1
|
Mendez-Victoriano G, Zhu Y, Middleton F, Massa PT, Ajulu K, Webster MJ, Weickert CS. Increased Parenchymal Macrophages are associated with decreased Tyrosine Hydroxylase mRNA levels in the Substantia Nigra of people with Schizophrenia and Bipolar Disorder. Psychiatry Res 2024; 340:116141. [PMID: 39153291 DOI: 10.1016/j.psychres.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL). We also analyzed whether CD163 protein and dopamine-synthesizing enzyme tyrosine hydroxylase (TH) mRNA levels differed among diagnostic groups and if they correlated with the density of macrophages. Overall, perivascular CD163+ cell density was higher in the gray matter (SN) than in the white matter (CP). Compared to CTRL, we found increased density of parenchymal CD163+ cells in the SN of the three psychiatric groups and increased CD163 protein levels in SZ. CD163 protein was positively correlated with density of perivascular CD163+ cells. TH mRNA was reduced in SZ and BD and negatively correlated with parenchymal CD163+ cell density. We provide the first quantitative and molecular evidence of an increase in the density of parenchymal macrophages in the midbrain of major mental illnesses and show that the presence of these macrophages may negatively impact dopaminergic neurons.
Collapse
Affiliation(s)
- Gerardo Mendez-Victoriano
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Paul T Massa
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Kachikwulu Ajulu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia S Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Qi F, He H, Zhu Y. Neural Development and Repair Induced by Femtosecond Laser Stimulation. ACS Chem Neurosci 2024; 15:3106-3112. [PMID: 39163542 DOI: 10.1021/acschemneuro.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Dendritic spines function as postsynaptic sites, receiving excitatory signals from presynaptic axons. The synaptic plasticity of spines underlies the refinement of neuronal circuits. Neural cognitive disorders are commonly associated with the impairment and elimination of dendritic spines. In this study, we report an all-optical method to activate dendritic spine growth and regeneration by a single short flash of femtosecond laser stimulation. The inhibited development and loss of spines can be rescued by a transient illumination of the laser inside a micrometer region of the soma by activating the extracellular signal-regulated kinase (ERK) signaling pathway. The rescued neurons exhibit function. Hence we provide a potential noninvasive method for the regeneration of dendritic spines.
Collapse
Affiliation(s)
- Fan Qi
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, P. R. China
| | - Yujie Zhu
- Department of Laser and Aesthetic Medicine and Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200041, P. R. China
| |
Collapse
|
3
|
Talati CP, Lee JW, Lu S, Ojeda NB, Prakash V, Dankhara N, Nielson TC, Sandifer SP, Bidwell GL, Pang Y, Fan LW, Bhatt AJ. Intranasal insulin attenuates hypoxia-ischemia-induced short-term sensorimotor behavioral disturbances, neuronal apoptosis, and brain damage in neonatal rats. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 6:100123. [PMID: 38235171 PMCID: PMC10793091 DOI: 10.1016/j.crneur.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024] Open
Abstract
There is a significant need for additional therapy to improve outcomes for newborns with acute Hypoxic-ischemic (HI) encephalopathy (HIE). New evidence suggests that insulin could be neuroprotective. This study aimed to investigate whether intranasal insulin attenuates HI-induced brain damage and neurobehavioral dysfunction in neonatal rats. Postnatal day 10 (P10), Sprague-Dawley rat pups were randomly divided into Sham + Vehicle, Sham + Insulin, HI + Vehicle, and HI + Insulin groups with equal male-to-female ratios. Pups either had HI by permanent ligation of the right common carotid artery followed by 90 min of hypoxia (8% O2) or sham surgery followed by room air exposure. Immediately after HI or Sham, pups were given fluorescence-tagged insulin (Alex-546-insulin)/vehicle, human insulin (25 μg), or vehicle in each nare under anesthesia. Shortly after administration, widespread Alex-546-insulin-binding cells were detected in the brain, primarily co-localized with neuronal nuclei-positive neurons on double-immunostaining. In the hippocampus, phospho-Akt was activated in a subset of Alex-546-insulin double-labeled cells, suggesting activation of the Akt/PI3K pathway in these neurons. Intranasal insulin (InInsulin) reduced HI-induced sensorimotor behavioral disturbances at P11. InInsulin prevented HI-induced increased Fluoro-Jade C+ degenerated neurons, cleaved caspase 3+ neurons, and volume loss in the ipsilateral brain at P11. There was no sex-specific response to HI or insulin. The findings confirm that intranasal insulin provides neuroprotection against HI brain injury in P10 rats associated with activation of intracellular cell survival signaling. If further pre-clinical research shows long-term benefits, intranasal insulin has the potential to be a promising non-invasive therapy to improve outcomes for newborns with HIE.
Collapse
Affiliation(s)
- Chirag P. Talati
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Jonathan W. Lee
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Silu Lu
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Norma B. Ojeda
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Varsha Prakash
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Nilesh Dankhara
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Tanner C. Nielson
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Sara P. Sandifer
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Abhay J. Bhatt
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
4
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
5
|
Chu Y, Hirst WD, Kordower JH. Mixed pathology as a rule, not exception: Time to reconsider disease nosology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:57-71. [PMID: 36796948 DOI: 10.1016/b978-0-323-85538-9.00012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that is associated with motor and nonmotor symptoms. Accumulation of misfolded α-synuclein is considered a key pathological feature during disease initiation and progression. While clearly deemed a synucleinopathy, the development of amyloid-β plaques, tau-containing neurofibrillary tangles, and even TDP-43 protein inclusions occur within the nigrostriatal system and in other brain regions. In addition, inflammatory responses, manifested by glial reactivity, T-cell infiltration, and increased expression of inflammatory cytokines, plus other toxic mediators derived from activated glial cells, are currently recognized as prominent drivers of Parkinson's disease pathology. However, copathologies have increasingly been recognized as the rule (>90%) and not the exception, with Parkinson's disease cases on average exhibiting three different copathologies. While microinfarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy may have an impact on disease progression, α-synuclein, amyloid-β, and TDP-43 pathology do not seem to contribute to progression.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Boston, MA, United States
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
6
|
Modulating Microglia/Macrophage Activation by CDNF Promotes Transplantation of Fetal Ventral Mesencephalic Graft Survival and Function in a Hemiparkinsonian Rat Model. Biomedicines 2022; 10:biomedicines10061446. [PMID: 35740467 PMCID: PMC9221078 DOI: 10.3390/biomedicines10061446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta, which leads to the motor control deficits. Recently, cell transplantation is a cutting-edge technique for the therapy of PD. Nevertheless, one key bottleneck to realizing such potential is allogenic immune reaction of tissue grafts by recipients. Cerebral dopamine neurotrophic factor (CDNF) was shown to possess immune-modulatory properties that benefit neurodegenerative diseases. We hypothesized that co-administration of CDNF with fetal ventral mesencephalic (VM) tissue can improve the success of VM replacement therapies by attenuating immune responses. Hemiparkinsonian rats were generated by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats, with/without CDNF administration. Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small-animal positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. In addition, transplantation-related inflammatory response was determined by uptake of [18F] FEPPA in the grafted side of striatum. Immunohistochemistry (IHC) examination was used to determine the survival of the grated dopaminergic neurons in the striatum and to investigate immune-modulatory effects of CDNF. The modulation of inflammatory responses caused by CDNF might involve enhancing M2 subset polarization and increasing fractal dimensions of 6-OHDA-treated BV2 microglial cell line. Analysis of CDNF-induced changes to gene expressions of 6-OHDA-stimulated BV2 cells implies that these alternations of the biomarkers and microglial morphology are implicated in the upregulation of protein kinase B signaling as well as regulation of catalytic, transferase, and protein serine/threonine kinase activity. The effects of CDNF on 6-OHDA-induced alternation of the canonical pathway in BV2 microglial cells is highly associated with PI3K-mediated phagosome formation. Our results are the first to show that CDNF administration enhances the survival of the grafted dopaminergic neurons and improves functional recovery in PD animal model. Modulation of the polarization, morphological characteristics, and transcriptional profiles of 6-OHDA-stimualted microglia by CDNF may possess these properties in transplantation-based regenerative therapies.
Collapse
|
7
|
Huang CY, Wang S. Dextromethorphan reduces prenatal lipopolysaccharide exposure-induced dopaminergic neuronal loss and cytokine changes in offspring. Int J Dev Neurosci 2022; 82:261-270. [PMID: 35322906 DOI: 10.1002/jdn.10180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Maternal infection during pregnancy may affect fetal brain development and increase the risk of developing neurological and mental disorders later in life in offspring. In this study, we used low-dose lipopolysaccharide (LPS) injection to mimic mild maternal infection at a critical time window for fetal dopamine (DA) and serotonin (5-HT) neuron development. The affected offspring exhibited reduction of dopaminergic and serotonergic neurons and anxiety- and depression-related behaviors in adulthood. In the current study, we evaluated whether dextromethorphan (DM, 30 mg/kg), an over-the-counter antitussive drug with anti-inflammatory and neuroprotective properties, could reduce the adverse effects of maternal infection mimicked by LPS exposure. We discovered that DM application did not change the baseline serum interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) levels in the LPS-exposed offspring. However, DM treatment could reduce the heightened immune responses induced by a postnatal LPS challenge test in prenatal LPS-exposed offspring. The neuroprotective effect of DM was only seen in DA neurons but not in 5-HT neurons. We concluded that DM treatment can partially protect the offspring against the adverse effects of LPS-induced maternal immune activation. The reduction in heightened immune responses and dopaminergic neuronal loss in LPS-exposed offspring could potentially reduce the risk of DA-related neurological and psychiatric disorders later in life.
Collapse
Affiliation(s)
- Chia-Yu Huang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Kuter KZ, Śmiałowska M, Ossowska K. The influence of preconditioning with low dose of LPS on paraquat-induced neurotoxicity, microglia activation and expression of α-synuclein and synphilin-1 in the dopaminergic system. Pharmacol Rep 2021; 74:67-83. [PMID: 34762280 PMCID: PMC8786770 DOI: 10.1007/s43440-021-00340-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Background Prolonged inflammation, oxidative stress, and protein aggregation are important factors contributing to Parkinson’s disease (PD) pathology. A known ROS generator, pesticide paraquat (PQ), was indicated as an environmental substance potentially increasing the incidence of PD and is used to model this disease. We investigated if a combination of inflammation and oxidative stress in subthreshold doses would exacerbate the modelled neuropathology. Methods We examined the late effects of acute or repeated peripheral inflammation induced by low dose of LPS (10 μg/kg, ip) on PQ toxicity in the rat nigrostriatal dopaminergic pathway, microglial activation markers and expression of major Lewy bodies proteins, α-synuclein and synphilin-1. Results We observed that LPS increased, while PQ decreased body temperature and microglia CD11b expression in the SN. Single LPS pretreatment, 3 h before repeated weekly PQ injections (4×) slightly aggravated neuronal degeneration in the SN. Moreover, degeneration of dopaminergic neurons after weekly repeated inflammation itself (4×) was observed. Interestingly, repeated LPS administration combined with each PQ dose counteracted such effect. The expression of α-synuclein decreased after repeated LPS injections, while only combined, repeated LPS and PQ treatment lowered the levels of synphilin-1. Therefore, α-synuclein and synphilin-1 expression change was influenced by different mechanisms. Concomitantly, decreased levels of the two proteins correlated with decreased degeneration of dopaminergic neurons and with a normalized microglia activation marker. Conclusions Our results indicate that both oxidative insult triggered by PQ and inflammation caused by peripheral LPS injection can individually induce neurotoxicity. Those factors act through different mechanisms that are not additive and not selective towards dopaminergic neurons, probably implying microglia. Repeated, but small insults from oxidative stress and inflammation when administered in significant time intervals can counteract each other and even act protective as a preconditioning effect. The timing of such repetitive insults is also of essence. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00340-1.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Kraków, Poland.
| | - Maria Śmiałowska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krystyna Ossowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Kraków, Poland
| |
Collapse
|
9
|
Kolmogorova D, Ah-Yen EG, Taylor BC, Vaggas T, Liang J, Davis T, Ismail N. Sex-specific responses of the pubertal neuroimmune axis in CD-1 mice. Brain Behav Immun Health 2021; 13:100229. [PMID: 34589744 PMCID: PMC8474685 DOI: 10.1016/j.bbih.2021.100229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
The mechanistic relationship between the sexually dimorphic neuroimmune system and the sex-specific outcomes of a pubertal immune challenge is unclear. Therefore, we examined sex differences in the progression of cytotoxic microglial responses and blood-brain barrier (BBB) disruption to a peripubertal lipopolysaccharide (LPS) treatment in brain regions relevant to stress responses and cognitive function. Six-week-old (i.e., stress-sensitive pubertal period) male and female CD-1 mice were treated with LPS (1.5 mg/kg body weight, ip) or 0.9% saline (LPS-matched volume, ip). Sex and treatment differences in microglial (Iba1+) and apoptotic neuronal (caspase-3+/NeuN+) and non-neuronal (caspase-3+/NeuN−) expression were examined in the hippocampus, medial prefrontal cortex (mPFC), and paraventricular nucleus 24 h (sickness), one week (symptomatic recovery) and four weeks (early adulthood) post-treatment (n = 8/group). Microglial morphology was quantified with fractal analyses. Group differences in BBB permeability to 14C-sucrose were examined 24 h (whole-brain, hippocampus, prefrontal cortex, hypothalamus, and cerebellum) and one week (whole-brain) post-treatment. The acute effects of pubertal LPS were specific to females (i.e., global BBB disruption, altered microglial expression and morphology in the mPFC and hippocampus, increased hippocampal apoptosis). The residual effects of pubertal LPS-induced sickness observed in microglia persisted into adulthood in a sex- and region-specific manner. In addition to highlighting these sex-specific responses of the pubertal neuroimmune system, we report baseline region-specific sex differences in microglia spanning puberty through adulthood. We propose that these sex differences in neuroimmune-neurovascular interactions during the stress-sensitive pubertal period create sex biases in stress-related disorders of brain and behaviour. Pubertal LPS alters baseline sex differences in microglial numbers and morphology. Pubertal CD-1 mice mount sexually dimorphic neuroimmune responses to systemic LPS. Treatment effects on microglial expression and morphology differ by sex and region. The acute LPS-induced effects were specific to females.
Collapse
Affiliation(s)
- Daria Kolmogorova
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily Grace Ah-Yen
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Tiffany Vaggas
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jacky Liang
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tama Davis
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci U S A 2021; 118:2014464118. [PMID: 33876747 DOI: 10.1073/pnas.2014464118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Collapse
|
11
|
Ferrari DP, Bortolanza M, Del Bel EA. Interferon-γ Involvement in the Neuroinflammation Associated with Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2021; 39:705-719. [PMID: 33687725 DOI: 10.1007/s12640-021-00345-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Interferon-γ (IFN-γ) is a proinflammatory cytokine that activates glial cells. IFN-γ is increased in the plasma and brain of Parkinson's disease patients, suggesting its potential role in the disease. We investigated whether the IFN-γ deficiency could interfere with nigrostriatal degeneration induced by the neurotoxin 6-hydroxydopamine, L-DOPA-induced dyskinesia, and the neuroinflammatory features as astrogliosis, microgliosis, and induced nitric oxide synthase (iNOS) immunoreactivity induced by L-DOPA treatment. Wild type (WT) and IFN-γ knockout (IFN-γ/KO) mice received unilateral striatal microinjections of 6-hydroxydopamine. Animals were sacrificed 1, 3, 7, and 21 days after lesions. Additional group of WT and IFN-γ/KO parkinsonian mice, after 3 weeks of neurotoxin injection, received L-DOPA (intraperitoneally, for 21 days) resulting in dyskinetic-like behavior. Tyrosine hydroxylase immunostaining indicated the starting of dopaminergic lesion since the first day past toxin administration, progressively increased until the third day when it stabilized. There was no difference in the lesion and L-DOPA-induced dyskinesia intensity between WT and IFN-γ/KO mice. Remarkably, IFN-γ/KO mice treated with L-DOPA presented in the lesioned striatum an increase of iNOS and glial fibrilary acid protein (GFAP) density, compared with the WT group. Morphological analysis revealed the rise of astrocytes and microglia reactivity in IFN-γ/KO mice exibiting dyskinesia. In conclusion, IFN-γ/KO mice presented an intensification of the inflammatory reaction accompanying L-DOPA treatment and suggest that iNOS and GFAP increase, and the activation of astrocytes and microglia induced afterward L-DOPA treatment was IFN-γ independent events. Intriguingly, IFN-γ absence did not affect the degeneration of dopaminergic neurons or LID development.
Collapse
Affiliation(s)
- D P Ferrari
- Department of Neuroscience, School of Medicine of Ribeirão Preto, University of São Paulo, SP, 14040-900, Brazil.,Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, 14040-904, Brazil
| | - M Bortolanza
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, 14040-904, Brazil
| | - E A Del Bel
- Department of Neuroscience, School of Medicine of Ribeirão Preto, University of São Paulo, SP, 14040-900, Brazil. .,Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, 14040-904, Brazil.
| |
Collapse
|
12
|
Marks K, Coutinho E, Vincent A. Maternal-Autoantibody-Related (MAR) Autism: Identifying Neuronal Antigens and Approaching Prospects for Intervention. J Clin Med 2020; 9:jcm9082564. [PMID: 32784803 PMCID: PMC7465310 DOI: 10.3390/jcm9082564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies indicate the existence of a maternal-autoantibody-related subtype of autism spectrum disorder (ASD). To date, a large number of studies have focused on describing patterns of brain-reactive serum antibodies in maternal-autoantibody-related (MAR) autism and some have described attempts to define the antigenic targets. This article describes evidence on MAR autism and the various autoantibodies that have been implicated. Among other possibilities, antibodies to neuronal surface protein Contactin Associated Protein 2 (CASPR2) have been found more frequently in mothers of children with neurodevelopmental disorders or autism, and two independent experimental studies have shown pathogenicity in mice. The N-methyl-D-aspartate receptor (NMDAR) is another possible target for maternal antibodies as demonstrated in mice. Here, we discuss the growing evidence, discuss issues regarding biomarker definition, and summarise the therapeutic approaches that might be used to reduce or prevent the transfer of pathogenic maternal antibodies.
Collapse
Affiliation(s)
- Katya Marks
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK;
| | - Ester Coutinho
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, SE5 9RT London, UK;
- Nuffield Department of Clinical Neurosciences and Weatherall Institute for Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Angela Vincent
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, SE1 1UL London, UK
- Correspondence: ; Tel.: +44-781-722-4849 or +44-186-555-9636
| |
Collapse
|
13
|
Abstract
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Collapse
Affiliation(s)
- Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06519, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06519, USA
| |
Collapse
|
14
|
Do HTT, Bui BP, Sim S, Jung JK, Lee H, Cho J. Anti-Inflammatory and Anti-Migratory Activities of Isoquinoline-1-Carboxamide Derivatives in LPS-Treated BV2 Microglial Cells via Inhibition of MAPKs/NF-κB Pathway. Int J Mol Sci 2020; 21:ijms21072319. [PMID: 32230861 PMCID: PMC7177615 DOI: 10.3390/ijms21072319] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eleven novel isoquinoline-1-carboxamides (HSR1101~1111) were synthesized and evaluated for their effects on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators and cell migration in BV2 microglial cells. Three compounds (HSR1101~1103) exhibited the most potent suppression of LPS-induced pro-inflammatory mediators, including interleukin (IL)-6, tumor necrosis factor-alpha, and nitric oxide (NO), without significant cytotoxicity. Among them, only N-(2-hydroxyphenyl) isoquinoline-1-carboxamide (HSR1101) was found to reverse LPS-suppressed anti-inflammatory cytokine IL-10, so it was selected for further characterization. HSR1101 attenuated LPS-induced expression of inducible NO synthase and cyclooxygenase-2. Particularly, HSR1101 abated LPS-induced nuclear translocation of NF-κB through inhibition of IκB phosphorylation. Furthermore, HSR1101 inhibited LPS-induced cell migration and phosphorylation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 MAPK. The specific MAPK inhibitors, U0126, SP600125, and SB203580, suppressed LPS-stimulated pro-inflammatory mediators, cell migration, and NF-κB nuclear translocation, indicating that MAPKs may be the upstream kinase of NF-κB signaling. Collectively, these results demonstrate that HSR1101 is a potent and promising compound suppressing LPS-induced inflammation and cell migration in BV2 microglial cells, and that inhibition of the MAPKs/NF-κB pathway mediates its anti-inflammatory and anti-migratory effects. Based on our findings, HSR1101 may have beneficial impacts on various neurodegenerative disorders associated with neuroinflammation and microglial activation.
Collapse
Affiliation(s)
- Ha Thi Thu Do
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, Korea; (H.T.T.D.); (B.P.B.)
| | - Bich Phuong Bui
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, Korea; (H.T.T.D.); (B.P.B.)
| | - Seongrak Sim
- College of Pharmacy, Chungbuk National University, Osong, Cheongju 28160, Korea; (S.S.); (J.-K.J.)
| | - Jae-Kyung Jung
- College of Pharmacy, Chungbuk National University, Osong, Cheongju 28160, Korea; (S.S.); (J.-K.J.)
| | - Heesoon Lee
- College of Pharmacy, Chungbuk National University, Osong, Cheongju 28160, Korea; (S.S.); (J.-K.J.)
- Correspondence: (H.L.); (J.C.)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, Korea; (H.T.T.D.); (B.P.B.)
- Correspondence: (H.L.); (J.C.)
| |
Collapse
|
15
|
Kleinridders A, Pothos EN. Impact of Brain Insulin Signaling on Dopamine Function, Food Intake, Reward, and Emotional Behavior. Curr Nutr Rep 2020; 8:83-91. [PMID: 31001792 DOI: 10.1007/s13668-019-0276-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Dietary obesity is primarily attributed to an imbalance between food intake and energy expenditure. Adherence to lifestyle interventions reducing weight is typically low. As a result, obesity becomes a chronic state with increased co-morbidities such as insulin resistance and diabetes. We review the effects of brain insulin action and dopaminergic signal transmission on food intake, reward, and mood as well as potential modulations of these systems to counteract the obesity epidemic. RECENT FINDINGS Central insulin and dopamine action are interlinked and impact on food intake, reward, and mood. Brain insulin resistance causes hyperphagia, anxiety, and depressive-like behavior and compromises the dopaminergic system. Such effects can induce reduced compliance to medical treatment. Insulin receptor sensitization and dopamine receptor agonists show attenuation of obesity and improvement of mental health in rodents and humans. Modulating brain insulin and dopamine signaling in obese patients can potentially improve therapeutic outcomes.
Collapse
Affiliation(s)
- André Kleinridders
- Central Regulation of Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany. .,German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764, Neuherberg, Germany.
| | - Emmanuel N Pothos
- Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Sackler School of Graduate Biomedical Sciences and Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
16
|
Hong J, Bang M. Anti-inflammatory Strategies for Schizophrenia: A Review of Evidence for Therapeutic Applications and Drug Repurposing. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:10-24. [PMID: 31958901 PMCID: PMC7006977 DOI: 10.9758/cpn.2020.18.1.10] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/12/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder with a substantial socioeconomic and humanistic burden. Currently available treatment strategies mostly rely on antipsychotic drugs, which block dopaminergic effects in the mesolimbic pathway of the brain. Although antipsychotic drugs help relieve psychotic symptoms, a definitive cure for schizophrenia has yet to be achieved. Recent advances in neuroinflammation research suggest that proinflammatory processes in the brain could cause alterations in neurobehavioral development and increase vulnerability to schizophrenia. With a growing need for novel strategies in the treatment of schizophrenia, it would be meaningful to review the current evidence supporting the therapeutic potential of anti-inflammatory strategies. This review details the key findings of clinical trials that investigate the efficacy of anti-inflammatory agents as adjuvants to antipsychotic treatment. We further discuss the possibilities of repurposing anti-inflammatory agents and developing novel strategies for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonghee Hong
- CHA University School of Medicine, Seongnam, Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
17
|
Aguilar-Valles A, Rodrigue B, Matta-Camacho E. Maternal Immune Activation and the Development of Dopaminergic Neurotransmission of the Offspring: Relevance for Schizophrenia and Other Psychoses. Front Psychiatry 2020; 11:852. [PMID: 33061910 PMCID: PMC7475700 DOI: 10.3389/fpsyt.2020.00852] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Prenatal infections have been linked to the development of schizophrenia (SCZ) and other neurodevelopmental disorders in the offspring, and work in animal models indicates that this is to occur through the maternal inflammatory response triggered by infection. Several studies in animal models demonstrated that acute inflammatory episodes are sufficient to trigger brain alterations in the adult offspring, especially in the mesolimbic dopamine (DA) system, involved in the pathophysiology of SCZ and other disorders involving psychosis. In the current review, we synthesize the literature on the clinical studies implicating prenatal infectious events in the development of SCZ. Then, we summarize evidence from animal models of maternal immune activation (MIA) and the behavioral and molecular alterations relevant for the function of the DAergic system. Furthermore, we discuss the evidence supporting the involvement of maternal cytokines, such as interleukin 6 (IL-6) and leptin (a hormone with effects on inflammation) in mediating the effects of MIA on the fetal brain, leading to the long-lasting effects on the offspring. In particular, IL-6 has been involved in mediating the effects of MIA animal models in the offspring through actions on the placenta, induction of IL-17a, or triggering the decrease in non-heme iron (hypoferremia). Maternal infection is very likely interacting with additional genetic and environmental risk factors in the development of SCZ; systematically investigating how these interactions produce specific phenotypes is the next step in understanding the etiology of complex psychiatric disorders.
Collapse
Affiliation(s)
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
18
|
Chávez-Castillo M, Nava M, Ortega Á, Rojas M, Núñez V, Salazar J, Bermúdez V, Rojas-Quintero J. Depression as an Immunometabolic Disorder: Exploring Shared Pharmacotherapeutics with Cardiovascular Disease. Curr Neuropharmacol 2020; 18:1138-1153. [PMID: 32282306 PMCID: PMC7709154 DOI: 10.2174/1570159x18666200413144401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Modern times have seen depression and cardiovascular disease (CVD) become notorious public health concerns, corresponding to alarming proportions of morbidity, mortality, decreased quality of life, and economic costs. Expanding comprehension of the pathogenesis of depression as an immunometabolic disorder has identified numerous pathophysiologic phenomena in common with CVD, including chronic inflammation, insulin resistance, and oxidative stress. These shared components could be exploited to offer improved alternatives in the joint management of these conditions. Abundant preclinical and clinical data on the impact of established treatments for CVD in the management of depression have allowed for potential candidates to be proposed for the joint management of depression and CVD as immunometabolic disorders. However, a large proportion of the clinical investigation currently available exhibits marked methodological flaws which preclude the formulation of concrete recommendations in many cases. This situation may be a reflection of pervasive problems present in clinical research in psychiatry, especially pertaining to study homogeneity. Therefore, further high-quality research is essential in the future in this regard.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Salazar
- Address correspondence to this author at the Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 20th Avenue 4004, Venezuela; Tel/Fax: ++582617597279; E-mail:
| | | | | |
Collapse
|
19
|
da Silva CS, Calió ML, Mosini AC, Pires JM, Rêgo DDSB, Mello LE, Leslie ATFS. LPS-Induced Systemic Neonatal Inflammation: Blockage of P2X7R by BBG Decreases Mortality on Rat Pups and Oxidative Stress in Hippocampus of Adult Rats. Front Behav Neurosci 2019; 13:240. [PMID: 31798427 PMCID: PMC6878118 DOI: 10.3389/fnbeh.2019.00240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Neonatal lipopolysaccharide (LPS) exposure-induced brain inflammation has been associated to neuronal injury and facilitates the development of models of neurological disorders in adult rats. The P2X7 receptor (P2X7R) plays a fundamental role in the onset and maintenance of the inflammatory cascade. Brilliant blue G (BBG), a P2X7R antagonist, has been shown to effectively promote neuroinflammatory protection. Here, we have investigated the long-term effects of the neonatal systemic inflammation on hippocampal oxidative stress, anxiety behavior and pain sensitivity in adulthood. We hypothesized that P2X7R blockade is able to modulate the effects of inflammation on these variables. Male and female rat pups received LPS and/or BBG solution intraperitoneally on the 1st, 3rd, 5th and 7th postnatal days. The survival rate and body weight were evaluated during the experimental procedures. The animals were submitted to behavioral tests for anxiety (elevated plus maze, EPM) and nociception (hot-plate and tail-flick) and the oxidative stress was measured by superoxide production in the dentate gyrus of the hippocampus using dihydroethidium (DHE) probe. BBG increased the survival rate in LPS-treated rats. No significant differences were found regarding anxiety behavior and pain sensitivity between the experimental groups. Systemic neonatal inflammation leads to a higher production of superoxide anion in the dentate gyrus of the hippocampus in adulthood and BBG inhibited that effect. Our data suggest that blocking the activation of the P2X7R during neonatal systemic inflammation may have a potential neuroprotective effect in adulthood.
Collapse
Affiliation(s)
| | - Michele Longoni Calió
- Departamento de Bioquímica, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Amanda Cristina Mosini
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Jaime Moreira Pires
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | | | - Luiz E Mello
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | |
Collapse
|
20
|
Moriya S, Tan VP, Yee AK, Parhar IS. pink1, atp13a2 and uchl1 expressions are affected by inflammation in the brain. Neurosci Lett 2019; 708:134330. [PMID: 31201839 DOI: 10.1016/j.neulet.2019.134330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023]
Abstract
In Parkinson's disease (PD), several genes have been identified as the PD-related genes, however, the regulatory mechanisms of these gene expressions have not been fully identified. In this study, we investigated the effect of inflammation, one of the major risk factors in PD on expressions of the PD-related genes. Lipopolysaccharide (LPS) was intraperitoneally administered to mature male zebrafish and gene expressions in the brains were examined by real-time PCR. In the inflammation-related genes, expressions of tnfb, il1b and il6 were increased at 2 days post administration in the 10 μg group, and tnfb expression was also increased at 4 days post administration in the 1 μg and 10 μg group. In the PD-related genes, pink1 expression was significantly decreased at 4 days, atp13a2 expression was significantly increased at 7 days, and uchl1 expression was significantly decreased at 7 days. This suggests that pink1, atp13a2 and uchl1 expressions are regulated by inflammation, and this regulatory mechanism might be involved in the progress of PD.
Collapse
Affiliation(s)
- Shogo Moriya
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Victoria P Tan
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alicia Kw Yee
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
21
|
Taetzsch T, Benusa S, Levesque S, Mumaw CL, Block ML. Loss of NF-κB p50 function synergistically augments microglial priming in the middle-aged brain. J Neuroinflammation 2019; 16:60. [PMID: 30871598 PMCID: PMC6419422 DOI: 10.1186/s12974-019-1446-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background While NF-κB p50 function is impaired in central nervous system disease, aging in non-CNS tissues, and response to reactive oxygen species, the role of NF-κB p50 in aging-associated microglial pro-inflammatory priming is poorly understood. Methods Male NF-κB p50+/+ and NF-κB p50−/− mice at three different ages (1.5–3.0 month old, 8.0–11.0 month old, and 16.0–18.0 month old) were treated with LPS (5 mg/kg, IP) to trigger peripheral inflammation, where circulating cytokines, neuroinflammation, microglia morphology, and NF-κB p50/p65 function in brain tissue were determined 3 h later. Results Peripheral LPS injection in 9-month-old C57BL/6 mice resulted in lower NF-κB p50 DNA binding of nuclear extracts from the whole brain, when compared to 3-week-old C57BL/6 mice, revealing differences in LPS-induced NF-κB p50 activity in the brain across the mouse lifespan. To examine the consequences of loss NF-κB p50 function with aging, NF-κB p50+/+ and NF-κB p50−/− mice of three different age groups (1.5–3.0 month old, 8.0–11.0 month old, and 16.0–18.0 month old) were injected with LPS (5 mg/kg, IP). NF-κB p50−/− mice showed markedly elevated circulating, midbrain, and microglial TNFα when compared to NF-κB p50+/+ mice at all ages. Notably, the 16.0–18.0-month-old (middle aged) NF-κB p50−/− mice exhibited synergistically augmented LPS-induced serum and midbrain TNFα when compared to the younger (1.5–3.0 month old, young adult) NF-κB p50−/− mice. The 16.0–18.0-month-old LPS-treated NF-κB p50−/− mice also had the highest midbrain IL-1β expression, largest number of microglia with changes in morphology, and greatest elevation of pro-inflammatory factors in isolated adult microglia. Interestingly, aging NF-κB p50−/− mice exhibited decreased brain NF-κB p65 expression and activity. Conclusions These findings support that loss of NF-κB p50 function and aging in middle-aged mice may interact to excessively augment peripheral/microglial pro-inflammatory responses and point to a novel neuroinflammation signaling mechanism independent the NF-κB p50/p65 transcription factor in this process.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, 23298, USA
| | - Savannah Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, 23298, USA
| | - Shannon Levesque
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA, 23298, USA
| | - Christen L Mumaw
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michelle L Block
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Gumusoglu SB, Stevens HE. Maternal Inflammation and Neurodevelopmental Programming: A Review of Preclinical Outcomes and Implications for Translational Psychiatry. Biol Psychiatry 2019; 85:107-121. [PMID: 30318336 DOI: 10.1016/j.biopsych.2018.08.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Early disruptions to neurodevelopment are highly relevant to understanding both psychiatric risk and underlying pathophysiology that can be targeted by new treatments. Much convergent evidence from the human literature associates inflammation during pregnancy with later neuropsychiatric disorders in offspring. Preclinical models of prenatal inflammation have been developed to examine the causal maternal physiological and offspring neural mechanisms underlying these findings. Here we review the strengths and limitations of preclinical models used for these purposes and describe selected studies that have shown maternal immune impacts on the brain and behavior of offspring. Maternal immune activation in mice, rats, nonhuman primates, and other mammalian model species have demonstrated convergent outcomes across methodologies. These outcomes include shifts and/or disruptions in the normal developmental trajectory of molecular and cellular processes in the offspring brain. Prenatal developmental origins are critical to a mechanistic understanding of maternal immune activation-induced alterations to microglia and immune molecules, brain growth and development, synaptic morphology and physiology, and anxiety- and depression-like, sensorimotor, and social behaviors. These phenotypes are relevant to brain functioning across domains and to anxiety and mood disorders, schizophrenia, and autism spectrum disorder, in which they have been identified. By turning a neurodevelopmental lens on this body of work, we emphasize the importance of acute changes to the prenatal offspring brain in fostering a better understanding of potential mechanisms for intervention. Collectively, overlapping results across maternal immune activation studies also highlight the need to examine preclinical offspring neurodevelopment alterations in terms of a multifactorial immune milieu, or immunome, to determine potential mechanisms of psychiatric risk.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Hanna E Stevens
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
23
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|
24
|
Abstract
Few studies have investigated the role of inflammation in Lewy body dementia (LBD) and variable results have been found. We systematically reviewed the literature for evidence of systemic inflammatory changes in dementia with Lewy bodies and Parkinson disease dementia. Owing to the low number of studies we also included Parkinson disease. Key terms were used to search the relevant databases. Titles and abstracts were screened and potentially relevant articles were reviewed in full. References of included studies and relevant reviews were searched. The database search returned 2166 results, 46 of which were finally included in the systematic review. These studies showed a general increase in inflammatory markers in the peripheral blood, most notably interleukin-1β (IL-1β), tumor necrosis factor-α, IL-6, and IL-10. Studies examining cerebrospinal fluid found IL-1β, IL-6, and transforming growth factor-β1 to be particularly increased, and interferon-γ decreased. C-reactive protein levels were increased, particularly in Parkinson disease dementia. These results provide evidence that LBD is associated with an increased inflammatory response. Furthermore, there may be a stronger general inflammatory response in LBD than in Parkinson disease, while complex changes occur in the individual cytokines.
Collapse
|
25
|
Gupta M, Kaur G. Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation. Neuromolecular Med 2018; 20:343-362. [DOI: 10.1007/s12017-018-8497-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
|
26
|
Weilnau JN, Carcella MA, Miner KM, Bhatia TN, Hutchison DF, Pant DB, Nouraei N, Leak RK. Evidence for cross-hemispheric preconditioning in experimental Parkinson's disease. Brain Struct Funct 2018; 223:1255-1273. [PMID: 29103154 PMCID: PMC11061878 DOI: 10.1007/s00429-017-1552-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Dopamine loss and motor deficits in Parkinson's disease typically commence unilaterally and remain asymmetric for many years, raising the possibility that endogenous defenses slow the cross-hemispheric transmission of pathology. It is well-established that the biological response to subtoxic stress prepares cells to survive subsequent toxic challenges, a phenomenon known as preconditioning, tolerance, or stress adaptation. Here we demonstrate that unilateral striatal infusions of the oxidative toxicant 6-hydroxydopamine (6-OHDA) precondition the contralateral nigrostriatal pathway against the toxicity of a second 6-OHDA infusion in the opposite hemisphere. 6-OHDA-induced loss of dopaminergic terminals in the contralateral striatum was ablated by cross-hemispheric preconditioning, as shown by two independent markers of the dopaminergic phenotype, each measured by two blinded observers. Similarly, loss of dopaminergic somata in the contralateral substantia nigra was also abolished, according to two blinded measurements. Motor asymmetries in floor landings, forelimb contacts with a wall, and spontaneous turning behavior were consistent with these histological observations. Unilateral 6-OHDA infusions increased phosphorylation of the kinase ERK2 and expression of the antioxidant enzyme CuZn superoxide dismutase in both striata, consistent with our previous mechanistic work showing that these two proteins mediate preconditioning in dopaminergic cells. These findings support the existence of cross-hemispheric preconditioning in Parkinson's disease and suggest that dopaminergic neurons mount impressive natural defenses, despite their reputation as being vulnerable to oxidative injury. If these results generalize to humans, Parkinson's pathology may progress slowly and asymmetrically because exposure to a disease-precipitating insult induces bilateral upregulation of endogenous defenses and elicits cross-hemispheric preconditioning.
Collapse
Affiliation(s)
- Justin N Weilnau
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Michael A Carcella
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Kristin M Miner
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Tarun N Bhatia
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Deepti B Pant
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Negin Nouraei
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, 407 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
27
|
Tien LT, Lee YJ, Pang Y, Lu S, Lee JW, Tseng CH, Bhatt AJ, Savich RD, Fan LW. Neuroprotective Effects of Intranasal IGF-1 against Neonatal Lipopolysaccharide-Induced Neurobehavioral Deficits and Neuronal Inflammation in the Substantia Nigra and Locus Coeruleus of Juvenile Rats. Dev Neurosci 2017; 39:443-459. [PMID: 28787734 PMCID: PMC5799046 DOI: 10.1159/000477898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/30/2017] [Indexed: 01/29/2023] Open
Abstract
Neonatal lipopolysaccharide (LPS) exposure-induced brain inflammation resulted in motor dysfunction and brain dopaminergic neuronal injury, and increased the risks of neurodegenerative disorders in adult rats. Our previous studies showed that intranasal administration of insulin-like growth factor-1 (IGF-1) protects against LPS-induced white matter injury in the developing rat brain. To further examine whether IGF-1 protects against LPS-induced brain neuronal injury and neurobehavioral dysfunction, recombinant human IGF-1 (rhIGF-1) at a dose of 50 µg/pup was administered intranasally 1 h following intracerebral injection of LPS (1 mg/kg) in postnatal day 5 (P5) Sprague-Dawley rat pups. Neurobehavioral tests were carried out from P7 to P21, and brain neuronal injury was examined at P21. Our results showed that LPS exposure resulted in disturbances of motor behaviors in juvenile rats. Moreover, LPS exposure caused injury to central catecholaminergic neurons, as indicated by a reduction of tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra (SN), ventral tegmental area (VTA) and olfactory bulb (OB), and brain noradrenergic neurons, as indicated by a reduction of TH immunoreactivity in the locus coeruleus (LC) of the P21 rat brain. The LPS-induced reduction of TH+ cells was observed at a greater degree in the SN and LC of the P21 rat brain. Intranasal rhIGF-1 treatment attenuated LPS-induced central catecholaminergic neuronal injury and motor behavioral disturbances, including locomotion, beam walking test and gait analysis. Intranasal rhIGF-1 administration also attenuated LPS-induced elevation of IL-1β levels and numbers of activated microglia, and cyclooxygenase-2+ cells, which were double labeled with TH+ cells in the SN, VTA, OB and LC of the P21 rat brain. These results suggest that IGF-1 may provide protection against neonatal LPS exposure-induced central catecholaminergic neuronal injury and motor behavioral disturbances, and that the protective effects are associated with the inhibition of microglia activation and the reduction of neuronal oxidative stress by the suppression of the neuronal cyclooxygenase-2 expression.
Collapse
Affiliation(s)
- Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Yih-Jing Lee
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Silu Lu
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jonathan W Lee
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Chih-Hsueh Tseng
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | - Abhay J Bhatt
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Renate D Savich
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
28
|
LRRK2 in peripheral and central nervous system innate immunity: its link to Parkinson's disease. Biochem Soc Trans 2017; 45:131-139. [PMID: 28202666 PMCID: PMC5652224 DOI: 10.1042/bst20160262] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are found in familial and idiopathic cases of Parkinson's disease (PD), but are also associated with immune-related disorders, notably Crohn's disease and leprosy. Although the physiological function of LRRK2 protein remains largely elusive, increasing evidence suggests that it plays a role in innate immunity, a process that also has been implicated in neurodegenerative diseases, including PD. Innate immunity involves macrophages and microglia, in which endogenous LRRK2 expression is precisely regulated and expression is strongly up-regulated upon cell activation. This brief report discusses the current understanding of the involvement of LRRK2 in innate immunity particularly in relation to PD, critically examining its role in myeloid cells, particularly macrophages and microglia.
Collapse
|
29
|
Paolicelli RC, Ferretti MT. Function and Dysfunction of Microglia during Brain Development: Consequences for Synapses and Neural Circuits. Front Synaptic Neurosci 2017; 9:9. [PMID: 28539882 PMCID: PMC5423952 DOI: 10.3389/fnsyn.2017.00009] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/27/2017] [Indexed: 01/02/2023] Open
Abstract
Many diverse factors, ranging from stress to infections, can perturb brain homeostasis and alter the physiological activity of microglia, the immune cells of the central nervous system. Microglia play critical roles in the process of synaptic maturation and brain wiring during development. Any perturbation affecting microglial physiological function during critical developmental periods could result in defective maturation of synaptic circuits. In this review, we critically appraise the recent literature on the alterations of microglial activity induced by environmental and genetic factors occurring at pre- and early post-natal stages. Furthermore, we discuss the long-lasting consequences of early-life microglial perturbation on synaptic function and on vulnerability to neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- IREM, Institute for Regenerative Medicine, University of ZurichZürich, Switzerland.,ZNZ Neuroscience Center ZurichZürich, Switzerland
| | - Maria T Ferretti
- IREM, Institute for Regenerative Medicine, University of ZurichZürich, Switzerland.,ZNZ Neuroscience Center ZurichZürich, Switzerland
| |
Collapse
|
30
|
Huang C, Zhu L, Li H, Shi FG, Wang GQ, Wei YZ, Liu J, Zhang F. Adulthood Exposure to Lipopolysaccharide Exacerbates the Neurotoxic and Inflammatory Effects of Rotenone in the Substantia Nigra. Front Mol Neurosci 2017; 10:131. [PMID: 28533741 PMCID: PMC5421296 DOI: 10.3389/fnmol.2017.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/20/2017] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the second most neurodegenerative disorder with a regional decrease of dopamine (DA) neurons in the substantia nigra (SN). Despite intense exploration, the etiology of PD progressive process remains unclear. This study was to investigate the synergistic effects of systemic inflammation of lipopolysaccharide (LPS) and neurotoxicity of rotenone (ROT) on exacerbating DA neuron lesion. Male SD adulthood rats received a single intraperitoneal injection of LPS. Seven months later, rats were subcutaneously given ROT five times a week for consecutive 4 weeks. Rat behavior changes were assessed via rotarod and open-field tests. Brain SN was immunostained to evaluate DA neuronal loss and microglia activation. Striatum DA and its metabolites levels were determined by high performance liquid chromatography (HPLC) coupled with electrochemistry. The protein levels of α-synuclein (α-Syn), inflammatory factors and mitogen-activated protein kinase (MAPK) pathway activation were detected by western blotting analysis. Results indicated that no significant difference between the control and LPS alone groups was shown. Compared with ROT alone group, LPS combined with ROT significantly reduced motor activity and induced SN DA neurons loss accompanied by the decreased contents of striatum DA and its metabolites. Furthermore, LPS together with ROT enhanced microglia activation and the increased expressions of α-Syn and inflammatory factors and also MAPK signaling pathway activation. However, LPS alone had no significant effects on the above parameters. These findings suggest that adulthood exposure to LPS exacerbates the neurotoxic and inflammatory effects of ROT in the SN.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyi, China
| | - Li Zhu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyi, China
| | - Huan Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyi, China
| | - Fu-Guo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyi, China
| | - Guo-Qing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyi, China
| | - Yi-Zheng Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyi, China
| |
Collapse
|
31
|
Minimally Toxic Dose of Lipopolysaccharide and α-Synuclein Oligomer Elicit Synergistic Dopaminergic Neurodegeneration: Role and Mechanism of Microglial NOX2 Activation. Mol Neurobiol 2016; 55:619-632. [PMID: 27975175 DOI: 10.1007/s12035-016-0308-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023]
Abstract
The aim of this study is to investigate the role and mechanism of microglial NOX2 activation in minimally toxic dose of LPS and Syn-elicited synergistic dopaminergic neurodegeneration. NOX2+/+ and NOX2-/- mice and multiple primary cultures were treated with LPS and/or Syn in vivo and in vitro. Neuronal function and morphology were evaluated by uptake of related neurotransmitter and immunostaining with specific antibody. Levels of superoxide, intracellular reactive oxygen species, mRNA and protein of relevant molecules, and dopamine were detected. LPS and Syn synergistically induce selective and progressive dopaminergic neurodegeneration. Microglia are functionally and morphologically activated, contributing to synergistic dopaminergic neurotoxicity elicited by LPS and Syn. NOX2-/- mice are more resistant to synergistic neurotoxicity than NOX2+/+mice in vivo and in vitro, and NOX2 inhibitor protects against synergistic neurotoxicity through decreasing microglial superoxide production, illustrating a critical role of microglial NOX2. Microglial NOX2 is activated by LPS and Syn as mRNA and protein levels of NOX2 subunits P47and gp91 are enhanced. Molecules relevant to microglial NOX2 activation include PKC-σ, P38, ERK1/2, JNK, and NF-КBP50 as their mRNA and protein levels are elevated after treatment with LPS and Syn. Combination of exogenous and endogenous environmental factors with minimally toxic dose synergistically propagates dopaminergic neurodegeneration through activating microglial NOX2 and relevant signaling molecules, casting a new light for PD pathogenesis.
Collapse
|
32
|
Lee PC, Raaschou-Nielsen O, Lill CM, Bertram L, Sinsheimer JS, Hansen J, Ritz B. Gene-environment interactions linking air pollution and inflammation in Parkinson's disease. ENVIRONMENTAL RESEARCH 2016; 151:713-720. [PMID: 27640071 DOI: 10.1016/j.envres.2016.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/08/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Both air pollution exposure and systemic inflammation have been linked to Parkinson's disease (PD). In the PASIDA study, 408 incident cases of PD diagnosed in 2006-2009 and their 495 population controls were interviewed and provided DNA samples. Markers of long term traffic related air pollution measures were derived from geographic information systems (GIS)-based modeling. Furthermore, we genotyped functional polymorphisms in genes encoding proinflammatory cytokines, namely rs1800629 in TNFα (tumor necrosis factor alpha) and rs16944 in IL1B (interleukin-1β). In logistic regression models, long-term exposure to NO2 increased PD risk overall (odds ratio (OR)=1.06 per 2.94μg/m3 increase, 95% CI=1.00-1.13). The OR for PD in individuals with high NO2 exposure (≧75th percentile) and the AA genotype of IL1B rs16944 was 3.10 (95% CI=1.14-8.38) compared with individuals with lower NO2 exposure (<75th percentile) and the GG genotype. The interaction term was nominally significant on the multiplicative scale (p=0.01). We did not find significant gene-environment interactions with TNF rs1800629. Our finds may provide suggestive evidence that a combination of traffic-related air pollution and genetic variation in the proinflammatory cytokine gene IL1B contribute to risk of developing PD. However, as statistical evidence was only modest in this large sample we cannot rule out that these results represent a chance finding, and additional replication efforts are warranted.
Collapse
Affiliation(s)
- Pei-Chen Lee
- Department of Health Care Management, College of Health Technology, National Taipei University of Nursing and Health Sciences, 89, Nei-Chiang St. Wan-Hua Dist, Taipei 10845, Taiwan.
| | | | - Christina M Lill
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Lars Bertram
- Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany; School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology, and Medicine, London, UK
| | - Janet S Sinsheimer
- Department of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, CA, USA; Department of Biostatistics, Fielding School of Public Health, University of California at Los Angeles, CA, USA
| | | | - Beate Ritz
- Department of Neurology, School of Medicine, University of California at Los Angeles, CA, USA; Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles, CA, USA
| |
Collapse
|
33
|
Oriá RB, Murray-Kolb LE, Scharf RJ, Pendergast LL, Lang DR, Kolling GL, Guerrant RL. Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutr Rev 2016; 74:374-86. [PMID: 27142301 DOI: 10.1093/nutrit/nuw008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut-derived low-grade systemic inflammation may have profound consequences on the gut-liver-brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA.
| | - Laura E Murray-Kolb
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Scharf
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Pendergast
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R Lang
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Glynis L Kolling
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Richard L Guerrant
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Neuroprotective Activity of (-)-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity. J Immunol Res 2016; 2016:4962351. [PMID: 27191001 PMCID: PMC4844887 DOI: 10.1155/2016/4962351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide- (LPS-) mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG), the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs). Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS). Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders.
Collapse
|
35
|
Heinemann SD, Posimo JM, Mason DM, Hutchison DF, Leak RK. Synergistic stress exacerbation in hippocampal neurons: Evidence favoring the dual-hit hypothesis of neurodegeneration. Hippocampus 2016; 26:980-94. [PMID: 26934478 DOI: 10.1002/hipo.22580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/21/2022]
Abstract
The dual-hit hypothesis of neurodegeneration states that severe stress sensitizes vulnerable cells to subsequent challenges so that the two hits are synergistic in their toxic effects. Although the hippocampus is vulnerable to a number of neurodegenerative disorders, there are no models of synergistic cell death in hippocampal neurons in response to combined proteotoxic and oxidative stressors, the two major characteristics of these diseases. Therefore, a relatively high-throughput dual-hit model of stress synergy was developed in primary hippocampal neurons. In order to increase the rigor of the study and strengthen the interpretations, three independent, unbiased viability assays were employed at multiple timepoints. Stress synergy was elicited when hippocampal neurons were treated with the proteasome inhibitor MG132 followed by exposure to the oxidative toxicant paraquat, but only after 48 h. MG132 and paraquat only elicited additive effects 24 h after the final hit and even loss of heat shock protein 70 activity and glutathione did not promote stress synergy at this early timepoint. Dual hits of MG132 elicited modest glutathione loss and slightly synergistic toxic effects 48 h after the second hit, but only at some concentrations and only according to two viability assays (metabolic fitness and cytoskeletal integrity). The thiol N-acetyl cysteine protected hippocampal neurons against dual MG132/MG132 hits but not dual MG132/paraquat hits. These findings support the view that proteotoxic and oxidative stress propel and propagate each other in hippocampal neurons, leading to synergistically toxic effects, but not as the default response and only after a delay. The neuronal stress synergy observed here lies in contrast to astrocytic responses to dual hits, because astrocytes that survive severe proteotoxic stress resist additional cell loss following second hits. In conclusion, a new model of hippocampal vulnerability was developed for the testing of therapies, because neuroprotective treatments that are effective against severe, synergistic stress are more likely to succeed in the clinic. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Scott D Heinemann
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Jessica M Posimo
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Daniel M Mason
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Delattre AM, Carabelli B, Mori MA, Kempe PG, Rizzo de Souza LE, Zanata SM, Machado RB, Suchecki D, Andrade da Costa BLS, Lima MMS, Ferraz AC. Maternal Omega-3 Supplement Improves Dopaminergic System in Pre- and Postnatal Inflammation-Induced Neurotoxicity in Parkinson's Disease Model. Mol Neurobiol 2016; 54:2090-2106. [PMID: 26924316 DOI: 10.1007/s12035-016-9803-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 01/22/2023]
Abstract
Evidence suggests that idiopathic Parkinson's disease (PD) is the consequence of a neurodevelopmental disruption, rather than strictly a consequence of aging. Thus, we hypothesized that maternal supplement of omega-3 polyunsaturated fatty acids (ω-3 PUFA) may be associated with neuroprotection mechanisms in a self-sustaining cycle of neuroinflammation and neurodegeneration in lipopolysaccharide (LPS)-model of PD. To test this hypothesis, behavioral and neurochemical assay were performed in prenatally LPS-exposed offspring at postnatal day 21. To further determine whether prenatal LPS exposure and maternal ω-3 PUFAs supplementation had persisting effects, brain injury was induced on PN 90 rats, following bilateral intranigral LPS injection. Pre- and postnatal inflammation damage not only affected dopaminergic neurons directly, but it also modified critical features, such as activated microglia and astrocyte cells, disrupting the support provided by the microenvironment. Unexpectedly, our results failed to show any involvement of caspase-dependent and independent apoptosis pathway in neuronal death mechanisms. On the other hand, learning and memory deficits detected with a second toxic exposure were significantly attenuated in maternal ω-3 PUFAs supplementation group. In addition, ω-3 PUFAs promote beneficial effect on synaptic function, maintaining the neurochemical integrity in remaining neurons, without necessarily protect them from neuronal death. Thus, our results suggest that ω-3 PUFAs affect the functional ability of the central nervous system in a complex way in a multiple inflammation-induced neurotoxicity animal model of PD and they disclose new ways of understanding how these fatty acids control responses of the brain to different challenges.
Collapse
Affiliation(s)
- Ana Marcia Delattre
- Laboratório de Neurofisiologia, Setor de Ciências Biológicas, Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n, 81.531 - 990, Curitiba, PR, Brazil.
| | - Bruno Carabelli
- Laboratório de Neurofisiologia, Setor de Ciências Biológicas, Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n, 81.531 - 990, Curitiba, PR, Brazil
| | - Marco Aurélio Mori
- Laboratório de Neurofisiologia, Setor de Ciências Biológicas, Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n, 81.531 - 990, Curitiba, PR, Brazil
| | - Paula G Kempe
- Laboratório de Neurofisiologia, Setor de Ciências Biológicas, Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n, 81.531 - 990, Curitiba, PR, Brazil
| | - Luiz E Rizzo de Souza
- Laboratório de Neurobiologia, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Silvio M Zanata
- Laboratório de Neurobiologia, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ricardo B Machado
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Belmira L S Andrade da Costa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Marcelo M S Lima
- Laboratório de Neurofisiologia, Setor de Ciências Biológicas, Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n, 81.531 - 990, Curitiba, PR, Brazil
| | - Anete C Ferraz
- Laboratório de Neurofisiologia, Setor de Ciências Biológicas, Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n, 81.531 - 990, Curitiba, PR, Brazil.
| |
Collapse
|
37
|
Taylor KM, Saint-Hilaire MH, Sudarsky L, Simon DK, Hersh B, Sparrow D, Hu H, Weisskopf MG. Head injury at early ages is associated with risk of Parkinson's disease. Parkinsonism Relat Disord 2015; 23:57-61. [PMID: 26725141 DOI: 10.1016/j.parkreldis.2015.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/21/2015] [Accepted: 12/03/2015] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The literature on the effect of head injuries on the risk of PD is inconclusive. Some researchers have hypothesized that studies that have seen an effect are simply capturing injury related to pre-clinical PD. However in animal models brain inflammation, which can be initiated by head trauma, has been shown to produce PD-like effects. Furthermore, animal studies have found that early life inflammation in particular is of relevance for PD pathology. METHODS We conducted an unmatched case-control study of 379 neurologist confirmed PD patients and 230 controls from the greater Boston, Massachusetts area with questionnaire data on history of head injury and other covariates. We used multivariable logistic regression to estimate adjusted odds ratios (OR) and their corresponding 95% confidence intervals (CI) for PD. RESULTS When we excluded injuries that occurred less than 10 years prior to the diagnosis of PD (in order to avoid reverse causation), we found an increased risk of PD associated with a head injury that resulted in a loss of consciousness, but it did not reach statistical significance (OR = 1.57; 95% CI = 0.89-2.80). We found a significant (p = 0.04) effect of age at first head injury. For every 5 year earlier age at first head injury with loss of consciousness the OR for PD was 1.37 (95% CI: 1.01-1.86). CONCLUSION Our results suggest that head injury in early life increases the risk of PD.
Collapse
Affiliation(s)
- Kathryn M Taylor
- Harvard T.H. Chan School of Public Health, Dept of Environmental Health, 401 Park Dr., Landmark Building, 3rd Floor, Boston MA 02215, USA.
| | - Marie-Helene Saint-Hilaire
- Department of Neurology, Boston University Medical Center, 72 East Concord Street, C3, Boston, MA 02118, USA.
| | - Lewis Sudarsky
- Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - David K Simon
- Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Neurology 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Bonnie Hersh
- Harvard Vanguard Medical Associates, 133 Brookline Avenue, Boston, MA 02215, USA.
| | - David Sparrow
- VA Boston Healthcare System, Jamaica Plain, 150 South Huntington Avenue, Boston, MA 02130, USA; Boston University Schools of Public Health and Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | - Howard Hu
- Departments of Epidemiology, Global Health, and Environmental Health, University of Toronto Dalla Lana School of Public Health, 6th Floor, 155 College Street, Toronto, Ontario, Canada.
| | - Marc G Weisskopf
- Department of Epidemiology and Environmental Health, Harvard TH Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Abstract
The discovery of alpha-synuclein's prion-like behaviors in mammals, as well as a non-Mendelian type of inheritance, has led to a new concept in biology, the "prion hypothesis" of Parkinson's disease. The misfolding and aggregation of alpha-synuclein (α-syn) within the nervous system occur in many neurodegenerative diseases including Parkinson's disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). The molecular basis of synucleinopathies appears to be tightly coupled to α-syn's conformational conversion and fibril formation. The pathological form of α-syn consists of oligomers and fibrils with rich in β-sheets. The conversion of its α-helical structure to the β-sheet rich fibril is a defining pathologic feature of α-syn. These kinds of disorders have been classified as protein misfolding diseases or proteopathies which share key biophysical and biochemical characteristics with prion diseases. In this review, we highlight α-syn's prion-like activities in PD and PD models, describe the idea of a prion-like mechanism contributing to PD pathology, and discuss several key molecules that can modulate the α-syn accumulation and propagation.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL, 60612, USA,
| | | |
Collapse
|
39
|
Rutherford NJ, Sacino AN, Brooks M, Ceballos-Diaz C, Ladd TB, Howard JK, Golde TE, Giasson BI. Studies of lipopolysaccharide effects on the induction of α-synuclein pathology by exogenous fibrils in transgenic mice. Mol Neurodegener 2015. [PMID: 26223783 PMCID: PMC4520273 DOI: 10.1186/s13024-015-0029-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder that is pathologically characterized by loss of dopaminergic neurons from the substantia nigra, the presence of aggregated α-synuclein (αS) and evidence of neuroinflammation. Experimental studies have shown that the cerebral injection of recombinant fibrillar αS, especially in αS transgenic mouse models, can induce the formation and spread of αS inclusion pathology. However, studies reporting this phenomenon did not consider the presence of lipopolysaccharide (LPS) in the injected αS, produced in E. coli, as a potential confound. The objectives of this study are to develop a method to remove the LPS contamination and investigate the differences in pathologies induced by αS containing LPS or αS highly purified of LPS. RESULTS AND CONCLUSIONS We were able to remove >99.5% of the LPS contamination from the αS preparations through the addition of a cation exchange step during purification. The αS pathology induced by injection of fibrils produced from αS containing LPS or purified of LPS, showed a similar distribution pattern; however, there was less spread into the cortex of the mice injected with αS containing higher levels of LPS. As previously reported, injection of αS fibrils could induce astrogliosis, and αS inclusions were present within astrocytes in mice injected with fibrils comprised of αS with or without cation exchange purification. Furthermore, we identified the presence of αS pathology in ependymal cells in both groups of mice, which suggests the involvement of a novel mechanism for spread in this model of αS pathology.
Collapse
Affiliation(s)
- Nicola J Rutherford
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Amanda N Sacino
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Mieu Brooks
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Thomas B Ladd
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Jasie K Howard
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, 1275 Center Drive, Room BMS J-483, PO Box 100159, Gainesville, FL, 32610, USA.
| |
Collapse
|
40
|
Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM. Colonic bacterial composition in Parkinson's disease. Mov Disord 2015; 30:1351-60. [PMID: 26179554 DOI: 10.1002/mds.26307] [Citation(s) in RCA: 819] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION We showed that Parkinson's disease (PD) patients have alpha-synuclein (α-Syn) aggregation in their colon with evidence of colonic inflammation. If PD patients have altered colonic microbiota, dysbiosis might be the mechanism of neuroinflammation that leads to α-Syn misfolding and PD pathology. METHODS Sixty-six sigmoid mucosal biopsies and 65 fecal samples were collected from 38 PD patients and 34 healthy controls. Mucosal-associated and feces microbiota compositions were characterized using high-throughput ribosomal RNA gene amplicon sequencing. Data were correlated with clinical measures of PD, and a predictive assessment of microbial community functional potential was used to identify microbial functions. RESULTS The mucosal and fecal microbial community of PD patients was significantly different than control subjects, with the fecal samples showing more marked differences than the sigmoid mucosa. At the taxonomic level of genus, putative, "anti-inflammatory" butyrate-producing bacteria from the genera Blautia, Coprococcus, and Roseburia were significantly more abundant in feces of controls than PD patients. Bacteria from the genus Faecalibacterium were significantly more abundant in the mucosa of controls than PD. Putative, "proinflammatory" Proteobacteria of the genus Ralstonia were significantly more abundant in mucosa of PD than controls. Predictive metagenomics indicated that a large number of genes involved in metabolism were significantly lower in the PD fecal microbiome, whereas genes involved in lipopolysaccharide biosynthesis and type III bacterial secretion systems were significantly higher in PD patients. CONCLUSION This report provides evidence that proinflammatory dysbiosis is present in PD patients and could trigger inflammation-induced misfolding of α-Syn and development of PD pathology.
Collapse
Affiliation(s)
- Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Pharmacology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Physiology, Rush University Medical Center, Chicago, Illinois, USA.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Ece Mutlu
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kathleen M Shannon
- Department of Neurology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
41
|
Möller M, Swanepoel T, Harvey BH. Neurodevelopmental Animal Models Reveal the Convergent Role of Neurotransmitter Systems, Inflammation, and Oxidative Stress as Biomarkers of Schizophrenia: Implications for Novel Drug Development. ACS Chem Neurosci 2015; 6:987-1016. [PMID: 25794269 DOI: 10.1021/cn5003368] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia is a life altering disease with a complex etiology and pathophysiology, and although antipsychotics are valuable in treating the disorder, certain symptoms and/or sufferers remain resistant to treatment. Our poor understanding of the underlying neuropathological mechanisms of schizophrenia hinders the discovery and development of improved pharmacological treatment, so that filling these gaps is of utmost importance for an improved outcome. A vast amount of clinical data has strongly implicated the role of inflammation and oxidative insults in the pathophysiology of schizophrenia. Preclinical studies using animal models are fundamental in our understanding of disease development and pathology as well as the discovery and development of novel treatment options. In particular, social isolation rearing (SIR) and pre- or postnatal inflammation (PPNI) have shown great promise in mimicking the biobehavioral manifestations of schizophrenia. Furthermore, the "dual-hit" hypothesis of schizophrenia states that a first adverse event such as genetic predisposition or a prenatal insult renders an individual susceptible to develop the disease, while a second insult (e.g., postnatal inflammation, environmental adversity, or drug abuse) may be necessary to precipitate the full-blown syndrome. Animal models that emphasize the "dual-hit" hypothesis therefore provide valuable insight into understanding disease progression. In this Review, we will discuss SIR, PPNI, as well as possible "dual-hit" animal models within the context of the redox-immune-inflammatory hypothesis of schizophrenia, correlating such changes with the recognized monoamine and behavioral alterations of schizophrenia. Finally, based on these models, we will review new therapeutic options, especially those targeting immune-inflammatory and redox pathways.
Collapse
Affiliation(s)
- M. Möller
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - T. Swanepoel
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - B. H. Harvey
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
42
|
Pang Y, Tien LT, Zhu H, Shen J, Wright CF, Jones TK, Mamoon SA, Bhatt AJ, Cai Z, Fan LW. Interleukin-1 receptor antagonist reduces neonatal lipopolysaccharide-induced long-lasting neurobehavioral deficits and dopaminergic neuronal injury in adult rats. Int J Mol Sci 2015; 16:8635-54. [PMID: 25898410 PMCID: PMC4425101 DOI: 10.3390/ijms16048635] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023] Open
Abstract
Our previous study showed that a single lipopolysaccharide (LPS) treatment to neonatal rats could induce a long-lasting neuroinflammatory response and dopaminergic system injury late in life. This is evidenced by a sustained activation of microglia and elevated interleukin-1β (IL-1β) levels, as well as reduced tyrosine hydroxylase (TH) expression in the substantia nigra (SN) of P70 rat brain. The object of the current study was to test whether co-administration of IL-1 receptor antagonist (IL-1ra) protects against LPS-induced neurological dysfunction later in life. LPS (1 mg/kg) with or without IL-1ra (0.1 mg/kg), or sterile saline was injected intracerebrally into postnatal day 5 (P5) Sprague-Dawley male rat pups. Motor behavioral tests were carried out from P7 to P70 with subsequent examination of brain injury. Our results showed that neonatal administration of IL-1ra significantly attenuated LPS-induced motor behavioral deficits, loss of TH immunoreactive neurons, as well as microglia activation in the SN of P70 rats. These data suggest that IL-1β may play a pivotal role in mediating a chronic neuroinflammation status by a single LPS exposure in early postnatal life, and blockading IL-1β might be a novel approach to protect the dopaminergic system against perinatal infection/inflammation exposure.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan.
| | - Hobart Zhu
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Juying Shen
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Camilla F Wright
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Tembra K Jones
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Samir A Mamoon
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Abhay J Bhatt
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Lir-Wan Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
43
|
Zager A, Peron JP, Mennecier G, Rodrigues SC, Aloia TP, Palermo-Neto J. Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring. Brain Behav Immun 2015; 43:159-71. [PMID: 25108214 DOI: 10.1016/j.bbi.2014.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/24/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by an autoimmune response against myelin antigens driven by autoreactive T cells. Several lines of evidence indicate that environmental factors, such as previous infection, can influence and trigger autoimmune responses. However, the importance of the gestational period, particularly under inflammatory conditions, on the modulation of MS and related neuroinflammation by the offspring is unknown. This study aimed to evaluate the impact of prenatal exposure to lipopolysaccharide (LPS) during late gestation on the neuroinflammatory response in primary mixed glial cultures and on the progression of experimental autoimmune encephalomyelitis (EAE, an animal model of MS) in the offspring. LPS (Escherichia coli 0127:B8, 120μg/kg) was administered intraperitoneally to pregnant C57BL/6J mice on gestational day 17, and the offspring were assigned to two experiments: (1) mixed glial cultures generated using the brain of neonates, stimulated in vitro with LPS, and (2) adult offspring immunized with MOG35-55. The EAE clinical symptoms were followed for 30days. Different sets of animals were sacrificed either during the onset (7days post-immunization [p.i.]), when spleen and lymph nodes were collected, or the peak of disease (20days p.i.), when CNS were collected for flow cytometry, cytokine production, and protein/mRNA-expression analysis. The primary CNS cultures from the LPS-treated group produced exaggerated amounts of IL-6, IL-1β and nitrites after in vitro stimulus, while IL-10 production was lowered compared to the data of the control group. Prenatal exposure to LPS worsened EAE disease severity in adult offspring, and this worsening was linked to increased CNS-infiltrating macrophages, Th1 cells and Th17 cells at the peak of EAE severity; additionally, exacerbated gliosis was evidenced in microglia (MHC II) and astrocytes (GFAP protein level and immunoreactivity). The IL-2, IL-6 and IL-17 levels in the spleen and lymph nodes were increased in the offspring of the LPS-exposed dams. Our results indicate that maternal immune activation during late gestation predispose the offspring to increased neuroinflammation and potentiate the autoimmune response and clinical manifestation of EAE.
Collapse
Affiliation(s)
- Adriano Zager
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.
| | - Jean Pierre Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gregory Mennecier
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Sandra C Rodrigues
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago P Aloia
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - João Palermo-Neto
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Noailles A, Fernández-Sánchez L, Lax P, Cuenca N. Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects. J Neuroinflammation 2014; 11:186. [PMID: 25359524 PMCID: PMC4221719 DOI: 10.1186/s12974-014-0186-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022] Open
Abstract
Background Retinitis pigmentosa is a heterogeneous group of inherited neurodegenerative retinal disorders characterized by a progressive peripheral vision loss and night vision difficulties, subsequently leading to central vision impairment. Chronic microglia activation is associated with various neurodegenerative diseases including retinitis pigmentosa. The objective of this study was to quantify microglia activation in the retina of P23H rats, an animal model of retinitis pigmentosa, and to evaluate the therapeutic effects of TUDCA (tauroursodeoxycholic acid), which has been described as a neuroprotective compound. Methods For this study, homozygous P23H line 3 and Sprague-Dawley (SD) rats were injected weekly with TUDCA (500 mg/kg, ip) or vehicle (saline) from 20 days to 4 months old. Vertical retinal sections and whole-mount retinas were immunostained for specific markers of microglial cells (anti-CD11b, anti-Iba1 and anti-MHC-II). Microglial cell morphology was analyzed and the number of retinal microglial was quantified. Results Microglial cells in the SD rat retinas were arranged in regular mosaics homogenously distributed within the plexiform and ganglion cell layers. In the P23H rat retina, microglial cells increased in number in all layers compared with control SD rat retinas, preserving the regular mosaic distribution. In addition, a large number of amoeboid CD11b-positive cells were observed in the P23H rat retina, even in the subretinal space. Retinas of TUDCA-treated P23H animals exhibited lower microglial cell number in all layers and absence of microglial cells in the subretinal space. Conclusions These results report novel TUDCA anti-inflammatory actions, with potential therapeutic implications for neurodegenerative diseases, including retinitis pigmentosa.
Collapse
|
45
|
Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, Bonini MG, Mason RP, Oh U, Block ML. Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 2014; 63:423-40. [PMID: 25331559 DOI: 10.1002/glia.22762] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
Redox-signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF-κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro-inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2 O2 showed altered NF-κB p50 protein-protein interactions, decreased NF-κB p50 DNA binding, and augmented late-stage TNFα expression, indicating that H2 O2 impairs NF-κB p50 function and prolongs amplified M1 activation. NF-κB p50(-/-) mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1 mg/kg, IP) administration in the NF-κB p50(-/-) mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin-trap DMPO mildly reduced LPS-induced 22 h TNFα in the brain in NF-κB p50(+/+) mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF-κB p50(-/-) mice, implicating a fundamental role for NF-κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF-κB p50 as a key redox-signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS-specific vulnerability to chronic inflammation.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: Possible involvement of mTOR pathway. Neurochem Int 2014; 76:23-31. [PMID: 24995391 DOI: 10.1016/j.neuint.2014.06.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
This study was designed to detect the modulation manner of melatonin on microglial activation and explore herein possible involvement of mammalian target of rapamycin (mTOR) pathway following traumatic brain injury (TBI). ICR mice were divided into four groups: sham group, TBI group, TBI+sal group and TBI+Melatonin group. A weight-drop model was employed to cause TBI. Neurological severity score (NSS) tests were performed to measure behavioral outcomes. Nissl staining was conducted to observe the neuronal degeneration and wet-to-dry weight ratio indicated brain water content. Immunofluorescence was designed to investigate microglial activation. Enzyme-linked immunosorbent assay (ELISA) was employed to evaluate proinflammatory cytokine levels (interleukin-beta (IL-1β), tumor necrosis factor-alpha (TNF-α)). Western blotting was engaged to analyze the protein content of mammalian target of rapamycin (mTOR), p70 ribosomal S6 kinase (p70S6K) and S6 ribosomal protein (S6RP). Melatonin administration was associated with markedly restrained microglial activation, decreased release of proinflammatory cytokines and increased the number of surviving neurons at the site of peri-contusion. Meanwhile, melatonin administration resulted in dephosphorylated mTOR pathway. In conclusion, this study presents a new insight into the mechanisms responsible for the anti-neuroinflammation of melatonin, with possible involvement of mTOR pathway.
Collapse
|
47
|
Christensen LB, Woods TA, Carmody AB, Caughey B, Peterson KE. Age-related differences in neuroinflammatory responses associated with a distinct profile of regulatory markers on neonatal microglia. J Neuroinflammation 2014; 11:70. [PMID: 24708744 PMCID: PMC4234188 DOI: 10.1186/1742-2094-11-70] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/21/2014] [Indexed: 02/04/2023] Open
Abstract
Background The perinatal period is one in which the mammalian brain is particularly vulnerable to immune-mediated damage. Early inflammation in the central nervous system (CNS) is linked with long-term impairment in learning and behavior, necessitating a better understanding of mediators of neuroinflammation. We therefore directly examined how age affected neuroinflammatory responses to pathogenic stimuli. Methods In mice, susceptibility to neurological damage changes dramatically during the first few weeks of life. Accordingly, we compared neuroinflammatory responses to pathogen associated molecular patterns (PAMPs) of neonatal (two day-old) and weanling (21 day-old) mice. Mice were inoculated intracerebrally with PAMPs and the cellular and molecular changes in the neuroinflammatory response were examined. Results Of the 12 cytokines detected in the CNS following toll-like receptor 4 (TLR4) stimulation, ten were significantly higher in neonates compared with weanling mice. A similar pattern of increased cytokines in neonates was also observed with TLR9 stimulation. Analysis of cellular responses indicated a difference in microglial activation markers in the CNS of neonatal mice and increased expression of proteins known to modulate cellular activation including CD11a, F4/80 and CD172a. We also identified a new marker on microglia, SLAMF7, which was expressed at higher levels in neonates compared with weanlings. Conclusions A unique neuroinflammatory profile, including higher expression of several proinflammatory cytokines and differential expression of microglial markers, was observed in brain tissue from neonates following TLR stimulation. This increased neuroinflammatory response to PAMPs may explain why the developing brain is particularly sensitive to infection and why infection or stress during this time can lead to long-term damage in the CNS.
Collapse
Affiliation(s)
| | | | | | | | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, Canada.
| |
Collapse
|
48
|
Reinert KRS, Umphlet CD, Quattlebaum A, Boger HA. Short-term effects of an endotoxin on substantia nigra dopamine neurons. Brain Res 2014; 1557:164-70. [PMID: 24513404 DOI: 10.1016/j.brainres.2014.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Inflammation has been implicated in the pathology of several neurodegenerative diseases, including Parkinson׳s disease (PD). Studies using the endotoxin lipopolysaccharide (LPS), a potent inflammogen, show that systemic insults can trigger prolonged microglial activation and pro-inflammatory cytokine production leading to degeneration of substantia nigra (SN) dopamine (DA) neurons, mimicking idiopathic PD. Because rapid effects of LPS on SN neurons had not been investigated previously, the focus of this study is to assess time-dependent alterations in SN neuroinflammation, DAergic neurons, and neuronal signaling cascades following LPS administration. LPS (5mg/kg, i.p.) or saline (0.9% NaCl) was administered to 8-month-old male mice. At 3h, 5h, and 12h post-injection, the morphology of the SN was assessed using antibodies directed against tyrosine hydroxylase (TH, DAergic marker), Iba-1 (pan-microglial marker), phospho-ERK, and phospho-CREB (signaling). LPS administration significantly reduced TH-immunoreactivity (ir) at all time-points with the greatest reduction observed at 12h post-injection. Reduced TH-ir was accompanied by a significant increase in activated microglia at all time-points following LPS. By 12h post-injection, LPS-treated mice exhibited activated as well as reactive microglia, which can result in neuronal damage. These data demonstrate that the initial reduction in TH-ir observed after an LPS injection was not concomitant with morphological alterations in microglial cells, even though a significant increase in phospho-ERK was observed in glial cells as soon as 3h post-injection. It is possible that the initial alteration in DA phenotype (TH reduction) may perpetuate an inflammatory response that persists and leads to further DAergic damage.
Collapse
Affiliation(s)
- Kaela R S Reinert
- Department of Neurosciences and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB Suite 403, MSC 510, Charleston, SC 29425, USA
| | - Claudia D Umphlet
- Department of Neurosciences and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB Suite 403, MSC 510, Charleston, SC 29425, USA
| | - Ariana Quattlebaum
- Department of Neurosciences and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB Suite 403, MSC 510, Charleston, SC 29425, USA
| | - Heather A Boger
- Department of Neurosciences and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB Suite 403, MSC 510, Charleston, SC 29425, USA.
| |
Collapse
|
49
|
Van den Eynde K, Missault S, Fransen E, Raeymaekers L, Willems R, Drinkenburg W, Timmermans JP, Kumar-Singh S, Dedeurwaerdere S. Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia. Behav Brain Res 2013; 258:179-86. [PMID: 24129217 DOI: 10.1016/j.bbr.2013.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/06/2023]
Abstract
Over the past decade a neurodevelopmental animal model with high validity for schizophrenia has been developed based on the environmental risk factor known as maternal immune activation (MIA). The immunological basis of this model, together with extensive data from clinical and preclinical context, suggests the involvement of an aberrant neuro-immune system in the pathophysiology of schizophrenia. The goal of this study was to examine microglia activation in adult behaviourally phenotyped MIA offspring. MIA was induced in pregnant rats using viral mimetic Poly I:C at gestational day 15. Adult offspring were behaviourally phenotyped at postnatal days (PND) 56, 90 and 180 through the evaluation of prepulse inhibition (PPI) of the acoustic startle and spontaneous locomotion. Finally, the presence of activated microglia in brain regions associated with schizophrenia was evaluated using post-mortem immunohistochemistry against OX-42 (CD11b) and ED-1 (CD68). Although a deficit in PPI could not be replicated despite the high number of animals tested, we found an overall decrease in basal startle response and spontaneous locomotion in offspring born to Poly I:C- compared to saline-treated dams, accompanied by increased microglial density with characteristics of non-reactive activation in the chronic stage of the model. These findings provide additional evidence for a role played by microglial activation in schizophrenia-related pathology in general and psychomotor slowing in particular, and warrant extensive research on the underlying mechanism in order to establish new drug targets for the treatment of schizophrenia patients with an inflammatory component.
Collapse
Affiliation(s)
- Karlien Van den Eynde
- Experimental Laboratory of Translational Neuroscience and Otolaryngology, University of Antwerp, Campus Drie Eiken, D.T.420, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu MH, Lin YS, Sheu SY, Sun JS. Anti-inflammatory effects of daidzein on primary astroglial cell culture. Nutr Neurosci 2013; 12:123-34. [DOI: 10.1179/147683009x423274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|