1
|
Abd Razak NH, Idris J, Hassan NH, Zaini F, Muhamad N, Daud MF. Unveiling the Role of Schwann Cell Plasticity in the Pathogenesis of Diabetic Peripheral Neuropathy. Int J Mol Sci 2024; 25:10785. [PMID: 39409114 PMCID: PMC11476695 DOI: 10.3390/ijms251910785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes that affects a significant proportion of diabetic patients worldwide. Although the pathogenesis of DPN involves axonal atrophy and demyelination, the exact mechanisms remain elusive. Current research has predominantly focused on neuronal damage, overlooking the potential contributions of Schwann cells, which are the predominant glial cells in the peripheral nervous system. Schwann cells play a critical role in neurodevelopment, neurophysiology, and nerve regeneration. This review highlights the emerging understanding of the involvement of Schwann cells in DPN pathogenesis. This review explores the potential role of Schwann cell plasticity as an underlying cellular and molecular mechanism in the development of DPN. Understanding the interplay between Schwann cell plasticity and diabetes could reveal novel strategies for the treatment and management of DPN.
Collapse
Affiliation(s)
- Nurul Husna Abd Razak
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Jalilah Idris
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Nur Hidayah Hassan
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Fazlin Zaini
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Noorzaid Muhamad
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| |
Collapse
|
2
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
3
|
Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, Xie Z, Chen C. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne) 2023; 14:1017886. [PMID: 36742382 PMCID: PMC9889556 DOI: 10.3389/fendo.2023.1017886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such as bile salt formation, osmotic regulation, oxidative stress inhibition, immunomodulation and neuromodulation. Taurine has been proved to be synthesized and abundant in male reproductive organs. Recently, accumulating data showed that taurine has a potential protective effect on reproductive function of male animals. In physiology, taurine can promote the endocrine function of the hypothalamus-pituitary-testis (HPT) axis, testicular tissue development, spermatogenesis and maturation, delay the aging of testicular structure and function, maintain the homeostasis of the testicular environment, and enhance sexual ability. In pathology, taurine supplement may be beneficial to alleviate pathological damage of male reproductive system, including oxidative damage of sperm preservation in vitro, testicular reperfusion injury and diabetes -induced reproductive complications. In addition, taurine acts as a protective agent against toxic damage to the male reproductive system by exogenous substances (e.g., therapeutic drugs, environmental pollutants, radiation). Related mechanisms include reduced oxidative stress, increased antioxidant capacity, inhibited inflammation and apoptosis, restored the secretory activity of the HPT axis, reduced chromosomal variation, enhanced sperm mitochondrial energy metabolism, cell membrane stabilization effect, etc. Therefore, this article reviewed the protective effect of taurine on male reproductive function and its detailed mechanism, in order to provide reference for further research and clinical application.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jia Shang
- Arts Department, School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Wanglin Dong
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Sijia Wu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiajun Guo
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Henan, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|
4
|
Bridging potential of Taurine-loading PCL conduits transplanted with hEnSCs on resected sciatic nerves. Regen Ther 2022; 21:424-435. [PMID: 36274680 PMCID: PMC9556906 DOI: 10.1016/j.reth.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Reconstruction of nerve conduits is a promising method for functional improvement in peripheral nerve repair. Besides choosing of a suitable polymer for conduit construction, adding factors such as Taurine improve a more advantageous microenvironment for defect nerve regeneration. Showing several major biological properties of Taurine, for example, regulation of the osmotic pressure, modulation of neurogenesis, and calcium hemostasis, makes it an appropriate option for repairing of defected nerves. To this, we examined repairing effects of Taurine-loading PCL conduits cultured with human endothelial stem cells (hEnSCs) on resected sciatic nerves. PCL/Taurine/Cell conduits transplanted to a 10-mm sciatic nerve gap. Forty-two wistar rats were randomly divided to seven groups: (1) Normal group, (2) Negative control (NC), (3) Positive control (nerve Autograft group), (4) PCL conduits group (PCL), (5) Taurine loaded PCL conduits group (PCL/Taurine), (6) hEnSCs cultured on the PCL conduits (PCL/Cell), (7) hEnSCs cultured on the PCL/Taurine conduits (PCL/Taurine/Cell). Functional recovery of motor and sensory nerves, the action potential of exciting muscle and motor distal latency has seen in PCL/Taurine/Cell conduits. Histological studies showed also remarkable nerve regeneration and obvious bridging has seen in this group. In conclusion, PCL/Taurine/Cell conduits showing suitable mechanical properties and biocompatibility may improve sciatic nerve regeneration.
Collapse
Key Words
- AD, Alzheimer's disease
- DAPI, diamidino phenylindole
- DPN, peripheral neuropathy
- ECM, extracellular matrix structure
- EMAP, muscle action potential
- EMG, electromyography
- FBS, fetal bovine serum
- FDA, Food and Drug Administration
- HPF, high power fields
- HPL, hotplate latency
- Human endothelial stem cells (hEnSCs)
- LFB, Luxol fast blue
- MSCs, mesenchymal stem cells
- MTT, dimethylthiazol diphenyl tetrazolium bromide
- NGC, nerve guidance conduits
- Nerve regeneration
- PBS, phosphate-buffered saline
- PCL, polycaprolactone
- PD, Parkinson's disease
- PNS, peripheral nerve system
- SFI, sciatic functionl index
- TCP, tissue culture plate
- Taurine
- WRL, withdrawal reflex latency
- hEnSCs, human endothelial stem cells
Collapse
|
5
|
Lysophosphatidylcholine: Potential Target for the Treatment of Chronic Pain. Int J Mol Sci 2022; 23:ijms23158274. [PMID: 35955410 PMCID: PMC9368269 DOI: 10.3390/ijms23158274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
The bioactive lipid lysophosphatidylcholine (LPC), a major phospholipid component of oxidized low-density lipoprotein (Ox-LDL), originates from the cleavage of phosphatidylcholine by phospholipase A2 (PLA2) and is catabolized to other substances by different enzymatic pathways. LPC exerts pleiotropic effects mediated by its receptors, G protein-coupled signaling receptors, Toll-like receptors, and ion channels to activate several second messengers. Lysophosphatidylcholine (LPC) is increasingly considered a key marker/factor positively in pathological states, especially inflammation and atherosclerosis development. Current studies have indicated that the injury of nervous tissues promotes oxidative stress and lipid peroxidation, as well as excessive accumulation of LPC, enhancing the membrane hyperexcitability to induce chronic pain, which may be recognized as one of the hallmarks of chronic pain. However, findings from lipidomic studies of LPC have been lacking in the context of chronic pain. In this review, we focus in some detail on LPC sources, biochemical pathways, and the signal-transduction system. Moreover, we outline the detection methods of LPC for accurate analysis of each individual LPC species and reveal the pathophysiological implication of LPC in chronic pain, which makes it an interesting target for biomarkers and the development of medicine regarding chronic pain.
Collapse
|
6
|
Role of Mitophagy in neurodegenerative Diseases and potential tagarts for Therapy. Mol Biol Rep 2022; 49:10749-10760. [PMID: 35794507 DOI: 10.1007/s11033-022-07738-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 12/27/2022]
Abstract
Mitochondria dysfunction has been defined as one of the hallmarks of aging-related diseases as is characterized by the destroyed integrity, abnormal distribution and size, insufficient ATP supply, increased ROS production, and subsequently damage and oxidize the proteins, lipids and nucleic acid. Mitophagy, an efficient way of removing damaged or defective mitochondria by autophagy, plays a pivotal role in maintaining the mitochondrial quantity and quality control enabling the degradation of unwanted mitochondria, and thus rescues cellular homeostasis in response to stress. Accumulating evidence demonstrates that impaired mitophagy has been associated with many neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) in a variety of patients and disease models with neural death, oxidative stress and disturbed metabolism, either as the cause or consequence. These findings suggest that modulation of mitophagy may be considered as a valid therapeutic strategy in neurodegenerative diseases. In this review, we summarize recent findings on the mechanisms of mitophagy and its role in neurodegenerative diseases, with a particular focus on mitochondrial proteins acting as receptors that mediate mitophagy in these diseases.
Collapse
|
7
|
Clark GJ, Pandya K, Lau-Cam CA. Assessment of In Vitro Tests as Predictors of the Antioxidant Effects of Insulin, Metformin, and Taurine in the Brain of Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:243-256. [DOI: 10.1007/978-3-030-93337-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Aldose Reductase and the Polyol Pathway in Schwann Cells: Old and New Problems. Int J Mol Sci 2021; 22:ijms22031031. [PMID: 33494154 PMCID: PMC7864348 DOI: 10.3390/ijms22031031] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Aldose reductase (AR) is a member of the reduced nicotinamide adenosine dinucleotide phosphate (NADPH)-dependent aldo-keto reductase superfamily. It is also the rate-limiting enzyme of the polyol pathway, catalyzing the conversion of glucose to sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase. AR is highly expressed by Schwann cells in the peripheral nervous system (PNS). The excess glucose flux through AR of the polyol pathway under hyperglycemic conditions has been suggested to play a critical role in the development and progression of diabetic peripheral neuropathy (DPN). Despite the intensive basic and clinical studies over the past four decades, the significance of AR over-activation as the pathogenic mechanism of DPN remains to be elucidated. Moreover, the expected efficacy of some AR inhibitors in patients with DPN has been unsatisfactory, which prompted us to further investigate and review the understanding of the physiological and pathological roles of AR in the PNS. Particularly, the investigation of AR and the polyol pathway using immortalized Schwann cells established from normal and AR-deficient mice could shed light on the causal relationship between the metabolic abnormalities of Schwann cells and discordance of axon-Schwann cell interplay in DPN, and led to the development of better therapeutic strategies against DPN.
Collapse
|
9
|
Juybari KB, Hosseinzadeh A, Sharifi AM. Protective effects of atorvastatin against high glucose-induced nuclear factor-κB activation in cultured C28I2 chondrocytes. J Recept Signal Transduct Res 2019; 39:1-8. [DOI: 10.1080/10799893.2018.1557206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kobra Bahrampour Juybari
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Bone and Joint Reconstruction Research Center and Department of Orthopedics Surgery, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Sak D, Erdenen F, Müderrisoglu C, Altunoglu E, Sozer V, Gungel H, Guler PA, Sak T, Uzun H. The Relationship between Plasma Taurine Levels and Diabetic Complications in Patients with Type 2 Diabetes Mellitus. Biomolecules 2019; 9:E96. [PMID: 30862074 PMCID: PMC6468751 DOI: 10.3390/biom9030096] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Taurine has an active role in providing glucose homeostasis and diabetes causes a decline in taurine levels. This paper investigates the relationship between taurine and diabetic complications, patients' demographic features, and biochemical parameters. Methods: Fifty-nine patients with type 2 diabetes mellitus (T2DM), and 28 healthy control subjects between the ages of 32 and 82 were included in the study. The mean age of subjects was 55.6 ± 10.3 and mean diabetes duration was 10.2 ± 6.0 years. The most commonly accompanying comorbidity was hypertension (HT) (64.5%, n = 38), and the most frequent diabetic complication was neuropathy (50.8%, n = 30). Plasma taurine concentrations were measured by an enzyme-linked immunoassay (ELISA) kit. Results: Plasma taurine concentrations were significantly lower in diabetic patients (0.6 ± 0.1 mmol/L) than controls (0.8 ± 0.2 mmol/L) and in hypertensive (0. 6 ± 0.1 mmol/L) patients (p = 0.000, p = 0.027 respectively). Conclusion: Plasma taurine levels were decreased in patients with T2DM and this was not related to FBG, HbA1c, and microalbuminuria. With regard to complications, we only found a correlation with neuropathy. We suggest that taurine levels may be more important in the development of diabetes; however, it may also have importance for the progression of the disease and the subsequent complications. We further assert that taurine measurement at different times may highlight whether there is a causal relationship in the development of complications.
Collapse
Affiliation(s)
- Duygu Sak
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Fusun Erdenen
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Cuneyt Müderrisoglu
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Esma Altunoglu
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Volkan Sozer
- Department of Biochemistry, Yildiz Technical University, Esenler, Istanbul, 34220, Turkey.
| | - Hulya Gungel
- Department of Ophthalmology, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Pınar Akca Guler
- Department of Ophthalmology, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Tuncer Sak
- Department of Internal Medicine, Istanbul Training and Research Hospital, Fatih, Istanbul, 34098, Turkey.
| | - Hafize Uzun
- Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, 34098, Turkey.
| |
Collapse
|
11
|
Zhu L, Du W, Liu Y, Cheng M, Wang X, Zhang C, Lv X, Li F, Zhao S, Hao J. Prolonged high‐glucose exposure decreased SREBP‐1/FASN/ACC in Schwann cells of diabetic mice via blocking PI3K/Akt pathway. J Cell Biochem 2018; 120:5777-5789. [PMID: 30362584 DOI: 10.1002/jcb.27864] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lin Zhu
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
- Department of Electromyogram 3rd Hospital of Hebei Medical University Shijiazhuang Hebei China
| | - Wei Du
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
| | - Yaping Liu
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
| | - Meijuan Cheng
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
| | - Xiumin Wang
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
| | - Cuihong Zhang
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
- Department of Radiation Oncology Bethune International Peace Hospital Shijiazhuang Hebei China
| | - Xin Lv
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
| | - Fan Li
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
| | - Song Zhao
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
| | - Jun Hao
- Department of Pathology Hebei Medical University Shijiazhuang Hebei China
| |
Collapse
|
12
|
Yang J, Lin S, Zhang Y, Wu G, Yang Q, Lv Q, Hu J. Taurine Improves Sexual Function in Streptozotocin-Induced Diabetic Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:307-318. [PMID: 28849465 DOI: 10.1007/978-94-024-1079-2_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have identified that diabetic erectile dysfunction is associated with androgen and nitric oxide deficiency resulting from hyperglycemia. It has been demonstrated that taurine can stimulate testosterone secretion, increase nitric oxide synthase (NOS) activity and nitric oxide (NO) production, and reduce blood glucose levels in the diabetic animals. Furthermore, recent studies have found that taurine relaxes both the corpus cavernosum and the vasculature. Accordingly, we hypothesized that taurine might exert beneficial effects on erectile function of the diabetic rats. Here, we assessed the effects of taurine on sexual function in streptozotocin (STZ) -induced diabetic male rats. We observed that taurine treatment could markedly increase sexual response and mating ability of STZ-diabetic rats. The serum concentration of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) were also significantly increased by taurine administration. Importantly, taurine supplementation notably increased mRNA levels and activity of endothelial NOS (eNOS) and neuronal NOS (nNOS), as well as NO and cGMP content, in the corpus cavernosum of the diabetic rats. In conclusion, the present data indicate that taurine can increase sexual function of STZ-induced diabetic male rats mainly by correcting the diabetes, increasing sexual desire, which is implicated in ameliorating the hypothalamic-pituitary-testicular axis function, and by improving penile erection, which requires increased signaling from the penile endothelial- and neuronal-dependent NO-cGMP pathway.
Collapse
Affiliation(s)
- Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Yu Zhang
- Agricultural College of Eastern Liaoning University, Dandong, Liaoning, 118003, People's Republic of China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Qiufeng Lv
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China.
| |
Collapse
|
13
|
Kang YJ, Choi MJ. Liver Antioxidant Enzyme Activities Increase After Taurine in Ovariectomized Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:1071-1080. [PMID: 28849523 DOI: 10.1007/978-94-024-1079-2_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The present study was performed to know the effects of taurine on the lipid level of plasma and liver, lipid peroxidation and antioxidative enzyme activities of liver tissue in ovariectomized (OVX) rats fed cholesterol. Twenty-four female SD rats (200 ± 5 g) were grouped; sham and ovariectomy groups, which were each randomly subgrouped; fed control and control supplemented with taurine (20 g/kg diet). The serum total cholesterol, TG (triglyceride), LDL-cholesterol, athrogenic index, and HDL-cholesterol of taurine diet group were not statistically different. Also the levels of liver total cholesterol, triglyceride were not considerably different in different diets. The lipid peroxidation of malondialdehyde concentration was considerably lower in taurine-feeding group than control-feeding group in ovariectomy group. The superoxide dismutase activity in liver tissue was significantly higher in rats fed taurine than in rats fed control diet in OVX rats. GSH-Px (glutathione peroxidase) activity was statistically greater at the rats fed taurine diets compared to rats fed control diet in ovariectomy group. Activity of catalase was higher in taurine group than in control group in ovariectomy group, but it was not significantly different. In conclusion, taurine supplementation was beneficial on antioxidative enzyme activities of liver tissue in ovariectomized rats fed cholesterol.
Collapse
Affiliation(s)
- Young-Ju Kang
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Mi-Ja Choi
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea.
| |
Collapse
|
14
|
Huang Y, Leng TD, Inoue K, Yang T, Liu M, Horgen FD, Fleig A, Li J, Xiong ZG. TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem 2018; 293:14393-14406. [PMID: 30076216 DOI: 10.1074/jbc.ra117.001032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
High-glucose (HG) levels and hyperglycemia associated with diabetes are known to cause neuronal damage. The detailed molecular mechanisms, however, remain to be elucidated. Here, we investigated the role of transient receptor potential melastatin 7 (TRPM7) channels in HG-mediated endoplasmic reticulum stress (ERS) and injury of NS20Y neuronal cells. The cells were incubated in the absence or presence of HG for 48 h. We found that mRNA and protein levels of TRPM7 and of ERS-associated proteins, such as C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and inducible nitric-oxide synthase (iNOS), increased in HG-treated cells, along with significantly increased TRPM7-associated currents in these cells. Similar results were obtained in cerebral cortical tissue from an insulin-deficiency model of diabetic mice. Moreover, HG treatment of cells activated ERS-associated proapoptotic caspase activity and induced cellular injury. Interestingly, a NOS inhibitor, l-NAME, suppressed the HG-induced increase of TRPM7 expression and cellular injury. siRNA-mediated TRPM7 knockdown or chemical inhibition of TRPM7 activity also suppressed HG-induced ERS and decreased cleaved caspase-12/caspase-3 levels and cell injury. Of note, TRPM7 overexpression increased ERS and cell injury independently of its kinase activity. Taken together, our findings suggest that TRPM7 channel activities play a key role in HG-associated ERS and cytotoxicity through an apoptosis-inducing signaling cascade involving HG, iNOS, TRPM7, ERS proteins, and caspases.
Collapse
Affiliation(s)
- Yan Huang
- From the School of Pharmacy, Anhui Medical University, Hefei 230032, China.,the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - Tian-Dong Leng
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310,
| | - Koichi Inoue
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310.,the Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tao Yang
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - Mingli Liu
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - F David Horgen
- the Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, and
| | - Andrea Fleig
- the Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and University of Hawaii John A. Burns School of Medicine and Cancer Center, Honolulu, Hawaii 96813
| | - Jun Li
- From the School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhi-Gang Xiong
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310,
| |
Collapse
|
15
|
Protective effect of magnesium acetyltaurate and taurine against NMDA-induced retinal damage involves reduced nitrosative stress. Mol Vis 2018; 24:495-508. [PMID: 30090013 PMCID: PMC6066271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/23/2018] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU. METHODS Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. RESULTS As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01). CONCLUSIONS MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.
Collapse
|
16
|
Li Y, Zhang Y, Wang L, Wang P, Xue Y, Li X, Qiao X, Zhang X, Xu T, Liu G, Li P, Chen C. Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Autophagy 2018. [PMID: 28633005 DOI: 10.1080/15548627.2017.1320467] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The majority of diabetic patients develop neuropathy and there is an increasing prevalence of neurodegeneration in the central nervous system (CNS). However, the mechanism behind this is poorly understood. Here we first observed that macroautophagy/autophagy was suppressed in the hippocampus of diabetic GK rats with hyperglycemia, whereas it was unchanged in ob/ob mice without hyperglycemia. Autophagy could be directly inhibited by high glucose in mouse primary hippocampal neurons. Moreover, autophagy was protective in high-glucose-induced neurotoxicity. Further studies revealed that autophagic flux was suppressed by high glucose due to impaired autophagosome synthesis illustrated by mRFP-GFP-LC3 puncta analysis. We showed that decreased autophagy was dependent on NO produced under high glucose conditions. Therefore, (LC-MS/MS)-based quantitative proteomic analysis of protein S-nitrosation was performed and a core autophagy protein, ATG4B was found to be S-nitrosated in the hippocampus of GK rats. ATG4B was also verified to be S-nitrosated in neuronal cells cultured with high glucose. The activities of ATG4B in the processing of unmodified, precursor Atg8-family proteins and in the deconjugation of PE from lipidated Atg8-family proteins, which are essential for efficient autophagosome biogenesis were both compromised by S-nitrosation at Cys189 and Cys292 sites. In addition, ATG4B processing of the GABARAPL1 precursor was affected the least by S-nitrosation compared with other substrates. Finally, ATG4B S-nitrosation was verified to be responsible for decreased autophagy and neurotoxicity in response to high glucose. In conclusion, autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Our research reveals a novel mechanism linking hyperglycemia with CNS neurotoxicity and shows that S-nitrosation is a novel post-transcriptional modification of the core autophagy machinery.
Collapse
Affiliation(s)
- Yazi Li
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yuying Zhang
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Lei Wang
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Ping Wang
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yanhong Xue
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Xiaopeng Li
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Xinhua Qiao
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Xu Zhang
- c Department of Physiology and Pathophysiology , Tianjin Medical University , Tianjin , China
| | - Tao Xu
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Guanghui Liu
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Peng Li
- d Tsinghua-Peking Center for Life Sciences, School of Life Sciences , Tsinghua University , Beijing , China
| | - Chang Chen
- a National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China.,e Beijing Institute for Brain Disorders, Youanmen , Beijing , China
| |
Collapse
|
17
|
Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Spasov A, Ozerov A, Mohd Ismail N. Effect of Magnesium Acetyltaurate and Taurine on Endothelin1-Induced Retinal Nitrosative Stress in Rats. Curr Eye Res 2018; 43:1032-1040. [PMID: 29676937 DOI: 10.1080/02713683.2018.1467933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Retinal ganglion cell apoptosis in glaucoma is associated with elevated levels of endothelin-1 (ET1), a potent vasoconstrictor. ET1-induced retinal ischemia leads to altered expression of nitric oxide synthase (NOS) isoforms leading to increased formation of nitric oxide (NO) and retinal nitrosative stress. Since magnesium (Mg) is known to improve endothelial functions and reduce oxidative stress and taurine (TAU) possesses potent antioxidant properties, we investigated the protective effects of magnesium acetyltaurate (MgAT) against ET1-induced nitrosative stress and retinal damage in rats. We also compared the effects of MgAT with that of TAU alone. METHODS Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining. RESULTS Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone. CONCLUSIONS MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.
Collapse
Affiliation(s)
- Natasha Najwa Nor Arfuzir
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia
| | - Renu Agarwal
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia
| | - Igor Iezhitsa
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia.,b Volgograd State Medical University, Research Institute of Pharmacology , Volgograd , Russia
| | - Puneet Agarwal
- c Faculty of Medicine, International Medical University , IMU Clinical School , Seremban , Malaysia
| | - Sabrilhakim Sidek
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia
| | - Alexander Spasov
- b Volgograd State Medical University, Research Institute of Pharmacology , Volgograd , Russia
| | - Alexander Ozerov
- b Volgograd State Medical University, Research Institute of Pharmacology , Volgograd , Russia
| | - Nafeeza Mohd Ismail
- a Center for Neuroscience Research, Faculty of Medicine , Universiti Teknologi MARA Sungai Buloh Campus , Selangor , Malaysia
| |
Collapse
|
18
|
Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol 2017; 110:109-121. [PMID: 29050977 DOI: 10.1016/j.fct.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
Abstract
Taurine is a conditionally essential amino acid present in the body in free form. Mammalian taurine is synthesized in the pancreas via the cysteine sulfinic acid pathway. Anti-oxidation and anti-inflammation are two main properties through which it exerts its therapeutic effects. Many studies have shown its excellent therapeutic potential against diabetes mellitus and related complications like diabetic neuropathy, retinopathy, nephropathy, hematological dysfunctions, reproductive dysfunctions, liver and pancreas related complications etc. Not only taurine, a number of its derivatives have also been reported to be important in ameliorating diabetic complications. The present review has been aimed to describe the importance of taurine and its derivatives against diabetic metabolic syndrome and related complications.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
| |
Collapse
|
19
|
Gonçalves NP, Vægter CB, Andersen H, Østergaard L, Calcutt NA, Jensen TS. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 2017; 13:135-147. [PMID: 28134254 DOI: 10.1038/nrneurol.2016.201] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of diabetes worldwide is at pandemic levels, with the number of patients increasing by 5% annually. The most common complication of diabetes is peripheral neuropathy, which has a prevalence as high as 50% and is characterized by damage to neurons, Schwann cells and blood vessels within the nerve. The pathogenic mechanisms of diabetic neuropathy remain poorly understood, impeding the development of targeted therapies to treat nerve degeneration and its most disruptive consequences of sensory loss and neuropathic pain. Involvement of Schwann cells has long been proposed, and new research techniques are beginning to unravel a complex interplay between these cells, axons and microvessels that is compromised during the development of diabetic neuropathy. In this Review, we discuss the evolving concept of Schwannopathy as an integral factor in the pathogenesis of diabetic neuropathy, and how disruption of the interactions between Schwann cells, axons and microvessels contribute to the disease.
Collapse
Affiliation(s)
- Nádia P Gonçalves
- The International Diabetic Neuropathy Consortium (IDNC), Aarhus University, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Christian B Vægter
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Ole Worms Alle 3, 8000 Aarhus C, Denmark
| | - Henning Andersen
- Department of Neurology, Danish Pain Research Center and IDNC, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Leif Østergaard
- Department of Neuroradiology and Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, Gilman Drive, La Jolla, California 92093, USA
| | - Troels S Jensen
- Department of Neurology, Danish Pain Research Center and IDNC, Aarhus University Hospital, Nørrebrogade, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Grace PM, Gaudet AD, Staikopoulos V, Maier SF, Hutchinson MR, Salvemini D, Watkins LR. Nitroxidative Signaling Mechanisms in Pathological Pain. Trends Neurosci 2016; 39:862-879. [PMID: 27842920 PMCID: PMC5148691 DOI: 10.1016/j.tins.2016.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
Tissue injury can initiate bidirectional signaling between neurons, glia, and immune cells that creates and amplifies pain. While the ability for neurotransmitters, neuropeptides, and cytokines to initiate and maintain pain has been extensively studied, recent work has identified a key role for reactive oxygen and nitrogen species (ROS/RNS; nitroxidative species), including superoxide, peroxynitrite, and hydrogen peroxide. In this review we describe how nitroxidative species are generated after tissue injury and the mechanisms by which they enhance neuroexcitability in pain pathways. Finally, we discuss potential therapeutic strategies for normalizing nitroxidative signaling, which may also enhance opioid analgesia, to help to alleviate the enormous burden of pathological pain.
Collapse
Affiliation(s)
- Peter M Grace
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, USA; Current address: Department of Critical Care Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Andrew D Gaudet
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Vasiliki Staikopoulos
- Discipline of Physiology, School of Medicine, and the Australian Research Council (ARC) Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA, Australia
| | - Steven F Maier
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Mark R Hutchinson
- Discipline of Physiology, School of Medicine, and the Australian Research Council (ARC) Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA, Australia
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
21
|
Wang BB, Wang JL, Yuan J, Quan QH, Ji RF, Tan P, Han J, Liu YG. Sugar Composition Analysis of Fuzi Polysaccharides by HPLC-MS n and Their Protective Effects on Schwann Cells Exposed to High Glucose. Molecules 2016; 21:molecules21111496. [PMID: 27834877 PMCID: PMC6273632 DOI: 10.3390/molecules21111496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022] Open
Abstract
Fuzi has been used to treat diabetic complications for many years in china. In a previous study, we have shown that Fuzi aqueous extract can attenuate Diabetic peripheral neuropathy (DPN) in rats and protect Schwann cells from injury. Thus, the protective effect of Fuzi polysaccharides (FPS) on high glucose-induced SCs and the preliminary mechanism were investigated. Firstly, the FPS were obtained and their monose composition was analyzed by the combination of pre-column derivatization and high performance liquid chromatography coupled with electrospray ionization multi-tandem mass spectrometry (HPLC/ESI-MSn). The results witnessed the efficiency of this method and seven monosaccharides were tentatively identified, among which fucose was first reported. Simultaneously, m/z 215 can be considered as diagnostic ions to confirm the number of monosaccharides. Next, high glucose-induced SC model was applied and divided into model group, treated group of FPS, normal and osmotic control group. After treatment for 48 h, the data showed FPS could significantly decrease the intracellular ROS and apoptosis, which were determined by the corresponding fluorescent probes. Then, the expression of oxidative stress-related proteins in SCs were measured by Western blot. Furthermore, the protein tests found that FPS markedly up-regulated superoxide dismutase (SOD), catalase (CAT) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein level, but down-regulated NADPH oxidase-1 (Nox1) protein level. Moreover, FPS could also increase AMP-activated protein kinase (AMPK) activation significantly. Hence, we preliminary deduced that AMPK-PGC-1α pathway may play an important role in the protective effect of FPS against high glucose-induced cell damage.
Collapse
Affiliation(s)
- Bei-Bei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Wangjing Zhonghuan Road No. 6 School Range, Chaoyang District, Beijing 100102, China.
| | - Jia-Li Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Wangjing Zhonghuan Road No. 6 School Range, Chaoyang District, Beijing 100102, China.
| | - Jiang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Wangjing Zhonghuan Road No. 6 School Range, Chaoyang District, Beijing 100102, China.
| | - Qing-Hua Quan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Wangjing Zhonghuan Road No. 6 School Range, Chaoyang District, Beijing 100102, China.
| | - Rui-Fang Ji
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Wangjing Zhonghuan Road No. 6 School Range, Chaoyang District, Beijing 100102, China.
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Wangjing Zhonghuan Road No. 6 School Range, Chaoyang District, Beijing 100102, China.
| | - Jing Han
- Beijing Chinese Medicine Research Institute, Beijing University of Chinese Medicine, North Third Ring Road No. 11 School Range, Chaoyang District, Beijing 100029, China.
| | - Yong-Gang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Wangjing Zhonghuan Road No. 6 School Range, Chaoyang District, Beijing 100102, China.
| |
Collapse
|
22
|
Yang XW, Liu FQ, Guo JJ, Yao WJ, Li QQ, Liu TH, Xu LP. Antioxidation and anti-inflammatory activity of Tang Bi Kang in rats with diabetic peripheral neuropathy. Altern Ther Health Med 2015; 15:66. [PMID: 25887432 PMCID: PMC4417275 DOI: 10.1186/s12906-015-0600-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/09/2015] [Indexed: 01/22/2023]
Abstract
Background Tang Bi Kang (TBK) is a traditional Chinese medicine granule. It has been shown to have effects on nerve conduction velocity deficits, blood-related factors and oxidative stress. This study was undertaken to evaluate proposed antioxidative and anti-inflammatory activity of Tang Bi Kang in rats with diabetic peripheral neuropathy (DPN). Methods DPN was induced in male Wistar rats by intraperitoneal administration of streptozocin (STZ) (60 mg/kg.b.w) for 8 weeks. Fasting blood glucose (FBG) levels were measured in the blood obtained by clipping the tails of the rats. Tail-flick tests were conducted with a tail-flick analgesic meter. Motor and sensory nerve conduction velocities (MNCV and SNCV) of sciatic nerve were measured directly at two sites using a Functional Experiment System. Oxidative stress makers such as malondialdehyde (MDA), superoxide-dismutase (SOD) and glutathione peroxidase (GSH-Px), inflammatory cytokines such as interleukin (IL)-6, and tumour necrosis factor (TNF)-α were estimated. The statistical analysis of results was carried out using Student t-test and one-way analysis of variance (ANOVA), followed by least-significant difference post hoc with SPSS. Results The administration of TBK for 4 weeks in DPN rats resulted in a significant decrease in FBG levels compared to untreated DPN rats. There was a significant increase in MNCV and SNCV in the DPN rats compared to untreated DPN rats. Serum level of MDA was significantly reduced while the activities of SOD and GSH-pX were significantly increased in the TBK treated DPN rats. TBK prevented DPN-induced increase in the serum levels of IL-6 and TNF-α. Conclusion The results of this study demonstrate that the therapeutic effect of TBK on DPN rats may be associated with the antioxidative and anti-inflammatory responses.
Collapse
|
23
|
Charan RA, LaVoie MJ. Pathologic and therapeutic implications for the cell biology of parkin. Mol Cell Neurosci 2015; 66:62-71. [PMID: 25697646 DOI: 10.1016/j.mcn.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/07/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023] Open
Abstract
Mutations in the E3 ligase parkin are the most common cause of autosomal recessive Parkinson's disease (PD), but it is believed that parkin dysfunction may also contribute to idiopathic PD. Since its discovery, parkin has been implicated in supporting multiple neuroprotective pathways, many revolving around the maintenance of mitochondrial health quality control and governance of cell survival. Recent advances across the structure, biochemistry, and cell biology of parkin have provided great insights into the etiology of parkin-linked and idiopathic PD and may ultimately generate novel therapeutic strategies to slow or halt disease progression. This review describes the various pathways in which parkin acts and the mechanisms by which parkin may be targeted for therapeutic intervention. This article is part of a Special Issue entitled 'Neuronal Protein'.
Collapse
Affiliation(s)
- Rakshita A Charan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Matthew J LaVoie
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA
| |
Collapse
|
24
|
Sirdah MM. Protective and therapeutic effectiveness of taurine in diabetes mellitus: a rationale for antioxidant supplementation. Diabetes Metab Syndr 2015; 9:55-64. [PMID: 25366895 DOI: 10.1016/j.dsx.2014.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Taurine, 2-amino ethanesulfonic acid, is a conditionally essential β amino acid which is not utilized in protein synthesis. Taurine is one of the most abundant free amino acids in mammals tissues and is one of the three well-known sulfur-containing amino acids; the others are methionine and cysteine which are considered as the precursors for taurine synthesis. Different scientific studies emphasize on the cytoprotective properties of taurine which included antioxidation, antiapoptosis, membrane stabilization, osmoregulation, and neurotransmission. Protective and therapeutic ameliorations of oxidative stress-induced pathologies were also attributed to taurine both in experimental and human models. Data demonstrating the beneficial effectiveness of taurine against type 1 and type 2 diabetes mellitus and their complications are growing and providing a better understanding of the underlying molecular mechanisms. Although the clinical studies are limited compared to the experimental ones, the present updated systematic review of the literature is set up to provide experimental and clinical evidences regarding the effectiveness of taurine in the context of diabetes mellitus and its complications. Gathering these scientific effects of taurine on diabetes mellitus could provide the physicians and specially the endocrinologists with a comprehensive overview on possible trends in the prevention and management of the disease and its complications through antioxidant supplementation.
Collapse
|
25
|
Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol Res 2014; 80:21-35. [DOI: 10.1016/j.phrs.2013.12.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 01/17/2023]
|
26
|
Askwith T. Taurine Treatment for Complications of Diabetes. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [DOI: 10.1007/978-1-4899-8035-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 2013; 36:439-49. [PMID: 23725712 DOI: 10.1016/j.tins.2013.04.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/20/2013] [Accepted: 04/24/2013] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication affecting more than one third of diabetes mellitus (DM) patients. Although all cellular components participating in peripheral nerve function are exposed to and affected by the metabolic consequences of DM, nodal regions, areas of intense interactions between Schwann cells and axons, may be particularly sensitive to DM-induced alterations. Nodes are enriched in insulin receptors, glucose transporters, Na(+) and K(+) channels, and mitochondria, all implicated in the development and progression of DPN. Latest results particularly reinforce the idea that changes in ion-channel function and energy metabolism, both of which depend on axon-glia crosstalk, are among the important contributors to DPN. These insights provide a basis for new therapeutic approaches aimed at delaying or reversing DPN.
Collapse
Affiliation(s)
- Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | |
Collapse
|
28
|
Das J, Roy A, Sil PC. Mechanism of the protective action of taurine in toxin and drug induced organ pathophysiology and diabetic complications: a review. Food Funct 2013; 3:1251-64. [PMID: 22930035 DOI: 10.1039/c2fo30117b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, is found in large concentrations in all mammalian tissues and is particularly abundant in aquatic foods. Taurine exhibits membrane stabilizing, osmoregulatory and cytoprotective effects, antioxidative properties, regulates intracellular Ca(2+) concentration, modulates ion movement and neurotransmitters, reduce the levels of pro-inflammatory cytokines in various organs and controls blood pressure. Recently, emerging evidence from the literature shows the effectiveness of taurine as a protective agent against several environmental toxins and drug-induced multiple organ injuries as the outcome of hepatotoxicity, nephrotoxicity, neurotoxicity, testicular toxicity and cardiotoxicity in several animal models. Besides, taurine is also effective in combating diabetes and its associated complications, including cardiomyopathy, nephropathy, neuropathy, retinopathy and atherosclerosis. These beneficial effects appear to be due to the multiple actions of taurine on cellular functions. This review summarizes the mechanism of the prophylactic role of taurine against several environmental toxins and drug-induced organ pathophysiology and diabetes.
Collapse
Affiliation(s)
- Joydeep Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | | | | |
Collapse
|
29
|
Stavniichuk R, Obrosov AA, Drel VR, Nadler JL, Obrosova IG, Yorek MA. 12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy. ACTA ACUST UNITED AC 2013; 3. [PMID: 24175152 DOI: 10.4236/jdm.2013.33015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells, and have been implicated in diabetic peripheral neuropathy. In our recent studies, leukocytetype 12/15-lipoxygenase inhibition or gene deficiency alleviated large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss in streptozotocin-diabetic mice. METHODS To address a mechanism we evaluated the potential for pharmacological 12/15-lipoxygenase inhibition to counteract excessive MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy. C57Bl6/J mice were made diabetic with streptozotocin and maintained with or without the 12/15-lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC). Human Schwann cells were cultured in 5.5 mM or 30 mM glucose with or without CDC. RESULTS 12(S) HETE concentrations (ELISA), as well as 12/15-lipoxygenase expression and p38 MAPK, ERK, and SAPK/JNK phosphorylation (all by Western blot analysis) were increased in the peripheral nerve and spinal cord of diabetic mice as well as in high glucose-exposed human Schwann cells. CDC counteracted diabetes-induced increase in 12(S)HETE concentrations (a measure of 12/15-lipoxygenase activity), but not 12/15-lipoxygenase overexpression, in sciatic nerve and spinal cord. The inhibitor blunted excessive p38 MAPK and ERK, but not SAPK/ JNK, phosphorylation in sciatic nerve and high glucose exposed human Schwann cells, but did not affect MAPK, ERK, and SAPK/JNK phosphorylation in spinal cord. CONCLUSION 12/15-lipoxygenase inhibition counteracts diabetes related MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy and implies that 12/15-lipoxygenase inhibitors may be an effective treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, USA
| | | | | | | | | | | |
Collapse
|
30
|
Shevalye H, Watcho P, Stavniichuk R, Dyukova E, Lupachyk S, Obrosova IG. Metanx alleviates multiple manifestations of peripheral neuropathy and increases intraepidermal nerve fiber density in Zucker diabetic fatty rats. Diabetes 2012; 61:2126-33. [PMID: 22751692 PMCID: PMC3402301 DOI: 10.2337/db11-1524] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metanx is a product containing L-methylfolate, pyridoxal 5'-phosphate, and methylcobalamin for management of endothelial dysfunction. Metanx ingredients counteract endothelial nitric oxide synthase uncoupling and oxidative stress in vascular endothelium and peripheral nerve. This study evaluates Metanx on diabetic peripheral neuropathy in ZDF rats, a model of type 2 diabetes. Metanx was administered to 15-week-old ZDF and ZDF lean rats at either 4.87 mg ⋅ kg(-1) ⋅ day(-1) (a body weight-based equivalent of human dose) or 24.35 mg ⋅ kg(-1) ⋅ day(-1) by oral gavage two times a day for 4 weeks. Both doses alleviated hind limb digital sensory, but not sciatic motor, nerve conduction slowing and thermal and mechanical hypoalgesia in the absence of any reduction of hyperglycemia. Low-dose Metanx increased intraepidermal nerve fiber density but did not prevent morphometric changes in distal tibial nerve myelinated fibers. Metanx treatment counteracted endothelial nitric oxide synthase uncoupling, inducible nitric oxide synthase upregulation, and methylglyoxal-derived advanced glycation end product, nitrotyrosine, and nitrite/nitrate accumulation in the peripheral nerve. In conclusion, Metanx, at a body weight-based equivalent of human dose, increased intraepidermal nerve fiber density and improved multiple parameters of peripheral nerve function in ZDF rats. Clinical studies are needed to determine if Metanx finds use in management of diabetic peripheral neuropathy.
Collapse
|
31
|
Lupachyk S, Watcho P, Hasanova N, Julius U, G.Obrosova I. Triglyceride, nonesterified fatty acids, and prediabetic neuropathy: role for oxidative-nitrosative stress. Free Radic Biol Med 2012; 52:1255-63. [PMID: 22366714 PMCID: PMC3312982 DOI: 10.1016/j.freeradbiomed.2012.01.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 01/16/2023]
Abstract
Peripheral neuropathy develops in human subjects with prediabetes and metabolic syndrome before overt hyperglycemia. The contributions of impaired glucose tolerance and insulin signaling, hypertriglyceridemia and/or increased nonesterified fatty acids (NEFA), and hypercholesterolemia to this condition remain unknown. Niacin and its derivatives alleviate dyslipidemia with a minor effect on glucose homeostasis. This study evaluated the roles of impaired glucose tolerance versus dyslipidemia in prediabetic neuropathy using Zucker fatty (fa/fa) rats and the niacin derivative acipimox, as well as the interplay of hypertriglyceridemia, increased NEFA, and oxidative-nitrosative stress. Sixteen-week-old Zucker fatty rats with impaired glucose tolerance, obesity, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and increased NEFA displayed sensory nerve conduction velocity deficit, thermal and mechanical hypoalgesia, and tactile allodynia. Acipimox (100 mg kg(-1) day(-1), 4 weeks) reduced serum insulin, NEFA, and triglyceride concentrations without affecting glucose tolerance and hypercholesterolemia. It alleviated sensory nerve conduction velocity deficit and changes in behavioral measures of sensory function and corrected oxidative-nitrosative stress, but not impaired insulin signaling, in peripheral nerve. Elevated NEFA increased total and mitochondrial superoxide production and NAD(P)H oxidase activity in cultured human Schwann cells. In conclusion, hypertriglyceridemia and/or increased NEFA concentrations cause prediabetic neuropathy through oxidative-nitrosative stress. Lipid-lowering agents and antioxidants may find a use in the management of this condition.
Collapse
Affiliation(s)
- Sergey Lupachyk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Pierre Watcho
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Nailia Hasanova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Ulrich Julius
- University Hospital, Technical University of Dresden, Dresden Germany
| | - Irina G.Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|