1
|
See LP, Sripinun P, Lu W, Li J, Alboloushi N, Alvarez-Periel E, Lee SM, Karabucak B, Wang S, Jordan Sciutto KL, Theken KN, Mitchell CH. Increased Purinergic Signaling in Human Dental Pulps With Inflammatory Pain is Sex-Dependent. THE JOURNAL OF PAIN 2024; 25:1039-1058. [PMID: 37956743 PMCID: PMC11129867 DOI: 10.1016/j.jpain.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
An enhanced understanding of neurotransmitter systems contributing to pain transmission aids in drug development, while the identification of biological variables like age and sex helps in the development of personalized pain management and effective clinical trial design. This study identified enhanced expression of purinergic signaling components specifically in painful inflammation, with levels increased more in women as compared to men. Inflammatory dental pain is common and potentially debilitating; as inflammation of the dental pulp can occur with or without pain, it provides a powerful model to examine distinct pain pathways in humans. In control tissues, P2X3 and P2X2 receptors colocalized with PGP9.5-positive nerves. Expression of the ecto-nucleotidase NTPDase1 (CD39) increased with exposure to extracellular adenosine triphosphate (ATP), implying CD39 acted as a marker for sustained elevation of extracellular ATP. Both immunohistochemistry and immunoblots showed P2X2, P2X3, and CD39 increased in symptomatic pulpitis, suggesting receptors and the ATP agonist were elevated in patients with increased pain. The increased expression of P2X3 and CD39 was more frequently observed in women than men. In summary, this study identifies CD39 as a marker for chronic elevation of extracellular ATP in fixed human tissue. It supports a role for increased purinergic signaling in humans with inflammatory dental pain and suggests the contribution of purines shows sexual dimorphism. This highlights the potential for P2X antagonists to treat pain in humans and stresses the need to consider sex in clinical trials that target pain and purinergic pathways. PERSPECTIVE: This article demonstrates an elevation of ATP-marker CD39 and of ATP receptors P2X2 and P2X3 with inflammatory pain and suggests the rise is greater in women. This highlights the potential for P2X antagonists to treat pain and stresses the consideration of sexual dimorphism in studies of purines and pain.
Collapse
Affiliation(s)
- Lily P. See
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104
| | - Puttipong Sripinun
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA 19104
| | - Wennan Lu
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Jiaqi Li
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Naela Alboloushi
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104
- Department of Oral Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Su-Min Lee
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104
| | - Bekir Karabucak
- Department of Endodontics, University of Pennsylvania, Philadelphia, PA 19104
| | - Steven Wang
- Department of Oral Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Katherine N. Theken
- Department of Oral Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Claire H. Mitchell
- Departments of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
2
|
Ming LG, Hu DX, Zuo C, Zhang WJ. G protein-coupled P2Y12 receptor is involved in the progression of neuropathic pain. Biomed Pharmacother 2023; 162:114713. [PMID: 37084563 DOI: 10.1016/j.biopha.2023.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The pathological mechanism of neuropathic pain is complex, which seriously affects the physical and mental health of patients, and its treatment is also difficult. The role of G protein-coupled P2Y12 receptor in pain has been widely recognized and affirmed. After nerve injury, stimulated cells can release large amounts of nucleotides into the extracellular matrix, act on P2Y12 receptor. Activated P2Y12 receptor activates intracellular signal transduction and is involved in the development of pain. P2Y12 receptor activation can sensitize primary sensory neurons and receive sensory information. By transmitting the integrated information through the dorsal root of the spinal cord to the secondary neurons of the posterior horn of the spinal cord. The integrated information is then transmitted to the higher center through the ascending conduction tract to produce pain. Moreover, activation of P2Y12 receptor can mediate immune cells to release pro-inflammatory factors, increase damage to nerve cells, and aggravate pain. While inhibits the activation of P2Y12 receptor can effectively relieve pain. Therefore, in this article, we described P2Y12 receptor antagonists and their pharmacological properties. In addition, we explored the potential link between P2Y12 receptor and the nervous system, discussed the intrinsic link of P2Y12 receptor and neuropathic pain and as a potential pharmacological target for pain suppression.
Collapse
Affiliation(s)
- Li-Guo Ming
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
3
|
Brumberg J, Aarnio R, Forsberg A, Marjamäki P, Kerstens V, Moein MM, Nag S, Wahlroos S, Kassiou M, Windhorst AD, Halldin C, Haaparanta-Solin M, Fazio P, Oikonen V, Rinne JO, Varrone A. Quantification of the purinergic P2X 7 receptor with [ 11C]SMW139 improves through correction for brain-penetrating radiometabolites. J Cereb Blood Flow Metab 2023; 43:258-268. [PMID: 36163685 PMCID: PMC9903223 DOI: 10.1177/0271678x221126830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The membrane-based purinergic 7 receptor (P2X7R) is expressed on activated microglia and the target of the radioligand [11C]SMW139 for in vivo assessment of neuroinflammation. This study investigated the contribution of radiolabelled metabolites which potentially affect its quantification. Ex vivo high-performance liquid chromatography with a radio detector (radioHPLC) was used to evaluate the parent and radiometabolite fractions of [11C]SMW139 in the brain and plasma of eleven mice. Twelve healthy humans underwent 90-min [11C]SMW139 brain PET with arterial blood sampling and radiometabolite analysis. The volume of distribution was estimated by using one- and two- tissue compartment (TCM) modeling with single (VT) and dual (VTp) input functions. RadioHPLC showed three major groups of radiometabolite peaks with increasing concentrations in the plasma of all mice and humans. Two radiometabolite peaks were also visible in mice brain homogenates and therefore considered for dual input modeling in humans. 2TCM with single input function provided VT estimates with a wide range (0.10-10.74) and high coefficient of variation (COV: 159.9%), whereas dual input function model showed a narrow range of VTp estimates (0.04-0.24; COV: 33.3%). In conclusion, compartment modeling with correction for brain-penetrant radiometabolites improves the in vivo quantification of [11C]SMW139 binding to P2X7R in the human brain.
Collapse
Affiliation(s)
- Joachim Brumberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,Department of Nuclear Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Richard Aarnio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Anton Forsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Päivi Marjamäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Vera Kerstens
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Mohammad M Moein
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Sangram Nag
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Saara Wahlroos
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | | | - Patrik Fazio
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Vesa Oikonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Andrea Varrone
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
4
|
Hu JL, Zhang WJ. The role and pharmacological properties of P2Y12 receptor in cancer and cancer pain. Biomed Pharmacother 2023; 157:113927. [PMID: 36462316 DOI: 10.1016/j.biopha.2022.113927] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The G protein-coupled P2Y12 receptor (P2Y12R) was cloned in platelets and found to play a key role in maintaining platelet function in hemostasis and thrombosis, and these effects could be mediated by the P2Y12R. However, it has recently been found that P2Y12R-mediated the progression of tumor through interactions between platelets and tumor and stromal cells, as well as through products secreted by platelets. During tumor progression, tumor cells or other cells in the tumor microenvironment (such as immune cells) can secrete large amounts of ATP into the extracellular matrix, and extracellular ATP can be hydrolyzed into ADP. ADP is a P2Y12R activator and plays an important regulatory role in the proliferation and metastasis of tumor cells. P2Y12R is involved in platelet-cancer cell crosstalk and become a potential target for anticancer therapy. Moreover, tumor progression can induce pain, which seriously affects the quality of life of patients. P2Y12R is expressed in microglia and mediates the activities of microglial and participates in the occurrence of cancer pain. Conversely, inhibiting P2Y12R activation and down-regulating its expression has the effect of inhibiting tumor progression and pain. Therefore, P2Y12R can be a common therapeutic target for both. In this article, we explored the potential link between P2Y12R and cancer, discussed the intrinsic link of P2Y12R in cancer pain and the pharmacological properties of P2Y12R antagonists in the treatment of both.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
5
|
Zhang T, Lin C, Wu S, Jin S, Li X, Peng Y, Wang X. ACT001 Inhibits TLR4 Signaling by Targeting Co-Receptor MD2 and Attenuates Neuropathic Pain. Front Immunol 2022; 13:873054. [PMID: 35757727 PMCID: PMC9218074 DOI: 10.3389/fimmu.2022.873054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/03/2022] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain is a common and challenging neurological disease, which renders an unmet need for safe and effective new therapies. Toll-like receptor 4 (TLR4) expressed on immune cells in the central nervous system arises as a novel target for treating neuropathic pain. In this study, ACT001, an orphan drug currently in clinical trials for the treatment of glioblastoma, was identified as a TLR4 antagonist. In vitro quenching titrations of intrinsic protein fluorescence and saturation transfer difference (STD)-NMR showed the direct binding of ACT001 to TLR4 co-receptor MD2. Cellular thermal shift assay (CETSA) showed that ACT001 binding affected the MD2 stability, which implies that MD2 is the endogenous target of ACT001. In silico simulations showed that ACT001 binding decreased the percentage of hydrophobic area in the buried solvent-accessible surface areas (SASA) of MD2 and rendered most regions of MD2 to be more flexible, which is consistent with experimental data that ACT001 binding decreased MD2 stability. In keeping with targeting MD2, ACT001 was found to restrain the formation of TLR4/MD2/MyD88 complex and the activation of TLR4 signaling axes of NF-κB and MAPKs, therefore blocking LPS-induced TLR4 signaling downstream pro-inflammatory factors NO, IL-6, TNF-α, and IL-1β. Furthermore, systemic administration of ACT001 attenuated allodynia induced by peripheral nerve injury and activation of microglia and astrocyte in vivo. Given the well-established role of neuroinflammation in neuropathic pain, these data imply that ACT001 could be a potential drug candidate for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Sha Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaodong Li
- Beijing Changping Huayou Hospital, Beijing, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
6
|
Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022; 27:molecules27134124. [PMID: 35807370 PMCID: PMC9268715 DOI: 10.3390/molecules27134124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, microglia play roles as immune cells to provide protection against virus injuries and diseases. They have significant contributions in the development of the brain, cognition, homeostasis of the brain, and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroinflammatory environment. In the brain, most of the genes that are associated with AD risk are highly expressed by microglia. Although it was initially regarded that microglia reaction is incidental and induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide association studies that most of the risk loci for AD are located in genes that are occasionally uniquely and highly expressed in microglia. This finding further suggests that microglia play significant roles in early AD stages and they be targeted for the development of novel therapeutics. In this review, we have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on the significance of targeting microglia for the treatment of AD.
Collapse
|
7
|
NMDA and P2X7 Receptors Require Pannexin 1 Activation to Initiate and Maintain Nociceptive Signaling in the Spinal Cord of Neuropathic Rats. Int J Mol Sci 2022; 23:ijms23126705. [PMID: 35743148 PMCID: PMC9223805 DOI: 10.3390/ijms23126705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 μM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 μM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 μM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats.
Collapse
|
8
|
Du H, Wu D, Zhong S, Wei X, Yuan Z, Gong Q. MiR-106b-5p Attenuates Neuropathic Pain by Regulating the P2X4 Receptor in the Spinal Cord in Mice. J Mol Neurosci 2022; 72:1764-1778. [PMID: 35699833 DOI: 10.1007/s12031-022-02011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
The P2X4 receptor (P2X4R) can be upregulated after nerve injury, and its mediated spinal microglial activation makes a critical contribution to pathologically enhanced pain processing in the dorsal horn. Although some studies have partly clarified the mechanism underlying altered P2X4R expression, the specific mechanism is not well understood. MicroRNAs (miRNAs) are small noncoding RNAs which control gene expression by binding with their target mRNAs. Thus, in the present study, we investigated whether miRNA is involved in the pathogenesis of neuropathic pain by regulating P2X4R. Our results showed that P2X4R was upregulated in the spinal dorsal horn of mice following spared nerve injury (SNI), and 69 miRNAs (46 upregulated and 23 downregulated miRNAs) were differentially expressed (fold change > 2.0, P < 0.05). P2X4R was found to be a major target of miR-106b-5p (one of the downregulated miRNAs) using bioinformatics technology; quantitative real-time PCR analysis confirmed the change in expression of miR-106b-5p, and dual-luciferase reporter assays confirmed the correlation between them. Fluorescence in situ hybridization was used to show cell co-localization of P2X4R and miR-106b-5p in the spinal dorsal horn. Transfection with miR-106b-5p mimic into BV2 cells reversed the upregulation of P2X4R induced by lipopolysaccharide (LPS). Moreover, miR-106b-5p overexpression significantly attenuated neuropathic pain induced by SNI, with decreased expression of P2X4R mRNA and protein in the spinal dorsal horn; intrathecal miR-106b-5p antagomir induced pain behaviors, and increased expression of P2X4R in the spinal dorsal horn of naïve mice. These data suggest that miR-106b-5p can serve as an important regulator of neuropathic pain development by targeting P2X4R.
Collapse
Affiliation(s)
- Huiying Du
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, GuangzhouGuangdong, 510260, China.,Department of Anesthesiology, Guangdong Women and Children Hospital, GuangzhouGuangdong, 511442, China
| | - Danlei Wu
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, GuangzhouGuangdong, 510260, China
| | - Shuotao Zhong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, GuangzhouGuangdong, 510260, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, ZhongshanMedicalSchool, Sun Yat-Sen University, 74 Zhongshan Rd. 2, GuangzhouGuangdong, 510080, China
| | - Zhongmin Yuan
- Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingjuan Gong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, GuangzhouGuangdong, 510260, China.
| |
Collapse
|
9
|
De Luca C, Virtuoso A, Cerasuolo M, Gargano F, Colangelo AM, Lavitrano M, Cirillo G, Papa M. Matrix metalloproteinases, purinergic signaling, and epigenetics: hubs in the spinal neuroglial network following peripheral nerve injury. Histochem Cell Biol 2022; 157:557-567. [PMID: 35175413 DOI: 10.1007/s00418-022-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
Activation of glial cells (reactive gliosis) and the purinergic pathway, together with metalloproteinase (MMP)-induced remodeling of the neural extracellular matrix (nECM), drive maladaptive changes in the spinal cord following peripheral nerve injury (PNI). We evaluated the effects on spinal maladaptive plasticity through administration of oxidized ATP (oxATP), an antagonist of P2X receptors (P2XR), and/or GM6001, an inhibitor of MMPs, in rats following spared nerve injury (SNI) of the sciatic nerve. With morpho-molecular techniques, we demonstrated a reduction in spinal reactive gliosis and changes in the neuro-glial-nECM crosstalk via expression remodeling of P2XR, nerve growth factor (NGF) receptors (TrkA and p75), and histone deacetylase 2 (HDAC2) after treatments with oxATP/GM6001. Altogether, our data suggest that MMPs and purinergic inhibition have a modulatory impact on key proteins in the neuro-glial-nECM network, acting at different levels from intracellular signaling to epigenetic modifications.
Collapse
Affiliation(s)
- Ciro De Luca
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Assunta Virtuoso
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Michele Cerasuolo
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Gargano
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, Milan, Italy
| | | | - Giovanni Cirillo
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Michele Papa
- Neuronal Network Morphology and Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
10
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Lu MX, Liu ZX. The role of the P2X4 receptor in trigeminal neuralgia, a common neurological disorder. Neuroreport 2021; 32:407-413. [PMID: 33661807 DOI: 10.1097/wnr.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurological disorders, which include various types of diseases with complex pathological mechanisms, are more common in the elderly and have shown increased prevalence, morbidity and mortality worldwide. Unfortunately, current therapies for these diseases are usually suboptimal or have undesirable side effects. This necessitates the development of new potential targets for disease-modifying therapies. P2X4R, a type of purinergic receptor, has multiple roles in neurological disorders. In this review, we briefly introduce a neurological disorder, trigeminal neuralgia and its' symptoms, etiology and pathology. Moreover, we focused on the role of P2X4R in neurological disorders and their related pathophysiologic mechanisms. Further studies of P2X4R are required to determine potential therapeutic effects for these pathophysiologies.
Collapse
Affiliation(s)
- Ming-Xin Lu
- The Second Clinical Medical College of Nanchang University
| | - Zeng-Xu Liu
- Department of Anatomy, Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
12
|
Tang S, Jing H, Song F, Huang H, Li W, Xie G, Zhou J. MicroRNAs in the Spinal Microglia Serve Critical Roles in Neuropathic Pain. Mol Neurobiol 2020; 58:132-142. [PMID: 32902792 DOI: 10.1007/s12035-020-02102-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neuropathic pain (NP) can occur after peripheral nerve injury (PNI), and it can be converted into a maladaptive, detrimental phenotype that causes a long-term state of pain hypersensitivity. In the last decade, the discovery that dysfunctional microglia evoke pain, called "microgliopathic pain," has challenged traditional neuronal views of "pain" and has been extensively explored. Recent studies have shown that microRNAs (miRNAs) can act as activators or inhibitors of spinal microglia in NP conditions. We first briefly review spinal microglial activation in NP. We then comprehensively describe miRNA expression changes and their potential mechanisms in the response of microglia to nerve injury. We summarize the roles of the following two representative miRNAs: miR-124, which reverses NP by keeping microglia quiescent, and miR-155, which promotes NP following microglial activation. Finally, we focused on the therapeutic potential of microglial miRNAs in NP. The findings we summarized may be essential tools for basic research and clinical treatment of NP.
Collapse
Affiliation(s)
- Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
- Sun Yat-sen University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Huan Jing
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
- ZunYi Medical University, ZunYi, 563100, Guizhou Province, People's Republic of China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Haicheng Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China.
| |
Collapse
|
13
|
Zarei M, Sabetkasaei M, Moini-Zanjani T. Effect of Paroxetine on the Neuropathic Pain: A Molecular Study. IRANIAN BIOMEDICAL JOURNAL 2020; 24:306-13. [PMID: 32429644 PMCID: PMC7392138 DOI: 10.29252/ibj.24.5.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
Abstract
Background Neuropathic pain, due to peripheral nerve damage, has influenced millions of people living all over the world. It has been shown that paroxetine can relieve neuropathic pain. Recently, the role of certain proteins like brain-derived neurotrophic factor (BDNF), GABAA receptor, and K+-Cl- cotransporter 2 (KCC2) transporter in the occurrence of neuropathic pain has been documented. In the current study, the expression of these proteins affected by paroxetine was evaluated. Methods Male Wistar rats were allocated into two main groups of pre- and post-injury. Rats in each main group received paroxetine before nerve injury and at day seven after nerve damage till day 14, respectively. The lumbar spinal cord of animals was extracted to assess the expression of target genes and proteins. Results In the preventive study, paroxetine decreased BDNF and increased KCC2 and GABAA gene and protein expression, while in the post-injury paradigm, it decreased BDNF and increased KCC2 genes and protein expression. In this regard, an increase in the protein expression of GABAA was observed. Conclusion It seems that paroxetine with a change in the expression of three significant proteins involved in neuropathic pain could attenuate this type of chronic pain.
Collapse
Affiliation(s)
| | - Masoumeh Sabetkasaei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
14
|
Zhang WJ, Luo HL, Zhu ZM. The role of P2X4 receptors in chronic pain: A potential pharmacological target. Biomed Pharmacother 2020; 129:110447. [PMID: 32887026 DOI: 10.1016/j.biopha.2020.110447] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pain is a common symptom of most clinical diseases, which seriously affects the psychosomatic health of patients and brings some pain to patients. Due to its pathological mechanism is very complicated and the treatment of chronic pain has always been a difficult problem in clinical. Normally, drugs are usually used to relieve pain, but the analgesic effect is not good, especially for cancer pain patients, the analgesic effect is poor. Therefore, exploring the pathogenesis and treatment of chronic pain has aroused the interest of many researchers. A large number of studies have shown that the role of ATP and P2X4 receptor (P2X4R) play an important role in the pathogenesis of chronic pain. P2X4R is dependent on ATP ligand-gated ion channel receptor, which can be activated by ATP and plays an important role in the information transmission of nerve system and the formation of pain. Therefore, in this paper, we comprehensively described the structure and biological functions of P2X4R, and outlined behavioral evaluation methods of chronic pain models. Moreover, we also explored the inherent relationship between P2X4R and chronic pain, and described the therapeutic effect of P2X4R antagonist on chronic pain, and provided some valuable help for the treatment of chronic pain.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, 343000, China.
| |
Collapse
|
15
|
Neves AF, Farias FH, de Magalhães SF, Araldi D, Pagliusi M, Tambeli CH, Sartori CR, Lotufo CMDC, Parada CA. Peripheral Inflammatory Hyperalgesia Depends on P2X7 Receptors in Satellite Glial Cells. Front Physiol 2020; 11:473. [PMID: 32523543 PMCID: PMC7261868 DOI: 10.3389/fphys.2020.00473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Peripheral inflammatory hyperalgesia depends on the sensitization of primary nociceptive neurons. Inflammation drives molecular alterations not only locally but also in the dorsal root ganglion (DRG) where interleukin-1 beta (IL-1β) and purinoceptors are upregulated. Activation of the P2X7 purinoceptors by ATP is essential for IL-1β maturation and release. At the DRG, P2X7R are expressed by satellite glial cells (SGCs) surrounding sensory neurons soma. Although SGCs have no projections outside the sensory ganglia these cells affect pain signaling through intercellular communication. Therefore, here we investigated whether activation of P2X7R by ATP and the subsequent release of IL-1β in DRG participate in peripheral inflammatory hyperalgesia. Immunofluorescent images confirmed the expression of P2X7R and IL-1β in SGCs of the DRG. The function of P2X7R was then verified using a selective antagonist, A-740003, or antisense for P2X7R administered in the L5-DRG. Inflammation was induced by CFA, carrageenan, IL-1β, or PGE2 administered in rat's hind paw. Blockage of P2X7R at the DRG reduced the mechanical hyperalgesia induced by CFA, and prevented the mechanical hyperalgesia induced by carrageenan or IL-1β, but not PGE2. It was also found an increase in P2X7 mRNA expression at the DRG after peripheral inflammation. IL-1β production was also increased by inflammatory stimuli in vivo and in vitro, using SGC-enriched cultures stimulated with LPS. In LPS-stimulated cultures, activation of P2X7R by BzATP induced the release of IL-1β, which was blocked by A-740003. In summary, our data suggest that peripheral inflammation leads to the activation of P2X7R expressed by SGCs at the DRG. Then, ATP-induced activation of P2X7R mediates the release of IL-1β from SGC. This evidence places the SGC as an active player in the establishment of peripheral inflammatory hyperalgesia and highlights the importance of the events in DRG for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Amanda Ferreira Neves
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Felipe Hertzing Farias
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Dionéia Araldi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Carlos Amílcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
16
|
Zhang X, Li G. P2Y receptors in neuropathic pain. Pharmacol Biochem Behav 2019; 186:172788. [PMID: 31494119 DOI: 10.1016/j.pbb.2019.172788] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/15/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
This review summarizes and evaluates the relationship between neuropathic pain and P2Y receptors from inception to 2019. Purinergic receptors have been well studied in recent years using various molecular biological methods. The main research objective of this review is to determine the association of P2Y1, P2Y2, P2Y6, P2Y12 and P2Y13 receptors with neuropathic pain. This review includes the most comprehensive subtypes of P2Y that related to neuropathic pain and the current therapeutic method of neuropathic pain. G protein-coupled P2Y receptors are located on neurons, astrocytes, oligodendrocytes and microglial cells and regulate neurotransmission. Nerve injury is the prime reason for abnormal regulation of P2Y receptor mRNA expression, subsequently, inducing neuropathic pain. Neuropathic pain is a type of chronic pain that is divided into peripheral, central and mixed. Numerous studies demonstrated a positive correlation between the expression level of P2Y receptors and neuropathic pain generation. Also, several reports showed that P2Y short hairpin RNA (shRNA) and P2Y antagonist can be used as an analgesic to relieve neuropathic pain via decreasing P2Y receptor expression level and neural cell activation. However, the transformation process from basic experiments to clinical applications is a long process. Current deficiencies and future research directions are discussed at the end of this review.
Collapse
Affiliation(s)
- Xinge Zhang
- Queen Mary, the University of London, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
17
|
Lin JP, Chen CQ, Huang LE, Li NN, Yang Y, Zhu SM, Yao YX. Dexmedetomidine Attenuates Neuropathic Pain by Inhibiting P2X7R Expression and ERK Phosphorylation in Rats. Exp Neurobiol 2018; 27:267-276. [PMID: 30181689 PMCID: PMC6120967 DOI: 10.5607/en.2018.27.4.267] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/24/2023] Open
Abstract
α2-Adrenoceptor agonists attenuate hypersensitivity under neuropathic conditions. However, the mechanisms underlying this attenuation remain largely unknown. In the present study, we explored the potential roles of purinergic receptor 7 (P2X7R)/extracellular signal-regulated kinase (ERK) signaling in the anti-nociceptive effect of dexmedetomidine in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. An animal model of CCI was adopted to mimic the clinical neuropathic pain state. Behavioral hypersensitivity to mechanical and thermal stimuli was determined by von Frey filament and Hargreaves' tests, and the spinal P2X7R expression level and ERK phosphorylation were analyzed using western blot analysis and immunohistochemistry. In parallel with the development of mechanical and thermal hyperalgesia, a significant increase in P2X7R expression was noted in the ipsilateral spinal cord on day 7 after CCI. Intrathecal administration of dexmedetomidine (2.5 µg) for 3 days not only attenuated neuropathic pain but also inhibited the CCI-induced P2X7R upregulation and ERK phosphorylation. Intrathecal dexmedetomidine administration did not produce obvious effects on locomotor function. The present study demonstrated that dexmedetomidine attenuates the neuropathic pain induced by CCI of the sciatic nerve in rats by inhibiting spinal P2X7R expression and ERK phosphorylation, indicating the potential therapeutic implications of dexmedetomidine administration for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Jia-Piao Lin
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Chao-Qin Chen
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Ling-Er Huang
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Na-Na Li
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Yan Yang
- Centre for Neuroscience, Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
| | - Sheng-Mei Zhu
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Yong-Xing Yao
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| |
Collapse
|
18
|
Grace PM, Strand KA, Galer EL, Rice KC, Maier SF, Watkins LR. Protraction of neuropathic pain by morphine is mediated by spinal damage associated molecular patterns (DAMPs) in male rats. Brain Behav Immun 2018; 72:45-50. [PMID: 28860068 PMCID: PMC5832500 DOI: 10.1016/j.bbi.2017.08.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 11/27/2022] Open
Abstract
We have recently reported that a short course of morphine, starting 10days after sciatic chronic constriction injury (CCI), prolonged the duration of mechanical allodynia for months after morphine ceased. Maintenance of this morphine-induced persistent sensitization was dependent on spinal NOD-like receptor protein 3 (NLRP3) inflammasomes-protein complexes that proteolytically activate interleukin-1β (IL-1β) via caspase-1. However, it is still unclear how NLRP3 inflammasome signaling is maintained long after morphine is cleared. Here, we demonstrate that spinal levels of the damage associated molecular patterns (DAMPs) high mobility group box 1 (HMGB1) and biglycan are elevated during morphine-induced persistent sensitization in male rats; that is, 5weeks after cessation of morphine dosing. We also show that HMGB1 and biglycan levels are at least partly dependent on the initial activation of caspase-1, as well as Toll like receptor 4 (TLR4) and the purinergic receptor P2X7R-receptors responsible for priming and activation of NLRP3 inflammasomes. Finally, pharmacological attenuation of the DAMPs HMGB1, biglycan, heat shock protein 90 and fibronectin persistently reversed morphine-prolonged allodynia. We conclude that after peripheral nerve injury, morphine treatment results in persistent DAMP release via TLR4, P2X7R and caspase-1, which are involved in formation/activation of NLRP3 inflammasomes. These DAMPs are responsible for maintaining persistent allodynia, which may be due to engagement of a positive feedback loop, in which NLRP3 inflammasomes are persistently activated by DAMPs signaling at TLR4 and P2X7R.
Collapse
Affiliation(s)
- Peter M. Grace
- Department of Psychology and Neuroscience, and The Center for Neuroscience, University of Colorado, Boulder, CO, USA,Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Keith A. Strand
- Department of Psychology and Neuroscience, and The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Erika L. Galer
- Department of Psychology and Neuroscience, and The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Steven F. Maier
- Department of Psychology and Neuroscience, and The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, and The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
19
|
Piao Y, Gwon DH, Kang DW, Hwang TW, Shin N, Kwon HH, Shin HJ, Yin Y, Kim JJ, Hong J, Kim HW, Kim Y, Kim SR, Oh SH, Kim DW. TLR4-mediated autophagic impairment contributes to neuropathic pain in chronic constriction injury mice. Mol Brain 2018; 11:11. [PMID: 29486776 PMCID: PMC5830083 DOI: 10.1186/s13041-018-0354-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/19/2018] [Indexed: 03/12/2023] Open
Abstract
Neuropathic pain is a complex, chronic pain state characterized by hyperalgesia, allodynia, and spontaneous pain. Accumulating evidence has indicated that the microglial Toll-like receptor 4 (TLR4) and autophagy are implicated in neurodegenerative diseases, but their relationship and role in neuropathic pain remain unclear. In this study, we examined TLR4 and its association with autophagic activity using a chronic constriction injury (CCI)-induced neuropathic pain model in wild-type (WT) and TLR4-knockout (KO) mice. The mice were assigned into four groups: WT-Contralateral (Contra), WT-Ipsilateral (Ipsi), TLR4 KO-Contra, and TLR4 KO-Ipsi. Behavioral and mechanical allodynia tests and biochemical analysis of spinal cord tissue were conducted following CCI to the sciatic nerve. Compared with the Contra group, mechanical allodynia in both the WT- and TLR4 KO-Ipsi groups was significantly increased, and a marked decrease of allodynia was observed in the TLR4 KO-Ipsi group. Although glial cells were upregulated in the WT-Ipsi group, no significant change was observed in the TLR4 KO groups. Moreover, protein expression and immunoreactive cell regulation of autophagy (Beclin 1, p62) were significantly increased in the neurons, but not microglia, of WT-Ipsi group compared with the WT-Contra group. The level of PINK1, a marker for mitophagy was increased in the neurons of WT, but not in TLR4 KO mice. Together, these results show that TLR4-mediated p62 autophagic impairment plays an important role in the occurrence and development of neuropathic pain. And what is more, microglial TLR4-mediated microglial activation might be indirectly coupled to neuronal autophage.
Collapse
Affiliation(s)
- Yibo Piao
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Do Hyeong Gwon
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Dong-Wook Kang
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Tae Woong Hwang
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Nara Shin
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyeok Hee Kwon
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yuhua Yin
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jwa-Jin Kim
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,LES Corporation Inc., Gung-Dong 465-16, Yuseong-Gu, Daejeon, 305-335, Republic of Korea
| | - Jinpyo Hong
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyun-Woo Kim
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, Department of Pediatrics, Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Dong Woon Kim
- Department of Medical Science, Department of Physiology, Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
20
|
Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M, Speier S, Rodriguez-Diaz R, Caicedo A. Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 2018; 61:182-192. [PMID: 28884198 PMCID: PMC5868749 DOI: 10.1007/s00125-017-4416-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells. METHODS To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells. RESULTS Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity. CONCLUSIONS/INTERPRETATION Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.
Collapse
Affiliation(s)
- Jonathan R Weitz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Madina Makhmutova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
| | - Julia Stertmann
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kristie Aamodt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA.
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
21
|
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017; 11:680. [PMID: 29311768 PMCID: PMC5733046 DOI: 10.3389/fnins.2017.00680] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research.
Collapse
Affiliation(s)
- Kevin A Clayton
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Alicia A Van Enoo
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States.,Department of Neurology, Medical School, Boston University, Boston, MA, United States
| |
Collapse
|
22
|
Suurväli J, Boudinot P, Kanellopoulos J, Rüütel Boudinot S. P2X4: A fast and sensitive purinergic receptor. Biomed J 2017; 40:245-256. [PMID: 29179879 PMCID: PMC6138603 DOI: 10.1016/j.bj.2017.06.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Extracellular nucleotides have been recognized as important mediators of activation, triggering multiple responses via plasma membrane receptors known as P2 receptors. P2 receptors comprise P2X ionotropic receptors and G protein-coupled P2Y receptors. P2X receptors are expressed in many tissues, where they are involved in a number of functions including synaptic transmission, muscle contraction, platelet aggregation, inflammation, macrophage activation, differentiation and proliferation, neuropathic and inflammatory pain. P2X4 is one of the most sensitive purinergic receptors (at nanomolar ATP concentrations), about one thousand times more than the archetypal P2X7. P2X4 is widely expressed in central and peripheral neurons, in microglia, and also found in various epithelial tissues and endothelial cells. It localizes on the plasma membrane, but also in intracellular compartments. P2X4 is preferentially localized in lysosomes, where it is protected from proteolysis by its glycosylation. High ATP concentration in the lysosomes does not activate P2X4 at low pH; P2X4 gets activated by intra-lysosomal ATP only in its fully dissociated tetra-anionic form, when the pH increases to 7.4. Thus, P2X4 is functioning as a Ca2+-channel after the fusion of late endosomes and lysosomes. P2X4 modulates major neurotransmitter systems and regulates alcohol-induced responses in microglia. P2X4 is one of the key receptors mediating neuropathic pain. However, injury-induced upregulation of P2X4 expression is gender dependent and plays a key role in pain difference between males and females. P2X4 is also involved in inflammation. Extracellular ATP being a pro-inflammatory molecule, P2X4 can trigger inflammation in response to high ATP release. It is therefore involved in multiple pathologies, like post-ischemic inflammation, rheumatoid arthritis, airways inflammation in asthma, neurodegenerative diseases and even metabolic syndrome. Although P2X4 remains poorly characterized, more studies are needed as it is likely to be a potential therapeutic target in these multiple pathologies.
Collapse
Affiliation(s)
- Jaanus Suurväli
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
23
|
Ishchenko Y, Novosolova N, Khafizov K, Bart G, Timonina A, Fayuk D, Skorinkin A, Giniatullin R. Reconstructed Serine 288 in the Left Flipper Region of the Rat P2X7 Receptor Stabilizes Nonsensitized States. Biochemistry 2017; 56:3394-3402. [PMID: 28616989 DOI: 10.1021/acs.biochem.7b00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Serine 275, a conserved residue of the left flipper region of ATP-gated P2X3 receptors, plays a key role in both agonist binding and receptor desensitization. It is conserved in most of the P2X receptors except P2X7 and P2X6. By combining experimental patch-clamp and modeling approaches, we explored the role of the corresponding residue in the rat P2X7 receptor (rP2X7) by replacing the phenylalanine at position 288 with serine and characterizing the membrane currents generated by either the wild-type (WT) or the mutated rP2X7 receptor. F288S, an rP2X7 mutation, slowed the deactivation subsequent to 2 and 20 s applications of 1 mM ATP. F288S also prevented sensitization (a progressive current growth) observed with the WT in response to a 20 s application of 1 mM ATP. Increasing the ATP concentration to 5 mM promoted sensitization also in the mutated rP2X7 receptor, accelerating the deactivation rate to typical WT values. YO-PRO1 uptake in cells expressing either the WT or the F288S P2X7 receptor was consistent with recorded membrane current data. Interestingly, in the human P2X7 (hP2X7) receptor, substitution Y288S did not change the deactivation rate, while the Y288F mutant generated a "rat-like" phenotype with a fast deactivation rate. Our combined experimental, kinetic, and molecular modeling data suggest that the rat F288S novel phenotype is due to a slower rate of ATP binding and/or unbinding and stabilization of nonsensitized receptor states.
Collapse
Affiliation(s)
| | | | - Kamil Khafizov
- Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region, Russian Federation.,Central Research Institute of Epidemiology , Moscow, Russian Federation
| | - Geneviève Bart
- A. I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu , Oulu, Finland
| | - Arina Timonina
- A. I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Dmitriy Fayuk
- A. I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland
| | - Andrei Skorinkin
- Department of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences , Kazan, Russian Federation.,Lab of Neuropharmacology, Kazan Federal University , Kazan, Russian Federation
| | - Rashid Giniatullin
- A. I. Virtanen Institute, University of Eastern Finland , Kuopio, Finland.,Lab of Neurobiology, Kazan Federal University , Kazan, Russian Federation
| |
Collapse
|
24
|
Spinal microglial P2X4 receptor–brain-derived neurotrophic factor signaling regulates nicotine withdrawal-induced hyperalgesia. Neuroreport 2017; 28:339-347. [DOI: 10.1097/wnr.0000000000000769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Virtanen JK, Giniatullin R, Mäntyselkä P, Voutilainen S, Nurmi T, Mursu J, Kauhanen J, Tuomainen TP. Low serum 25-hydroxyvitamin D is associated with higher risk of frequent headache in middle-aged and older men. Sci Rep 2017; 7:39697. [PMID: 28045039 PMCID: PMC5206741 DOI: 10.1038/srep39697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/25/2016] [Indexed: 01/16/2023] Open
Abstract
Vitamin D has been suggested to have a role in various neurovascular diseases, but the data regarding headache is inconclusive. Our aim was to investigate the associations between serum 25-hydroxyvitamin D [25(OH)D], a marker for vitamin D status, and risk of frequent headache. The study population consisted of 2601 men from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD) from eastern Finland, aged 42–60 years in 1984–1989. The cross-sectional associations with prevalence of self-reported frequent headache (defined as weekly or daily headaches) were estimated with multivariable-adjusted odds ratios. The average serum 25(OH) concentration was 43.4 nmol/L (SD 18.9, min-max 7.8–136.1 nmol/L). A total of 250 men (9.6%) reported frequent headache. The average serum 25(OH)D concentration among those with frequent headache was 38.3 nmol/L (SD 18.8) and 43.9 nmol/L (SD 18.9) among those without frequent headache, after adjustment for age and year and month of blood draw (P for difference <0.001). After multivariable adjustments, those in the lowest vs. the highest serum 25(OH)D quartile had 113% (95% CI 42, 218%; P for trend <0.001) higher odds for frequent headache. In conclusion, low serum 25(OH)D concentration was associated with markedly higher risk of frequent headache in men.
Collapse
Affiliation(s)
- Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Pekka Mäntyselkä
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Primary Health Care Unit, Kuopio University Hospital, Finland
| | - Sari Voutilainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tarja Nurmi
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Mursu
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jussi Kauhanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 2016; 7:12529. [PMID: 27515581 PMCID: PMC4990655 DOI: 10.1038/ncomms12529] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/08/2016] [Indexed: 12/26/2022] Open
Abstract
Activation of purinergic receptors in the spinal cord by extracellular ATP is essential for neuropathic hypersensitivity after peripheral nerve injury (PNI). However, the cell type responsible for releasing ATP within the spinal cord after PNI is unknown. Here we show that PNI increases expression of vesicular nucleotide transporter (VNUT) in the spinal cord. Extracellular ATP content ([ATP]e) within the spinal cord was increased after PNI, and this increase was suppressed by exocytotic inhibitors. Mice lacking VNUT did not show PNI-induced increase in [ATP]e and had attenuated hypersensitivity. These phenotypes were recapitulated in mice with specific deletion of VNUT in spinal dorsal horn (SDH) neurons, but not in mice lacking VNUT in primary sensory neurons, microglia or astrocytes. Conversely, ectopic VNUT expression in SDH neurons of VNUT-deficient mice restored PNI-induced increase in [ATP]e and pain. Thus, VNUT is necessary for exocytotic ATP release from SDH neurons which contributes to neuropathic pain. Purinergic receptor activation by extracellular ATP in the dorsal horn contributes to neuropathic pain, but which cell types release ATP in this context is not known. The authors show in a mouse model of neuropathic pain that ATP is released by dorsal horn neurons, a process requiring the vesicular nucleotide transporter, VNUT.
Collapse
|
27
|
Yang J, Park KS, Yoon JJ, Bae HB, Yoon MH, Choi JI. Anti-allodynic effect of intrathecal processed Aconitum jaluense is associated with the inhibition of microglial activation and P2X7 receptor expression in spinal cord. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:214. [PMID: 27411500 PMCID: PMC4944236 DOI: 10.1186/s12906-016-1201-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/07/2016] [Indexed: 12/24/2022]
Abstract
Background For their analgesic and anti-arthritic effects, Aconitum species have been used in folk medicine in some East Asian countries. Although their analgesic effect is attributed to its action on voltage-dependent sodium channels, they also suppress purinergic receptor expression in dorsal root ganglion neurons in rats with neuropathic pain. In vitro study also demonstrated that the Aconitum suppresses ATP-induced P2X7 receptor (P2X7R)-mediated inflammatory responses in microglial cell lines. Herein, we examined the effect of intrathecal administration of thermally processed Aconitum jaluense (PA) on pain behavior, P2X7R expression and microglial activation in a rat spinal nerve ligation (SNL) model. Methods Mechanical allodynia induced by L5 SNL in Sprague-Dawley rats was measured using the von Frey test to evaluate the effect of intrathecal injection of PA. Changes in the expression of P2X7R in the spinal cord were examined using RT-PCR and Western blot analysis. In addition, the effect of intrathecal PA on microglial activation was evaluated by immunofluorescence. Results Intrathecal PA attenuated mechanical allodynia in a dose-dependent manner showing both acute and chronic effects with 65 % of the maximal possible effect. The expression and production of spinal P2X7R was increased five days after SNL, but daily intrathecal PA injection significantly inhibited the increase to the level of naïve animals. Immunofluorescence of the spinal cord revealed a significant increase in P2X7R expression and activation of microglia in the dorsal horn, which was inhibited by intrathecal PA treatment. P2X7R co-localized with microglia marker, but not neurons. Conclusions Intrathecal PA exerts anti-allodynic effects in neuropathic pain, possibly by suppressing P2X7R production and expression as well as reducing microglial activation in the spinal cord.
Collapse
|
28
|
Kuan YH, Shyu BC. Nociceptive transmission and modulation via P2X receptors in central pain syndrome. Mol Brain 2016; 9:58. [PMID: 27230068 PMCID: PMC4880968 DOI: 10.1186/s13041-016-0240-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.
Collapse
Affiliation(s)
- Yung-Hui Kuan
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, Republic of China
| | - Bai-Chuang Shyu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
29
|
Tamagawa T, Shinoda M, Honda K, Furukawa A, Kaji K, Nagashima H, Akasaka R, Chen J, Sessle BJ, Yonehara Y, Iwata K. Involvement of Microglial P2Y12 Signaling in Tongue Cancer Pain. J Dent Res 2016; 95:1176-82. [PMID: 27151915 DOI: 10.1177/0022034516647713] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To elucidate if microglial P2Y12 receptor (P2Y12R) mechanisms are involved in the trigeminal spinal subnucleus caudalis (Vc; also known as the medullary dorsal horn) in intraoral cancer pain, we developed a rat model of tongue cancer pain. Squamous cell carcinoma (SCC) cells were inoculated into the tongue of rats; sham control rats received the vehicle instead. Nociceptive behavior was measured as the head-withdrawal reflex threshold (HWRT) to mechanical or heat stimulation applied to the tongue under light anesthesia. On day 14 after the SCC inoculation, activated microglia and P2Y12R expression were examined immunohistochemically in the Vc. The HWRT was also studied in SCC-inoculated rats with successive intra-cisterna magna (i.c.m.) administration of specific P2Y12R antagonist (MRS2395) or intraperitoneal administration of minocycline, a microglial activation inhibitor. Tongue cancer was histologically verified in SCC-inoculated rats, within which the HWRT to mechanical stimulation of the tongue was significantly decreased, as compared with that of vehicle-inoculated rats, although the HWRT to heat stimulation was not. Microglia was strongly activated on day 14, and the administration of MRS2395 or minocycline reversed associated nocifensive behavior and microglial activation in SCC-inoculated rats for 14 d. The activity of Vc wide dynamic range nociceptive neurons was also recorded electrophysiologically in SCC-inoculated and sham rats. Background activity and noxious mechanically evoked responses of wide dynamic range neurons were significantly increased in SCC-inoculated rats versus sham rats, and background activity and mechanically evoked responses were significantly suppressed following i.c.m. administration of MRS2395 in SCC-inoculated rats as compared with sham. The present findings suggest that SCC inoculation that produces tongue cancer results in strong activation of microglia via P2Y12 signaling in the Vc, in association with increased excitability of Vc nociceptive neurons, reflecting central sensitization and resulting in tongue mechanical allodynia.
Collapse
Affiliation(s)
- T Tamagawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - M Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Honda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - A Furukawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - K Kaji
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - H Nagashima
- Department of Clinical Medicine, Nihon University School of Dentistry, Tokyo, Japan
| | - R Akasaka
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - J Chen
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - B J Sessle
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Y Yonehara
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - K Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
30
|
Treatment with a carbon monoxide-releasing molecule (CORM-2) inhibits neuropathic pain and enhances opioid effectiveness in rats. Pharmacol Rep 2016; 68:206-13. [DOI: 10.1016/j.pharep.2015.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
|
31
|
Pillarisetti S, Khanna I. A multimodal disease modifying approach to treat neuropathic pain--inhibition of soluble epoxide hydrolase (sEH). Drug Discov Today 2015; 20:1382-90. [PMID: 26259523 DOI: 10.1016/j.drudis.2015.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Both neuronal and non-neuronal mechanisms have been proposed to contribute to neuropathic pain (NP). All currently approved treatments for NP modulate neuronal targets and provide only symptomatic relief. Here we review evidence that inhibition of soluble epoxide hydrolase (sEH), the enzyme that degrades epoxyeicosatrienoic acids (EETs), has potential to be a multimodal, disease modifying approach to treat NP: (1) EET actions involve both endogenous opioid system and the GABAergic systems thus provide superior pain relief compared to morphine or gabapentin, (2) EETs are directly anti-inflammatory and inhibit expression of inflammatory cytokines and adhesion molecules thus can prevent continued nerve damage; and (3) EETs promote nerve regeneration in cultured neurons. Thus, an sEH inhibitor will not only provide effective pain relief, but would also block further nerve damage and promote healing.
Collapse
|
32
|
Bravo D, Maturana CJ, Pelissier T, Hernández A, Constandil L. Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: Possible role on chronic pain. Pharmacol Res 2015. [PMID: 26211949 DOI: 10.1016/j.phrs.2015.07.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pannexin 1 (Panx1) is a glycoprotein that acts as a membrane channel in a wide variety of tissues in mammals. In the central nervous system (CNS) Panx1 is expressed in neurons, astrocytes and microglia, participating in the pathophysiology of some CNS diseases, such as epilepsy, anoxic depolarization after stroke and neuroinflammation. In these conditions Panx1 acts as an important modulator of the neuroinflammatory response, by secreting ATP, by interacting with the P2X7 receptor (P2X7R), and as an amplifier of NMDA receptor (NMDAR) currents, particularly in conditions of pathological neuronal hyperexcitability. Here, we briefly reviewed the current evidences that support the interaction of Panx1 with NMDAR and P2X7R in pathological contexts of the CNS, with special focus in recent data supporting that Panx1 is involved in chronic pain signaling by interacting with NMDAR in neurons and with P2X7R in glia. The participation of Panx1 in chronic pain constitutes a novel topic for research in the field of clinical neurosciences and a potential target for pharmacological interventions in chronic pain.
Collapse
Affiliation(s)
- D Bravo
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile; School of Kinesiology, Faculty of Sport, Health and Recreation, University Bernardo O'Higgins, Chile.
| | - C J Maturana
- Departamento de Fisiología, Pontificia Universidad Católica De Chile, Chile
| | - T Pelissier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Chile
| | - A Hernández
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile
| | - L Constandil
- Laboratory of Neurobiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Chile
| |
Collapse
|
33
|
Zarei M, Sabetkasaei M, Moini Zanjani T. Paroxetine attenuates the development and existing pain in a rat model of neurophatic pain. IRANIAN BIOMEDICAL JOURNAL 2014; 18:94-100. [PMID: 24518550 DOI: 10.6091/ibj.1282.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND P2X4 receptor (P2X4R), a purinoceptor expressed in activated spinal microglia, plays a key role in the pathogenesis of neuropathic pain. Spinal nerve injury induces up-regulation of P2X4R on activated microglia in the spinal cord, and blockade of this receptor can reduce neuropathic pain. The present study was undertaken to determine whether paroxetine, an inhibitor of P2X4R, could attenuate allodynia and hyperalgesia in chronic constriction injury (CCI) model of neuropathic pain when used preemptively or after the sciatic nerve injury. METHODS Male Wistar rats (150-200 g, n = 6) were divided into 3 different groups: 1- CCI vehicle-treated group, 2- Sham group, and 3- CCI paroxetine-treated group. Paroxetine (10 mg/kg, i.p.) was administered 1 h before surgery and continued daily until day 14. In other part of the study, paroxetine (10 mg/kg, i.p.) was administered at day 7 post injury and continued daily until day 14. von Frey filaments for mechanical allodynia and analgesia meter for thermal hyperalgesia were used to assay pain behavior. RESULTS In a preventive paradigm, paroxetine significantly attenuated both mechanical allodynia and thermal hyperalgesia (P<0.001). A significant decrease in pain behavior was seen with paroxetine on existing allodynia (P<0.001) and hyperalgesia (P<0.01) when initiated at day 7 post injury. CONCLUSION It seems that paroxetine can attenuate pain behavior when administered before and also after sciatic nerve injury in CCI model of neuropathic pain.
Collapse
Affiliation(s)
- Malek Zarei
- Dept. of Pharmacology and Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sabetkasaei
- Dept. of Pharmacology and Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taraneh Moini Zanjani
- Dept. of Pharmacology and Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Purinergic Modulation of Spinal Neuroglial Maladaptive Plasticity Following Peripheral Nerve Injury. Mol Neurobiol 2014; 52:1440-1457. [PMID: 25352445 DOI: 10.1007/s12035-014-8943-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
Modulation of spinal reactive gliosis following peripheral nerve injury (PNI) is a promising strategy to restore synaptic homeostasis. Oxidized ATP (OxATP), a nonselective antagonist of purinergic P2X receptors, was found to recover a neuropathic behavior following PNI. We investigated the role of intraperitoneal (i.p.) OxATP treatment in restoring the expression of neuronal and glial markers in the mouse spinal cord after sciatic spared nerve injury (SNI). Using in vivo two-photon microscopy, we imaged Ca(2+) transients in neurons and astrocytes of the dorsal horn of spinal cord at rest and upon right hind paw electrical stimulation in sham, SNI, and OxATP-treated mice. Neuropathic behavior was investigated by von Frey and thermal plantar test. Glial [glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1)] and GABAergic [vesicular GABA transporter (vGAT) and glutamic acid decarboxylase 65/76 (GAD65/67)] markers and glial [glutamate transporter (GLT1) and GLAST] and neuronal amino acid [EAAC1, vesicular glutamate transporter 1 (vGLUT1)] transporters have been evaluated. In SNI mice, we found (i) increased glial response, (ii) decreased glial amino acid transporters, and (iii) increased levels of neuronal amino acid transporters, and (iv) in vivo analysis of spinal neurons and astrocytes showed a persistent increase of Ca(2+) levels. OxATP administration reduced glial activation, modulated the expression of glial and neuronal glutamate/GABA transporters, restored neuronal and astrocytic Ca(2+) levels, and prevented neuropathic behavior. In vitro studies validated that OxATP (i) reduced levels of reactive oxygen species (ROS), (ii) reduced astrocytic proliferation, (iii) increase vGLUT expression. All together, these data support the correlation between reactive gliosis and perturbation of the spinal synaptic homeostasis and the role played by the purinergic system in modulating spinal plasticity following PNI.
Collapse
|
35
|
Gofman L, Cenna JM, Potula R. P2X4 receptor regulates alcohol-induced responses in microglia. J Neuroimmune Pharmacol 2014; 9:668-78. [PMID: 25135400 DOI: 10.1007/s11481-014-9559-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022]
Abstract
Mounting evidence indicates that alcohol-induced neuropathology may result from multicellular responses in which microglia cells play a prominent role. Purinergic receptor signaling plays a key role in regulating microglial function and, more importantly, mediates alcohol-induced effects. Our findings demonstrate that alcohol increases expression of P2X4 receptor (P2X4R), which alters the function of microglia, including calcium mobilization, migration and phagocytosis. Our results show a significant up-regulation of P2X4 gene expression as analyzed by real-time qPCR (***p < 0.002) and protein expression as analyzed by flow cytometry (**p < 0.004) in embryonic stem cell-derived microglial cells (ESdM) after 48 hours of alcohol treatment, as compared to untreated controls. Calcium mobilization in ethanol treated ESdM cells was found to be P2X4R dependent using 5-BDBD, a P2X4R selective antagonist. Alcohol decreased migration of microglia towards fractalkine (CX3CL1) by 75 % following 48 h of treatment compared to control (***p < 0.001). CX3CL1-dependent migration was confirmed to be P2X4 receptor-dependent using the antagonist 5-BDBD, which reversed the effects as compared to alcohol alone (***p < 0.001). Similarly, 48 h of alcohol treatment significantly decreased phagocytosis of microglia by 15 % compared to control (*p < 0.05). 5-BDBD pre-treatment prior to alcohol treatment significantly increased microglial phagocytosis (***p < 0.001). Blocking P2X4R signaling with 5-BDBD decreased the level of calcium mobilization compared to ethanol treatment alone. These findings demonstrate that P2X4 receptor may play a role in modulating microglial function in the context of alcohol abuse.
Collapse
Affiliation(s)
- Larisa Gofman
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, 3500 N. Broad Street, MERB 845A, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
36
|
Syhr KMJ, Kallenborn-Gerhardt W, Lu R, Olbrich K, Schmitz K, Männich J, Ferreiros-Bouzas N, Geisslinger G, Niederberger E, Schmidtko A. Lack of effect of a P2Y6 receptor antagonist on neuropathic pain behavior in mice. Pharmacol Biochem Behav 2014; 124:389-95. [PMID: 25042778 DOI: 10.1016/j.pbb.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/22/2014] [Accepted: 07/11/2014] [Indexed: 01/12/2023]
Abstract
Accumulating evidence indicates that various subtypes of purinergic receptors (P2X and P2Y receptor families) play an essential role in the development and the maintenance of neuropathic pain. However, there is only limited data available about the role of P2Y6 receptors in pain processing. Here we detected P2Y6 receptor immunoreactivity in primary afferent neurons of mice and observed an upregulation in response to peripheral nerve injury. However, systemic and intrathecal administration of the P2Y6 receptor antagonist MRS2578 failed to affect the injury-induced neuropathic pain behavior. Our results suggest that P2Y6 receptors, in contrast to other purinergic receptor subtypes, are not critically involved in nerve injury-induced neuropathic pain processing in mice.
Collapse
Affiliation(s)
- Katharina Martina Janice Syhr
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Wiebke Kallenborn-Gerhardt
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ruirui Lu
- Institut für Pharmakologie und Toxikologie, ZBAF, Universität Witten/Herdecke, 58453 Witten, Germany
| | - Katrin Olbrich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Katja Schmitz
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Julia Männich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Nerea Ferreiros-Bouzas
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology (IME-TMP), 60590 Frankfurt am Main, Germany
| | - Ellen Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany
| | - Achim Schmidtko
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Universitätsklinikum Frankfurt, 60590 Frankfurt am Main, Germany; Institut für Pharmakologie und Toxikologie, ZBAF, Universität Witten/Herdecke, 58453 Witten, Germany.
| |
Collapse
|
37
|
Janssen B, Vugts DJ, Funke U, Spaans A, Schuit RC, Kooijman E, Rongen M, Perk LR, Lammertsma AA, Windhorst AD. Synthesis and initial preclinical evaluation of the P2X7 receptor antagonist [¹¹C]A-740003 as a novel tracer of neuroinflammation. J Labelled Comp Radiopharm 2014; 57:509-16. [PMID: 24995673 DOI: 10.1002/jlcr.3206] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 11/10/2022]
Abstract
Neuroinflammation, in particular activation of microglia, is thought to play an important role in the progression of neurodegenerative diseases. In activated microglia, the purinergic P2X7 receptor is upregulated. A-740003, a highly affine and selective P2X7 receptor antagonist, is a promising candidate for the development of a radiotracer for imaging of neuroinflammation by positron emission tomography. For this purpose, [(11)C]A-740003 was synthesised and evaluated in vivo with respect to both tracer metabolism and biodistribution. In plasma, a moderate metabolic rate was seen. In healthy rat brain, only marginal uptake of [(11)C]A-740003 was observed and, therefore, metabolites in brain could not be determined. Whether the minimal brain uptake is due to the low expression levels of the P2X7 receptor in healthy brain or to limited transport across the blood-brain barrier has yet to be elucidated.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barragán-Iglesias P, Pineda-Farias JB, Cervantes-Durán C, Bravo-Hernández M, Rocha-González HI, Murbartián J, Granados-Soto V. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain 2014; 10:29. [PMID: 24886406 PMCID: PMC4039548 DOI: 10.1186/1744-8069-10-29] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/10/2014] [Indexed: 11/29/2022] Open
Abstract
Background The participation of spinal P2X receptors in neuropathic pain is well recognized. However, the role of P2Y receptors has been less studied. The purpose of this study was to investigate the contribution of spinal P2Y6,11 receptors following peripheral nerve damage induced by spinal nerve ligation. In addition, we determined the expression of P2Y6,11 receptors in the dorsal spinal cord in presence of the selective P2Y6,11 receptors antagonists. Furthermore, we evaluated the participation of spinal microglia and astrocytes in the pronociceptive role of P2Y6,11 receptors. Results Spinal administration of the selective P2Y6 (MRS2578, 10–100 μM) and P2Y11 (NF340, 0.3–30 μM) receptor antagonists reduced tactile allodynia in spinal nerve ligated rats. Nerve injury increased the expression of P2Y6,11 receptors at 7, 14 and 21 days after injury. Furthermore, intrathecal administration of MRS2578 (100 μM/day) and NF340 (30 μM/day) for 3 days significantly reduced spinal nerve injury-induced increase in P2Y6,11 receptors expression, respectively. Spinal treatment (on day 14 after injury) with minocycline (100 μg/day) or fluorocitrate (1 nmol/day) for 7 days reduced tactile allodynia and spinal nerve injury-induced up-regulation in Iba-1 and GFAP, respectively. In addition, minocycline reduced nerve injury-induced up-regulation in P2Y6,11 receptors whereas that fluorocitrate diminished P2Y11, but not P2Y6, receptors up-regulation. Intrathecal treatment (on day 21 after injury) with the selective P2Y6 (PSB0474, 3–30 μM) and P2Y11 (NF546, 1–10 μM) receptor agonists produced remarkable tactile allodynia in nerve ligated rats previously treated with minocycline or fluorocitrate for 7 days. Conclusions Our data suggest that spinal P2Y6 is present in spinal microglia while P2Y11 receptors are present in both spinal microglia and astrocytes, and both receptors are up-regulated in rats subjected to spinal nerve injury. In addition, our data suggest that the spinal P2Y6 and P2Y11 receptors participate in the maintenance of neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330 México, D,F,, México.
| |
Collapse
|
39
|
Abstract
Reciprocal signalling between immunocompetent cells in the central nervous system (CNS) has emerged as a key phenomenon underpinning pathological and chronic pain mechanisms. Neuronal excitability can be powerfully enhanced both by classical neurotransmitters derived from neurons, and by immune mediators released from CNS-resident microglia and astrocytes, and from infiltrating cells such as T cells. In this Review, we discuss the current understanding of the contribution of central immune mechanisms to pathological pain, and how the heterogeneous immune functions of different cells in the CNS could be harnessed to develop new therapeutics for pain control. Given the prevalence of chronic pain and the incomplete efficacy of current drugs--which focus on suppressing aberrant neuronal activity--new strategies to manipulate neuroimmune pain transmission hold considerable promise.
Collapse
|
40
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
41
|
Chrovian CC, Rech JC, Bhattacharya A, Letavic MA. P2X7 antagonists as potential therapeutic agents for the treatment of CNS disorders. PROGRESS IN MEDICINAL CHEMISTRY 2014; 53:65-100. [PMID: 24418608 DOI: 10.1016/b978-0-444-63380-4.00002-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of P2X7 antagonists to treat inflammatory disorders has garnered considerable interest in recent years. An increasing number of literature reports support the role of P2X7 in inflammatory pathways of the peripheral and central nervous systems (CNSs). A number of CNS indications such as neuropsychiatric and neurodegenerative disorders and neuropathic pain have been linked to a neuroinflammatory response, and clinical studies have shown that inflammatory biomarkers can be mitigated by modulating P2X7. Recent scientific and patent literature describing novel P2X7 antagonists has indicated their use in CNS disorders. In addition, several reports have disclosed the results of administering P2X7 antagonists in pre-clinical models of CNS disease or investigating brain uptake. This review describes small molecule P2X7 antagonists that have first appeared in the literature since 2009 and have potential therapeutic utility in the CNS, or for which new data have emerged implicating their use in CNS indications.
Collapse
Affiliation(s)
| | - Jason C Rech
- Janssen Research and Development, LLC, San Diego, CA, USA
| | | | | |
Collapse
|
42
|
Tian M, Abdelrahman A, Weinhausen S, Hinz S, Weyer S, Dosa S, El-Tayeb A, Müller CE. Carbamazepine derivatives with P2X4 receptor-blocking activity. Bioorg Med Chem 2013; 22:1077-88. [PMID: 24411477 DOI: 10.1016/j.bmc.2013.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 12/28/2022]
Abstract
Antagonists for the P2 receptor subtype P2X4, an ATP-activated cation channel receptor, have potential as novel drugs for the treatment of neuropathic pain and other inflammatory diseases. In the present study, a series of 47 carbamazepine derivatives including 32 novel compounds were designed, synthesized, and evaluated as P2X4 receptor antagonists. Their potency to inhibit ATP-induced calcium influx in 1321N1 astrocytoma cells stably transfected with the human P2X4 receptor was determined. Additionally, species selectivity (human, rat, mouse) and receptor subtype selectivity (P2X4 vs P2X1, 2, 3, 7) were investigated for selected derivatives. The most potent compound of the present series, which exhibited an allosteric mechanism of P2X4 inhibition, was N,N-diisopropyl-5H-dibenz[b,f]azepine-5-carboxamide (34, IC50 of 3.44μM). The present study extends the so far very limited knowledge on structure-activity relationships of P2X4 receptor antagonists.
Collapse
Affiliation(s)
- Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Stephanie Weinhausen
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Stefanie Weyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Stefan Dosa
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
43
|
Bernier LP, Ase AR, Boué-Grabot É, Séguéla P. Inhibition of P2X4 function by P2Y6 UDP receptors in microglia. Glia 2013; 61:2038-49. [PMID: 24123515 DOI: 10.1002/glia.22574] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 12/24/2022]
Abstract
ATP-gated P2X4 receptor channels expressed in spinal microglia actively participate in central sensitization, making their functional regulation a key process in chronic pain pathologies. P2Y6 metabotropic Gq -coupled receptors, also expressed in microglia, are involved in the initial response to nerve injury, triggering phagocytosis upon activation by UDP. It has been reported recently that expression of both P2X4 and P2Y6 is upregulated in activated microglia following nerve injury. We show here, in resting as well as LPS-activated primary microglia, that P2Y6 decreases P2X4-mediated calcium entry and inhibits the dilation of P2X4 channels into a large-conductance pore measured with a YO-PRO-1 uptake assay. Furthermore, P2Y6 activation modulates the ATP-dependent migration of microglia, a process likely involved in their shift from migratory to phagocytic phenotype. Reconstituting the P2X4-P2Y6 interaction in recombinant systems shows that P2Y6 activation decreases P2X4 current amplitude, activation and desensitization rates, and reduces P2X4 channel permeability to the large cation NMDG(+) . Phospholipase C-mediated hydrolysis of the phosphoinositide PI(4,5)P2 , a necessary cofactor for P2X4 channel function, underlies this inhibitory crosstalk. As extracellular levels of both ATP and UDP are increased in the spinal cord following nerve injury, the control of P2X4 activity by P2Y6 might play a critical role in regulating neuropathic pain-inducing microglial responses.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Alan Edwards Center for Research on Pain, McGill University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | |
Collapse
|
44
|
The activation of P2Y6 receptor in cultured spinal microglia induces the production of CCL2 through the MAP kinases-NF-κB pathway. Neuropharmacology 2013; 75:116-25. [PMID: 23916475 DOI: 10.1016/j.neuropharm.2013.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 07/02/2013] [Accepted: 07/18/2013] [Indexed: 11/24/2022]
Abstract
Rat primary cultures of spinal microglia were stimulated by UTP, a known P2Y2/4 receptor agonist, which resulted in the production and release of the C-C chemokine CCL2 (monocyte chemoattractant protein-1; MCP-1) measured by real-time PCR and ELISA, respectively. In an in vitro preparation of rat spinal microglia, with regard to the P2Y subtypes, the expression of P2Y1, 2, 6, 12, 13 and P2Y14, but not P2Y4, were detected by RT-PCR. The subtype of microglial P2Y receptor which could be involved in the production of CCL2 was also determined. The UTP-induced production of CCL2 was significantly blocked by pretreatment with reactive blue 2 and suramin, nonselective P2Y receptor antagonists, and MRS2578, a selective P2Y6 receptor antagonist. By contrast, knockdown of the P2Y2 receptor by RNA interference had no effect. The stimulatory effect of UTP was inhibited by phospholipase C (PLC) inhibitor U73122 and Src tyrosine kinase inhibitor PP2. A potential role of mitogen activated protein kinases was suggested since UTP-induced CCL2 production was significantly blocked by both U0126 and SB 202190, which are potent inhibitors of extracellular signal-regulated kinase (ERK) and p38, respectively. Moreover, UTP-stimulated phosphorylation of these kinases involved the activation of the P2Y6 receptor. Lastly, activation of nuclear factor-κB (NF-κB) by UTP is likely to be essential in the expression of CCL2. Together, these findings suggest that stimulation of spinal microglia P2Y6 receptors induce the production of CCL2 through either PLC-mediated ERK or p38 phosphorylation and the subsequent activation of NF-κB.
Collapse
|
45
|
P2X7 Cell Death Receptor Activation and Mitochondrial Impairment in Oxaliplatin-Induced Apoptosis and Neuronal Injury: Cellular Mechanisms and In Vivo Approach. PLoS One 2013; 8:e66830. [PMID: 23826152 PMCID: PMC3695015 DOI: 10.1371/journal.pone.0066830] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/10/2013] [Indexed: 12/25/2022] Open
Abstract
Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2–200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.
Collapse
|
46
|
Eyo UB, Dailey ME. Microglia: key elements in neural development, plasticity, and pathology. J Neuroimmune Pharmacol 2013; 8:494-509. [PMID: 23354784 DOI: 10.1007/s11481-013-9434-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 12/31/2022]
Abstract
A century after Cajal identified a "third element" of the nervous system, many issues have been clarified about the identity and function of one of its major components, the microglia. Here, we review recent findings by microgliologists, highlighting results from imaging studies that are helping provide new views of microglial behavior and function. In vivo imaging in the intact adult rodent CNS has revolutionized our understanding of microglial behaviors in situ and has raised speculation about their function in the uninjured adult brain. Imaging studies in ex vivo mammalian tissue preparations and in intact model organisms including zebrafish are providing insights into microglial behaviors during brain development. These data suggest that microglia play important developmental roles in synapse remodeling, developmental apoptosis, phagocytic clearance, and angiogenesis. Because microglia also contribute to pathology, including neurodevelopmental and neurobehavioral disorders, ischemic injury, and neuropathic pain, promising new results raise the possibility of leveraging microglia for therapeutic roles. Finally, exciting recent work is addressing unanswered questions regarding the nature of microglial-neuronal communication. While it is now apparent that microglia play diverse roles in neural development, behavior, and pathology, future research using neuroimaging techniques will be essential to more fully exploit these intriguing cellular targets for effective therapeutic intervention applied to a variety of conditions.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
47
|
Bianco MR, Cirillo G, Petrosino V, Marcello L, Soleti A, Merizzi G, Cavaliere C, Papa M. Neuropathic pain and reactive gliosis are reversed by dialdehydic compound in neuropathic pain rat models. Neurosci Lett 2012; 530:85-90. [PMID: 22981978 DOI: 10.1016/j.neulet.2012.08.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
The role of the purinergic system in the modulation of pain mechanisms suggests that it might be promising target for treating neuropathic pain. In this study we evaluated the effects of two different dialdehydic compounds: a modified stable adenosine (2-[1-(6-amminopurin-9-il)-2-osso-etossi]prop-2-enale, named MED1101), and oxidized ATP (Ox-ATP), in two different neuropathic pain rat models: the sciatic spared nerve injury (SNI) and paclitaxel evoked painful peripheral neuropathy (pPPN). Neuropathic animals were divided in groups as follows: (a) treated with intraperitoneal (i.p.) MED1101 or Ox-ATP for 21 days; (b) receiving vehicle (VEH) and (c) control (CTR) rats. The allodynic and hyperalgesic behavior was investigated by Von Frey filament test and thermal Plantar test, respectively. We evaluated by immunocytochemistry the astrocytic (GFAP) and microglial (Iba1) response on lumbar spinal cord sections. In either experimental models and using either substances, treated animals showed reduced allodynia and thermal hyperalgesia paralleled by a significant reduction of glial reaction in the spinal cord. These data prompt to hypothesize a potential role of dialdehydes as analgesic agent in chronic neuropathic pain and a possible role as anti-gliotic molecules.
Collapse
Affiliation(s)
- Maria Rosaria Bianco
- Dipartimento di Medicina Pubblica Clinica e Preventiva, Seconda Università di Napoli, 80138 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Franke H, Verkhratsky A, Burnstock G, Illes P. Pathophysiology of astroglial purinergic signalling. Purinergic Signal 2012; 8:629-57. [PMID: 22544529 DOI: 10.1007/s11302-012-9300-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Astrocytes are fundamental for central nervous system (CNS) physiology and are the fulcrum of neurological diseases. Astroglial cells control development of the nervous system, regulate synaptogenesis, maturation, maintenance and plasticity of synapses and are central for nervous system homeostasis. Astroglial reactions determine progression and outcome of many neuropathologies and are critical for regeneration and remodelling of neural circuits following trauma, stroke, ischaemia or neurodegenerative disorders. They secrete multiple neurotransmitters and neurohormones to communicate with neurones, microglia and the vascular walls of capillaries. Signalling through release of ATP is the most widespread mean of communication between astrocytes and other types of neural cells. ATP serves as a fast excitatory neurotransmitter and has pronounced long-term (trophic) roles in cell proliferation, growth, and development. During pathology, ATP is released from damaged cells and acts both as a cytotoxic factor and a proinflammatory mediator, being a universal "danger" signal. In this review, we summarise contemporary knowledge on the role of purinergic receptors (P2Rs) in a variety of diseases in relation to changes of astrocytic functions and nucleotide signalling. We have focussed on the role of the ionotropic P2X and metabotropic P2YRs working alone or in concert to modify the release of neurotransmitters, to activate signalling cascades and to change the expression levels of ion channels and protein kinases. All these effects are of great importance for the initiation, progression and maintenance of astrogliosis-the conserved and ubiquitous glial defensive reaction to CNS pathologies. We highlighted specific aspects of reactive astrogliosis, especially with respect to the involvement of the P2X(7) and P2Y(1)R subtypes. Reactive astrogliosis exerts both beneficial and detrimental effects in a context-specific manner determined by distinct molecular signalling cascades. Understanding the role of purinergic signalling in astrocytes is critical to identifying new therapeutic principles to treat acute and chronic neurological diseases.
Collapse
Affiliation(s)
- Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | | | |
Collapse
|
49
|
Skaper SD, Giusti P, Facci L. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 2012; 26:3103-17. [PMID: 22516295 DOI: 10.1096/fj.11-197194] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the more important recent advances in neuroscience research is the understanding that there is extensive communication between the immune system and the central nervous system (CNS). Proinflammatory cytokines play a key role in this communication. The emerging realization is that glia and microglia, in particular, (which are the brain's resident macrophages), constitute an important source of inflammatory mediators and may have fundamental roles in CNS disorders from neuropathic pain and epilepsy to neurodegenerative diseases. Microglia respond also to proinflammatory signals released from other non-neuronal cells, principally those of immune origin. Mast cells are of particular relevance in this context. These immunity-related cells, while resident in the CNS, are capable of migrating across the blood-spinal cord and blood-brain barriers in situations where the barrier is compromised as a result of CNS pathology. Emerging evidence suggests the possibility of mast cell-glia communications and opens exciting new perspectives for designing therapies to target neuroinflammation by differentially modulating the activation of non-neuronal cells normally controlling neuronal sensitization, both peripherally and centrally. This review aims to provide an overview of recent progress relating to the pathobiology of neuroinflammation, the role of microglia, neuroimmune interactions involving mast cells, in particular, and the possibility that mast cell-microglia crosstalk may contribute to the exacerbation of acute symptoms of chronic neurodegenerative disease and accelerate disease progression, as well as promote pain transmission pathways. We conclude by considering the therapeutic potential of treating systemic inflammation or blockade of signaling pathways from the periphery to the brain in such settings.
Collapse
Affiliation(s)
- Stephen D Skaper
- Dipartimento di Scienze del Farmaco, University of Padova, Largo E. Meneghetti 2, 35131 Padova, Italy.
| | | | | |
Collapse
|