1
|
Li T, Li H, Zhang S, Wang Y, He J, Kang J. Transcriptome Sequencing-Based Screening of Key Melatonin-Related Genes in Ischemic Stroke. Int J Mol Sci 2024; 25:11620. [PMID: 39519172 PMCID: PMC11547107 DOI: 10.3390/ijms252111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Ischemic stroke (IS) is a complex syndrome of neurological deficits due to stenosis or occlusion of the carotid and vertebral arteries for which there is still no effective treatment. Melatonin, a hormone secreted by the pineal gland, has multiple biological effects, such as antioxidant and anti-inflammatory properties, circadian rhythm regulation, and tissue regeneration, demonstrating potential applications in the treatment of IS. The aim of this study was to investigate key melatonin-regulated genes associated with IS using transcriptome sequencing and bioinformatics analyses and to explore their potential mechanisms of action in the disease process. We obtained gene expression data related to ischemic stroke (IS) from the Gene Expression Omnibus (GEO) database and identified candidate genes using machine learning algorithms. We then assessed the predictive power of these genes using PPI network analysis and diagnostic models. Finally, a series of enrichment analyses identified four key genes: ADM, PTGS2, MMP9, and VCAN. In addition, we determined the mRNA levels of these four key genes in an IS rat model using qPCR and found that all of these genes were significantly upregulated in the IS model compared to the control group, which is consistent with the results of previous analyses. Meanwhile, these genes have biological functions such as regulating vascular tone, participating in the inflammatory response, influencing tissue remodeling, and regulating cell adhesion and proliferation, playing key roles in the pathogenesis of IS. Therefore, we suggest that these four key genes may serve as prospective biomarkers for IS and help predict the risk of developing IS. In conclusion, this study elucidates for the first time the potential role of melatonin in the pathogenesis of IS and lays the foundation for in-depth studies on the functions of these key genes in the pathophysiology of IS and their potential applications in clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingsong Kang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (T.L.); (H.L.); (S.Z.); (Y.W.); (J.H.)
| |
Collapse
|
2
|
Abuzan M, Surugiu R, Wang C, Mohamud-Yusuf A, Tertel T, Catalin B, Doeppner TR, Giebel B, Hermann DM, Popa-Wagner A. Extracellular Vesicles Obtained from Hypoxic Mesenchymal Stromal Cells Induce Neurological Recovery, Anti-inflammation, and Brain Remodeling After Distal Middle Cerebral Artery Occlusion in Rats. Transl Stroke Res 2024:10.1007/s12975-024-01266-5. [PMID: 39243323 DOI: 10.1007/s12975-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 09/09/2024]
Abstract
Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) have shown considerable promise as restorative stroke treatment. In a head-to-head comparison in mice exposed to transient proximal middle cerebral artery occlusion (MCAO), sEVs obtained from MSCs cultured under hypoxic conditions particularly potently enhanced long-term brain tissue survival, microvascular integrity, and angiogenesis. These observations suggest that hypoxic preconditioning might represent the strategy of choice for harvesting MSC-sEVs for clinical stroke trials. To test the efficacy of hypoxic MSCs in a second stroke model in an additional species, we now exposed 6-8-month-old Sprague-Dawley rats to permanent distal MCAO and intravenously administered vehicle, platelet sEVs, or sEVs obtained from hypoxic MSCs (1% O2; 2 × 106 or 2 × 107 cell equivalents/kg) at 24 h, 3, 7, and 14 days post-MCAO. Over 28 days, motor-coordination recovery was evaluated by rotating pole and cylinder tests. Ischemic injury, brain inflammatory responses, and peri-infarct angiogenesis were assessed by infarct volumetry and immunohistochemistry. sEVs obtained from hypoxic MSCs did not influence infarct volume in this permanent MCAO model, but promoted motor-coordination recovery over 28 days at both sEV doses. Ischemic injury was associated with brain ED1+ macrophage infiltrates and Iba1+ microglia accumulation in the peri-infarct cortex of vehicle-treated rats. Hypoxic MSC-sEVs reduced brain macrophage infiltrates and microglia accumulation in the peri-infarct cortex. In vehicle-treated rats, CD31+/BrdU+ proliferating endothelial cells were found in the peri-infarct cortex. Hypoxic MSC-sEVs increased the number of CD31+/BrdU+ proliferating endothelial cells. Our results provide evidence that hypoxic MSC-derived sEVs potently enhance neurological recovery, reduce neuroinflammation. and increase angiogenesis in rat permanent distal MCAO.
Collapse
Affiliation(s)
- Mihaela Abuzan
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | - Roxana Surugiu
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | - Chen Wang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ayan Mohamud-Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bogdan Catalin
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Hospital Gießen and Marburg, Campus Gießen, Giessen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania.
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania.
| |
Collapse
|
3
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Biose IJ, Bakare AB, Wang H, Gressett TE, Bix GJ. Sleep apnea and ischemic stroke- a perspective for translational preclinical modelling. Sleep Med Rev 2024; 75:101929. [PMID: 38581800 DOI: 10.1016/j.smrv.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Obstructive sleep apnea (OSA) is associated with ischemic stroke. There is, however, a lack of knowledge on the exact cause-effect relationship, and preclinical models of OSA for experimental ischemic stroke investigations are not well characterized. In this review, we discuss sleep apnea and its relationship with stroke risk factors. We consider how OSA may lead to ischemic stroke and how OSA-induced metabolic syndrome and hypothalamic-pituitary axis (HPA) dysfunction could serve as therapeutic targets to prevent ischemic stroke. Further, we examine the translational potential of established preclinical models of OSA. We conclude that metabolic syndrome and HPA dysfunction, which are often overlooked in the context of experimental stroke and OSA studies, are crucial for experimental consideration to improve the body of knowledge as well as the translational potential of investigative efforts.
Collapse
Affiliation(s)
- I J Biose
- Department of Pharmacology, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - A B Bakare
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - H Wang
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - T E Gressett
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA; Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - G J Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70122, USA.
| |
Collapse
|
5
|
Liu S, Zhang S, Guo M, Lei Q, He L, Li Z. Acoustic stimulation during sleep improves cognition and ameliorates Alzheimer's disease pathology in APP/PS1 mice. Exp Gerontol 2023; 182:112299. [PMID: 37776987 DOI: 10.1016/j.exger.2023.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Nonpharmacological therapies for Alzheimer's disease (AD) have become a popular research topic, and acoustic stimulation during sleep is one such promising strategy for the clinical treatment of AD. Some animal experiments have illustrated that acoustic stimulation at a specific frequency can ameliorate AD-related pathology or improve cognition in mice, but these studies did not explore the effective time window of auditory stimulation. Here, we explored the effects of acoustic stimulation during wakefulness and acoustic stimulation during sleep on cognition and AD-related pathology in APP/PS1 mice and the underlying mechanisms. In this study, forty APP/PS1 mice were equally divided into the following 4 groups and treated for 28 days: the chronic sleep deprivation (CSD) group (exposed to sleep deprivation from zeitgeber time [ZT] 0 to ZT 12 each day), the normal sleep and stress exposure (NSS) group (exposed to a stressor from ZT 0 to ZT 12 each day), the acoustic stimulation during wakefulness (ASW) group (exposed to sleep deprivation and 40 Hz acoustic stimulation from ZT 0 to ZT 12 each day) and the acoustic stimulation during sleep (ASS) group (exposed to sleep deprivation from ZT 0 to ZT 12 and 40 Hz acoustic stimulation from ZT 12 to ZT 24 each day). After the intervention, cognition was assessed by behavioural experiments. The amyloid-β burden was analysed by Western blotting, immunofluorescence and enzyme-linked immunosorbent assay. Tau pathology was assessed by Western blotting. Mitochondrial function was evaluated by transmission electron microscopy, Western blotting and fluorescence intensity measurement. We found that the NSS and ASS groups had better cognitive functions than the CSD and ASW groups. The Aβ burden and tau phosphorylation were lower in the NSS and ASS groups than in the CSD and ASW groups. Mitochondrial function was better in the NSS and ASS groups than in the CSD and ASW groups. However, the differences in these parameters between the NSS and ASS groups and between the CSD and ASW groups were not significant. Our findings suggest that acoustic stimulation at a specific frequency during sleep, but not during wakefulness, reduces the amyloid-β burden by inhibiting amyloid beta precursor protein-binding protein 2, hinders tau phosphorylation by blocking glycogen synthase kinase 3 beta, and restores mitochondrial function by elevating mitophagy and promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen 518000, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Su Zhang
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Mengxia Guo
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Qingfeng Lei
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Lu He
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Zhong Li
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen 518000, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| |
Collapse
|
6
|
Arjmandi-Rad S, Ebrahimnejad M, Zarrindast MR, Vaseghi S. Do Sleep Disturbances have a Dual Effect on Alzheimer's Disease? Cell Mol Neurobiol 2023; 43:711-727. [PMID: 35568778 DOI: 10.1007/s10571-022-01228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
Sleep disturbances and Alzheimer's disease have deleterious effects on various physiological and cognitive functions including synaptic plasticity, oxidative stress, neuroinflammation, and memory. In addition, clock genes expression is significantly altered following sleep disturbances, which may be involved in the pathogenesis of Alzheimer's disease. In this review article, we aimed to discuss the role of sleep disturbances and Alzheimer's disease in the regulation of synaptic plasticity, oxidative stress, neuroinflammation, and clock genes expression. Also, we aimed to find significant relationships between sleep disturbances and Alzheimer's disease in the modulation of these mechanisms. We referred to the controversial effects of sleep disturbances (particularly those related to the duration of sleep deprivation) on the modulation of synaptic function and neuroinflammation. We aimed to know that, do sleep disturbances have a dual effect on the progression of Alzheimer's disease? Although numerous studies have discussed the association between sleep disturbances and Alzheimer's disease, the new point of this study was to focus on the controversial effects of sleep disturbances on different biological functions, and to evaluate the potential dualistic role of sleep disturbances in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, PO Box: 1419815477, Karaj, Iran.
| |
Collapse
|
7
|
Kholghi G, Alipour V, Rezaie M, Zarrindast MR, Vaseghi S. The Interaction Effect of Sleep Deprivation and Treadmill Exercise in Various Durations on Spatial Memory with Respect to the Oxidative Status of Rats. Neurochem Res 2023; 48:2077-2092. [PMID: 36786943 DOI: 10.1007/s11064-023-03890-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
Sleep deprivation (SD) has deleterious effects on cognitive functions including learning and memory. However, some studies have shown that SD can improve cognitive functions. Interestingly, treadmill exercise has both impairment and improvement effects on memory function. In this study, we aimed to investigate the effect of SD for 4 (short-term) and 24 (long-term) hours, and two protocols of treadmill exercise (mild short-term and moderate long-term) on spatial memory performance, and oxidative and antioxidant markers in the serum of rats. Morris Water Maze apparatus was used to assess spatial memory performance. Also, SD was done using gentle handling method. In addition, the serum level of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) was measured. The results showed that 24 h SD (but not 4 h) had negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Long-term moderate (but not short-term mild) treadmill exercise had also negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Interestingly, both protocols of treadmill exercise reversed spatial memory impairment and oxidative stress induced by 24 h SD. In conclusion, it seems that SD and treadmill exercise interact with each other, and moderate long-term exercise can reverse the negative effects of long-term SD on memory and oxidative status; although, it disrupted memory function and increased oxidative stress by itself.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
8
|
Arjmandi-rad S, Zarrindast MR, Shadfar S, Nasehi M. The role of sleep deprivation in streptozotocin-induced Alzheimer’s disease-like sporadic dementia in rats with respect to the serum level of oxidative and inflammatory markers. Exp Brain Res 2022; 240:3259-3270. [DOI: 10.1007/s00221-022-06471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022]
|
9
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
10
|
Wang X, Ji X. Interactions between remote ischemic conditioning and post-stroke sleep regulation. Front Med 2021; 15:867-876. [PMID: 34811643 DOI: 10.1007/s11684-021-0887-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022]
Abstract
Sleep disturbances are common in patients with stroke, and sleep quality has a critical role in the onset and outcome of stroke. Poor sleep exacerbates neurological injury, impedes nerve regeneration, and elicits serious complications. Thus, exploring a therapy suitable for patients with stroke and sleep disturbances is imperative. As a multi-targeted nonpharmacological intervention, remote ischemic conditioning can reduce the ischemic size of the brain, improve the functional outcome of stroke, and increase sleep duration. Preclinical/clinical evidence showed that this method can inhibit the inflammatory response, mediate the signal transductions of adenosine, activate the efferents of the vagal nerve, and reset the circadian clocks, all of which are involved in sleep regulation. In particular, cytokines tumor necrosis factor α (TNFα) and adenosine are sleep factors, and electrical vagal nerve stimulation can improve insomnia. On the basis of the common mechanisms of remote ischemic conditioning and sleep regulation, a causal relationship was proposed between remote ischemic conditioning and post-stroke sleep quality.
Collapse
Affiliation(s)
- Xian Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, 100069, China.
| |
Collapse
|
11
|
Dumbrava DA, Surugiu R, Börger V, Ruscu M, Tertel T, Giebel B, Hermann DM, Popa-Wagner A. Mesenchymal stromal cell-derived small extracellular vesicles promote neurological recovery and brain remodeling after distal middle cerebral artery occlusion in aged rats. GeroScience 2021; 44:293-310. [PMID: 34757568 PMCID: PMC8811093 DOI: 10.1007/s11357-021-00483-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/09/2023] Open
Abstract
Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) promote neurological recovery after middle cerebral artery occlusion (MCAO) in young rodents. Ischemic stroke mainly affects aged humans. MSC-sEV effects on stroke recovery in aged rodents had not been assessed. In a head-to-head comparison, we exposed young (4-5 months) and aged (19-20 months) male Sprague-Dawley rats to permanent distal MCAO. At 24 h, 3 and 7 days post-stroke, vehicle or MSC-sEVs (2 × 106 or 2 × 107 MSC equivalents/kg) were intravenously administered. Neurological deficits, ischemic injury, brain inflammatory responses, post-ischemic angiogenesis, and endogenous neurogenesis were evaluated over 28 days. Post-MCAO, aged vehicle-treated rats exhibited more severe motor-coordination deficits evaluated by rotating pole and cylinder tests and larger brain infarcts than young vehicle-treated rats. Although infarct volume was not influenced by MSC-sEVs, sEVs at both doses effectively reduced motor-coordination deficits in young and aged rats. Brain macrophage infiltrates in periinfarct tissue, which were evaluated as marker of a recovery-aversive inflammatory environment, were significantly stronger in aged than young vehicle-treated rats. sEVs reduced brain macrophage infiltrates in aged, but not young rats. The tolerogenic shift in immune balance paved the way for structural brain tissue remodeling. Hence, sEVs at both doses increased periinfarct angiogenesis evaluated by CD31/BrdU immunohistochemistry in young and aged rats, and low-dose sEVs increased neurogenesis in the subventricular zone examined by DCX/BrdU immunohistochemistry. Our study provides robust evidence that MSC-sEVs promote functional neurological recovery and brain tissue remodeling in aged rats post-stroke. This study encourages further proof-of-concept studies in clinic-relevant stroke settings.
Collapse
Affiliation(s)
- Danut-Adrian Dumbrava
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | - Roxana Surugiu
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | | | - Mihai Ruscu
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | | | - Bernd Giebel
- Institute for Transfusion Medicine, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Experimental Research Center in Normal and Pathological Aging (ARES), University of Medicine and Pharmacy, Craiova, Romania
- Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Southport, QLD, 4222, Australia
| |
Collapse
|
12
|
Dai D, Zheng B, Yu Z, Lin S, Tang Y, Chen M, Ke P, Zheng C, Chen Y, Wu X. Right stellate ganglion block improves learning and memory dysfunction and hippocampal injury in rats with sleep deprivation. BMC Anesthesiol 2021; 21:272. [PMID: 34749669 PMCID: PMC8574040 DOI: 10.1186/s12871-021-01486-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Sleep deprivation (SD) often leads to complex detrimental consequences, though the mechanisms underlying these dysfunctional effects remain largely unknown. We investigated whether the right stellate ganglion block in rats can improve the spatial learning and memory dysfunction induced by sleep deprivation by alleviating the damage of hippocampus in rats. Methods Sixty four male Sprague Dawley rats were randomly divided into four groups: Control, SD (sleep deprivation), SGB (stellate ganglion block) and SGB + SD (stellate ganglion block+ sleep deprivation) (n = 16). The SGB and SD + SGB groups were subjected to right stellate ganglion block through posterior approach method once per day. SD and SD + SGB groups were treated with modified multi-platform water environment method for 96 h sleep deprivation in rats and their body weights were analyzed. Histopathological changes of hippocampal neurons in rats and the expression of Caspase-3 in hippocampus of rats was detected by western blotting. ELISA was used to detect the content of IL-6, IL-1 in hippocampus and serum melatonin levels. Results Compared with the group SD, the spatial learning and memory function of the group SD + SGB was improved, the weight loss was alleviated, the pathological damage of the hippocampus was reduced and the expression of IL-6, IL-1β and Caspase-3 in the hippocampus was decreased. The content of rat serum melatonin was also increased. Conclusions The right stellate ganglion block can improve the spatial learning and memory dysfunction of rats with sleep deprivation, and the underlying mechanism may be related to alleviating the apoptosis and inflammation of hippocampus of rats with sleep deprivation. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01486-4.
Collapse
Affiliation(s)
- Dongsheng Dai
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Biqiong Zheng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Zenggui Yu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Shizhu Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yijie Tang
- Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Mengnan Chen
- Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Peng Ke
- Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Chengjie Zheng
- Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Yanqing Chen
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China.
| | - Xiaodan Wu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
13
|
Howell SN, Griesbach GS. Sleep-wake disturbances in supra-and infratentorial stroke: an analysis of post-acute sleep architecture and apnea. Sleep Med 2021; 88:81-86. [PMID: 34740169 DOI: 10.1016/j.sleep.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Sleep-wake disturbances (SWD) are common following stroke, and often extend into the post-acute to chronic periods of recovery. Of particular interest to recovery is a reduction in rapid eye movement (REM) sleep, as we know REM sleep to be important for learning and memory. While there is a breadth of evidence linking SWD and stroke, much less work has been done to identify and determine if differences in sleep architecture and apnea severity are dependent on stroke infarct topographies. METHODS A retrospective chart review was conducted of 48 ischemic stroke patients having underwent a full, overnight polysomnography (PSG). All patients were over 30 days post-injury (post-acute) at the time of the PSG. Patients were divided into supra- and infratentorial infarct topography groups based on available medical and imaging records. In addition to sleep study record review, cognitive and outcome measures were examined. RESULTS Results showed that patients with infratentorial stroke had poorer sleep efficiency, decreased REM sleep, and higher apnea hypopnea index (AHI) than those with supratentorial injuries. Longer continuous REM periods were correlated with higher verbal learning/memory scores, higher levels of positive affect, and lower levels of emotional/behavioral dyscontrol. Neither age nor AHI were significantly correlated with the amount or duration of REM. Slow-wave sleep was significantly reduced across both injury topographies. CONCLUSIONS Infratentorial ischemic stroke patients display significant disruptions in sleep architecture and may require close monitoring for SWDs in the post-acute period to maximize outcome potential. REM sleep is particularly affected when compared to supratentorial ischemic stroke.
Collapse
Affiliation(s)
| | - Grace S Griesbach
- Centre for Neuro Skills, Bakersfield, CA, USA; Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Prevalence and Determinants of Sleep Apnea in Patients with Stroke: A Meta-Analysis. J Stroke Cerebrovasc Dis 2021; 30:106129. [PMID: 34601243 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Recent meta-analyses have noted that ∼70% of transient ischemic attack (TIA)/stroke patients have sleep apnea. However, the heterogeneity between studies was high and did not appear to be accounted by the phase of stroke. We conducted an updated meta-analysis and aimed to determine whether the prevalence of sleep apnea amongst stroke patients differs by the subtype, etiology, severity and location of stroke and hence could account for some of the unexplained heterogeneity observed in previous studies. MATERIALS AND METHODS We searched Medline, Embase, CINAHL and Cochrane Library (from their commencements to July 2020) for studies which reported the prevalence of sleep apnea by using polysomnography in TIA/stroke patients. We used random-effects model to calculate the pooled prevalence of sleep apnea and explored whether the prevalence differed by stroke characteristics. RESULTS Seventy-five studies describing 8670 stroke patients were included in this meta-analysis. The overall prevalence of sleep apnea was numerically higher in patients with hemorrhagic vs. ischemic stroke [82.7% (64.4-92.7%) vs. 67.5% (63.2-71.5%), p=0.098], supratentorial vs. infratentorial stroke [64.4% (56.7-71.4%) vs. 56.5% (42.2-60.0%), p=0.171], and cardioembolic [74.3% (59.6-85.0%)] vs. other ischemic stroke subtypes [large artery atherosclerosis: 68.3% (52.5-80.7%), small vessel occlusion: 56.1% (38.2-72.6%), others/undetermined: 47.9% (31.6-64.6%), p=0.089]. The heterogeneity in sleep apnea prevalence was partially accounted by the subtype (1.9%), phase (5.0%) and location of stroke (14.0%) among reported studies. CONCLUSIONS The prevalence of sleep apnea in the stroke population appears to differ by the subtype, location, etiology and phase of stroke.
Collapse
|
15
|
Vaseghi S, Arjmandi-Rad S, Kholghi G, Nasehi M. Inconsistent effects of sleep deprivation on memory function. EXCLI JOURNAL 2021; 20:1011-1027. [PMID: 34267613 PMCID: PMC8278215 DOI: 10.17179/excli2021-3764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
In this review article, we aimed to discuss the role of sleep deprivation (SD) in learning and memory processing in basic and clinical studies. There are numerous studies investigating the effect of SD on memory, while most of these studies have shown the impairment effect of SD. However, some of these studies have reported conflicting results, indicating that SD does not impair memory performance or even improves it. So far, no study has discussed or compared the conflicting results of SD on learning and memory. Thus, this important issue in the neuroscience of sleep remains unknown. The main goal of this review article is to compare the similar mechanisms between the impairment and the improvement effects of SD on learning and memory, probably leading to a scientific solution that justifies these conflicting results. We focused on the inconsistent effects of SD on some mechanisms involved in learning and memory, and tried to discuss the inconsistent effects of SD on learning and memory.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Gita Kholghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Balseanu AT, Grigore M, Pinosanu LR, Slevin M, Hermann DM, Glavan D, Popa-Wagner A. Electric Stimulation of Neurogenesis Improves Behavioral Recovery After Focal Ischemia in Aged Rats. Front Neurosci 2020; 14:732. [PMID: 32742258 PMCID: PMC7365235 DOI: 10.3389/fnins.2020.00732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
The major aim of stroke therapies is to stimulate brain repair and to improve behavioral recuperation after cerebral ischemia. Despite remarkable advances in cell therapy for stroke, stem cell-based tissue replacement has not been achieved yet stimulating the search for alternative strategies for brain self-repair using the neurogenic zones of the brain, the dentate gyrus and the subventricular zone (SVZ). However, during aging, the potential of the hippocampus and the SVZ to generate new neuronal precursors, declines. We hypothesized that electrically stimulation of endogenous neurogenesis in aged rats could increase the odds of brain self-repair and improve behavioral recuperation after focal ischemia. Following stroke in aged animals, the rats were subjected to two sessions of electrical non-convulsive stimulation using ear-clip electrodes, at 7- and 24 days after MCAO. Animal were sacrificed after 48 days. We report that electrical stimulation (ES) stimulation of post-stroke aged rats led to an improved functional recovery of spatial long-term memory (T-maze) but not on the rotating pole or the inclined plane, both tests requiring complex sensorimotor skills. Surprisingly, ES had a detrimental effect on the asymmetric sensorimotor deficit. Histologically, there was a robust increase in the number of doublecortin-positive cells in the dentate gyrus and SVZ of the infarcted hemisphere and the presence of a considerable number of neurons expressing tubulin beta III in the infarcted area. Among the gene that were unique to ES, we noted increases in the expression of seizure related 6 homolog like which is one of the physiological substrate of the β-secretase BACE1 involved in the pathophysiology of the Alzheimer’s disease and Igfbp3 and BDNF receptor mRNAs which has been shown to have a neuroprotective effect after cerebral ischemia. However, ES was associated with a long-term down regulation of cortical gene expression after stroke in aged rats suggesting that gene expression in the peri-infarcted cortical area may not be related to electrical stimulation induced-neurogenesis in the subventricular zone and hippocampus.
Collapse
Affiliation(s)
- Adrian Tudor Balseanu
- Center of Clinical and Experimental Medicine, Department of Psychiatry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Monica Grigore
- Center of Clinical and Experimental Medicine, Doctoral School, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Leonard-Radu Pinosanu
- Center of Clinical and Experimental Medicine, Doctoral School, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Mark Slevin
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Dirk M Hermann
- Department of Neurology the Chair of Vascular Neurology and Dementia, Essen University Hospital, Essen, Germany
| | - Daniela Glavan
- Center of Clinical and Experimental Medicine, Department of Psychiatry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Aurel Popa-Wagner
- Center of Clinical and Experimental Medicine, Department of Psychiatry, University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| |
Collapse
|
17
|
Singh P, Donlea JM. Bidirectional Regulation of Sleep and Synapse Pruning after Neural Injury. Curr Biol 2020; 30:1063-1076.e3. [PMID: 32142703 DOI: 10.1016/j.cub.2019.12.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Following acute neural injury, severed axons undergo programmed Wallerian degeneration over several following days. While sleep has been linked with synaptic reorganization under other conditions, the role of sleep in responses to neural injuries remains poorly understood. To study the relationship between sleep and neural injury responses, we examined Drosophila melanogaster following the removal of antennae or other sensory tissues. Daytime sleep is elevated after antennal or wing injury, but sleep returns to baseline levels within 24 h after injury. Similar increases in sleep are not observed when olfactory receptor neurons are silenced or when other sensory organs are severed, suggesting that increased sleep after injury is not attributed to sensory deprivation, nociception, or generalized inflammatory responses. Neuroprotective disruptions of the E3 ubiquitin ligase highwire and c-Jun N-terminal kinase basket in olfactory receptor neurons weaken the sleep-promoting effects of antennal injury, suggesting that post-injury sleep may be influenced by the clearance of damaged neurons. Finally, we show that pre-synaptic active zones are preferentially removed from severed axons within hours after injury and that depriving recently injured flies of sleep slows the removal of both active zones and damaged axons. These data support a bidirectional interaction between sleep and synapse pruning after antennal injury: locally increasing the need to clear neural debris is associated with increased sleep, which is required for efficient active zone removal after injury.
Collapse
Affiliation(s)
- Prabhjit Singh
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
18
|
Wake-up stroke: From pathophysiology to management. Sleep Med Rev 2019; 48:101212. [PMID: 31600679 DOI: 10.1016/j.smrv.2019.101212] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/01/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Wake-up strokes (WUS) are strokes with unknown exact time of onset as they are noted on awakening by the patients. They represent 20% of all ischemic strokes. The chronobiological pattern of ischemic stroke onset, with higher frequency in the first morning hours, is likely to be associated with circadian fluctuations in blood pressure, heart rate, hemostatic processes, and the occurrence of atrial fibrillation episodes. The modulation of stroke onset time also involves the sleep-wake cycle as there is an increased risk associated with rapid-eye-movement sleep. Furthermore, sleep may have an impact on the expression and perception of stroke symptoms by patients, but also on brain tissue ischemia processes via a neuroprotective effect. Obstructive sleep apnea syndrome is particularly prevalent in WUS patients. Until recently, WUS was considered as a contra-indication to reperfusion therapy because of the unknown onset time and the potential cerebral bleeding risk associated with thrombolytic treatment. A renewed interest in WUS has been observed over the past few years related to an improved radiological evaluation of WUS patients and the recent demonstration of the clinical efficacy of reperfusion in selected patients when the presence of salvageable brain tissue on advanced cerebral imaging is demonstrated.
Collapse
|
19
|
Duss SB, Brill AK, Bargiotas P, Facchin L, Alexiev F, Manconi M, Bassetti CL. Sleep-Wake Disorders in Stroke—Increased Stroke Risk and Deteriorated Recovery? An Evaluation on the Necessity for Prevention and Treatment. Curr Neurol Neurosci Rep 2018; 18:72. [DOI: 10.1007/s11910-018-0879-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Pace M, Camilo MR, Seiler A, Duss SB, Mathis J, Manconi M, Bassetti CL. Rapid eye movements sleep as a predictor of functional outcome after stroke: a translational study. Sleep 2018; 41:5056018. [DOI: 10.1093/sleep/zsy138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, University Hospital (Inselspital), Bern, Switzerland
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Millene R Camilo
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea Seiler
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Simone B Duss
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Johannes Mathis
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| | - Mauro Manconi
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - Claudio L Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, University Hospital (Inselspital), Bern, Switzerland
- Department of Neurology, University Hospital-Inselspital, Bern, Switzerland
| |
Collapse
|
21
|
Sandu RE, Dumbrava D, Surugiu R, Glavan DG, Gresita A, Petcu EB. Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects. Int J Mol Sci 2017; 19:ijms19010099. [PMID: 29286319 PMCID: PMC5796049 DOI: 10.3390/ijms19010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/12/2022] Open
Abstract
The incidence of ischemic stroke in humans increases exponentially above 70 years both in men and women. Comorbidities like diabetes, arterial hypertension or co-morbidity factors such as hypercholesterolemia, obesity and body fat distribution as well as fat-rich diet and physical inactivity are common in elderly persons and are associated with higher risk of stroke, increased mortality and disability. Obesity could represent a state of chronic inflammation that can be prevented to some extent by non-pharmaceutical interventions such as calorie restriction and hypothermia. Indeed, recent results suggest that H₂S-induced hypothermia in aged, overweight rats could have a higher probability of success in treating stroke as compared to other monotherapies, by reducing post-stroke brain inflammation. Likewise, it was recently reported that weight reduction prior to stroke, in aged, overweight rats induced by caloric restriction, led to an early re-gain of weight and a significant improvement in recovery of complex sensorimotor skills, cutaneous sensitivity, or spatial memory. CONCLUSION animal models of stroke done in young animals ignore age-associated comorbidities and may explain, at least in part, the unsuccessful bench-to-bedside translation of neuroprotective strategies for ischemic stroke in aged subjects.
Collapse
Affiliation(s)
- Raluca Elena Sandu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Danut Dumbrava
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Roxana Surugiu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Daniela-Gabriela Glavan
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Andrei Gresita
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Eugen Bogdan Petcu
- Gold Coast Campus, School of Medicine, Griffith University, Southport 4222, Australia.
| |
Collapse
|
22
|
Pincherle A, Pace M, Sarasso S, Facchin L, Dreier JP, Bassetti CL. Sleep, Preconditioning and Stroke. Stroke 2017; 48:3400-3407. [DOI: 10.1161/strokeaha.117.018796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Alessandro Pincherle
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Marta Pace
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Simone Sarasso
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Laura Facchin
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Jens P. Dreier
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| | - Claudio L. Bassetti
- From the Department of Clinical Neurosciences, Acute Neurorehabilitation Unit, University Hospital CHUV, Lausanne, Switzerland (A.P.); ZEN Department of Neurology, Bern University Hospital, Switzerland (M.P., L.F., C.L.B.); Department of Genetics and Epigenetics of Behavior, Istituto Italiano di Tecnologia, Genoa, Italy (M.P.); L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Italy (S.S.); and Department of Neurology (J.P.D.) and Department of Experimental Neurology (J.P
| |
Collapse
|
23
|
Pace M, Adamantidis A, Facchin L, Bassetti C. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS One 2017; 12:e0168430. [PMID: 28061506 PMCID: PMC5218733 DOI: 10.1371/journal.pone.0168430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. METHODS Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. RESULTS A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. CONCLUSIONS Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.
Collapse
Affiliation(s)
- Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
- * E-mail:
| | - Antoine Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Laura Facchin
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Claudio Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
24
|
Duss SB, Seiler A, Schmidt MH, Pace M, Adamantidis A, Müri RM, Bassetti CL. The role of sleep in recovery following ischemic stroke: A review of human and animal data. Neurobiol Sleep Circadian Rhythms 2017; 2:94-105. [PMID: 31236498 PMCID: PMC6575180 DOI: 10.1016/j.nbscr.2016.11.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/02/2023] Open
Abstract
Despite advancements in understanding the pathophysiology of stroke and the state of the art in acute management of afflicted patients as well as in subsequent neurorehabilitation training, stroke remains the most common neurological cause of long-term disability in adulthood. To enhance stroke patients' independence and well-being it is necessary, therefore, to consider and develop new therapeutic strategies and approaches. We postulate that sleep might play a pivotal role in neurorehabilitation following stroke. Over the last two decades compelling evidence for a major function of sleep in neuroplasticity and neural network reorganization underlying learning and memory has evolved. Training and learning of new motor skills and knowledge can modulate the characteristics of subsequent sleep, which additionally can improve memory performance. While healthy sleep appears to support neuroplasticity resulting in improved learning and memory, disturbed sleep following stroke in animals and humans can impair stroke outcome. In addition, sleep disorders such as sleep disordered breathing, insomnia, and restless legs syndrome are frequent in stroke patients and associated with worse recovery outcomes. Studies investigating the evolution of post-stroke sleep changes suggest that these changes might also reflect neural network reorganization underlying functional recovery. Experimental and clinical studies provide evidence that pharmacological sleep promotion in rodents and treatment of sleep disorders in humans improves functional outcome following stroke. Taken together, there is accumulating evidence that sleep represents a "plasticity state" in the process of recovery following ischemic stroke. However, to test the key role of sleep and sleep disorders for stroke recovery and to better understand the underlying molecular mechanisms, experimental research and large-scale prospective studies in humans are necessary. The effects of hospital conditions, such as adjusting light conditions according to the patients' sleep-wake rhythms, or sleep promoting drugs and non-invasive brain stimulation to promote neuronal plasticity and recovery following stroke requires further investigation.
Collapse
Affiliation(s)
- Simone B. Duss
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Andrea Seiler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Markus H. Schmidt
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Antoine Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - René M. Müri
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Claudio L. Bassetti
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
25
|
Brager AJ, Yang T, Ehlen JC, Simon RP, Meller R, Paul KN. Sleep Is Critical for Remote Preconditioning-Induced Neuroprotection. Sleep 2016; 39:2033-2040. [PMID: 27568798 DOI: 10.5665/sleep.6238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Episodes of brief limb ischemia (remote preconditioning) in mice induce tolerance to modeled ischemic stroke (focal brain ischemia). Since stroke outcomes are in part dependent on sleep-wake history, we sought to determine if sleep is critical for the neuroprotective effect of limb ischemia. METHODS EEG/EMG recording electrodes were implanted in mice. After a 24 h baseline recording, limb ischemia was induced by tightening an elastic band around the left quadriceps for 10 minutes followed by 10 minutes of release for two cycles. Two days following remote preconditioning, a second 24 h EEG/EMG recording was completed and was immediately followed by a 60-minute suture occlusion of the middle cerebral artery (modeled ischemic stroke). This experiment was then repeated in a model of circadian and sleep abnormalities (Bmal1 knockout [KO] mice sleep 2 h more than wild-type littermates). Brain infarction was determined by vital dye staining, and sleep was assessed by trained identification of EEG/EMG recordings. RESULTS Two days after limb ischemia, wild-type mice slept an additional 2.4 h. This additional sleep was primarily comprised of non-rapid eye movement (NREM) sleep during the middle of the light-phase (i.e., naps). Repeating the experiment but preventing increases in sleep after limb ischemia abolished tolerance to ischemic stroke. In Bmal1 knockout mice, remote preconditioning did not increase daily sleep nor provide tolerance to subsequent focal ischemia. CONCLUSIONS These results suggest that sleep induced by remote preconditioning is both sufficient and necessary for its neuroprotective effects on stroke outcome.
Collapse
Affiliation(s)
- Allison J Brager
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA.,Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD
| | - Tao Yang
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - J Christopher Ehlen
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA
| | - Roger P Simon
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - Robert Meller
- Translational Programs in Stroke, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA
| | - Ketema N Paul
- Circadian Rhythms and Sleep Disorders Program, Department of Neurobiology, Morehouse School of Medicine, Atlanta GA.,Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
26
|
Cohen S, Kaplan Z, Zohar J, Cohen H. Preventing sleep on the first resting phase following a traumatic event attenuates anxiety-related responses. Behav Brain Res 2016; 320:450-456. [PMID: 27789342 DOI: 10.1016/j.bbr.2016.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/20/2022]
Abstract
Sleep deprivation (SD) in the early aftermath of stress exposure at the onset of the inactive (resting)-phase, has been shown to ameliorate stress-related sequelae. We examined whether this effect is affected by the temporal proximity between SD and the stressful event or whether it was related to the prevention of sleep in the first resting phase following the exposure. Rats were exposed to stress at the onset of their active phase. Then, they were prevented from sleeping immediately thereafter [forced wakefulness (FW)], or during the first resting phase (SD). The behavior in the elevated plus-maze and acoustic startle response paradigms were assessed seven days post-exposure for retrospective classification into behavioral response groups. We found that resting phase SD (with or without FW) decreased PTSD-like phenotype, whereas immediate FW had no significant effect. The long-term anxiolytic effects of SD appear to stem from a diurnal cycle-dependent mechanism, such that preventing sleep during the first natural resting phase following the traumatic exposure is beneficial in preventing the traumatic sequelae.
Collapse
Affiliation(s)
- Shlomi Cohen
- Ben-Gurion University of the Negev, Department of Psychology, Beer Sheva, Israel; Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Zeev Kaplan
- Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Joseph Zohar
- Division of Psychiatry, The State of Israel Ministry of Health, The Chaim Sheba Medical Center, Sackler Medical School, Tel-Aviv University, Tel Hashomer, Israel
| | - Hagit Cohen
- Ben-Gurion University of the Negev, Department of Psychology, Beer Sheva, Israel; Beer-Sheva Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
27
|
Wickwire EM, Williams SG, Roth T, Capaldi VF, Jaffe M, Moline M, Motamedi GK, Morgan GW, Mysliwiec V, Germain A, Pazdan RM, Ferziger R, Balkin TJ, MacDonald ME, Macek TA, Yochelson MR, Scharf SM, Lettieri CJ. Sleep, Sleep Disorders, and Mild Traumatic Brain Injury. What We Know and What We Need to Know: Findings from a National Working Group. Neurotherapeutics 2016; 13:403-17. [PMID: 27002812 PMCID: PMC4824019 DOI: 10.1007/s13311-016-0429-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disturbed sleep is one of the most common complaints following traumatic brain injury (TBI) and worsens morbidity and long-term sequelae. Further, sleep and TBI share neurophysiologic underpinnings with direct relevance to recovery from TBI. As such, disturbed sleep and clinical sleep disorders represent modifiable treatment targets to improve outcomes in TBI. This paper presents key findings from a national working group on sleep and TBI, with a specific focus on the testing and development of sleep-related therapeutic interventions for mild TBI (mTBI). First, mTBI and sleep physiology are briefly reviewed. Next, essential empirical and clinical questions and knowledge gaps are addressed. Finally, actionable recommendations are offered to guide active and efficient collaboration between academic, industry, and governmental stakeholders.
Collapse
Affiliation(s)
- Emerson M Wickwire
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
- Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Scott G Williams
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas Roth
- Sleep Disorders and Research Center, Henry Ford Hospital, Detroit, MI, USA
| | - Vincent F Capaldi
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience Research, Silver Spring, MD, USA
| | - Michael Jaffe
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Concussion and Sports Program, University of Florida Trauma, Gainesville, FL, USA
- UF Health Sleep Disorders Center, Gainesville, FL, USA
| | | | - Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, DC, USA
| | - Gregory W Morgan
- Sleep Disorders Center, National Intrepid Center of Excellence, Bethesda, MD, USA
| | - Vincent Mysliwiec
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Sleep Medicine, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Thomas J Balkin
- Department of Behavioral Biology, Walter Reed Army Institute of Research, Center for Military Psychiatry and Neuroscience Research, Silver Spring, MD, USA
| | - Margaret E MacDonald
- Defense and Veterans Brain Injury Center, (Contractor, General Dynamics Health Solutions), Evans Army Community Hospital, Fort Carson, CO, USA
| | - Thomas A Macek
- Department of Clinical Science, CNS, Takeda Development Center - Americas, Deerfield, IL, USA
| | - Michael R Yochelson
- Medstar National Rehabilitation Network, Washington, DC, USA
- Departments of Neurology and Rehabilitation Medicine, Georgetown University School of Medicine, Washington, DC, USA
| | - Steven M Scharf
- Sleep Disorders Center, Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher J Lettieri
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
28
|
Twenty-four hours hypothermia has temporary efficacy in reducing brain infarction and inflammation in aged rats. Neurobiol Aging 2015; 38:127-140. [PMID: 26827651 DOI: 10.1016/j.neurobiolaging.2015.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/19/2015] [Accepted: 11/11/2015] [Indexed: 11/23/2022]
Abstract
Stroke is a major cause of disability for which no neuroprotective measures are available. Age is the principal nonmodifiable risk factor for this disease. Previously, we reported that exposure to hydrogen sulfide for 48 hours after stroke lowers whole body temperature and confers neuroprotection in aged animals. Because the duration of hypothermia in most clinical trials is between 24 and 48 hours, we questioned whether 24 hours exposure to gaseous hypothermia confers the same neuroprotective efficacy as 48 hours exposure. We found that a shorter exposure to hypothermia transiently reduced both inflammation and infarct size. However, after 1 week, the infarct size became even larger than in controls and after 2 weeks there was no beneficial effect on regenerative processes such as neurogenesis. Behaviorally, hypothermia also had a limited beneficial effect. Finally, after hydrogen sulfide-induced hypothermia, the poststroke aged rats experienced a persistent sleep impairment during their active nocturnal period. Our data suggest that cellular events that are delayed by hypothermia in aged rats may, in the long term, rebound, and diminish the beneficial effects.
Collapse
|
29
|
Pace M, Baracchi F, Gao B, Bassetti C. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke. Sleep 2015; 38:1707-18. [PMID: 26085290 DOI: 10.5665/sleep.5148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. DESIGN Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. SETTINGS Basic sleep research laboratory. MEASUREMENTS AND RESULTS Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. CONCLUSION Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms.
Collapse
Affiliation(s)
- Marta Pace
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Baracchi
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland
| | - Bo Gao
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland
| | - Claudio Bassetti
- ZEN - Zentrum für Experimentelle Neurologie, Inselspital, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
30
|
Caron AM, Stephenson R. Sleep deprivation does not affect neuronal susceptibility to mild traumatic brain injury in the rat. Nat Sci Sleep 2015; 7:63-72. [PMID: 26124685 PMCID: PMC4482367 DOI: 10.2147/nss.s82888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mild and moderate traumatic brain injuries (TBIs) (and concussion) occur frequently as a result of falls, automobile accidents, and sporting activities, and are a major cause of acute and chronic disability. Fatigue and excessive sleepiness are associated with increased risk of accidents, but it is unknown whether prior sleep debt also affects the pathophysiological outcome of concussive injury. Using the "dark neuron" (DN) as a marker of reversible neuronal damage, we tested the hypothesis that acute (48 hours) total sleep deprivation (TSD) and chronic sleep restriction (CSR; 10 days, 6-hour sleep/day) affect DN formation following mild TBI in the rat. TSD and CSR were administered using a walking wheel apparatus. Mild TBI was administered under anesthesia using a weight-drop impact model, and the acute neuronal response was observed without recovery. DNs were detected using standard bright-field microscopy with toluidine blue stain following appropriate tissue fixation. DN density was low under home cage and sleep deprivation control conditions (respective median DN densities, 0.14% and 0.22% of neurons), and this was unaffected by TSD alone (0.1%). Mild TBI caused significantly higher DN densities (0.76%), and this was unchanged by preexisting acute or chronic sleep debt (TSD, 0.23%; CSR, 0.7%). Thus, although sleep debt may be predicted to increase the incidence of concussive injury, the present data suggest that sleep debt does not exacerbate the resulting neuronal damage.
Collapse
Affiliation(s)
- Aimee M Caron
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Richard Stephenson
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Cheng O, Li R, Zhao L, Yu L, Yang B, Wang J, Chen B, Yang J. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion. PLoS One 2015; 10:e0125877. [PMID: 26039740 PMCID: PMC4454510 DOI: 10.1371/journal.pone.0125877] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/26/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sleep deprivation (SD) plays a complex role in central nervous system (CNS) diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR). METHODS One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU) and neuron-specific enolase (NSE), respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d. RESULTS The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects. CONCLUSIONS Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG) of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process.
Collapse
Affiliation(s)
- Oumei Cheng
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Rong Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Lei Zhao
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lijuan Yu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Bin Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jia Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Beibei Chen
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
- * E-mail:
| |
Collapse
|
32
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
33
|
Sleep deprivation before stroke is neuroprotective: a pre-ischemic conditioning related to sleep rebound. Exp Neurol 2013; 247:673-9. [PMID: 23499829 DOI: 10.1016/j.expneurol.2013.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/18/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM We have previously shown in a rat model of focal cerebral ischemia that sleep deprivation after stroke onset aggravates brain damage. Others reported that sleep deprivation prior to stroke is neuroprotective. The main aim of this study was to test the hypothesis that the neuroprotection may be related to an increase in sleep (sleep rebound) during the acute phase of stroke. METHODS Male Sprague Dawley rats (n=36) were subjected to continuous polygraphic recordings for baseline, total sleep deprivation (TSD), and 24h after ischemia. TSD for 6h was performed by gentle handling and immediately followed by ischemia. Focal cerebral ischemia was induced by permanent occlusion of distal branches of the middle cerebral artery. Control experiments included ischemia without SD (nSD) and sham surgery with TSD (n=6/group). RESULTS Shortly after stroke, the amount of slow wave sleep (SWS) and paradoxical sleep (PS) increased significantly (p<0.05) in the TSD/ischemia, resulting in an increase in the total sleep time by 30% compared to baseline, or by 20% compared with the nSD/ischemia group. The infarct volume decreased significantly by 50% in the TSD/ischemia compared to nSD group (p<0.02). Removal of sleep rebound by allowing TSD-rats sleep for 24h before ischemia eliminated the reduction in the infarct size. CONCLUSION PRESTROKE Sleep deprivation results in sleep rebound and reduces brain damage. Sleep rebound may be causally related to the neuroprotection.
Collapse
|
34
|
Turner RC, Lucke-Wold B, Lucke-Wold N, Elliott AS, Logsdon AF, Rosen CL, Huber JD. Neuroprotection for ischemic stroke: moving past shortcomings and identifying promising directions. Int J Mol Sci 2013; 14:1890-917. [PMID: 23344061 PMCID: PMC3565354 DOI: 10.3390/ijms14011890] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 02/05/2023] Open
Abstract
The translation of neuroprotective agents for ischemic stroke from bench-to-bedside has largely failed to produce improved treatments since the development of tissue plasminogen activator (tPA). One possible reason for lack of translation is the failure to acknowledge the greatest risk factor for stroke, age, and other common comorbidities such as hypertension, obesity, and diabetes that are associated with stroke. In this review, we highlight both mechanisms of studying these factors and results of those that have been addressed. We also discuss the potential role of other lifestyle factors associated with an increased stroke risk such as sleep fragmentation and/or deprivation. Furthermore, many proposed therapeutic agents have targeted molecular mechanisms occurring soon after the onset of ischemia despite data indicating delayed patient presentation following ischemic stroke. Modulating inflammation has been identified as a promising therapeutic avenue consistent with preliminary success of ongoing clinical trials for anti-inflammatory compounds such as minocycline. We review the role of inflammation in stroke and in particular, the role of inflammatory cell recruitment and macrophage phenotype in the inflammatory process. Emerging evidence indicates an increasing role of neuro-immune crosstalk, which has led to increased interest in identification of peripheral biomarkers indicative of neural injury. It is our hope that identification and investigation of factors influencing stroke pathophysiology may lead to improved therapeutics.
Collapse
Affiliation(s)
- Ryan C. Turner
- Department of Neurosurgery, One Medical Center Drive, West Virginia University School of Medicine, P.O. Box 9183, Morgantown, WV 26506, USA; E-Mails: (R.C.T.); (B.L.-W.); (A.S.E.)
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, One Medical Center Drive, West Virginia University School of Medicine, P.O. Box 9183, Morgantown, WV 26506, USA; E-Mails: (R.C.T.); (B.L.-W.); (A.S.E.)
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
| | - Noelle Lucke-Wold
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
- Department of Health Restoration, West Virginia University School of Nursing, Morgantown, WV 26506, USA
| | - Alisa S. Elliott
- Department of Neurosurgery, One Medical Center Drive, West Virginia University School of Medicine, P.O. Box 9183, Morgantown, WV 26506, USA; E-Mails: (R.C.T.); (B.L.-W.); (A.S.E.)
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
| | - Aric F. Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
| | - Charles L. Rosen
- Department of Neurosurgery, One Medical Center Drive, West Virginia University School of Medicine, P.O. Box 9183, Morgantown, WV 26506, USA; E-Mails: (R.C.T.); (B.L.-W.); (A.S.E.)
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-304-293-5041; Fax: +1-304-293-4819
| | - Jason D. Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; E-Mails: (N.L.-W.); (A.F.L.); (J.D.H.)
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
| |
Collapse
|
35
|
Cohen S, Kozlovsky N, Matar MA, Kaplan Z, Zohar J, Cohen H. Post-exposure sleep deprivation facilitates correctly timed interactions between glucocorticoid and adrenergic systems, which attenuate traumatic stress responses. Neuropsychopharmacology 2012; 37:2388-404. [PMID: 22713910 PMCID: PMC3442354 DOI: 10.1038/npp.2012.94] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reliable evidence supports the role of sleep in learning and memory processes. In rodents, sleep deprivation (SD) negatively affects consolidation of hippocampus-dependent memories. As memory is integral to post-traumatic stress symptoms, the effects of post-exposure SD on various aspect of the response to stress in a controlled, prospective animal model of post-traumatic stress disorder (PTSD) were evaluated. Rats were deprived of sleep for 6 h throughout the first resting phase after predator scent stress exposure. Behaviors in the elevated plus-maze and acoustic startle response tests were assessed 7 days later, and served for classification into behavioral response groups. Freezing response to a trauma reminder was assessed on day 8. Urine samples were collected daily for corticosterone levels, and heart rate (HR) was also measured. Finally, the impact of manipulating the hypothalamus-pituitary-adrenal axis and adrenergic activity before SD was assessed. Mifepristone (MIFE) and epinephrine (EPI) were administered systemically 10-min post-stress exposure and behavioral responses and response to trauma reminder were measured on days 7-8. Hippocampal expression of glucocorticoid receptors (GRs) and morphological assessment of arborization and dendritic spines were subsequently evaluated. Post-exposure SD effectively ameliorated long-term, stress-induced, PTSD-like behavioral disruptions, reduced trauma reminder freezing responses, and decreased hippocampal expression of GR compared with exposed-untreated controls. Although urine corticosterone levels were significantly elevated 1 h after SD and the HR was attenuated, antagonizing GRs with MIFE or stimulation of adrenergic activity with EPI effectively abolished the effect of SD. MIFE- and EPI-treated animals clearly demonstrated significantly lower total dendritic length, fewer branches and lower spine density along dentate gyrus dendrites with increased levels of GR expression 8 days after exposure, as compared with exposed-SD animals. Intentional prevention of sleep in the early aftermath of stress exposure may well be beneficial in attenuating traumatic stress-related sequelae. Post-exposure SD may disrupt the consolidation of aversive or fearful memories by facilitating correctly timed interactions between glucocorticoid and adrenergic systems.
Collapse
Affiliation(s)
- Shlomi Cohen
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel,Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nitsan Kozlovsky
- Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael A Matar
- Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zeev Kaplan
- Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Joseph Zohar
- Division of Psychiatry, Department of Psychiatry, The Chaim Sheba Medical Center, Sackler Medical School, Tel-Aviv University, Tel-Hashomer, Israel
| | - Hagit Cohen
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel,Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel,Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 4600, Beer-Sheva 84170, Israel, Tel: +972 8 6401743, Fax: +972 8 6401742, E-mail:
| |
Collapse
|
36
|
Martinez-Vargas M, Estrada Rojo F, Tabla-Ramon E, Navarro-Argüelles H, Ortiz-Lailzon N, Hernández-Chávez A, Solis B, Martínez Tapia R, Perez Arredondo A, Morales-Gomez J, Gonzalez-Rivera R, Nava-Talavera K, Navarro L. Sleep deprivation has a neuroprotective role in a traumatic brain injury of the rat. Neurosci Lett 2012; 529:118-22. [PMID: 23022503 DOI: 10.1016/j.neulet.2012.09.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 01/14/2023]
Abstract
During the process of a brain injury, responses to produce damage and cell death are activated, but self-protective responses that attempt to maintain the integrity and functionality of the brain are also activated. We have previously reported that the recovery from a traumatic brain injury (TBI) is better in rats if it occurs during the dark phase of the diurnal cycle when rats are in the waking period. This suggests that wakefulness causes a neuroprotective role in this type of injury. Here we report that 24h of total sleep deprivation after a TBI reduces the morphological damage and enhances the recovery of the rats, as seen on a neurobiological scale.
Collapse
Affiliation(s)
- Marina Martinez-Vargas
- Depto. Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico. Apdo, Postal 70-250, Mexico D.F. 04510, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Prolonged gaseous hypothermia prevents the upregulation of phagocytosis-specific protein annexin 1 and causes low-amplitude EEG activity in the aged rat brain after cerebral ischemia. J Cereb Blood Flow Metab 2012; 32:1632-42. [PMID: 22617647 PMCID: PMC3421103 DOI: 10.1038/jcbfm.2012.65] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In aged humans, stroke is a major cause of disability for which no neuroprotective measures are available. In animal studies of focal ischemia, short-term hypothermia often reduces infarct size. Nevertheless, efficient neuroprotection requires long-term, regulated lowering of whole-body temperature. Previously, we reported that post-stroke exposure to hydrogen sulfide (H(2)S) effectively lowers whole-body temperature and confers neuroprotection in aged animals. In the present study using magnetic resonance imaging, electroencephalogram recording, DNA arrays, reverse transcriptase polymerase chain reaction, western blotting and immunofluorescence, we characterized the central nervous system response to H(2)S-induced hypothermia and report, for the first time, that annexin A1, a major pro-inflammatory protein that is upregulated after stroke, was consistently downregulated in polymorphonuclear cells in the peri-lesional cortex of post-ischemic, aged rat brain after 48 hours of hypothermia induced by exposure to H(2)S. Our data suggest that long-term hypothermia may be a viable clinical approach to protecting the aged brain from cerebral injury. Our findings further suggest that, in contrast to monotherapies that have thus far uniformly failed in clinical practice, hypothermia has pleiotropic effects on brain physiology that may be necessary for effective protection of the brain after stroke.
Collapse
|
38
|
Charles MS, Zhang JH. Sleep a therapeutic target for stroke? Exp Neurol 2011; 234:1-4. [PMID: 22226598 DOI: 10.1016/j.expneurol.2011.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Affiliation(s)
- Mélissa S Charles
- Department of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | |
Collapse
|
39
|
Ramanathan L, Siegel JM. Sleep deprivation under sustained hypoxia protects against oxidative stress. Free Radic Biol Med 2011; 51:1842-8. [PMID: 21907278 PMCID: PMC3197752 DOI: 10.1016/j.freeradbiomed.2011.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/12/2011] [Accepted: 08/18/2011] [Indexed: 01/01/2023]
Abstract
We previously showed that total sleep deprivation increased antioxidant responses in several rat brain regions. We also reported that chronic hypoxia enhanced antioxidant responses and increased oxidative stress in rat cerebellum and pons, relative to normoxic conditions. In the current study, we examined the interaction between these two parameters (sleep and hypoxia). We exposed rats to total sleep deprivation under sustained hypoxia (SDSH) and compared changes in antioxidant responses and oxidative stress markers in the neocortex, hippocampus, brainstem, and cerebellum to those in control animals left undisturbed under either sustained hypoxia (UCSH) or normoxia (UCN). We measured changes in total nitrite levels as an indicator of nitric oxide (NO) production, superoxide dismutase (SOD) activity and total glutathione (GSHt) levels as markers of antioxidant responses, and levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyls as signs of lipid and protein oxidation products, respectively. We found that acute (6h) SDSH increased NO production in the hippocampus and increased GSHt levels in the neocortex, brainstem, and cerebellum while decreasing hippocampal lipid oxidation. Additionally, we observed increased hexokinase activity in the neocortex of SDSH rats compared to UCSH rats, suggesting that elevated glucose metabolism may be one potential source of the enhanced free radicals produced in this brain region. We conclude that short-term insomnia under hypoxia may serve as an adaptive response to prevent oxidative stress.
Collapse
Affiliation(s)
- Lalini Ramanathan
- corresponding author: Lalini Ramanathan, Neurobiology Research 151A3, VAGLAHS Sepulveda, 16111 Plummer St, North Hills, CA 91343, USA. Tel.: +1 818 891 7711 x2382, Fax: +1 818 895 9575,
| | | |
Collapse
|
40
|
Matos G, Tufik S, Scorza FA, Cavalheiro EA, Andersen ML. Sleep, epilepsy and translational research: What can we learn from the laboratory bench? Prog Neurobiol 2011; 95:396-405. [DOI: 10.1016/j.pneurobio.2011.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/19/2011] [Accepted: 09/18/2011] [Indexed: 12/20/2022]
|
41
|
Zunzunegui C, Gao B, Cam E, Hodor A, Bassetti CL. Sleep disturbance impairs stroke recovery in the rat. Sleep 2011; 34:1261-9. [PMID: 21886364 DOI: 10.5665/sleep.1252] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY OBJECTIVES There is a lack of experimental evidence to support the hypothesis that sleep may modulate stroke outcome as suggested by clinical observations. We have previously shown that sleep disturbance (SDis) over 3 days aggravates brain damage in a rat model of focal cerebral ischemia. The aim of this study is to further investigate effects of SDis on long-term stroke recovery and neuroplasticity as assessed by axonal sprouting, neurogenesis, and angiogenesis. DESIGN Focal cerebral ischemia was induced by permanent occlusion of the distal branches of middle cerebral artery. Twelve hours after initiation of ischemia, SDis was performed over 3 consecutive days (deprivation of 80% sleep during the 12-h light phase). Weekly assessments on sensorimotor function by the single pellet reaching test (SPR) were performed for 5 weeks after surgery. Axonal sprouting was evaluated by anterograde tracing with biotinylated dextran amine (BDA) and neurogenesis/angiogenesis by bromodeoxyuridine (BrdU) labelling along with cell-type markers. Control groups included ischemia without SDis, sham with SDis, and sham without SDis. SETTING Basic sleep research laboratory. MEASUREMENTS AND RESULTS Rats subjected to SDis after ischemia showed significantly less recovery of forearm motor skills during the post-stroke period of 5 weeks. This effect was accompanied by a substantial reduction in axonal sprouting, expression of synaptophysin, and the ischemia-stimulated neural and vascular cell proliferation. CONCLUSION SDis has detrimental effects on functional and morphological/structural outcomes after stroke, suggesting a role of sleep in the modulation of recovery processes and neuroplasticity.
Collapse
|
42
|
Novati A, Hulshof HJ, Granic I, Meerlo P. Chronic partial sleep deprivation reduces brain sensitivity to glutamate N-methyl-D-aspartate receptor-mediated neurotoxicity. J Sleep Res 2011; 21:3-9. [PMID: 21672070 DOI: 10.1111/j.1365-2869.2011.00932.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been hypothesized that insufficient sleep may compromise neuronal function and contribute to neurodegenerative processes. While sleep loss by itself may not lead to cell death directly, it may affect the sensitivity to a subsequent neurodegenerative insult. Here we examined the effects of chronic sleep restriction (SR) on the vulnerability of the brain to N-methyl-d-aspartate (NMDA)-induced excitotoxicity. Animals were kept awake 20 h per day and were only allowed to rest during the first 4 h of the light phase, i.e. their normal circadian resting phase. After 30 days of SR all rats received a unilateral injection with a neurotoxic dose of NMDA into the nucleus basalis magnocellularis (NBM). Brains were collected for assessment of damage. In the intact non-injected hemisphere, the number of cholinergic cells in the NBM and the density of their projections in the cortex were not affected by SR. In the injected hemisphere, NMDA caused a significant loss of cholinergic NBM cells and cortical fibres in all animals. However, the loss of cholinergic cells was attenuated in the SR group as compared with the controls. These data suggest that, if anything, SR reduces the sensitivity to a subsequent excitotoxic insult. Chronic SR may constitute a mild threat to the brain that does not lead to neurodegeneration by itself but prepares the brain for subsequent neurotoxic challenges. These results do not support the hypothesis that sleep loss increases the sensitivity to neurodegenerative processes.
Collapse
Affiliation(s)
- Arianna Novati
- Department of Behavioral Physiology, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|