1
|
Poniatowski ŁA, Joniec-Maciejak I, Wawer A, Sznejder-Pachołek A, Machaj E, Ziętal K, Mirowska-Guzel D. Dose-Ranging Effects of the Intracerebral Administration of Atsttrin in Experimental Model of Parkinson's Disease Induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Mice. Mol Neurobiol 2024; 61:9432-9458. [PMID: 38642286 PMCID: PMC11496375 DOI: 10.1007/s12035-024-04161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Parkinson's disease is one of the most common neurodegenerative disorders characterized by a multitude of motor and non-motor clinical symptoms resulting from the progressive and long-lasting abnormal loss of nigrostriatal dopaminergic neurons. Currently, the available treatments for patients with Parkinson's disease are limited and exert only symptomatic effects, without adequate signs of delaying or stopping the progression of the disease. Atsttrin constitutes the bioengineered protein which ultrastructure is based on the polypeptide chain frame of the progranulin (PGRN), which exerts anti-inflammatory effects through the inhibition of TNFα. The conducted preclinical studies suggest that the therapeutic implementation of Atsttrin may be potentially effective in the treatment of neurodegenerative diseases that are associated with the occurrence of neuroinflammatory processes. The aim of the proposed study was to investigate the effect of direct bilateral intracerebral administration of Atsttrin using stereotactic methods in the preclinical C57BL/6 mouse model of Parkinson's disease inducted by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. The analysis of the dose dependency effects of the increasing doses of Atsttrin has covered a number of parameters and markers regarding neurodegenerative processes and inflammatory responses including IL-1α, TNFα, IL-6, TH, and TG2 mRNA expressions. Accordingly, the evaluation of the changes in the neurochemical profile included DA, DOPAC, 3-MT, HVA, NA, MHPG, 5-HT, and 5-HIAA concentration levels. The intracerebral administration of Atsttrin into the striatum effectively attenuated the neuroinflammatory reaction in evaluated neuroanatomical structures. Furthermore, the partial restoration of monoamine content and its metabolic turnover were observed. In this case, taking into account the previously described pharmacokinetic profile and extrapolated bioavailability as well as the stability characteristics of Atsttrin, an attempt was made to describe as precisely as possible the quantitative and qualitative effects of increasing doses of the compound within the brain tissue microenvironment in the presented preclinical model of the disease. Collectively, this findings demonstrated that the intracerebral administration of Atsttrin may represent a potential novel therapeutic method for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Łukasz A Poniatowski
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036, Neubrandenburg, Germany
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Adriana Wawer
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Anna Sznejder-Pachołek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Ewa Machaj
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Katarzyna Ziętal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
Gao X, Su Y, Shan S, Qian W, Zhang Z. Identification of immune-related hub genes in spinal cord injury. Eur J Med Res 2024; 29:483. [PMID: 39367463 PMCID: PMC11451166 DOI: 10.1186/s40001-024-02075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
OBJECTIVES Immune regulation is a pivotal factor in the pathogenesis and repair of spinal cord injury (SCI). This study aims to explore potential immune center genes associated with spinal cord injury. METHODS The public data set GSE151371 was obtained from the GEO database. The R software package "limma" was used to identify differentially expressed genes (DEGs) in SCI. GO, KEGG and GSEA pathway analyses were performed using the DEGs. The key module genes related to spinal cord injury were selected through WGCNA analysis. Overlapping genes were extracted from WGCNA, DEGs, and immune-related genes. LASSO analysis was employed to identify central genes associated with SCI immunity. Pearson correlation analysis assessed the correlation between hub genes and immune cells in SCI. In addition, we further investigated the hub genes' expression, diagnostic potential, function, and targeted drugs. RESULTS We have identified three immunity-related hub genes (ABHD5, EDNRB, EDN3). Immune infiltration analysis showed that the hub gene was significantly associated with resting NK cells, M2 macrophages, and monocytes in the immune microenvironment of SCI. ROC analysis demonstrated that these hub genes have favorable diagnostic performance for SCI. Functional analysis revealed that ABHD5 is primarily associated with lipid metabolism pathways, while EDN3 and EDNRB are mainly involved in endothelin, downstream GPCR signaling, and ERK signaling transduction. In addition, we identified six potential targeted drugs based on our findings. CONCLUSIONS ABHD5, EDNRB, and EDN3 are involved in processes such as SCI progression or repair through immunomodulation and deserve further study.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - ShiGang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Wenbin Qian
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhenwang Zhang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
4
|
Sanabria-Castro A, Alape-Girón A, Flores-Díaz M, Echeverri-McCandless A, Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev Neurosci 2024; 35:355-371. [PMID: 38163257 DOI: 10.1515/revneuro-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune debilitating disease of the central nervous system caused by a mosaic of interactions between genetic predisposition and environmental factors. The pathological hallmarks of MS are chronic inflammation, demyelination, and neurodegeneration. Oxidative stress, a state of imbalance between the production of reactive species and antioxidant defense mechanisms, is considered one of the key contributors in the pathophysiology of MS. This review is a comprehensive overview of the cellular and molecular mechanisms by which oxidant species contribute to the initiation and progression of MS including mitochondrial dysfunction, disruption of various signaling pathways, and autoimmune response activation. The detrimental effects of oxidative stress on neurons, oligodendrocytes, and astrocytes, as well as the role of oxidants in promoting and perpetuating inflammation, demyelination, and axonal damage, are discussed. Finally, this review also points out the therapeutic potential of various synthetic antioxidants that must be evaluated in clinical trials in patients with MS.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Departamento de Farmacología, Toxicología y Farmacodependencia, Facultad de Farmacia, Universidad de Costa Rica, San Pedro de Montes de Oca, 11501, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, Dulce Nombre Vázquez de Coronado, 11103, Costa Rica
| | - Ann Echeverri-McCandless
- Unidad de Investigación, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
| | - Alexander Parajeles-Vindas
- Servicio de Neurología, Hospital San Juan de Dios, Caja Costarricense de Seguro Social, San José, 10103, Costa Rica
- Servicio de Neurología, Hospital Clínica Bíblica, San José, 10104, Costa Rica
| |
Collapse
|
5
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
6
|
Tharwat EK, Abdelaty AO, Abdelrahman AI, Elsaeed H, Elgohary A, El-Feky AS, Ebrahim YM, Sakraan A, Ismail HA, Khadrawy YA, Aboul Ezz HS, Noor NA, Fahmy HM, Mohammed HS, Mohammed FF, Radwan NM, Ahmed NA. Evaluation of the therapeutic potential of cerebrolysin and/or lithium in the male Wistar rat model of Parkinson's disease induced by reserpine. Metab Brain Dis 2023; 38:1513-1529. [PMID: 36847968 PMCID: PMC10185619 DOI: 10.1007/s11011-023-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and represents a challenge for clinicians. The present study aims to investigate the effects of cerebrolysin and/or lithium on the behavioral, neurochemical and histopathological alterations induced by reserpine as a model of PD. The rats were divided into control and reserpine-induced PD model groups. The model animals were further divided into four subgroups: rat PD model, rat PD model treated with cerebrolysin, rat PD model treated with lithium and rat PD model treated with a combination of cerebrolysin and lithium. Treatment with cerebrolysin and/or lithium ameliorated most of the alterations in oxidative stress parameters, acetylcholinesterase and monoamines in the striatum and midbrain of reserpine-induced PD model. It also ameliorated the changes in nuclear factor-kappa and improved the histopathological picture induced by reserpine. It could be suggested that cerebrolysin and/or lithium showed promising therapeutic potential against the variations induced in the reserpine model of PD. However, the ameliorating effects of lithium on the neurochemical, histopathological and behavioral alterations induced by reserpine were more prominent than those of cerebrolysin alone or combined with lithium. It can be concluded that the antioxidant and anti-inflammatory effects of both drugs played a significant role in their therapeutic potency.
Collapse
Affiliation(s)
- Engy K Tharwat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed O Abdelaty
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | | | - Ayatallah Elgohary
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Amena S El-Feky
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Yasmina M Ebrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa Sakraan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Hossam A Ismail
- Biophysics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Center, Dokki, Egypt
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Nasr M Radwan
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Nawal A Ahmed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Qu Y, Li J, Qin Q, Wang D, Zhao J, An K, Mao Z, Min Z, Xiong Y, Li J, Xue Z. A systematic review and meta-analysis of inflammatory biomarkers in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:18. [PMID: 36739284 PMCID: PMC9899271 DOI: 10.1038/s41531-023-00449-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/05/2023] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD), but controversies persist. Studies reporting concentrations of blood or cerebrospinal fluid (CSF) markers for patients with PD and controls were included and extracted. Pooled Hedges'g was adopted to illustrate comparisons, and covariates were used to explore sources of heterogeneity. Finally, 152 studies were included. Increased IL-6, TNF-α, IL-1β, STNFR1, CRP, CCL2, CX3CL1, and CXCL12 levels and decreased INF-γ and IL-4 levels were noted in the PD group. In addition, increased CSF levels of IL-6, TNF-α, IL-1β, CRP and CCL2 were revealed in patients with PD compared to controls. Consequently, significantly altered levels of inflammatory markers were verified between PD group and control, suggesting that PD is accompanied by inflammatory responses in both the peripheral blood and CSF. This study was registered with PROSPERO, CRD42022349182.
Collapse
Affiliation(s)
- Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke An
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Naringin Attenuates the Diabetic Neuropathy in STZ-Induced Type 2 Diabetic Wistar Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122111. [PMID: 36556476 PMCID: PMC9782177 DOI: 10.3390/life12122111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The application of traditional medicines for the treatment of diseases, including diabetic neuropathy (DN), has received great attention. The aim of this study was to investigate the ameliorative potential of naringin, a flavanone, to treat streptozotocin-induced DN in rat models. After the successful induction of diabetes, DN complications were measured by various behavioral tests after 4 weeks of post-induction of diabetes with or without treatment with naringin. Serum biochemical assays such as fasting blood glucose, HbA1c%, insulin, lipid profile, and oxidative stress parameters were determined. Proinflammatory cytokines such as TNF-α and IL-6, and neuron-specific markers such as BDNF and NGF, were also assessed. In addition, pancreatic and brain tissues were subjected to histopathology to analyze structural alterations. The diabetic rats exhibited increased paw withdrawal frequencies for the acetone drop test and decreased frequencies for the plantar test, hot plate test, and tail flick test. The diabetic rats also showed an altered level of proinflammatory cytokines and oxidative stress parameters, as well as altered levels of proinflammatory cytokines and oxidative stress parameters. Naringin treatment significantly improved these parameters and helped in restoring the normal architecture of the brain and pancreatic tissues. The findings show that naringin's neuroprotective properties may be linked to its ability to suppress the overactivation of inflammatory molecules and mediators of oxidative stress.
Collapse
|
9
|
Heimke M, Lenz F, Rickert U, Lucius R, Cossais F. Anti-Inflammatory Properties of the SGLT2 Inhibitor Empagliflozin in Activated Primary Microglia. Cells 2022; 11:cells11193107. [PMID: 36231069 PMCID: PMC9563452 DOI: 10.3390/cells11193107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, including empagliflozin, are routinely used as antidiabetic drugs. Recent studies indicate that beside its beneficial effects on blood glucose level, empagliflozin may also exert vascular anti-inflammatory and neuroprotective properties. In the brain, microglia are crucial mediators of inflammation, and neuroinflammation plays a key role in neurodegenerative disorders. Dampening microglia-mediated inflammation may slow down disease progression. In this context, we investigated the immunomodulatory effect of empagliflozin on activated primary microglia. As a validated experimental model, rat primary microglial cells were activated into a pro-inflammatory state by stimulation with LPS. The influence of empagliflozin on the expression of pro-inflammatory mediators (NO, Nos2, IL6, TNF, IL1B) and on the anti-inflammatory mediator IL10 was assessed using quantitative PCR and ELISA. Further, we investigated changes in the activation of the ERK1/2 cascade by Western blot and NFkB translocation by immunostaining. We observed that empagliflozin reduces the expression of pro- and anti-inflammatory mediators in LPS-activated primary microglia. These effects might be mediated by NHE-1, rather than by SGLT2, and by the further inhibition of the ERK1/2 and NFkB pathways. Our results support putative anti-inflammatory effects of empagliflozin on microglia and suggest that SGLT2 inhibitors may exert beneficial effects in neurodegenerative disorders.
Collapse
|
10
|
Chhetri G. Emerging roles of IL-34 in neurodegenerative and neurological infectious disease. Int J Neurosci 2021; 133:660-671. [PMID: 34347576 DOI: 10.1080/00207454.2021.1963962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurological infections are often devastating in their clinical presentation. Although significant advances have made in neuroimaging techniques and molecular tools for diagnosis, as well as in anti-infective therapy, these diseases always difficult to diagnose and treat. Neuroparasitic infections and virus infections lead to neurological infections. In the nervous system, various cytokines and chemokines act as neuroinflammatory agents, neuromodulators, regulate neurodevelopment, and synaptic transmission. Among the most important cytokines, interleukins (ILs) are a large group of immunomodulatory proteins that elicit a wide variety of responses in cells and tissues. These ILs are involved in pro and anti-inflammatory effects, systemic inflammation, immune system modulation and play crucial roles in fighting cancer, infectious disease, and neurological disorders. Interleukin-34 (IL-34) identified by screening a comprehensive human protein library containing ∼3400 secreted and extracellular domain proteins in a human monocyte viability assay. Recent evidence has disclosed the crucial roles of IL-34 in the proliferation and differentiation of mononuclear phagocyte lineage cells, osteoclastogenesis, and inflammation. Additionally, IL-34 plays an important role in development, homeostasis, and disease. Dysregulation in IL-34 function can lead to various inflammatory and infectious diseases (e.g. Inflammatory bowel disease, liver fibrosis, Systemic Lupus erythematosus, rheumatoid arthritis), neurological disorders (e.g. Alzheimer disease) and neurological infectious disease (e.g. West Nile virus disease). In this review, we explore the biological role of IL-34 in addition to various impairments caused by dysregulation in IL-34 and discuss their potential links that may lead to important therapeutic and/or preventive strategies for these disorders.
Collapse
Affiliation(s)
- Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai, P.R. China
| |
Collapse
|
11
|
Ma J, Gao J, Niu M, Zhang X, Wang J, Xie A. P2X4R Overexpression Upregulates Interleukin-6 and Exacerbates 6-OHDA-Induced Dopaminergic Degeneration in a Rat Model of PD. Front Aging Neurosci 2020; 12:580068. [PMID: 33328961 PMCID: PMC7671967 DOI: 10.3389/fnagi.2020.580068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) remains elusive. Current thinking suggests that the activation of microglia and the subsequent release of inflammatory factors, including interleukin-6 (IL-6), are involved in the pathogenesis of PD. P2X4 receptor (P2X4R) is a member of the P2X superfamily of ion channels activated by ATP. To study the possible effect of the ATP-P2X4R signal axis on IL-6 in PD, lentivirus carrying the P2X4R-overexpression gene or empty vector was injected into the substantia nigra (SN) of rats, followed by treatment of 6-hydroxydopamine (6-OHDA) or saline 1 week later. The research found the relative expression of P2X4R in the 6-OHDA-induced PD rat models was notably higher than that in the normal. And P2X4R overexpression could upregulate the expression of IL-6, reduce the amount of dopaminergic (DA) neurons in the SN of PD rats, suggesting that P2X4R may mediate the production of IL-6 to damage DA neurons in the SN. Our data revealed the important role of P2X4R in modulating IL-6, which leads to neuroinflammation involved in PD pathogenesis.
Collapse
Affiliation(s)
- Jiangnan Ma
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinzhao Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengyue Niu
- Department of Neurology, Ruijin Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Xiaona Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Policastro G, Brunelli M, Tinazzi M, Chiamulera C, Emerich DF, Paolone G. Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plast 2020; 2020:8814028. [PMID: 33293946 PMCID: PMC7714573 DOI: 10.1155/2020/8814028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation and cytokine-dependent neurotoxicity appear to be major contributors to the neuropathology in Parkinson's disease (PD). While pharmacological advancements have been a mainstay in the treatment of PD for decades, it is becoming increasingly clear that nonpharmacological approaches including traditional and nontraditional forms of exercise and physical rehabilitation can be critical adjunctive or even primary treatment avenues. Here, we provide an overview of preclinical and clinical research detailing the biological role of proinflammatory molecules in PD and how motor rehabilitation can be used to therapeutically modulate neuroinflammation, restore neural plasticity, and improve motor function in PD.
Collapse
Affiliation(s)
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Lian TH, Guo P, Zhang YN, Li JH, Li LX, Ding DY, Li DN, Zhang WJ, Guan HY, Wang XM, Zhang W. Parkinson's Disease With Depression: The Correlations Between Neuroinflammatory Factors and Neurotransmitters in Cerebrospinal Fluid. Front Aging Neurosci 2020; 12:574776. [PMID: 33192466 PMCID: PMC7645209 DOI: 10.3389/fnagi.2020.574776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Background: To explore the changes of neuroinflammatory factors in cerebrospinal fluid (CSF) and their correlation with monoamine neurotransmitters in Parkinson’s disease (PD) with depression (PD-D) patients. Methods: Neuroinflammatory factors and neurotransmitters in CSF were measured and compared between PD with no depression (PD-ND) and PD-D groups. The relationship between PD-D and neuroinflammatory factors was studied by binary logistic regression equation, and the related factors of PD-D were adjusted. The correlations of the levels of neuroinflammatory factors and neurotransmitters in PD-D group were analyzed. Results: The levels of tumor necrosis factor (TNF)-α in CSF from PD-D group were significantly higher and there were no significant differences in the levels of interleukin-1β, prostaglandin (PG) E2, hydrogen peroxide (H2O2), and nitric oxide (NO). The 24-item Hamilton Depression Scale (HAMD-24) score was positively correlated with the level of TNF-α in CSF. Binary logistic regression showed that the OR of CSF TNF-α level was 1.035 (95% CI 1.002–1.069). The level of dopamine (DA) in CSF of PD-D group was significantly lower than that in PD-ND group. TNF-α level was negatively correlated with DA level in CSF from PD patients (r = −0.320, P = 0.003). Conclusions: Neuroinflammatory factors, especially TNF-α, may play an important role in PD-D. It may cause damage to DA neurons and lead to the depletion of DA, which is related to the occurrence and development of PD-D.
Collapse
Affiliation(s)
- Teng-Hong Lian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-Nan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-Hui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li-Xia Li
- Department of General Internal Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yu Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da-Ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-Ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory on Parkinson Disease, Beijing, China
| |
Collapse
|
14
|
El Saftawy EA, Amin NM, Sabry RM, El-Anwar N, Shash RY, Elsebaie EH, Wassef RM. Can Toxoplasma gondii Pave the Road for Dementia? J Parasitol Res 2020; 2020:8859857. [PMID: 32802484 PMCID: PMC7414348 DOI: 10.1155/2020/8859857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Dementia is an ominous neurological disease. Scientists proposed a link between its occurrence and the presence of Toxoplasma gondii (T. gondii). The long-term sequels of anti-Toxoplasma premunition, chiefly dominated by TNF-α, on the neurons and their receptors as the insulin-like growth factor-1 receptor (IGF-1R), which is tangled in cognition and synaptic plasticity, are still not clear. IGF-1R mediates its action via IGF-1, and its depletion is incorporated in the pathogenesis of dementia. The activated TNF-α signaling pathway induces NF-κβ that may induce or inhibit neurogenesis. This study speculates the potential impact of anti-Toxoplasma immune response on the expression of IGF-1R in chronic cerebral toxoplasmosis. The distributive pattern of T. gondii cysts was studied in association with TNF-α serum levels, the in situ expression of NF-κβ, and IGF-1R in mice using the low virulent ME-49 T. gondii strain. There was an elevation of the TNF-α serum level (p value ≤ 0.004) and significant upsurge in NF-κβ whereas IGF-1R was of low abundance (p value < 0.05) compared to the controls. TNF-α had a strong positive correlation with the intracerebral expression of NF-κβ (r value ≈ 0.943, p value ≈ 0.005) and a strong negative correlation to IGF-1R (r value -0.584 and -0.725 for area% and O.D., respectively). This activated TNF-α/NF-κβ keeps T. gondii under control at the expense of IGF-1R expression, depriving neurons of the effect of IGF-1, the receptor's ligand. We therefore deduce that T. gondii immunopathological reaction may be a road paver for developing dementia.
Collapse
Affiliation(s)
- Enas A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Armed Forces College of Medicine, Cairo, Egypt
| | - Noha M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania M. Sabry
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha El-Anwar
- Armed Forces College of Medicine, Cairo, Egypt
- Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Rania Y. Shash
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman H. Elsebaie
- Public Health and Community Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rita M. Wassef
- Medical Parasitology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
15
|
Ndayisaba A, Jellinger K, Berger T, Wenning GK. TNFα inhibitors as targets for protective therapies in MSA: a viewpoint. J Neuroinflammation 2019; 16:80. [PMID: 30975183 PMCID: PMC6458780 DOI: 10.1186/s12974-019-1477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/02/2019] [Indexed: 01/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a unique and fatal α-synucleinopathy associated with oligodendroglial inclusions and secondary neurodegeneration affecting striatum, substantia nigra, pons, and cerebellum. The pathogenesis remains elusive; however, there is emerging evidence suggesting a prominent role of neuroinflammation. Here, we critically review the relationship between αS and microglial activation depending on its aggregation state and its role in neuroinflammation to explore the potential of TNFα inhibitors as a treatment strategy for MSA and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Gregor K. Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| |
Collapse
|
16
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
17
|
Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide. J Immunol Res 2018; 2018:1838921. [PMID: 29854828 PMCID: PMC5964493 DOI: 10.1155/2018/1838921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/03/2018] [Accepted: 03/08/2018] [Indexed: 12/15/2022] Open
Abstract
Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.
Collapse
|
18
|
Safakhah HA, Moradi Kor N, Bazargani A, Bandegi AR, Gholami Pourbadie H, Khoshkholgh-Sima B, Ghanbari A. Forced exercise attenuates neuropathic pain in chronic constriction injury of male rat: an investigation of oxidative stress and inflammation. J Pain Res 2017; 10:1457-1466. [PMID: 28721088 PMCID: PMC5499951 DOI: 10.2147/jpr.s135081] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Initial peripheral/central nerve injuries, such as chronic constriction injury (CCI)/spinal cord injury, are often compounded by secondary mechanisms, including inflammation and oxidative stress, which may lead to chronic neuropathic pain characterized by hyperalgesia or allodynia. On the other hand, exercise as a behavioral and non-pharmacological treatment has been shown to alleviate chronic neuropathic pain. Therefore, this study was conducted to examine whether or not exercise reduces neuropathic pain through modifying oxidative stress and inflammation in chronic constriction injury of the sciatic nerve. MATERIALS AND METHODS Wistar male rats weighing 200±20 g were randomly divided into five groups (normal, sham, CCI, pre-CCI exercise, and post-CCI exercise group). Sciatic nerve of anesthetized rats was loosely ligated to induce CCI, and they were then housed in separate cages. The rats ran on treadmill at a moderate speed for 3 weeks. Mechanical allodynia and thermal hyperalgesia were determined using von Frey filament and plantar test, respectively. Tumor necrosis factor-alpha (TNF-α) assayed in the cerebrospinal fluid, malondialdehyde, and total antioxidant capacity were measured in the serum using Western blot test, thiobarbituric acid, and ferric reducing ability of plasma (FRAP), respectively. RESULTS The mechanical allodynia (P=0.024) and thermal hyperalgesia (P=0.002) in the CCI group were higher than those in the sham group. Exercise after CCI reduced (P=0.004) mechanical allodynia and thermal hyperalgesia (P=0.025) compared with the CCI group. Moreover, the level of FRAP in the CCI group was (P=0.001) lower than that in the sham group, and post-CCI exercise reversed FRAP amount toward the control level (P=0.019). The amount of malondialdehyde did not differ between groups. Level of TNF-α increased in the CCI group (P=0.0002) compared with sham group and post-CCI exercise could reverse it toward the level of control (P=0.005). CONCLUSION Post CCI-exercise but not pre CCI-exercise reduces CCI-induced neuropathic pain. One of the possible involved mechanisms is increasing the total antioxidant capacity and reducing the amount of TNF-α.
Collapse
Affiliation(s)
- Hossein Ali Safakhah
- Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasroallah Moradi Kor
- Research Center of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Atiyeh Bazargani
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Reza Bandegi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Ali Ghanbari
- Research Center of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
19
|
Blaylock RL. Parkinson's disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 2017; 8:65. [PMID: 28540131 PMCID: PMC5421223 DOI: 10.4103/sni.sni_441_16] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is one of the several neurodegenerative disorders that affects aging individuals, with approximately 1% of those over the age of 60 years developing the disorder in their lifetime. The disease has the characteristics of a progressive disorder in most people, with a common pattern of pathological change occurring in the nervous system that extends beyond the classical striatal degeneration of dopaminergic neurons. Earlier studies concluded that the disease was a disorder of alpha-synuclein, with the formation of aggregates of abnormal alpha-synuclein being characteristic. More recent studies have concluded that inflammation plays a central role in the disorder and that the characteristic findings can be accounted for by either mutation or oxidative damage to alpha-synuclein, with resulting immune reactions from surrounding microglia, astrocytes, and macrophages. What has been all but ignored in most of these studies is the role played by excitotoxicity and that the two processes are intimately linked, with inflammation triggered cell signaling enhancing the excitotoxic cascade. Further, there is growing evidence that it is the excitotoxic reactions that actually cause the neurodegeneration. I have coined the name immunoexcitotoxicity to describe this link between inflammation and excitotoxicity. It appears that the two processes are rarely, if ever, separated in neurodegenerative diseases.
Collapse
|
20
|
Gorelenkova Miller O, Behring JB, Siedlak SL, Jiang S, Matsui R, Bachschmid MM, Zhu X, Mieyal JJ. Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease. Antioxid Redox Signal 2016; 25:967-982. [PMID: 27224303 PMCID: PMC5175443 DOI: 10.1089/ars.2015.6598] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Neuroinflammation and redox dysfunction are recognized factors in Parkinson's disease (PD) pathogenesis, and diabetes is implicated as a potentially predisposing condition. Remarkably, upregulation of glutaredoxin-1 (Grx1) is implicated in regulation of inflammatory responses in various disease contexts, including diabetes. In this study, we investigated the potential impact of Grx1 upregulation in the central nervous system on dopaminergic (DA) viability. RESULTS Increased GLRX copy number in PD patients was associated with earlier PD onset, and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-alpha (TNF-α) in mouse and human brain samples, prompting mechanistic in vitro studies. Grx1 content/activity in microglia was upregulated by lipopolysaccharide (LPS), or TNF-α, treatment. Adenoviral overexpression of Grx1, matching the extent of induction by LPS, increased microglial activation; Grx1 silencing diminished activation. Selective inhibitors/probes of nuclear factor κB (NF-κB) activation revealed glrx1 induction to be mediated by the Nurr1/NF-κB axis. Upregulation of Grx1 in microglia corresponded to increased death of neuronal cells in coculture. With a mouse diabetes model of diet-induced insulin resistance, we found upregulation of Grx1 in brain was associated with DA loss (decreased tyrosine hydroxylase [TH]; diminished TH-positive striatal axonal terminals); these effects were not seen with Grx1-knockout mice. INNOVATION Our results indicate that Grx1 upregulation promotes neuroinflammation and consequent neuronal cell death in vitro, and synergizes with proinflammatory insults to promote DA loss in vivo. Our findings also suggest a genetic link between elevated Grx1 and PD development. CONCLUSION In vitro and in vivo data suggest Grx1 upregulation promotes neurotoxic neuroinflammation, potentially contributing to PD. Antioxid. Redox Signal. 25, 967-982.
Collapse
Affiliation(s)
- Olga Gorelenkova Miller
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jessica Belle Behring
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Sandra L. Siedlak
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sirui Jiang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Xiongwei Zhu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - John J. Mieyal
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Louis Stokes Cleveland Veterans Administration Medical Research Center, Cleveland, Ohio
| |
Collapse
|
21
|
Walker DG, Lue LF, Serrano G, Adler CH, Caviness JN, Sue LI, Beach TG. Altered Expression Patterns of Inflammation-Associated and Trophic Molecules in Substantia Nigra and Striatum Brain Samples from Parkinson's Disease, Incidental Lewy Body Disease and Normal Control Cases. Front Neurosci 2016; 9:507. [PMID: 26834537 PMCID: PMC4712383 DOI: 10.3389/fnins.2015.00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence of inflammation has been consistently associated with pathology in Parkinson's disease (PD)-affected brains, and has been suggested as a causative factor. Dopaminergic neurons in the substantia nigra (SN) pars compacta, whose loss results in the clinical symptoms associated with PD, are particularly susceptible to inflammatory damage and oxidative stress. Inflammation in the striatum, where SN dopaminergic neurons project, is also a feature of PD brains. It is not known whether inflammatory changes occur first in striatum or SN. Many animal models of PD have implicated certain inflammatory molecules with dopaminergic cell neuronal loss; however, there have been few studies to validate these findings by measuring the levels of these and other inflammatory factors in human PD brain samples. This study also included samples from incidental Lewy body disease (ILBD) cases, since ILBD is considered a non-symptomatic precursor to PD, with subjects having significant loss of tyrosine hydroxylase-producing neurons. We hypothesized that there may be a progressive change in key inflammatory factors in ILBD samples intermediate between neurologically normal and PD. To address this, we used a quantitative antibody-array platform (Raybiotech-Quantibody arrays) to measure the levels of 160 different inflammation-associated cytokines, chemokines, growth factors, and related molecules in extracts of SN and striatum from clinically and neuropathologically characterized PD, ILBD, and normal control cases. Patterns of changes in inflammation and related molecules were distinctly different between SN and striatum. Our results showed significantly different levels of interleukin (IL)-5, IL-15, monokine induced by gamma interferon, and IL-6 soluble receptor in SN between disease groups. A different panel of 13 proteins with significant changes in striatum, with IL-15 as the common feature, was identified. Although the ability to detect some proteins was limited by sensitivity, patterns of expression indicated involvement of certain T-cell cytokines, vascular changes, and loss of certain growth factors, with disease progression. The results demonstrate the feasibility of profiling inflammatory molecules using diseased human brain samples, and have provided additional targets to validate in relation to PD pathology.
Collapse
Affiliation(s)
- Douglas G Walker
- Banner Sun Health Research InstituteSun City, AZ, USA; Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Lih-Fen Lue
- Banner Sun Health Research InstituteSun City, AZ, USA; Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute Sun City, AZ, USA
| | - Charles H Adler
- Neurology, Mayo Clinic College of Medicine Scottsdale, AZ, USA
| | - John N Caviness
- Neurology, Mayo Clinic College of Medicine Scottsdale, AZ, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute Sun City, AZ, USA
| | | |
Collapse
|
22
|
Ishido M, Shimaya E. Major histocompatibility complex expression in a rotenone model of Parkinson’s disease in rats. ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Masami Ishido
- Center for Environmental Risk Research, National Institute for Environmental Studies
| | - Eiko Shimaya
- Center for Environmental Risk Research, National Institute for Environmental Studies
| |
Collapse
|
23
|
Jiménez AJ, Rodríguez-Pérez LM, Domínguez-Pinos MD, Gómez-Roldán MC, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco MC, Martínez-León MI, García-Martín ML, Cifuentes M, Ros B, Arráez MÁ, Vitorica J, Gutiérrez A, Pérez-Fígares JM. Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol 2015; 40:911-32. [PMID: 24707814 DOI: 10.1111/nan.12115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
Abstract
AIMS Here, we tested the hypothesis that glial responses via the production of cytokines such as transforming growth factor-beta 1 (TGFβ1) and tumour necrosis factor alpha (TNFα), which play important roles in neurodegenerative diseases, are correlated with the severity of congenital hydrocephalus in the hyh mouse model. We also searched for evidence of this association in human cases of primary hydrocephalus. METHODS Hyh mice, which exhibit either severe or compensated long-lasting forms of hydrocephalus, were examined and compared with wild-type mice. TGFβ1, TNFα and TNFαR1 mRNA levels were quantified using real-time PCR. TNFα and TNFαR1 were immunolocalized in the brain tissues of hyh mice and four hydrocephalic human foetuses relative to astroglial and microglial reactions. RESULTS The TGFβ1 mRNA levels were not significantly different between hyh mice exhibiting severe or compensated hydrocephalus and normal mice. In contrast, severely hydrocephalic mice exhibited four- and two-fold increases in the mean levels of TNFα and TNFαR1, respectively, compared with normal mice. In the hyh mouse, TNFα and TNFαR1 immunoreactivity was preferentially detected in astrocytes that form a particular periventricular reaction characteristic of hydrocephalus. However, these proteins were rarely detected in microglia, which did not appear to be activated. TNFα immunoreactivity was also detected in the glial reaction in the small group of human foetuses exhibiting hydrocephalus that were examined. CONCLUSIONS In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.
Collapse
Affiliation(s)
- Antonio-Jesús Jiménez
- Department of Cell Biology, Genetics, and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Francisco NM, Hsu NJ, Keeton R, Randall P, Sebesho B, Allie N, Govender D, Quesniaux V, Ryffel B, Kellaway L, Jacobs M. TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis. J Neuroinflammation 2015; 12:125. [PMID: 26112704 PMCID: PMC4488051 DOI: 10.1186/s12974-015-0345-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/16/2015] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. Methods We generated neuron-specific TNF-deficient (NsTNF−/−) mice and compared outcomes of disease against TNFf/f control and global TNF−/− mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). Results Intracerebral M. tuberculosis infection of TNF−/− mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF−/− mice were resistant to infection and presented with a phenotype similar to that in TNFf/f control mice. Impaired immunity in TNF−/− mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. Conclusion Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB.
Collapse
Affiliation(s)
- Ngiambudulu M Francisco
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Nai-Jen Hsu
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Roanne Keeton
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Philippa Randall
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Boipelo Sebesho
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Nasiema Allie
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa. .,Division for Postgraduate Studies, University of the Western Cape, Bellville, South Africa.
| | - Dhirendra Govender
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,National Health Laboratory Service, Johannesburg, South Africa.
| | - Valerie Quesniaux
- Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France. .,CNRS UMR7355, Orleans, France.
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics, University of Orleans, Orleans, France. .,CNRS UMR7355, Orleans, France.
| | - Lauriston Kellaway
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Muazzam Jacobs
- Division of Immunology, Department of Clinical Laboratory Science, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa. .,National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
25
|
Hölscher C. New drug treatments show neuroprotective effects in Alzheimer's and Parkinson's diseases. Neural Regen Res 2015; 9:1870-3. [PMID: 25558231 PMCID: PMC4281420 DOI: 10.4103/1673-5374.145342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes is a risk factor for Alzheimer's disease and Parkinson's disease. Insulin signaling in the brains of people with Alzheimer's disease or Parkinson's disease is impaired. Preclinical studies of growth factors showed impressive neuroprotective effects. In animal models of Alzheimer's disease and Parkinson's disease, insulin, glia-derived neurotrophic factor, or analogues of the incretin glucagon-like peptide-1 prevented neurodegenerative processes and improved neuronal and synaptic functionality in Alzheimer's disease and Parkinson's disease. On the basis of these promising findings, several clinical trials are ongoing with the first encouraging clinical results published. This gives hope for developing effective treatments for Alzheimer's disease and Parkinson's disease that are currently unavailable.
Collapse
Affiliation(s)
- Christian Hölscher
- Neuroscience research group, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
26
|
Nadella R, Voutilainen MH, Saarma M, Gonzalez-Barrios JA, Leon-Chavez BA, Jiménez JMD, Jiménez SHD, Escobedo L, Martinez-Fong D. Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra. J Neuroinflammation 2014; 11:209. [PMID: 25511018 PMCID: PMC4275959 DOI: 10.1186/s12974-014-0209-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The anti-inflammatory effect of the cerebral dopamine neurotrophic factor (CDNF) was shown recently in primary glial cell cultures, yet such effect remains unknown both in vivo and in 6-hydroxydopamine (6-OHDA) models of Parkinson's disease (PD). We addressed this issue by performing an intranigral transfection of the human CDNF (hCDNF) gene in the critical period of inflammation after a single intrastriatal 6-OHDA injection in the rat. METHODS At day 15 after lesion, the plasmids p3xNBRE-hCDNF or p3xNBRE-EGFP, coding for enhanced green florescent protein (EGFP), were transfected into the rat substantia nigra (SN) using neurotensin (NTS)-polyplex. At day 15 post-transfection, we measured nitrite and lipoperoxide levels in the SN. We used ELISA to quantify the levels of TNF-α, IL-1β, IL-6, endogenous rat CDNF (rCDNF) and hCDNF. We also used qRT-PCR to measure rCDNF and hCDNF transcripts, and immunofluorescence assays to evaluate iNOS, CDNF and glial cells (microglia, astrocytes and Neuron/Glial type 2 (NG2) cells). Intact SNs were additional controls. RESULTS In the SN, 6-OHDA triggered nitrosative stress, increased inflammatory cytokines levels, and activated the multipotent progenitor NG2 cells, which convert into astrocytes to produce rCDNF. In comparison with the hemiparkinsonian rats that were transfected with the EGFP gene or without transfection, 6-OHDA treatment and p3xNBRE-hCDNF transfection increased the conversion of NG2 cells into astrocytes resulting in 4-fold increase in the rCDNF protein levels. The overexpressed CDNF reduced nitrosative stress, glial markers and IL-6 levels in the SN, but not TNF-α and IL-1β levels. CONCLUSION Our results show the anti-inflammatory effect of CDNF in a 6-OHDA rat of Parkinson's disease. Our results also suggest the possible participation of TNF-α, IL-1β and IL-6 in rCDNF production by astrocytes, supporting their anti-inflammatory role.
Collapse
Affiliation(s)
- Rasajna Nadella
- Programa de Doctorado en Nanociencias y Nanotecnología; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México. .,Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México.
| | - Merja H Voutilainen
- Institute of Biotechnology, PO Box 56, Viikki Biocenter, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, PO Box 56, Viikki Biocenter, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Juan A Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional '1° de Octubre', ISSSTE, Av. Instituto Politécnico Nacional # 1667, Magdalena de las Salinas, CP 02800, México, DF, México.
| | - Bertha A Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio S/N, Ciudad Universitaria Edif. 105A, CP 72570, Puebla, PUE, México.
| | - Judith M Dueñas Jiménez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Av. Juárez 976, Colonia Centro, CP 44100, Guadalajara, Jalisco, México.
| | - Sergio H Dueñas Jiménez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Av. Juárez 976, Colonia Centro, CP 44100, Guadalajara, Jalisco, México.
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México.
| | - Daniel Martinez-Fong
- Programa de Doctorado en Nanociencias y Nanotecnología; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México. .,Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México.
| |
Collapse
|
27
|
TNF-α regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochim Biophys Acta Mol Basis Dis 2014; 1852:451-61. [PMID: 25481834 DOI: 10.1016/j.bbadis.2014.11.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is a complex neurological disorder of the elderly population and majorly shows the selective loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) region of the brain. The mechanisms leading to increased cell death of DAergic neurons are not well understood. Tumor necrosis factor-alpha (TNF-α), a pro-inflammatory cytokine is elevated in blood, CSF and striatum region of the brain in PD patients. The increased level of TNF-α and its role in pathogenesis of PD are not well understood. In the current study, we investigated the role of TNF-α in the regulation of cell death and miRNA mediated mitochondrial functions using, DAergic cell line, SH-SY5Y (model of dopaminergic neuron degeneration akin to PD). The cells treated with low dose of TNF-α for prolonged period induce cell death which was rescued in the presence of zVAD.fmk, a caspase inhibitor and N-acetyl-cysteine (NAC), an antioxidant. TNF-α alters mitochondrial complex-I activity, decreases adenosine triphosphate (ATP) levels, increases reactive oxygen species levels and mitochondrial turnover through autophagy. TNF-α differentially regulates miRNA expression involved in pathogenesis of PD. Bioinformatics analysis revealed that the putative targets of altered miRNA included both pro/anti apoptotic genes and subunits of mitochondrial complex. The cells treated with TNF-α showed decreased level of nuclear encoded transcript of mitochondrial complexes, the target of miRNA. To our knowledge, the evidences in the current study demonstrated that TNF-α is a potential regulator of miRNAs which may regulate mitochondrial functions and neuronal cell death, having important implication in pathogenesis of PD.
Collapse
|
28
|
Sildenafil attenuates inflammation and oxidative stress in pelvic ganglia neurons after bilateral cavernosal nerve damage. Int J Mol Sci 2014; 15:17204-20. [PMID: 25264738 PMCID: PMC4227157 DOI: 10.3390/ijms151017204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022] Open
Abstract
Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG). Functional re-innervation of target organs depends on the capacity of the neurons to survive and switch towards a regenerative phenotype. PDE5 inhibitors (PDE5i) have been successfully used in promoting the recovery of erectile function after cavernosal nerve damage (BCNR) by up-regulating the expression of neurotrophic factors in MPG. However, little is known about the effects of PDE5i on markers of neuronal damage and oxidative stress after BCNR. This study aimed to investigate the changes in gene and protein expression profiles of inflammatory, anti-inflammatory cytokines and oxidative stress related-pathways in MPG neurons after BCNR and subsequent treatment with sildenafil. Our results showed that BCNR in Fisher-344 rats promoted up-regulation of cytokines (interleukin- 1 (IL-1) β, IL-6, IL-10, transforming growth factor β 1 (TGFβ1), and oxidative stress factors (Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, Myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), TNF receptor superfamily member 5 (CD40) that were normalized by sildenafil treatment given in the drinking water. In summary, PDE5i can attenuate the production of damaging factors and can up-regulate the expression of beneficial factors in the MPG that may ameliorate neuropathic pain, promote neuroprotection, and favor nerve regeneration.
Collapse
|
29
|
Ye Y, Xing H, Li Y. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects. Int J Nanomedicine 2014; 9:4475-84. [PMID: 25278752 PMCID: PMC4178501 DOI: 10.2147/ijn.s64313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sasanquasaponin, a bioactive compound isolated from seeds of Camellia oleifera, shows central effects in our previous research. In order to investigate its neuroprotective effects, a new kind of nanocapsule with photo responsiveness was designed to deliver sasanquasaponin into the brain and adjusted by red light. The nanocapsule was prepared using sasanquasaponin emulsified with soybean lecithin and cholesterol solution. The natural phaeophorbide from silkworm excrement as a photosensitizer was added in the lipid phase to make the nanocapsules photo responsive. The physicochemical properties of encapsulation efficiency, size distribution, morphology and stability were measured using high-performance liquid chromatography, particle size analyzer, transmission electron microscope, differential scanning calorimetry and thermogravimetry. Photo responsiveness was determined by the sasanquasaponin release in pH 7.5 phosphate buffer under the laser at 670 nm. The neuroprotective effects were evaluated by the expression of tyrosine hydroxylase (TH), decrease of inflammatory cytokines TNF-α and IL-1β in the brain, and amelioration of kainic acid-induced behavioral disorder in mice. The nanocapsules had higher encapsulation efficiency and stability when the phaeophorbide content was 2% of lecithin weight. The average size was 172.2 nm, distributed in the range of 142-220 nm. The phaeophorbide was scattered sufficiently in the outer lecithin layer of the nanocapsules and increased the drug release after irradiation. TH expression in brain tissues and locomotive activities in mice were reduced by kainic acid, but could be improved by the sasanquasaponin nanocapsules after tail vein injection with 15 minutes of irradiation at the nasal cavity. The sasanquasaponin took effect through inflammatory alleviation in central tissues. The sasanquasaponin nanocapsules with phaeophorbide have photo responsiveness and neuroprotective effects under the irradiation of red light. This preparation presents a new approach to brain neuroprotection, and has potential for clinical application.
Collapse
Affiliation(s)
- Yong Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Haiting Xing
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Yue Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
30
|
Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm (Vienna) 2014; 122:1055-68. [DOI: 10.1007/s00702-014-1293-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 11/27/2022]
|
31
|
Ye Y, Fang F, Li Y. Isolation of the sapogenin from defatted seeds of Camellia oleifera and its neuroprotective effects on dopaminergic neurons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6175-6182. [PMID: 24909656 DOI: 10.1021/jf501166w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sasanqua saponin is a major active compound in the defatted seeds of Camellia oleifera but is always discarded without effective utilization. The sapogenin from hydrolysis of sasanqua saponin was purified, and its amination derivative was investigated on its neuroprotective effects, which were evaluated by animal models of Parkinson disease in mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results showed that the sapogenin and its derivative increased dopamine content in striatum and tyrosine hydroxylase (TH) positive cells in substantia nigra and relieved inflammation and behavioral disorder, but the effect on movement was reversed by dopamine receptor antagonist haloperidol and was not intervened by adenosine receptor antagonist CGS 15943. Molecular simulation showed the interaction between dopamine receptor and the sapogenin or its derivative. It is proven that the sapogenin can protect dopamine neurons through antineuroinflammation and activation of dopamine receptor rather than adenosine receptor, and its amination improves the effects. This research provides the prospective prodrugs for Parkinson disease and a new medicinal application of sasanqua saponin.
Collapse
Affiliation(s)
- Yong Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | | | | |
Collapse
|
32
|
Abstract
Elevation of inflammatory cytokines in the striatum precedes symptoms in a number of motor dysfunctions, but it is unclear whether this is part of the disease process or an adaptive response to the pathology. In pyramidal cells, TNFα drives the insertion of AMPA-type glutamate receptors into synapses, and contributes to the homeostatic regulation of circuit activity in the developing neocortex. Here we demonstrate that in the mouse dorsolateral striatum, TNFα drives the internalization of AMPARs and reduces corticostriatal synaptic strength, dephosphorylates DARPP-32 and GluA1, and results in a preferential removal of Ca(2+)-permeable AMPARs. Striatal TNFα signaling appears to be adaptive in nature, as TNFα is upregulated in response to the prolonged blockade of D2 dopamine receptors and is necessary to reduce the expression of extrapyramidal symptoms induced by chronic haloperidol treatment. These data indicate that TNFα is a regulator of glutamatergic synaptic strength in the adult striatum in a manner distinct from its regulation of synapses on pyramidal cells and mediates an adaptive response during pathological conditions.
Collapse
|
33
|
Drabek T, Janata A, Wilson CD, Stezoski J, Janesko-Feldman K, Tisherman SA, Foley LM, Verrier J, Kochanek PM. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats. Resuscitation 2014; 85:284-91. [PMID: 24513126 PMCID: PMC3952024 DOI: 10.1016/j.resuscitation.2013.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/14/2022]
Abstract
Neuro-cognitive disabilities are a well-recognized complication of hypothermic circulatory arrest. We and others have reported that prolonged cardiac arrest (CA) produces neuronal death and microglial proliferation and activation that are only partially mitigated by hypothermia. Microglia, and possibly other cells, are suggested to elaborate tumor necrosis factor alpha (TNF-α), which can trigger neuronal death cascades and exacerbate edema after CNS insults. Minocycline is neuroprotective in some brain ischemia models in part by blunting the microglial response. We tested the hypothesis that minocycline would attenuate neuroinflammation as reflected by brain tissue levels of TNF-α after hypothermic CA in rats. Rats were subjected to rapid exsanguination, followed by a 6 min normothermic CA. Hypothermia (30 °C) was then induced by an aortic saline flush. After a total of 20 min CA, resuscitation was achieved via cardiopulmonary bypass (CPB). After 5 min reperfusion, minocycline (90 mg kg−1; n = 6) or vehicle (PBS; n = 6) was given. Hypothermia (34 °C) was maintained for 6 h. Rats were sacrificed at 6 or 24 h. TNF-α was quantified (ELISA) in four brain regions (cerebellum, CEREB; cortex, CTX; hippocampus, HIP; striatum, STRI). Naïve rats (n = 6) and rats subjected to the same anesthesia and CPB but no CA served as controls (n = 6). Immunocytochemistry was used to localize TNF-α. Naïve rats and CPB controls had no detectable TNF-α in any brain region. CA markedly increased brain TNF-α. Regional differences were seen, with the highest TNF-α levels in striatum in CA groups (10-fold higher, P < 0.05 vs. all other brain regions). TNF-α was undetectable at 24 h. Minocycline attenuated TNF-α levels in CTX, HIP and STRI (P < 0.05). TNF-α showed unique co-localization with neurons. In conclusion, we report region-dependent early increases in brain TNF-α levels after prolonged hypothermic CA, with maximal increases in striatum. Surprisingly, TNF-α co-localized in neurons and not microglia. Minocycline attenuated TNF-α by approximately 50% but did not totally ablate its production. That minocycline decreased brain TNF-α levels suggests that it may represent a therapeutic adjunct to hypothermia in CA neuroprotection. University of Pittsburgh IACUC 0809278B-3.
Collapse
Affiliation(s)
- Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andreas Janata
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caleb D. Wilson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samuel A. Tisherman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lesley M. Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan Verrier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Shieh CH, Heinrich A, Serchov T, van Calker D, Biber K. P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-α in cultured mouse microglia. Glia 2014; 62:592-607. [PMID: 24470356 DOI: 10.1002/glia.22628] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 01/04/2023]
Abstract
ATP is an important regulator of microglia and its effects on microglial cytokine release are currently discussed as important contributors in a variety of brain diseases. We here analyzed the effects of ATP on the production of six inflammatory mediators (IL-6, IL-10, CCL2, IFN-γ, TNF-α, and IL-12p70) in cultured mouse primary microglia. Stimulation of P2X7 receptor by ATP (1 mM) or BzATP (500 µM) evoked the mRNA expression and release of proinflammatory cytokines IL-6, TNF-α, and the chemokine CCL2 in WT cells but not in P2X7(-/-) cells. The effects of ATP and BzATP were inhibited by the nonselective P2 receptor antagonists PPADs and suramin. Various selective P2X7 receptor antagonists blocked the P2X7-dependent release of IL-6 and CCL2, but, surprisingly, had no effect on BzATP-induced release of TNF-α in microglia. Calcium measurements confirmed that P2X7 is the main purine receptor activated by BzATP in microglia and showed that all P2X7 antagonists were functional. It is also presented that pannexin-1 hemichannel function and potential P2X4/P2X7 heterodimers are not involved in P2X7-dependent release of IL-6, CCL2, and TNF-α in microglia. How P2X7-specific antagonists only affect P2X7-dependent IL-6 and CCL2 release, but not TNF-α release is at the moment unclear, but indicates that the P2X7-dependent release of cytokines in microglia is differentially regulated.
Collapse
Affiliation(s)
- Chu-Hsin Shieh
- Department of Psychiatry and Psychotherapy, University Hospital of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Kuric E, Wieloch T, Ruscher K. Dopamine receptor activation increases glial cell line-derived neurotrophic factor in experimental stroke. Exp Neurol 2013; 247:202-8. [DOI: 10.1016/j.expneurol.2013.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022]
|
36
|
Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013; 2013:480739. [PMID: 23997430 PMCID: PMC3753746 DOI: 10.1155/2013/480739] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/18/2023] Open
Abstract
Cytokines and chemokines are proteins that coordinate the immune response throughout the body. The dysregulation of cytokines and chemokines is a central feature in the development of neuroinflammation, neurodegeneration, and demyelination both in the central and peripheral nervous systems and in conditions of neuropathic pain. Pathological states within the nervous system can lead to activation of microglia. The latter may mediate neuronal and glial cell injury and death through production of proinflammatory factors such as cytokines and chemokines. These then help to mobilize the adaptive immune response. Although inflammation may induce beneficial effects such as pathogen clearance and phagocytosis of apoptotic cells, uncontrolled inflammation can result in detrimental outcomes via the production of neurotoxic factors that exacerbate neurodegenerative pathology. In states of prolonged inflammation, continual activation and recruitment of effector cells can establish a feedback loop that perpetuates inflammation and ultimately results in neuronal injury. A critical balance between repair and proinflammatory factors determines the outcome of a neurodegenerative process. This review will focus on how cytokines and chemokines affect neuroinflammation and disease pathogenesis in bacterial meningitis and brain abscesses, Lyme neuroborreliosis, human immunodeficiency virus encephalitis, and neuropathic pain.
Collapse
Affiliation(s)
- Geeta Ramesh
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | |
Collapse
|
37
|
Gonzalo-Gobernado R, Calatrava-Ferreras L, Reimers D, Herranz AS, Rodríguez-Serrano M, Miranda C, Jiménez-Escrig A, Díaz-Gil JJ, Bazán E. Neuroprotective activity of peripherally administered liver growth factor in a rat model of Parkinson's disease. PLoS One 2013; 8:e67771. [PMID: 23861803 PMCID: PMC3701531 DOI: 10.1371/journal.pone.0067771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
| | | | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Antonio Sánchez Herranz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Cristina Miranda
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Juan José Díaz-Gil
- Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- * E-mail:
| |
Collapse
|
38
|
Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1β and tumor necrosis factor-α: reliable targets for protective therapies in Parkinson's Disease? Front Cell Neurosci 2013; 7:53. [PMID: 23641196 PMCID: PMC3638129 DOI: 10.3389/fncel.2013.00053] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation has received increased attention as a target for putative neuroprotective therapies in Parkinson’s Disease (PD). Two prototypic pro-inflammatory cytokines interleukin-1β (IL-1) and tumor necrosis factor-α (TNF) have been implicated as main effectors of the functional consequences of neuroinflammation on neurodegeneration in PD models. In this review, we describe that the functional interaction between these cytokines in the brain differs from the periphery (e.g., their expression is not induced by each other) and present data showing predominantly a toxic effect of these cytokines when expressed at high doses and for a sustained period of time in the substantia nigra pars compacta (SN). In addition, we highlight opposite evidence showing protective effects of these two main cytokines when conditions of duration, amount of expression or state of activation of the target or neighboring cells are changed. Furthermore, we discuss these results in the frame of previous disappointing results from anti-TNF-α clinical trials against Multiple Sclerosis, another neurodegenerative disease with a clear neuroinflammatory component. In conclusion, we hypothesize that the available evidence suggests that the duration and dose of IL-1β or TNF-α expression is crucial to predict their functional effect on the SN. Since these parameters are not amenable for measurement in the SN of PD patients, we call for an in-depth analysis to identify downstream mediators that could be common to the toxic (and not the protective) effects of these cytokines in the SN. This strategy could spare the possible neuroprotective effect of these cytokines operative in the patient at the time of treatment, increasing the probability of efficacy in a clinical setting. Alternatively, receptor-specific agonists or antagonists could also provide a way to circumvent undesired effects of general anti-inflammatory or specific anti-IL-1β or TNF-α therapies against PD.
Collapse
Affiliation(s)
- María C Leal
- Institute Leloir Fundation - IIBBA-CONICET Buenos Aires, Argentina
| | | | | | | |
Collapse
|
39
|
Shared dysregulated pathways lead to Parkinson's disease and diabetes. Trends Mol Med 2013; 19:176-86. [DOI: 10.1016/j.molmed.2013.01.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/12/2012] [Accepted: 01/05/2013] [Indexed: 12/11/2022]
|
40
|
Abd-El-Basse EM. Pro-inflammatory cytokine; tumor-necrosis factor-alpha (TNF-α) inhibits astrocytic support of neuronal survival and neurites outgrowth. ADVANCES IN BIOSCIENCE AND BIOTECHNOLOGY 2013; 04:73-80. [DOI: 10.4236/abb.2013.48a2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
Pan M, Gao H, Long L, Xu Y, Liu M, Zou J, Wu A, Wei X, Chen X, Tang B, Wang Q. Serum uric acid in patients with Parkinson's disease and vascular parkinsonism: a cross-sectional study. Neuroimmunomodulation 2013; 20:19-28. [PMID: 23154271 DOI: 10.1159/000342483] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/03/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Elevation of serum uric acid (UA) is correlated with a decreased risk of Parkinson's disease (PD); however, the association and clinical relevance of serum UA levels in patients with PD and vascular parkinsonism (VP) are unknown. OBJECTIVE We performed a cross-sectional study of 160 Chinese patients with PD and VP to determine whether UA levels in patients could predict the outcomes. METHODS Serum UA levels were divided into quartiles and the association between UA and the severity of PD or VP was investigated in each quartile. RESULTS The serum levels of UA in PD were significantly lower than those in normal subjects and VP. The serum UA levels in PD patients were significantly correlated with some clinical parameters. Strong correlations were observed in male PD patients, but significant correlations were observed only between UA and the non-motor symptoms (NMS) of burden of sleep/fatigue and mood in female PD patients. PD patients in the lowest quartile of serum UA levels had significant correlations between UA and the unified Parkinson's disease rating scale, the modified Hoehn and Yahr staging scale and NMS burden for attention/memory. CONCLUSION Our findings support the hypothesis that subjects with low serum UA levels may be more prone to developing PD and indicate that the inverse relationship between UA and severity of PD was robust for men but weak for women. Our results strongly imply that either low serum UA level is a deteriorative predictor or that serum UA level serves as an indirect biomarker of prediction in PD but not in VP patients.
Collapse
Affiliation(s)
- Mengqiu Pan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Inhibition of LPS-Induced Retinal Microglia Activation by Naloxone Does Not Prevent Photoreceptor Death. Inflammation 2012; 36:42-52. [DOI: 10.1007/s10753-012-9518-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Astrocyte-specific IKK2 activation in mice is sufficient to induce neuroinflammation but does not increase susceptibility to MPTP. Neurobiol Dis 2012; 48:481-7. [PMID: 22750522 DOI: 10.1016/j.nbd.2012.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 12/21/2022] Open
Abstract
A key regulator of inflammatory gene expression is the transcription factor NF-κB that is controlled by the IκB proteins. We used a transgenic mouse model expressing a constitutively active IκB-kinase-2 (IKK2-CA) in astrocytes under control of the human glial fibrillary acidic protein promotor (IKK2-mice) to investigate neuroinflammation, proinflammatory cytokine expression, microglial activation and a potential enhanced susceptibility to the neurotoxin MPTP (4×10 mg/kg). Readouts included the determination of cytokines, striatal dopamine (DA), nigral tyrosine hydroxylase (TH) positive neurons, microglial activation and motor activity. IKK2-CA expression in astrocytes conditionally induced by the tet-off system resulted in a widespread neuroinflammation indicated by the increased expression of inflammatory cytokines and the presence of activated microglia and astrogliosis. Additionally, striatal DA concentrations but not nigral TH-positive neurons were reduced in IKK2-mice by 20%. Motor activity of IKK2-mice was not affected. Surprisingly, there was a similar reduction in striatal DA concentrations and the number of nigral TH-positive neurons in IKK2 and control mice after MPTP treatment. In conclusion, although naïve IKK2-mice showed reduced striatal DA concentrations and an increase in inflammatory markers in the brain, a higher susceptibility to MPTP was not observed. This finding argues against a prominent role of astrocyte specific, IKK2-mediated neuroinflammation in MPTP-induced neurodegeneration.
Collapse
|
44
|
Vidal PM, Lemmens E, Geboes L, Vangansewinkel T, Nelissen S, Hendrix S. Late blocking of peripheral TNF-α is ineffective after spinal cord injury in mice. Immunobiology 2012; 218:281-4. [PMID: 22749984 DOI: 10.1016/j.imbio.2012.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/04/2012] [Accepted: 05/16/2012] [Indexed: 01/03/2023]
Abstract
Spinal cord injury (SCI) is characterized by different phases of inflammatory responses. Increasing evidence indicates that the early chronic phase (two to three weeks after SCI) is characterized by a dramatic invasion of immune cells and a peak of pro-inflammatory cytokine levels, such as tumor necrosis factor-α (TNF-α) derived from the injured spinal cord as well as from injured skin, muscles and bones. However, there is substantial controversy whether these inflammatory processes in later phases lead to pro-regenerative or detrimental effects. In the present study, we investigated whether the inhibition of peripheral TNF-α in the early chronic phase after injury promotes functional recovery in a dorsal hemisection model of SCI. Three different approaches were used to continuously block peripheral TNF-α in vivo, starting 14 days after injury. We administered the TNF-α blocker etanercept intraperitoneally (every second day or daily) as well as continuously via osmotic minipumps. None of these administration routes for the TNF-α inhibitor influenced locomotor restoration as assessed by the Basso mouse scale (BMS), nor did they affect coordination and strength as evaluated by the Rotarod test. These data suggest that peripheral TNF-α inhibition may not be an effective therapeutic strategy in the early chronic phase after SCI.
Collapse
Affiliation(s)
- Pía M Vidal
- Department of Morphology & Biomedical Research Institute, Hasselt University, Agoralaan, Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Calderón-Garcidueñas L, Engle R, Mora-Tiscareño A, Styner M, Gómez-Garza G, Zhu H, Jewells V, Torres-Jardón R, Romero L, Monroy-Acosta ME, Bryant C, González-González LO, Medina-Cortina H, D'Angiulli A. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain Cogn 2011; 77:345-55. [PMID: 22032805 DOI: 10.1016/j.bandc.2011.09.006] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/31/2022]
Abstract
Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood.
Collapse
|
46
|
Thomas Curtis J, Chen Y, Buck DJ, Davis RL. Chronic inorganic mercury exposure induces sex-specific changes in central TNFα expression: importance in autism? Neurosci Lett 2011; 504:40-4. [PMID: 21906657 DOI: 10.1016/j.neulet.2011.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022]
Abstract
Mercury is neurotoxic and increasing evidence suggests that environmental exposure to mercury may contribute to neuropathologies including Alzheimer's disease and autism spectrum disorders. Mercury is known to disrupt immunocompetence in the periphery, however, little is known about the effects of mercury on neuroimmune signaling. Mercury-induced effects on central immune function are potentially very important given that mercury exposure and neuroinflammation both are implicated in certain neuropathologies (i.e., autism). Furthermore, mounting evidence points to the involvement of glial activation in autism. Therefore, we utilized an in vivo model to assess the effects of mercury exposure on neuroimmune signaling. In prairie voles, 10 week mercury exposure (60ppm HgCl(2) in drinking water) resulted in a male-specific increase in TNFα protein expression in the cerebellum and hippocampus. These findings are consistent with our previously reported male-specific mercury-induced deficits in social behavior and further support a role for heavy metals exposure in neuropathologies such as autism. Subsequent studies should further evaluate the mechanism of action and biological consequences of heavy metals exposure. Additionally, these observations highlight the potential of neuroimmune markers in male voles as biomarkers of environmental mercury toxicity.
Collapse
Affiliation(s)
- J Thomas Curtis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, United States
| | | | | | | |
Collapse
|
47
|
Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 2011; 7:42-59. [PMID: 21728035 DOI: 10.1007/s11481-011-9287-2] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/20/2011] [Indexed: 12/12/2022]
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is a prototypic pro-inflammatory cytokine involved in the innate immune response. TNF-α ligation and downstream signaling with one of its cognate receptors, TNF-RI or TNF-RII, modulates fundamental processes in the brain including synapse formation and regulation, neurogenesis, regeneration, and general maintenance of the central nervous system (CNS). During states of chronic neuroinflammation, extensive experimental evidence implicates TNF-α as a key mediator in disease progression, gliosis, demyelination, inflammation, blood-brain-barrier deterioration, and cell death. This review explores the complex roles of TNF-α in the CNS under normal physiologic conditions and during neurodegeneration. We focus our discussion on Multiple Sclerosis, Parkinson's disease, and Alzheimer's disease, relaying the outcomes of preclinical and clinical testing of TNF-α directed therapeutic strategies, and arguing that despite the wealth of functions attributed to this central cytokine, surprisingly little is known about the cell type- and stage-specific roles of TNF-α in these debilitating disorders.
Collapse
Affiliation(s)
- Sara L Montgomery
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
48
|
The duality of TNF signaling outcomes in the brain: potential mechanisms? Exp Neurol 2011; 229:198-200. [PMID: 21377463 DOI: 10.1016/j.expneurol.2011.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/20/2011] [Indexed: 11/20/2022]
|