SNpc. Unexpectedly, no graft survival was observed in wild-type hESC EBCs transplants, whereas hESC-LFO EBCs showed viability in the SNpc. Interestingly, neural rosettes, a developmental hallmark of neuroepithelial tissue, emerged at 7- and 15-days post-transplantation (dpt) from the hESC-LFO EBCs. Neural rosettes expressed specification dopaminergic markers (Lmx1a, Otx2), which gave rise to several Th+ cells at 30 dpt. Our results suggest that the SNpc enables the robust initiation of neural differentiation of transplanted human EBCs prompted to differentiate toward the midbrain dopaminergic phenotype.
Collapse
|
6
|
Sharma V, Singh TG, Kaur A, Mannan A, Dhiman S. Brain-Derived Neurotrophic Factor: A Novel Dynamically Regulated Therapeutic Modulator in Neurological Disorders. Neurochem Res 2023; 48:317-339. [PMID: 36308619 DOI: 10.1007/s11064-022-03755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 02/04/2023]
Abstract
The growth factor brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin-related kinase receptor type B (TrkB) play an active role in numerous areas of the adult brain, where they regulate the neuronal activity, function, and survival. Upregulation and downregulation of BDNF expression are critical for the physiology of neuronal circuits and functioning in the brain. Loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric disorders. This article reviews the BDNF gene structure, transport, secretion, expression and functions in the brain. This article also implicates BDNF in several brain-related disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, major depressive disorder, schizophrenia, epilepsy and bipolar disorder.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| |
Collapse
|
7
|
Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci 2022; 23:ijms23148011. [PMID: 35887357 PMCID: PMC9319713 DOI: 10.3390/ijms23148011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
Brain-derived neurotrophic factor is an extensively studied neurotrophin implicated in the pathology of multiple neurodegenerative and psychiatric disorders including, but not limited to, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, traumatic brain injury, major de-pressive disorder, and schizophrenia. Here we provide a brief summary of current knowledge on the role of BDNF and the common human single nucleotide polymorphism, rs6265, in driving the pathogenesis and rehabilitation in these disorders, as well as the status of BDNF-targeted therapies. A common trend has emerged correlating low BDNF levels, either detected within the central nervous system or peripherally, to disease states, suggesting that BDNF replacement therapies may hold clinical promise. In addition, we introduce evidence for a distinct role of the BDNF pro-peptide as a biologically active ligand and the need for continuing studies on its neurological function outside of that as a molecular chaperone. Finally, we highlight the latest research describing the role of rs6265 expression in mechanisms of neurodegeneration as well as paradoxical advances in the understanding of this genetic variant in neuroregeneration. All of this is discussed in the context of personalized medicine, acknowledging there is no “one size fits all” therapy for neurodegenerative or psychiatric disorders and that continued study of the multiple BDNF isoforms and genetic variants represents an avenue for discovery ripe with therapeutic potential.
Collapse
Affiliation(s)
- Carlye A. Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| | - Margaret E. Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Correspondence: ; Tel.: +1-616-234-0969; Fax: +1- 616-234-0991
| |
Collapse
|
8
|
Irisin, An Exercise-induced Bioactive Peptide Beneficial for Health Promotion During Aging Process. Ageing Res Rev 2022; 80:101680. [DOI: 10.1016/j.arr.2022.101680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
|
9
|
Martínez-Iglesias O, Naidoo V, Cacabelos N, Cacabelos R. Epigenetic Biomarkers as Diagnostic Tools for Neurodegenerative Disorders. Int J Mol Sci 2021; 23:13. [PMID: 35008438 PMCID: PMC8745005 DOI: 10.3390/ijms23010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without alterations to the DNA sequence, linking the genome to its surroundings. The accumulation of epigenetic alterations over the lifespan may contribute to neurodegeneration. The aim of the present study was to identify epigenetic biomarkers for improving diagnostic efficacy in patients with neurodegenerative diseases. We analyzed global DNA methylation, chromatin remodeling/histone modifications, sirtuin (SIRT) expression and activity, and the expression of several important neurodegeneration-related genes. DNA methylation, SIRT expression and activity and neuregulin 1 (NRG1), microtubule-associated protein tau (MAPT) and brain-derived neurotrophic factor (BDNF) expression were reduced in buffy coat samples from patients with neurodegenerative disorders. Our data suggest that these epigenetic biomarkers may be useful in clinical practical for the diagnosis, surveillance, and prognosis of disease activity in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (V.N.); (N.C.); (R.C.)
| | | | | | | |
Collapse
|
10
|
Di Rosa MC, Zimbone S, Saab MW, Tomasello MF. The Pleiotropic Potential of BDNF beyond Neurons: Implication for a Healthy Mind in a Healthy Body. Life (Basel) 2021; 11:life11111256. [PMID: 34833132 PMCID: PMC8625665 DOI: 10.3390/life11111256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) represents one of the most widely studied neurotrophins because of the many mechanisms in which it is involved. Among these, a growing body of evidence indicates BDNF as a pleiotropic signaling molecule and unveils non-negligible implications in the regulation of energy balance. BDNF and its receptor are extensively expressed in the hypothalamus, regions where peripheral signals, associated with feeding control and metabolism activation, and are integrated to elaborate anorexigenic and orexigenic effects. Thus, BDNF coordinates adaptive responses to fluctuations in energy intake and expenditure, connecting the central nervous system with peripheral tissues, including muscle, liver, and the adipose tissue in a complex operational network. This review discusses the latest literature dealing with the involvement of BDNF in the maintenance of energy balance. We have focused on the physiological and molecular mechanisms by which BDNF: (I) controls the mitochondrial function and dynamics; (II) influences thermogenesis and tissue differentiation; (III) mediates the effects of exercise on cognitive functions; and (IV) modulates insulin sensitivity and glucose transport at the cellular level. Deepening the understanding of the mechanisms exploited to maintain energy homeostasis will lay the groundwork for the development of novel therapeutical approaches to help people to maintain a healthy mind in a healthy body.
Collapse
Affiliation(s)
- Maria Carmela Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Stefania Zimbone
- Institute of Crystallography, CNR, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; (M.C.D.R.); (M.W.S.)
| | | |
Collapse
|
11
|
Yi X, Yang Y, Zhao Z, Xu M, Zhang Y, Sheng Y, Tian J, Xu Z. Serum mBDNF and ProBDNF Expression Levels as Diagnosis Clue for Early Stage Parkinson's Disease. Front Neurol 2021; 12:680765. [PMID: 34456846 PMCID: PMC8385195 DOI: 10.3389/fneur.2021.680765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common chronic, progressive, and neurodegenerative diseases characterized clinically by resting tremor, bradykinesia, rigidity, and postural instability. As this disease is usually detected in the later stages, the cure is often delayed, ultimately leading to disability due to the lack of early diagnostic techniques. Therefore, it is of great importance to identify reliable biomarkers with high sensitivity and specificity for the early diagnosis of PD. In this study, we aimed to investigate whether serum expressions of mature brain-derived neurotrophic factor (mBDNF) and proBDNF can serve as biomarkers for the diagnosis of PD at early stage. One hundred and fifty-six patients with limb tremor and/or bradykinesia meeting the inclusion criteria were assigned to either ex-PD group (PD cases) or ex-NPD group (non-PD cases) and then reassigned to either po-PD group (with PD) or po-NPD group (without PD) at 1-year follow-up based on the results of the rediagnoses as performed in accordance with MDS Parkinson's diagnostic criteria. To improve early diagnostic accuracy, grouping (PD group and non-PD group) at initial visit and follow-up was performed differently and independently. Serum mBDNF and proBDNF levels were measured by enzyme-linked immunosorbent assays. The results demonstrated that serum levels of mBDNF and mBDNF/proBDNF were significantly lower in the ex-PD group (19.73 ± 7.31 and 0.09 ± 0.05 ng/ml) as compared with the ex-NPD group (23.47 ± 8.21 and 0.15 ± 0.12 ng/ml) (p < 0.01 for both) and in the po-PD group (19.24 ± 7.20 and 0.09 ± 0.05 ng/ml) as compared with the po-NPD group (25.05 ± 7.67 and 0.16 ± 0.14 ng/ml) (p < 0.01 for both). However, a significantly higher serum level of proBDNF was noted in the ex-PD group (235.49 ± 60.75 ng/ml) as compared with the ex-NPD group (191.75 ± 66.12 ng/ml) (p < 0.01) and in the po-PD group (235.56 ± 60.80 ng/ml) as compared with the po-NPD group (188.42 ± 65.08 ng/ml) (p < 0.01). In conclusion, mBDNF/proBDNF can be used as biomarkers for early stage Parkinson's disease; in addition, mBDNF plus proBDNF has better diagnostic value than mBDNF alone in the diagnosis of PD.
Collapse
Affiliation(s)
- Xu Yi
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yujia Yang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhengfan Zhao
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Manyu Xu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Zhang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yingying Sheng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junying Tian
- Department of Foreign Language, Chongqing Medical University, Chongqing, China
| | - Zhiqiang Xu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Chang E, Wang J. Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson's disease. Brain Behav 2021; 11:e2251. [PMID: 34132500 PMCID: PMC8413743 DOI: 10.1002/brb3.2251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative disorders that seriously impair the life quality and survival of patients. Herein, we aim to investigate the neuroprotective roles of brain-derived neurotrophic factor (BDNF) in PD mice and reveal the underlying mechanisms. BDNF overexpression was achieved via the injection of adeno-associated viruses (AAV) with BDNF gene. METHODS PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Tests of rotarod, pole, open field, and novel object recognition were conducted to evaluate the motor and cognitive functions of treated mice. RESULTS Mitochondrial impairment, mitochondrial respiratory chain enzymes, and tyrosine hydroxylase (TH)-positive dopaminergic neurons were detected to uncover the molecular mechanism. BDNF overexpression attenuated motor deficits and cognitive impairment in MPTP-induced PD mice. Mechanistically, BDNF mitigated mitochondrial impairment increased the activity of respiratory chain Complex I and Ⅱ+III, and finally alleviated TH-positive dopaminergic neuron loss in MPTP-induced PD mice. CONCLUSION This study highlights the potential of BDNF as a therapeutic candidate for the treatment of mitochondrial impairment-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- E Chang
- Department of Rehabilitation MedicineCangzhou Central HospitalCangzhouHebeiChina
| | - Jiongmei Wang
- Department of Rehabilitation MedicineCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|
13
|
Rana T, Behl T, Sehgal A, Srivastava P, Bungau S. Unfolding the Role of BDNF as a Biomarker for Treatment of Depression. J Mol Neurosci 2020; 71:2008-2021. [PMID: 33230708 DOI: 10.1007/s12031-020-01754-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Depression is a well-known disabling mental illness characterized by sadness, loss of interest in activities, and decreased energy. The symptoms of depression are usually recurrent in vulnerable individuals, and persistence of symptoms significantly impairs individuals' quality of life. The exact pathophysiology of depression remains ambiguous, though many hypotheses have been proposed. Brain-derived neurotrophic factor (BDNF) has recently been reported to play a vital role in the pathophysiology of depression. BDNF is an important neurotrophic factor found in the human brain and is involved in neuronal growth and proliferation, synaptic neurotransmission, and neuroplasticity. The neurotrophic theory of depression proposes that depression results from reduced BDNF levels in the brain, which can be treated with antidepressants to alleviate depressive behavior and increase BDNF levels. The aim of this review is to provide broad insight into the role of BDNF in the pathogenesis of depression and in antidepressant therapy. The studies mentioned in this review article greatly support the role of BDNF in the pathogenesis of depression and treatment of this disorder with antidepressants. Since abnormalities in BDNF levels lead to the production of diverse insults that amplify the development or progression of depression, it is important to study and explore BDNF impairment in relation to depression, neuroplasticity, and neurogenesis, and increasing BDNF levels through antidepressant therapy, showing positive response in the management of depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | | | - Simona Bungau
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
14
|
Huang Y, Huang C, Zhang Q, Wu W, Sun J. Serum BDNF discriminates Parkinson's disease patients with depression from without depression and reflect motor severity and gender differences. J Neurol 2020; 268:1411-1418. [PMID: 33179143 DOI: 10.1007/s00415-020-10299-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the diagnostic value of serum Brain-derived neurotrophic factor (BDNF) levels for discriminating PD with depression from without depression, and to investigate whether serum BDNF levels were associated with motor severity and gender in depressed PD patients. METHODS Demographic and clinical data were collected from 122 PD patients with depression, 137 without depression and 110 healthy controls. All participants' serum BDNF concentrations were measured. Their motor abilities and activity were assessed by the Unified PD Rating Scale Part III (UPDRS III) score and the Hoehn and Yahr (H-Y) stage. Depression was scored using the 17-item Hamilton Rating Scale for Depression (HAMD-17). Associations were analyzed with multivariate regression. RESULTS The serum BDNF levels were lower in depressed PD patients compared to non-depressed PD patients and controls (p < 0.001). The BDNF levels were negatively correlated with UPDRS III score (r = - 0.54, p < 0.001) and H-Y stage (r = - 0.45, p < 0.001). Decreased BDNF levels were associated with women only among depressed PD patients (r = 0.45, p < 0.001). The HAMD-17 score was negatively correlated with BDNF levels (r = - 0.59, p < 0.001), and positively associated with UPDRS III score (r = 0.51, p < 0.001). Multiple regression analysis demonstrated that in the depressed PD patients, female, H-Y stage and UPDRS III score were independent contributors to the BDNF levels (p < 0.001; p = 0.006; p = 0.03, respectively), BDNF and UPDRS III score were independent contributors to HAMD-17 score (p < 0.001, p = 0.01, respectively). CONCLUSIONS Decreased serum BDNF levels may be a useful clinical biomarker of depression in PD patients. Serum BDNF may serve as a potential biomarker for motor severity of PD patients with depression, especially in female.
Collapse
Affiliation(s)
- Yixian Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Caili Huang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Qilin Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Wenqi Wu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| | - Jiawei Sun
- Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, 215004, China
| |
Collapse
|
15
|
Psychological distress and lack of PINK1 promote bioenergetics alterations in peripheral blood mononuclear cells. Sci Rep 2020; 10:9820. [PMID: 32555260 PMCID: PMC7300038 DOI: 10.1038/s41598-020-66745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Psychological distress induces oxidative stress and alters mitochondrial metabolism in the nervous and immune systems. Psychological distress promotes alterations in brain metabolism and neurochemistry in wild-type (WT) rats in a similar manner as in Parkinsonian rats lacking endogenous PTEN-induced kinase 1 (PINK1), a serine/threonine kinase mutated in a recessive forms of Parkinson’s disease. PINK1 has been extensively studied in the brain, but its physiological role in peripheral tissues and the extent to which it intersects with the neuroimmune axis is not clear. We surmised that PINK1 modulates the bioenergetics of peripheral blood mononuclear cells (PBMCs) under basal conditions or in situations that promote oxidative stress as psychological distress. By using an XF metabolic bioanalyzer, PINK1-KO-PBMCs showed significantly increased oxidative phosphorylation and basal glycolysis compared to WT cells and correlated with motor dysfunction. In addition, psychological distress enhanced the glycolytic capacity in PINK1-KO-PBMCs but not in WT-PBMCs. The level of antioxidant markers and brain-derived neurotrophic factor were altered in PINK1-KO-PBMCs and by psychological distress. In summary, our data suggest that PINK1 is critical for modulating the bioenergetics and antioxidant responses in PBMCs whereas lack of PINK1 upregulates compensatory glycolysis in response to oxidative stress induced by psychological distress.
Collapse
|
16
|
Becanovic K, Vittoria de Donno M, Sousa VC, Tedroff J, Svenningsson P. Effects of a Novel Psychomotor Stabilizer, IRL790, on Biochemical Measures of Synaptic Markers and Neurotransmission. J Pharmacol Exp Ther 2020; 374:126-133. [PMID: 32358047 DOI: 10.1124/jpet.119.264754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
The novel small-molecule psychomotor stabilizer, IRL790, is currently in clinical trial for treatment of levodopa-induced dyskinesia and psychosis in patients with Parkinson disease. Here, we used naïve mice to investigate the effects of acute systemic administration of IRL790 on protein levels and phosphorylation states of proteins relevant for synaptic plasticity and transmission. IRL790 increased pro-brain-derived neurotrophic factor protein levels and phosphorylation at Ser1303 of the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B) in prefrontal cortex. IRL790 also increased the phosphorylation states at Ser19, Ser31, and Ser40, respectively, of tyrosine hydroxylase in striatum. IRL790 reduced protein levels of the NR2B receptor in striatum but not in prefrontal cortex. Taken together, we report that systemically administered IRL790 rapidly elicits changes in protein level and phosphorylation state of proteins associated with a beneficial effect on synaptic markers and neurotransmission. SIGNIFICANCE STATEMENT: The novel small-molecule psychomotor stabilizer, IRL790, is currently in clinical trial for treatment of levodopa-induced dyskinesia and psychosis in patients with Parkinson disease. In this study, we report that systemically administered IRL790 rapidly elicits changes in protein level and phosphorylation state of proteins associated with a beneficial effect on synaptic markers and neurotransmission.
Collapse
Affiliation(s)
- Kristina Becanovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (K.B., M.V.d.D., V.C.S., J.T., P.S.) and Integrative Research Laboratories Sweden AB, Gothenburg, Sweden (J.T.)
| | - Maria Vittoria de Donno
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (K.B., M.V.d.D., V.C.S., J.T., P.S.) and Integrative Research Laboratories Sweden AB, Gothenburg, Sweden (J.T.)
| | - Vasco C Sousa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (K.B., M.V.d.D., V.C.S., J.T., P.S.) and Integrative Research Laboratories Sweden AB, Gothenburg, Sweden (J.T.)
| | - Joakim Tedroff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (K.B., M.V.d.D., V.C.S., J.T., P.S.) and Integrative Research Laboratories Sweden AB, Gothenburg, Sweden (J.T.)
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (K.B., M.V.d.D., V.C.S., J.T., P.S.) and Integrative Research Laboratories Sweden AB, Gothenburg, Sweden (J.T.)
| |
Collapse
|
17
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Chalimoniuk
- Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Warszawa, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-225892409
| |
Collapse
|
18
|
PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death Dis 2020; 11:81. [PMID: 32015336 PMCID: PMC6997171 DOI: 10.1038/s41419-020-2267-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Glioblastoma is the most common and malignant form of primary central nervous tumor in adults. Long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in modulating gene expression and regulating human tumor’s malignant behaviors. In this study, we confirmed that lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) was downregulated in glioblastoma tissues and cells, interacted and stabilized by polyadenylate-binding protein cytoplasmic 1 (PABPC1). Overexpression of BDNF-AS inhibited the proliferation, migration, and invasion, as well as induced the apoptosis of glioblastoma cells. In the in vivo study, PABPC1 overexpression combined with BDNF-AS overexpression produced the smallest tumor and the longest survival. Moreover, BDNF-AS could elicit retina and anterior neural fold homeobox 2 (RAX2) mRNA decay through STAU1-mediated decay (SMD), and thereby regulated the malignant behaviors glioblastoma cells. Knockdown of RAX2 produced tumor-suppressive function in glioblastoma cells and increased the expression of discs large homolog 5 (DLG5), leading to the activation of the Hippo pathway. In general, this study elucidated that the PABPC1-BDNF-AS-RAX2-DLG5 mechanism may contribute to the anticancer potential of glioma cells and may provide potential therapeutic targets for human glioma.
Collapse
|
19
|
Activation of BDNF-AS/ADAR/p53 Positive Feedback Loop Inhibits Glioblastoma Cell Proliferation. Neurochem Res 2020; 45:508-518. [PMID: 31939089 DOI: 10.1007/s11064-019-02943-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/19/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
Despite progress in conventional treatment for glioblastoma (GBM), the prognosis remains poor due to high tumor recurrence. Therefore, identification of new molecular mechanisms is a pressing need for betterment of GBM patient outcomes. qRT-PCR was used to determine BDNF-AS expression in GBM cells. CCK-8, EdU incorporation, and caspase-3 activity assays were employed to analyze biological functions of BDNF-AS. RIP and RNA pull-down were conducted to detect the interactions among BDNF-AS, ADAR, and p53. Actinomycin D was utilized to examine the stability of p53 mRNA. ChIP and luciferase reporter assays were performed to detect transcriptional activation of BDNF-AS by p53. We found that BDNF-AS was significantly downregulated in GBM cell lines, and its overexpression inhibited GBM cell growth, and promoted apoptosis. Importantly, we illustrated that BDNF-AS coupled with ADAR protein to potentiate stability of p53 mRNA and thus upregulate p53. Interestingly, we further identified p53 as a transcription factor of BDNF-AS, activating transcription of BNDF-AS. This study firstly demonstrated that BDNF-AS acted as a tumor suppressor in GBM and the positive feedback circuit of BDNF-AS/ADAR/p53 served an important mechanism to control GBM proliferation. Targeting this auto-regulatory loop may provide a potential therapeutic strategy for GBM patients.
Collapse
|
20
|
Churchill MJ, Cantu MA, Kasanga EA, Moore C, Salvatore MF, Meshul CK. Glatiramer Acetate Reverses Motor Dysfunction and the Decrease in Tyrosine Hydroxylase Levels in a Mouse Model of Parkinson's Disease. Neuroscience 2019; 414:8-27. [PMID: 31220543 DOI: 10.1016/j.neuroscience.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and there are no effective treatments that either slow or reverse the degeneration of the dopamine (DA) pathway. Using a 4-week progressive MPTP (1-methyl-1,2,3,6-tetrahydropyridine) neurotoxin model of PD, which is characterized by neuroinflammation, loss of nigrostriatal DA, and motor dysfunction, as seen in patients with PD, we tested whether post-MPTP treatment with glatiramer acetate (GA), an immunomodulatory drug, could reverse these changes. GA restored the grip dysfunction and gait abnormalities that were evident in the MPTP treated group. The reversal of the motor dysfunction was attributable to the substantial recovery in tyrosine hydroxylase (TH) protein expression in the striatum. Within the substantia nigra pars compacta, surface cell count analysis showed a slight increase in TH+ cells following GA treatment in the MPTP group, which was not statistically different from the vehicle (VEH) group. This was associated with the recovery of BDNF (brain derived neurotrophic factor) protein levels and a reduction in the microglial marker, IBA1, protein expression within the midbrain. Alpha synuclein (syn-1) levels within the midbrain and striatum were decreased following MPTP, while GA facilitated recovery to VEH levels in the striatum in the MPTP group. Although DA tissue analysis revealed no significant increase in striatal DA or 3,4-Dihydroxyphenylacetic acid levels (DOPAC) in the MPTP group treated with GA, DA turnover (DOPAC/DA) recovered back to VEH levels following GA treatment. GA treatment effectively reversed clinical (motor dysfunction) and pathology (TH, IBA1, BDNF expression) of PD in a murine model.
Collapse
Affiliation(s)
| | - Mark A Cantu
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Science Center, Fort Worth, TX, USA
| | - Ella A Kasanga
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Science Center, Fort Worth, TX, USA
| | - Cindy Moore
- Research Services, VA Medical Center/Portland, OR
| | - Michael F Salvatore
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Science Center, Fort Worth, TX, USA
| | - Charles K Meshul
- Research Services, VA Medical Center/Portland, OR; Department of Behavioral Neuroscience, Oregon Heath & Science University, Portland OR 97239; Department of Pathology, Oregon Health & Science University, Portland OR 97239
| |
Collapse
|
21
|
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol 2019; 56:3295-3312. [PMID: 30117106 PMCID: PMC6476855 DOI: 10.1007/s12035-018-1283-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment. Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this review will address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.
Collapse
Affiliation(s)
- Bruno Lima Giacobbo
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, Porto Alegre, 90619-900, Brazil
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 31.001, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
22
|
Jiang L, Zhang H, Wang C, Ming F, Shi X, Yang M. Serum level of brain-derived neurotrophic factor in Parkinson's disease: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:168-174. [PMID: 30017781 DOI: 10.1016/j.pnpbp.2018.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023]
Abstract
Brain-derived neurotrophic factor (BDNF), a critical modulator in the neurodevelopment and maintenance of both central and peripheral nervous systems, is regarded as a potential therapeutic target of Parkinson's disease (PD). However, its association with PD remains unclear and the data are inconsistent. To explore the correlation, studies reporting BDNF levels in PD patients and healthy controls are searched and a sample of 1496 participants are pooled in the meta-analysis, demonstrating significantly decreased serum levels of BDNF in PD patients when compared with the healthy controls (SMD = -1.03; 95% CI [-1.83, -0.23]; P = .012). Meta-regression analysis indicates gender is an important confounding factor (Adj R2 = 69.20%, p = .004, I2 res = 90.64%), whereas age (Adj R2 = 11.91%, P = .95, I2 res = 96.86%), H-Y stages of PD progression (Adj R2 = -30.18%, P = .612, I2 res = 96.62%) and MoCA score assessed cognitive impairment (Adj R2 = 2.18%, P = .517, I2 res = 64.41%) show few moderating effects. The research provides evidence of moderate quality that blood levels of BDNF are decreased in PD patients despite various influencing factors, supporting an association between decreased level of peripheral BDNF and PD.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Fengyu Ming
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Mei Yang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
23
|
Liu MF, Xue Y, Liu C, Liu YH, Diao HL, Wang Y, Pan YP, Chen L. Orexin-A Exerts Neuroprotective Effects via OX1R in Parkinson's Disease. Front Neurosci 2018. [PMID: 30524223 DOI: 10.3389/fnins.2018.00835.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive and selective death of dopaminergic neurons. Orexin-A is involved in many biological effects of the body. It has been reported that orexin-A has protective effects in cellular models of PD. However, little is known about the protective effects of orexin-A in animal parkinsonian models and the cellular mechanism has not yet been fully clarified. The aim of this study was to evaluate the effects of orexin-A in MPTP mice model of PD as well as the possible neuroprotective mechanisms of orexin-A on dopaminergic neurons. The results from animal experiments demonstrated that orexin-A attenuated the loss of dopaminergic neurons and the decrease of tyrosine hydroxylase (TH) expression in the substantia nigra, normalized the striatal dopaminergic fibers, and prevented the depletion of dopamine and its metabolites in the striatum. MPTP-treated mice showed cognitive impairments accompanied with significant motor deficiency. Orexin-A improved MPTP-induced impairments in both motor activity and spatial memory. Importantly, orexin-A increased the protein level of brain-derived neurotrophic factor (BDNF) in dopaminergic neurons of the substantia nigra. Furthermore, the protective effects of orexin-A on MPTP parkinsonian mice could be blocked by orexinergic receptor 1 (OX1R) antagonist, SB334867. In another set of experiments with SH-SY5Y dopaminergic cells, orexin-A significantly induced the expression of BDNF in a dose and time-dependent manner. The upregulation of BDNF is mainly concerned with PI3K and PKC signaling pathways via OX1R. The present study demonstrated that orexin-A exerted neuroprotective effects on MPTP parkinsonian mice, which may imply orexin-A as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Mei-Fang Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.,College of Pharmacy, Jining Medical University, Rizhao, China
| | - Yan Xue
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yun-Hai Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Hui-Ling Diao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yi-Peng Pan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Liu MF, Xue Y, Liu C, Liu YH, Diao HL, Wang Y, Pan YP, Chen L. Orexin-A Exerts Neuroprotective Effects via OX1R in Parkinson's Disease. Front Neurosci 2018; 12:835. [PMID: 30524223 PMCID: PMC6262320 DOI: 10.3389/fnins.2018.00835] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by progressive and selective death of dopaminergic neurons. Orexin-A is involved in many biological effects of the body. It has been reported that orexin-A has protective effects in cellular models of PD. However, little is known about the protective effects of orexin-A in animal parkinsonian models and the cellular mechanism has not yet been fully clarified. The aim of this study was to evaluate the effects of orexin-A in MPTP mice model of PD as well as the possible neuroprotective mechanisms of orexin-A on dopaminergic neurons. The results from animal experiments demonstrated that orexin-A attenuated the loss of dopaminergic neurons and the decrease of tyrosine hydroxylase (TH) expression in the substantia nigra, normalized the striatal dopaminergic fibers, and prevented the depletion of dopamine and its metabolites in the striatum. MPTP-treated mice showed cognitive impairments accompanied with significant motor deficiency. Orexin-A improved MPTP-induced impairments in both motor activity and spatial memory. Importantly, orexin-A increased the protein level of brain-derived neurotrophic factor (BDNF) in dopaminergic neurons of the substantia nigra. Furthermore, the protective effects of orexin-A on MPTP parkinsonian mice could be blocked by orexinergic receptor 1 (OX1R) antagonist, SB334867. In another set of experiments with SH-SY5Y dopaminergic cells, orexin-A significantly induced the expression of BDNF in a dose and time-dependent manner. The upregulation of BDNF is mainly concerned with PI3K and PKC signaling pathways via OX1R. The present study demonstrated that orexin-A exerted neuroprotective effects on MPTP parkinsonian mice, which may imply orexin-A as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Mei-Fang Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.,College of Pharmacy, Jining Medical University, Rizhao, China
| | - Yan Xue
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yun-Hai Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Hui-Ling Diao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yi-Peng Pan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Genetic deletion of vesicular glutamate transporter in dopamine neurons increases vulnerability to MPTP-induced neurotoxicity in mice. Proc Natl Acad Sci U S A 2018; 115:E11532-E11541. [PMID: 30442663 PMCID: PMC6298109 DOI: 10.1073/pnas.1800886115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A subset of midbrain dopamine (DA) neurons express vesicular glutamate transporter 2 (VgluT2), which facilitates synaptic vesicle loading of glutamate. Recent studies indicate that such expression can modulate DA-dependent reward behaviors, but little is known about functional consequences of DA neuron VgluT2 expression in neurodegenerative diseases like Parkinson's disease (PD). Here, we report that selective deletion of VgluT2 in DA neurons in conditional VgluT2-KO (VgluT2-cKO) mice abolished glutamate release from DA neurons, reduced their expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB), and exacerbated the pathological effects of exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, viral rescue of VgluT2 expression in DA neurons of VglutT2-cKO mice restored BDNF/TrkB expression and attenuated MPTP-induced DA neuron loss and locomotor impairment. Together, these findings indicate that VgluT2 expression in DA neurons is neuroprotective. Genetic or environmental factors causing reduced expression or function of VgluT2 in DA neurons may place some individuals at increased risk for DA neuron degeneration. Therefore, maintaining physiological expression and function of VgluT2 in DA neurons may represent a valid molecular target for the development of preventive therapeutic interventions for PD.
Collapse
|
26
|
Komnig D, Dagli TC, Habib P, Zeyen T, Schulz JB, Falkenburger BH. Fingolimod (FTY720) is not protective in the subacute MPTP mouse model of Parkinson's disease and does not lead to a sustainable increase of brain-derived neurotrophic factor. J Neurochem 2018; 147:678-691. [PMID: 30152864 DOI: 10.1111/jnc.14575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/29/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is characterized by the loss of midbrain dopaminergic neurons and aggregates of α-synuclein termed Lewy bodies. Fingolimod (FTY720) is an agonist of sphingosine-1 phosphate receptors and an approved oral treatment for multiple sclerosis. Fingolimod elevates brain-derived neurotrophic factor (BDNF), an important neurotrophic factor for dopaminergic neurons. BDNF and fingolimod are beneficial in several animal models of PD. In order to validate the therapeutic potential of fingolimod for the treatment of PD, we tested its effect in the subacute MPTP mouse model of PD. MPTP or vehicle was applied i.p. in doses of 30 mg/kg MPTP on five consecutive days. In order to recapitulate the combination of dopamine loss and α-synuclein aggregates found in PD, MPTP was first administered in Thy1-A30P-α-synuclein transgenic mice. Fingolimod was administered i.p. at a dose of 0.1 mg/kg every second day. Nigrostriatal degeneration was assayed by stereologically counting the number of dopaminergic neurons in the substantia nigra pars compacta, by analysing the concentration of catecholamines and the density of dopaminergic fibres in the striatum. MPTP administration produced a robust nigrostriatal degeneration, comparable to previous studies. Unexpectedly, we found no difference between mice with and without fingolimod treatment, neither at baseline, nor at 14 or 90 days after MPTP. Also, we found no effect of fingolimod in the subacute MPTP mouse model when we used wildtype mice instead of α-synuclein transgenic mice, and no effect with an increased dose of 1 mg/kg fingolimod administered every day. In order to explain these findings, we analysed BDNF regulation by fingolimod. We did find an increase of BDNF protein after a single injection of fingolimod 0.1 or 1.0 mg/kg, but not after multiple injections, indicating that the BDNF response to fingolimod is unsustainable over time. Taken together we did not observe a neuroprotective effect of fingolimod in the subacute MPTP mouse model of PD. We discuss possible explanations for this discrepancy with previous findings and conclude fingolimod might be beneficial for the nonmotor symptoms of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/6xgfn/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Daniel Komnig
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | | | - Pardes Habib
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Thomas Zeyen
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Björn H Falkenburger
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Rahmani F, Saghazadeh A, Rahmani M, Teixeira AL, Rezaei N, Aghamollaii V, Ardebili HE. Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: A systematic review and meta-analysis. Brain Res 2018; 1704:127-136. [PMID: 30296429 DOI: 10.1016/j.brainres.2018.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is an abundant neurotrophin in the adult brain. Serum BDNF levels might be used as a proxy for its central expression. Considering conflicting reports, we aimed to answer "How do serum/CSF levels of BDNF change in patients with PD?". METHODS We conducted a comprehensive search in MEDLINE, EMBASE and SCOPUS databases including 12 eligible studies. Five studies compared BDNF in serum of PD patients versus healthy controls (HC) and 3 studies provided BDNF levels in sera of non-depressed and depressed PD patients (NDPD and DPD). Review Manager and Software version 3.0 were used for meta-analysis and meta-regressions. Mean difference (MD) was used for measurement of effect size. RESULTS PD patients had reduced serum BDNF levels compared to HC (MD = -2.99 ng/mL). Serum BDNF was highest in DPD patients compared to HC (MD = -4.83 ng/mL), with no difference between DPD and NDPD patients in serum BDNF levels. Among co-variates that were eligible for meta-regression, age, sex, and Hoehn and Yahr (H&Y) motor stage had significant positive associations with the effect size in the difference of serum BDNF between patients and HC. CONCLUSIONS PD patients had reduced serum BDNF levels compared to HC, regardless of presence of co-morbid depression. PD is at least equally effective in reducing serum BDNF levels as depression. Motor progression predicts serum BDNF downregulation in PD. Acute exercise improves motor function and depressive symptoms in PD probably via BDNF upregulation. The paradoxical rise in serum BDNF in advance PD is probably compensatory in nature.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Rahmani
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Boston, USA; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajiheh Aghamollaii
- Department of Neurology, Roozbeh Hospital, Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Iran.
| | - Hassan Eftekhar Ardebili
- Department of Health Education and Promotion, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zhang H, Liu C, Yan T, Wang J, Liang W. Long noncoding RNA BDNF-AS is downregulated in cervical cancer and has anti-cancer functions by negatively associating with BDNF. Arch Biochem Biophys 2018; 646:113-119. [PMID: 29572178 DOI: 10.1016/j.abb.2018.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE We investigated expression and mechanism long noncoding RNA BDNF-AS in human cervical cancer (CC). METHODS BDNF-AS expressions were examined by qPCR in CC cell lines and human CC tumors. CC cell lines, SiHa and DoTc2-4510 were transduced with lentivirus to ectopically overexpress BDNF-AS. Possible anti-cancer effects of BDNF overexpression were examined on CC in vitro proliferation and migration, and in vivo transplantation. Human BDNF gene expression was also examined in CC cell lines and tumors. In CC cells with overexpressed BDNF-AS, BDNF was upregulated to examine its direct effect in NDNF-AS-modulated CC proliferation and migration. RESULTS BDNF was downregulated in both CC cells and human CC tumors. In CC cells, BDNF-AS overexpression is anti-cancer by inhibiting proliferation and migration in vitro, and transplantation in vivo. BDNF was inversely expressed as BDNF-AS in CC. Upregulation of BDNF in BDNF-AS-overexpressed CC cells reversed the anti-cancer effects of BDNF-AS. CONCLUSION BDNF-AS is downregulated in CC. Overexpressing BDNF-AS may inhibit CC, possibly through inverse regulation on BDNF.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Gynaecology, Guizhou Provincal People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Caihong Liu
- Department of Gynaecology, Guizhou Provincal People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Ting Yan
- Department of Gynaecology, Guizhou Provincal People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Jun Wang
- Department of Gynaecology, Guizhou Provincal People's Hospital, Guiyang, Guizhou Province, 550002, China
| | - Wentong Liang
- Department of Gynaecology, Guizhou Provincal People's Hospital, Guiyang, Guizhou Province, 550002, China.
| |
Collapse
|
29
|
Tanqueiro SR, Ramalho RM, Rodrigues TM, Lopes LV, Sebastião AM, Diógenes MJ. Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β. Front Pharmacol 2018; 9:237. [PMID: 29695962 PMCID: PMC5904251 DOI: 10.3389/fphar.2018.00237] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/02/2018] [Indexed: 01/18/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays important functions in cell survival and differentiation, neuronal outgrowth and plasticity. In Alzheimer’s disease (AD), BDNF signaling is known to be impaired, partially because amyloid β (Aβ) induces truncation of BDNF main receptor, TrkB-full length (TrkB-FL). We have previously shown that such truncation is mediated by calpains, results in the formation of an intracellular domain (ICD) fragment and causes BDNF loss of function. Since calpains are Ca2+-dependent proteases, we hypothesized that excessive intracellular Ca2+ build-up could be due to dysfunctional N-methyl-d-aspartate receptors (NMDARs) activation. To experimentally address this hypothesis, we investigated whether TrkB-FL truncation by calpains and consequent BDNF loss of function could be prevented by NMDAR blockade. We herein demonstrate that a NMDAR antagonist, memantine, prevented excessive calpain activation and TrkB-FL truncation induced by Aβ25–35. When calpains were inhibited by calpastatin, BDNF was able to increase the dendritic spine density of neurons exposed to Aβ25135. Moreover, NMDAR inhibition by memantine also prevented Aβ-driven deleterious impact of BDNF loss of function on structural (spine density) and functional outcomes (synaptic potentiation). Collectively, these findings support NMDAR/Ca2+/calpains mechanistic involvement in Aβ-triggered BDNF signaling disruption.
Collapse
Affiliation(s)
- Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita M Ramalho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago M Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
30
|
Axelsen TM, Woldbye DP. Gene Therapy for Parkinson's Disease, An Update. JOURNAL OF PARKINSON'S DISEASE 2018; 8:195-215. [PMID: 29710735 PMCID: PMC6027861 DOI: 10.3233/jpd-181331] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
The current mainstay treatment of Parkinson's disease (PD) consists of dopamine replacement therapy which, in addition to causing several side effects, does not delay disease progression. The field of gene therapy offers a potential means to improve current therapy. The present review gives an update of the present status of gene therapy for PD. Both non-disease and disease modifying transgenes have been tested for PD gene therapy in animal and human studies. Non-disease modifying treatments targeting dopamine or GABA synthesis have been successful and promising at improving PD symptomatology in randomized clinical studies, but substantial testing remains before these can be implemented in the standard clinical treatment repertoire. As for disease modifying targets that theoretically offer the possibility of slowing the progression of disease, several neurotrophic factors show encouraging results in preclinical models (e.g., neurturin, GDNF, BDNF, CDNF, VEGF-A). However, so far, clinical trials have only tested neurturin, and, unfortunately, no trial has been able to meet its primary endpoint. Future clinical trials with neurotrophic factors clearly deserve to be conducted, considering the still enticing goal of actually slowing the disease process of PD. As alternative types of gene therapy, opto- and chemogenetics might also find future use in PD treatment and novel genome-editing technology could also potentially be applied as individualized gene therapy for genetic types of PD.
Collapse
Affiliation(s)
- Tobias M. Axelsen
- Department of Neurology, Herlev University Hospital, Herlev, Denmark
| | - David P.D. Woldbye
- Department of Neuroscience, Panum Institute, Mærsk Tower, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
31
|
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Front Aging Neurosci 2017; 9:358. [PMID: 29163139 PMCID: PMC5675869 DOI: 10.3389/fnagi.2017.00358] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.
Collapse
Affiliation(s)
- Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Wei Chen
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China.,Department of Exercise and Rehabilitation, Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
32
|
Zhang S, Chen S, Liu A, Wan J, Tang L, Zheng N, Xiong Y. Inhibition of BDNF production by MPP + through up-regulation of miR-210-3p contributes to dopaminergic neuron damage in MPTP model. Neurosci Lett 2017; 675:133-139. [PMID: 29030221 DOI: 10.1016/j.neulet.2017.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 02/03/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has been involved in supporting of neuron survival. The observation of reduced level of BDNF in the substantia nigra (SN) of Parkinson's disease (PD) patients suggests its important role in neuron protection in PD pathogenesis. However, the mechanism underlying the down-regulation of BDNF in PD was largely unknown. In this study, we found that miR-210-3p is involved in the regulation of BDNF production by 1-methyl-4-phenylpyridinium (MPP+). MPP+ inhibits the BDNF production in SH-SY5Y cells through a transcription independent manner. Moreover, miR-210-3p, which targets BDNF mRNA, is up-regulated by MPP+ in SH-SY5Y cells. Importantly, inhibition of miR-210-3p prevents the reduction of BDNF production by MPP+ and improves the DA neuron survival in 1-methyl-4-phenyl-1,2,3,6-tetra hydropyridine (MPTP) model. Together, we demonstrated up-regulation of miR-210-3p by MPP+ reduces the BDNF production and contributes to the DA neuron damage.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Neurology, The People's Hospital of Leshan, Leshan 614000, Sichuan, China
| | - Shu Chen
- Department of Neurosurgery, The People's Hospital of Leshan, Leshan 614000, Sichuan, China
| | - Anmin Liu
- Department of Neurosurgery, SunYat-sen Memorial Hospital, SunYat-sen University, Guangzhou 510120, Guangdong, China
| | - Jungang Wan
- Department of Neurology, The People's Hospital of Leshan, Leshan 614000, Sichuan, China
| | - Lingwen Tang
- Department of Neurology, The People's Hospital of Leshan, Leshan 614000, Sichuan, China
| | - Niandong Zheng
- Department of Neurosurgery, The People's Hospital of Leshan, Leshan 614000, Sichuan, China
| | - Yi Xiong
- Department of Neurology, The People's Hospital of Leshan, Leshan 614000, Sichuan, China.
| |
Collapse
|
33
|
Abstract
Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer’s disease (AD), dementia with Lewy bodies (DLB) and Parkinson’s disease. Using a transgenic mouse model of Parkinson’s disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.
Collapse
|
34
|
Individual Amino Acid Supplementation Can Improve Energy Metabolism and Decrease ROS Production in Neuronal Cells Overexpressing Alpha-Synuclein. Neuromolecular Med 2017. [PMID: 28620826 DOI: 10.1007/s12017-017-8448-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels. Oxygen consumption was decreased by alpha-synuclein overexpression, but ATP levels did not decrease and ROS levels did not increase. Treatment with ferrous sulfate, a ROS generator, resulted in decreased oxygen consumption in both control and alpha-synuclein overexpressing cells. However, this treatment only decreased ATP levels and increased ROS production in the cells overexpressing alpha-synuclein. Similarly, paraquat, another ROS generator, decreased ATP levels in the alpha-synuclein overexpressing cells, but not in the control cells, further demonstrating how alpha-synuclein sensitized the cells to oxidative insult. Proteomic analysis yielded molecular insights into the cellular adaptations to alpha-synuclein overexpression, such as the increased abundance of many mitochondrial proteins. Many amino acids and citric acid cycle intermediates and their ester forms were individually supplemented to the cells with L-serine, L-proline, L-aspartate, or L-glutamine decreasing ROS production in oxidatively stressed alpha-synuclein overexpressing cells, while diethyl oxaloacetate or L-valine supplementation increased ATP levels. These results suggest that dietary supplementation with individual metabolites could yield bioenergetic improvements in PD patients to delay loss of dopaminergic neurons.
Collapse
|
35
|
Shen M, Xu Z, Jiang K, Xu W, Chen Y, Xu Z. Long noncoding nature brain-derived neurotrophic factor antisense is associated with poor prognosis and functional regulation in non-small cell lung caner. Tumour Biol 2017; 39:1010428317695948. [PMID: 28459374 DOI: 10.1177/1010428317695948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, we evaluated the prognostic potential and functional regulation of human nature antisense, brain-derived neurotrophic factor antisense, in non-small cell lung cancer. Non-small cell lung cancer carcinoma and adjacent non-carcinoma lung tissues were extracted from 151 patients. Their endogenous brain-derived neurotrophic factor antisense expression levels were compared by quantitative reverse transcription polymerase chain reaction. Clinical relevance between endogenous brain-derived neurotrophic factor antisense expression level and patients' clinicopathological variances or overall survival was analyzed. The potential of brain-derived neurotrophic factor antisense being an independent prognostic factor in non-small cell lung cancer was also evaluated. In in vitro non-small cell lung cancer cell lines, brain-derived neurotrophic factor antisense was upregulated through forced overexpression. The effects of brain-derived neurotrophic factor antisense upregulation on non-small cell lung cancer in vitro survival, proliferation, and migration were evaluated by viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, and transwell assays. Brain-derived neurotrophic factor antisense is lowly expressed in non-small cell lung cancer carcinoma tissues and further downregulated in late-stage carcinomas. Brain-derived neurotrophic factor antisense downregulation was closely associated with non-small cell lung cancer patients' advanced tumor, lymph node, metastasis stage, and positive status of lymph node metastasis, and confirmed to be an independent prognostic factor for patients' poor overall survival. In non-small cell lung cancer A549 and H226 cell lines, forced overexpression of brain-derived neurotrophic factor antisense did not alter cancer cell viability but had significantly tumor suppressive effect in inhibiting in vitro non-small cell lung cancer proliferation and migration. Endogenous brain-derived neurotrophic factor antisense in non-small cell lung cancer carcinoma could be a potential biomarker for predicting patients' prognosis. Overexpressing brain-derived neurotrophic factor antisense may also have a therapeutic potential in inhibiting non-small cell lung cancer tumor growth.
Collapse
Affiliation(s)
- MingJing Shen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhonghua Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanqiu Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weihua Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongbin Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - ZhongHeng Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
36
|
Botsakis K, Mourtzi T, Panagiotakopoulou V, Vreka M, Stathopoulos GT, Pediaditakis I, Charalampopoulos I, Gravanis A, Delis F, Antoniou K, Zisimopoulos D, Georgiou CD, Panagopoulos NT, Matsokis N, Angelatou F. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the "weaver" mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology 2017; 121:140-157. [PMID: 28461162 DOI: 10.1016/j.neuropharm.2017.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022]
Abstract
Neurotrophic factors are among the most promising treatments aiming at slowing or stopping and even reversing Parkinson's disease (PD). However, in most cases, they cannot readily cross the human blood-brain-barrier (BBB). Herein, we propose as a therapeutic for PD the small molecule 17-beta-spiro-[5-androsten-17,2'-oxiran]-3beta-ol (BNN-20), a synthetic analogue of DHEA, which crosses the BBB and is deprived of endocrine side-effects. Using the "weaver" mouse, a genetic model of PD, which exhibits progressive dopaminergic neurodegeneration in the Substantia Nigra (SN), we have shown that long-term administration (P1-P21) of BNN-20 almost fully protected the dopaminergic neurons and their terminals, via i) a strong anti-apoptotic effect, probably mediated through the Tropomyosin receptor kinase B (TrkB) neurotrophin receptor's PI3K-Akt-NF-κB signaling pathway, ii) by exerting an efficient antioxidant effect, iii) by inducing significant anti-inflammatory activity and iv) by restoring Brain-Derived Neurotrophic Factor (BDNF) levels. By intercrossing "weaver" with NGL mice (dual GFP/luciferase-NF-κΒ reporter mice, NF-κΒ.GFP.Luc), we obtained Weaver/NGL mice that express the NF-κB reporter in all somatic cells. Acute BNN-20 administration to Weaver/NGL mice induced a strong NF-κB-dependent transcriptional response in the brain as detected by bioluminescence imaging, which was abolished by co-administration of the TrkB inhibitor ANA-12. This indicates that BNN-20 exerts its beneficial action (at least in part) through the TrkB-PI3K-Akt-NF-κB signaling pathway. These results could be of clinical relevance, as they suggest BNN-20 as an important neuroprotective agent acting through the TrkB neurotrophin receptor pathway, mimicking the action of the endogenous neurotrophin BDNF. Thus BNN-20 could be proposed for treatment of PD.
Collapse
Affiliation(s)
- Konstantinos Botsakis
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece
| | - Theodora Mourtzi
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Vasiliki Panagiotakopoulou
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Malamati Vreka
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece
| | | | - Iosif Pediaditakis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion 71110, Greece
| | | | - Achilleas Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion 71110, Greece; Institute of Molecular Biology & Biotechnology Foundation for Research & Technology - Hellas, GR, 70013, Heraklion, Crete, Greece
| | - Foteini Delis
- Department of Pharmacology, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Katerina Antoniou
- Department of Pharmacology, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | | | | | - Nikolaos T Panagopoulos
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Nikolaos Matsokis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Fevronia Angelatou
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece.
| |
Collapse
|
37
|
Akkhawattanangkul Y, Maiti P, Xue Y, Aryal D, Wetsel WC, Hamilton D, Fowler SC, McDonald MP. Targeted deletion of GD3 synthase protects against MPTP-induced neurodegeneration. GENES BRAIN AND BEHAVIOR 2017; 16:522-536. [PMID: 28239983 DOI: 10.1111/gbb.12377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/07/2023]
Abstract
Parkinson's disease is a debilitating neurodegenerative condition for which there is no cure. Converging evidence implicates gangliosides in the pathogenesis of several neurodegenerative diseases, suggesting a potential new class of therapeutic targets. We have shown that interventions that simultaneously increase the neuroprotective GM1 ganglioside and decrease the pro-apoptotic GD3 ganglioside - such as inhibition of GD3 synthase (GD3S) or administration of sialidase - are neuroprotective in vitro and in a number of preclinical models. In this study, we investigated the effects of GD3S deletion on parkinsonism induced by 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP was administered to GD3S-/- mice or controls using a subchronic regimen consisting of three series of low-dose injections (11 mg/kg/day × 5 days each, 3 weeks apart), and motor function was assessed after each. The typical battery of tests used to assess parkinsonism failed to detect deficits in MPTP-treated mice. More sensitive measures - such as the force-plate actimeter and treadmill gait parameters - detected subtle effects of MPTP, some of which were absent in mice lacking GD3S. In wild-type mice, MPTP destroyed 53% of the tyrosine-hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc) and reduced striatal dopamine 60.7%. In contrast, lesion size was only 22.5% in GD3S-/- mice and striatal dopamine was reduced by 37.2%. Stereological counts of Nissl-positive SNc neurons that did not express TH suggest that neuroprotection was complete but TH expression was suppressed in some cells. These results show that inhibition of GD3S has neuroprotective properties in the MPTP model and may warrant further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Y Akkhawattanangkul
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Y Xue
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D Aryal
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - W C Wetsel
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - D Hamilton
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S C Fowler
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - M P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
38
|
Li Y, Liu W, Li L, Hölscher C. D-Ala2-GIP-glu-PAL is neuroprotective in a chronic Parkinson's disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation. Eur J Pharmacol 2017; 797:162-172. [DOI: 10.1016/j.ejphar.2016.11.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022]
|
39
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
40
|
Long noncoding RNA BDNF-AS is a potential biomarker and regulates cancer development in human retinoblastoma. Biochem Biophys Res Commun 2017; 497:1142-1148. [PMID: 28131827 DOI: 10.1016/j.bbrc.2017.01.134] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNA) have been shown to play important roles in human cancer. We examined expression, prognostic potential and functional roles of lncRNA, brain-derived neurotrophic factor antisense (BDNF-AS) in human retinoblastoma (RB). METHODS BDNF-AS expression in RB tumors was characterized according to the clinicopathological parameters of patients. BDNF-AS mRNA level was compared between RB tumors and normal retinas, as well as RB cell lines and normal retinal epithelial cells. RB patients' overall survival was compared between those with low and high BDNF-AS tumor expressions. Statistical analysis was performed to examine the independence of BDNF-AS being cancer biomarker in RB. In Y79 and WERI-Rb-1 cells, BDNF-AS was upregulated. It's effect on cancer proliferation, migration and cell-cycle transition were assessed. RESULTS BDNF-AS is downregulated in RB tumors and cell lines. Low BDNF-AS expression in RB tumors is correlated with patients' advanced clinical stage and tumor differentiation status. Low BDNF-AS expression is associated with shorter overall survival and may be acting as an independent marker in RB. In Y79 and WERI-Rb-1 cells, forced overexpression of BDNF-AS inhibited cancer proliferation and migration. It also induced cell-cycle arrest at G0/G1 phase by downregulating CDC42, Cyclin E and BDNF. CONCLUSION BDNF-AS is lowly expressed, and may be used as a prognostic biomarker in RB. Upregulating BDNF-AS has inhibitory effect on RB development, probably through the suppression of cell-cycle transition.
Collapse
|
41
|
Simion V, Nadim WD, Benedetti H, Pichon C, Morisset-Lopez S, Baril P. Pharmacomodulation of microRNA Expression in Neurocognitive Diseases: Obstacles and Future Opportunities. Curr Neuropharmacol 2017; 15:276-290. [PMID: 27397479 PMCID: PMC5412696 DOI: 10.2174/1570159x14666160630210422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
Given the importance of microRNAs (miRNAs) in modulating brain functions and their implications in neurocognitive disorders there are currently significant efforts devoted in the field of miRNA-based therapeutics to correct and/or to treat these brain diseases. The observation that miRNA 29a/b-1 cluster, miRNA 10b and miRNA 7, for instance, are frequently deregulated in the brains of patients with neurocognitive diseases and in animal models of Alzheimer, Huntington's and Parkinson's diseases, suggest that correction of miRNA expression using agonist or antagonist miRNA oligonucleotides might be a promising approach to correct or even to cure such diseases. The encouraging results from recent clinical trials allow envisioning that pharmacological approaches based on miRNAs might, in a near future, reach the requirements for successful therapeutic outcomes and will improve the healthcare of patients with brain injuries or disorders. This review will focus on the current strategies used to modulate pharmacological function of miRNA using chemically modified oligonucleotides. We will then review the recent literature on strategies to improve nucleic acid delivery across the blood-brain barrier which remains a severe obstacle to the widespread application of miRNA therapeutics to treat brain diseases. Finally, we provide a state-of-art of current preclinical research performed in animal models for the treatment of neurocognitive disorders using miRNA as therapeutic agents and discuss future developments of miRNA therapeutics.
Collapse
Affiliation(s)
- Viorel Simion
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Wissem Deraredj Nadim
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Hélène Benedetti
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Severine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| |
Collapse
|
42
|
Mitre M, Mariga A, Chao MV. Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2017; 131:13-23. [PMID: 27908981 PMCID: PMC5295469 DOI: 10.1042/cs20160044] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/18/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are prominent regulators of neuronal survival, growth and differentiation during development. While trophic factors are viewed as well-understood but not innovative molecules, there are many lines of evidence indicating that BDNF plays an important role in the pathophysiology of many neurodegenerative disorders, depression, anxiety and other psychiatric disorders. In particular, lower levels of BDNF are associated with the aetiology of Alzheimer's and Huntington's diseases. A major challenge is to explain how neurotrophins are able to induce plasticity, improve learning and memory and prevent age-dependent cognitive decline through receptor signalling. This article will review the mechanism of action of neurotrophins and how BDNF/tropomyosin receptor kinase B (TrkB) receptor signaling can dictate trophic responses and change brain plasticity through activity-dependent stimulation. Alternative approaches for modulating BDNF/TrkB signalling to deliver relevant clinical outcomes in neurodegenerative and neuropsychiatric disorders will also be described.
Collapse
Affiliation(s)
- Mariela Mitre
- Neuroscience and Physiology and Psychiatry, New York University School of Medicine, New York, NY 10016, U.S.A.
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
| | - Abigail Mariga
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
- Departments of Cell Biology, New York University School of Medicine, New York, NY 10016, U.S.A
| | - Moses V Chao
- Neuroscience and Physiology and Psychiatry, New York University School of Medicine, New York, NY 10016, U.S.A
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, U.S.A
- Departments of Cell Biology, New York University School of Medicine, New York, NY 10016, U.S.A
| |
Collapse
|
43
|
Mariga A, Mitre M, Chao MV. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol Dis 2017; 97:73-79. [PMID: 27015693 PMCID: PMC5295364 DOI: 10.1016/j.nbd.2016.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/20/2016] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease.
Collapse
Affiliation(s)
- Abigail Mariga
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Mariela Mitre
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Moses V Chao
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| |
Collapse
|
44
|
Heckman PRA, van Duinen MA, Bollen EPP, Nishi A, Wennogle LP, Blokland A, Prickaerts J. Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications. Int J Neuropsychopharmacol 2016; 19:pyw030. [PMID: 27037577 PMCID: PMC5091819 DOI: 10.1093/ijnp/pyw030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including schizophrenia, Parkinson's disease, Huntington's disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, and Tourette's syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits. METHODS Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in relation to the fronto-striatal circuits are reviewed. RESULTS Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in relation to the fronto-striatal circuits. CONCLUSION Increased understanding of the subcellular localization and unraveling of the signalosome concept of phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits.
Collapse
|
45
|
Reynolds GO, Otto MW, Ellis TD, Cronin-Golomb A. The Therapeutic Potential of Exercise to Improve Mood, Cognition, and Sleep in Parkinson's Disease. Mov Disord 2016; 31:23-38. [PMID: 26715466 PMCID: PMC4724300 DOI: 10.1002/mds.26484] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023] Open
Abstract
In addition to the classic motor symptoms, Parkinson's disease (PD) is associated with a variety of nonmotor symptoms that significantly reduce quality of life, even in the early stages of the disease. There is an urgent need to develop evidence-based treatments for these symptoms, which include mood disturbances, cognitive dysfunction, and sleep disruption. We focus here on exercise interventions, which have been used to improve mood, cognition, and sleep in healthy older adults and clinical populations, but to date have primarily targeted motor symptoms in PD. We synthesize the existing literature on the benefits of aerobic exercise and strength training on mood, sleep, and cognition as demonstrated in healthy older adults and adults with PD, and suggest that these types of exercise offer a feasible and promising adjunct treatment for mood, cognition, and sleep difficulties in PD. Across stages of the disease, exercise interventions represent a treatment strategy with the unique ability to improve a range of nonmotor symptoms while also alleviating the classic motor symptoms of the disease. Future research in PD should include nonmotor outcomes in exercise trials with the goal of developing evidence-based exercise interventions as a safe, broad-spectrum treatment approach to improve mood, cognition, and sleep for individuals with PD.
Collapse
Affiliation(s)
| | - Michael W. Otto
- Boston University, Department of Psychological and Brain Sciences
| | - Terry D. Ellis
- Boston University College of Health and Rehabilitation Sciences: Sargent College, Department of Physical Therapy & Athletic Training and Center for Neurorehabilitation
| | | |
Collapse
|
46
|
Chuang JI, Huang JY, Tsai SJ, Sun HS, Yang SH, Chuang PC, Huang BM, Ching CH. FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation. Free Radic Biol Med 2015; 89:274-86. [PMID: 26424114 DOI: 10.1016/j.freeradbiomed.2015.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/19/2023]
Abstract
Our previous studies demonstrated that fibroblast growth factor 9 (FGF9) protects cortical and dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative insult by upregulation of γ-glutamylcysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1). However, the mechanisms responsible for FGF9-induced γ-GCS and HO-1 upregulation remain uncharacterized. In the present study, we demonstrate the signaling pathways by which FGF9 upregulates HO-1 and γ-GCS expression. We found that FGF9-induced HO-1 and γ-GCS expression was prevented by PD173014, an inhibitor of the FGF receptor (FGFR). FGF9 treatment induced the phosphorylation of FGFR downstream signals of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT in a dose- and time-dependent manner. The inhibition of MEK/ERK1/2 or PI3K/AKT activity by U0126 or wortmannin, but not the inhibition of phospholipase Cγ by U73122, prevented FGF9-induced γ-GCS and HO-1 upregulation, changes in cellular redox status, and neuroprotection against MPP(+) toxicity in primary cortical and dopaminergic neurons. Furthermore, FGF9 treatment enhanced the promoter activity of the cAMP-response element binding protein (CREB) and nuclear factor erythroid-derived 2-like 2 (Nrf2), and this phenomenon was blocked by PD173014 or U0126 or wortmannin. Knockdown of CREB and Nrf2 by shRNA blocked FGF9-induced γ-GCS and HO-1 upregulation, but not ERK and AKT phosphorylation. An in vivo study consistently showed that FGF9 overexpression using a lentivirus delivery system induced ERK1/2 phosphorylation and HO-1 upregulation and protected dopaminergic neurons against MPP(+) toxicity in rat substantia nigra. These results indicate that FGF9-induced HO-1 and γ-GCS upregulation is mediated by binding to FGFR and activation of two parallel downstream signaling pathways, ERK and AKT, which reconverge to induce CREB and Nrf2 transcriptional activity.
Collapse
Affiliation(s)
- Jih-Ing Chuang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jui-Yen Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - H Sunny Sun
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Insititute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Hsin Ching
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
47
|
Nie S, Xu Y, Chen G, Ma K, Han C, Guo Z, Zhang Z, Ye K, Cao X. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 2015; 99:448-58. [DOI: 10.1016/j.neuropharm.2015.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
|
48
|
Caudal D, Alvarsson A, Björklund A, Svenningsson P. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons. Exp Neurol 2015; 273:243-52. [DOI: 10.1016/j.expneurol.2015.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/18/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023]
|
49
|
Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson's disease. J Biomed Sci 2015. [PMID: 26198255 PMCID: PMC4511027 DOI: 10.1186/s12929-015-0166-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) influences nigral dopaminergic neurons via autocrine and paracrine mechanisms. The reduction of BDNF expression in Parkinson’s disease substantia nigra (SN) might contribute to the death of dopaminergic neurons because inhibiting BDNF expression in the SN causes parkinsonism in the rat. This study aimed to demonstrate that increasing BDNF expression in dopaminergic neurons of rats with one week of 6-hydroxydopamine lesion recovers from parkinsonism. The plasmids phDAT-BDNF-flag and phDAT-EGFP, coding for enhanced green fluorescent protein, were transfected using neurotensin (NTS)-polyplex, which enables delivery of genes into the dopaminergic neurons via neurotensin-receptor type 1 (NTSR1) internalization. Results Two weeks after transfections, RT-PCR and immunofluorescence techniques showed that the residual dopaminergic neurons retain NTSR1 expression and susceptibility to be transfected by the NTS-polyplex. phDAT-BDNF-flag transfection did not increase dopaminergic neurons, but caused 7-fold increase in dopamine fibers within the SN and 5-fold increase in innervation and dopamine levels in the striatum. These neurotrophic effects were accompanied by a significant improvement in motor behavior. Conclusions NTS-polyplex-mediated BDNF overexpression in dopaminergic neurons has proven to be effective to remit hemiparkinsonism in the rat. This BDNF gene therapy might be helpful in the early stage of Parkinson’s disease.
Collapse
|
50
|
Parkinson GM, Dayas CV, Smith DW. Age-related gene expression changes in substantia nigra dopamine neurons of the rat. Mech Ageing Dev 2015; 149:41-9. [PMID: 26065381 DOI: 10.1016/j.mad.2015.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Abstract
Ageing affects most, if not all, functional systems in the body. For example, the somatic motor nervous system, responsible for initiating and regulating motor output to skeletal musculature, is vulnerable to ageing. The nigrostriatal dopamine pathway is one component of this system, with deficits in dopamine signalling contributing to major motor dysfunction, as exemplified in Parkinson's disease (PD). However, while the dopamine deficit in PD is due to degeneration of substantia nigra (SN) dopamine (DA) neurons, it is unclear whether there is sufficient loss of SN DA neurons with ageing to explain observed motor impairments. Instead, evidence suggests that age-related loss of DA neuron function may be more important than frank cell loss. To further elucidate the mechanisms of functional decline, we have investigated age-related changes in gene expression specifically in laser microdissected SN DA neurons. There were significant age-related changes in the expression of genes associated with neurotrophic factor signalling and the regulation of tyrosine hydroxylase activity. Furthermore, reduced expression of the DA neuron-associated transcription factor, Nurr1, may contribute to these changes. Together, these results suggest that altered neurotrophic signalling and tyrosine hydroxylase activity may contribute to altered DA neuron signalling and motor nervous system regulation in ageing.
Collapse
Affiliation(s)
- Gemma M Parkinson
- Preclinical Neurobiology Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, 1/Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| | - Christopher V Dayas
- Preclinical Neurobiology Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, 1/Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| | - Doug W Smith
- Preclinical Neurobiology Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, 1/Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|