1
|
Göksu AY. A review article on the development of dopaminergic neurons and establishment of dopaminergic neuron-based in vitro models by using immortal cell lines or stem cells to study and treat Parkinson's disease. Int J Dev Neurosci 2024. [PMID: 39379284 DOI: 10.1002/jdn.10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
The primary pathological hallmark of Parkinson's disease (PD) is the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, a critical midbrain region. In vitro models based on DA neurons provide a powerful platform for investigating the cellular and molecular mechanisms of PD and testing novel therapeutic strategies. A deep understanding of DA neuron development, including the signalling pathways and transcription factors involved, is essential for advancing PD research. This article first explores the differentiation and maturation processes of DA neurons in the midbrain, detailing the relevant signalling pathways. It then compares various in vitro models, including primary cells, immortalized cell lines, and stem cell-based models, focusing on the advantages and limitations of each. Special attention is given to the role of immortalized and stem cell models in PD research. This review aims to guide researchers in selecting the most appropriate model for their specific research goals. Ethical considerations and clinical implications of using stem cells in PD research are also discussed.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and Embryology, Department of Gene and Cell Therapy, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
2
|
Zhang R, Zhang L, Du W, Tang J, Yang L, Geng D, Cheng Y. Caffeine alleviate lipopolysaccharide-induced neuroinflammation and depression through regulating p-AKT and NF-κB. Neurosci Lett 2024; 837:137923. [PMID: 39106918 DOI: 10.1016/j.neulet.2024.137923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Caffeine, a nonselective adenosine receptor antagonist, is the major component of coffee and the most consumed psychostimulant at nontoxic doses in the world. It has been identified that caffeine consumption reduces the risk of several neurological diseases. However, the mechanisms by which it impacts the pathophysiology of neurological diseases remain to be elucidated. In this study, we investigated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation and depression in vivo and explored the potential mechanism of caffeine through LPS-induced brain injury. Adult male Sprague-Dawley (SD) rats were intraperitoneal injected with various concentrations of LPS to induce the neuroinflammation and depressive-like behavior. Then SD rats were treated with caffeine in the presence or absence of LPS. Open-filed and closed-field tests were applied to detect the behaviors of SD rats, while western blot was performed to measure the phosphorylation level of protein kinase B (p-AKT) and nuclear factor κB (NF-κB) in the cortex after caffeine was orally administered. Our findings indicated that caffeine markedly improved the neuroinflammation and depressive-like behavior of LPS-treated SD rats. Mechanistic investigations demonstrated that caffeine down-regulated the expression of p-AKT and NF-κB in LPS-induced SD rats cortex. Taken together, these results indicated that caffeine, a potential agent for preventing inflammatory diseases, may suppress LPS-induced inflammatory and depressive responses by regulating AKT phosphorylation and NF-κB.
Collapse
Affiliation(s)
- Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Lei Zhang
- Department of Neurology, the People's Hospital of Jiawang District of Xuzhou City, Xuzhou 221004, PR China
| | - Wenqi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Jiao Tang
- Department of Neurology, the First People's Hospital of Yan Cheng City, Yan Cheng 224000, PR China
| | - Long Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China.
| | - Yanbo Cheng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China.
| |
Collapse
|
3
|
Rai SP, Ansari AH, Singh D, Singh S. Coffee, antioxidants, and brain inflammation. PROGRESS IN BRAIN RESEARCH 2024; 289:123-150. [PMID: 39168577 DOI: 10.1016/bs.pbr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coffee is the most popular beverage in the world and, aside from tea and water, the most often consumed caffeine-containing beverage. Because of its high caffeine concentration, it is typically classified as a stimulant. There are other bioactive ingredients in coffee besides caffeine. The coffee beverage is a blend of several bioactive substances, including diterpenes (cafestol and kahweol), alkaloids (caffeine and trigonelline), and polyphenols (particularly chlorogenic acids in green beans and caffeic acid in roasted coffee beans). Caffeine has also been linked to additional beneficial benefits such as antioxidant and anti-inflammatory properties, which change cellular redox and inflammatory status in a dose-dependent manner. Pyrocatechol, a constituent of roasted coffee that is created when chlorogenic acid is thermally broken down, has anti-inflammatory properties as well. It is postulated that coffee consumption reduces neuroinflammation, which is intimately linked to the onset of neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). This review provides an overview of the most recent studies regarding coffee's possible benefits in preventing brain inflammation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College (A Constituent College of University of Allahabad), Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
4
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
5
|
Zhao Y, Lai Y, Konijnenberg H, Huerta JM, Vinagre-Aragon A, Sabin JA, Hansen J, Petrova D, Sacerdote C, Zamora-Ros R, Pala V, Heath AK, Panico S, Guevara M, Masala G, Lill CM, Miller GW, Peters S, Vermeulen R. Association of Coffee Consumption and Prediagnostic Caffeine Metabolites With Incident Parkinson Disease in a Population-Based Cohort. Neurology 2024; 102:e209201. [PMID: 38513162 PMCID: PMC11175631 DOI: 10.1212/wnl.0000000000209201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Inverse associations between caffeine intake and Parkinson disease (PD) have been frequently implicated in human studies. However, no studies have quantified biomarkers of caffeine intake years before PD onset and investigated whether and which caffeine metabolites are related to PD. METHODS Associations between self-reported total coffee consumption and future PD risk were examined in the EPIC4PD study, a prospective population-based cohort including 6 European countries. Cases with PD were identified through medical records and reviewed by expert neurologists. Hazard ratios (HRs) and 95% CIs for coffee consumption and PD incidence were estimated using Cox proportional hazards models. A case-control study nested within the EPIC4PD was conducted, recruiting cases with incident PD and matching each case with a control by age, sex, study center, and fasting status at blood collection. Caffeine metabolites were quantified by high-resolution mass spectrometry in baseline collected plasma samples. Using conditional logistic regression models, odds ratios (ORs) and 95% CIs were estimated for caffeine metabolites and PD risk. RESULTS In the EPIC4PD cohort (comprising 184,024 individuals), the multivariable-adjusted HR comparing the highest coffee intake with nonconsumers was 0.63 (95% CI 0.46-0.88, p = 0.006). In the nested case-control study, which included 351 cases with incident PD and 351 matched controls, prediagnostic caffeine and its primary metabolites, paraxanthine and theophylline, were inversely associated with PD risk. The ORs were 0.80 (95% CI 0.67-0.95, p = 0.009), 0.82 (95% CI 0.69-0.96, p = 0.015), and 0.78 (95% CI 0.65-0.93, p = 0.005), respectively. Adjusting for smoking and alcohol consumption did not substantially change these results. DISCUSSION This study demonstrates that the neuroprotection of coffee on PD is attributed to caffeine and its metabolites by detailed quantification of plasma caffeine and its metabolites years before diagnosis.
Collapse
Affiliation(s)
- Yujia Zhao
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Yunjia Lai
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Hilde Konijnenberg
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - José María Huerta
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Ana Vinagre-Aragon
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Jara Anna Sabin
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Johnni Hansen
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Dafina Petrova
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Carlotta Sacerdote
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Raul Zamora-Ros
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Valeria Pala
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Alicia K Heath
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Salvatore Panico
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Marcela Guevara
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Giovanna Masala
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Christina M Lill
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Gary W Miller
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Susan Peters
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| | - Roel Vermeulen
- From the Institute for Risk Assessment Sciences (Y.Z., H.K., S. Peters, R.V.), Utrecht University, the Netherlands; Department of Environmental Health Sciences (Y.L., G.W.M.), Mailman School of Public Health, Columbia University, New York, NY; Department of Epidemiology (J.M.H.), Murcia Regional Health Council-IMIB, Murcia; CIBER Epidemiología y Salud Pública (CIBERESP) (J.M.H., M.G.), Madrid; Movement Disorders Unit (A.V.-A.), Department of Neurology, University Hospital Donostia; BioDonostia Health Research Institute (A.V.-A.), Neurodegenerative Diseases Area, San Sebastián, Spain; Division of Cancer Epidemiology (J.A.S.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Danish Cancer Institute (J.H.), Danish Cancer Society, Copenhagen, Denmark; Escuela Andaluza de Salud Pública (EASP) (D.P.); Instituto de Investigación Biosanitaria-ibs.GRANADA (D.P.), Granada; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP) (D.P.), Madrid, Spain; Unit of Cancer Epidemiology (C.S.), Città della Salute e della Scienza University-Hospital, Turin, Italy; Unit of Nutrition and Cancer (R.Z.-R.), Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Epidemiology and Prevention Unit (V.P.), Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy; Department of Epidemiology and Biostatistics (A.K.H., M.G.), School of Public Health, Imperial College London, United Kingdom; School of Medicine (S. Panico), Federico II University, Naples, Italy; de Salud Pública y Laboral de Navarra (M.G.), Pamplona; Navarra Institute for Health Research (IdiSNA) (M.G.), Pamplona, Spain; Institute for Cancer Research (G.M.), Prevention and Clinical Network (ISPRO), Florence, Italy; Institute of Epidemiology and Social Medicine (C.M.L.), University of Münster, Germany; Ageing Epidemiology Research Unit (AGE) (C.M.L.), School of Public Health, Imperial College London, United Kingdom; and University Medical Centre Utrecht (R.V.), the Netherlands
| |
Collapse
|
6
|
Reich N, Mannino M, Kotler S. Using caffeine as a chemical means to induce flow states. Neurosci Biobehav Rev 2024; 159:105577. [PMID: 38331128 DOI: 10.1016/j.neubiorev.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Flow is an intrinsically rewarding state characterised by positive affect and total task absorption. Because cognitive and physical performance are optimal in flow, chemical means to facilitate this state are appealing. Caffeine, a non-selective adenosine receptor antagonist, has been emphasized as a potential flow-inducer. Thus, we review the psychological and biological effects of caffeine that, conceptually, enhance flow. Caffeine may facilitate flow through various effects, including: i) upregulation of dopamine D1/D2 receptor affinity in reward-associated brain areas, leading to greater energetic arousal and 'wanting'; ii) protection of dopaminergic neurons; iii) increases in norepinephrine release and alertness, which offset sleep-deprivation and hypoarousal; iv) heightening of parasympathetic high frequency heart rate variability, resulting in improved cortical stress appraisal, v) modification of striatal endocannabinoid-CB1 receptor-signalling, leading to enhanced stress tolerance; and vi) changes in brain network activity in favour of executive function and flow. We also discuss the application of caffeine to treat attention deficit hyperactivity disorder and caveats. We hope to inspire studies assessing the use of caffeine to induce flow.
Collapse
Affiliation(s)
- Niklas Reich
- Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK; The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK.
| | - Michael Mannino
- Flow Research Collective, USA; Miami Dade College, Miami, FL, USA
| | | |
Collapse
|
7
|
Wang C, Zhou C, Guo T, Jiaerken Y, Yang S, Huang P, Xu X, Zhang M. Association of coffee consumption and striatal volume in patients with Parkinson's disease and healthy controls. CNS Neurosci Ther 2023; 29:2800-2810. [PMID: 37032638 PMCID: PMC10493673 DOI: 10.1111/cns.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Mounting studies have demonstrated that coffee consumption significantly reduces the risk of developing Parkinson's disease (PD). However, there have been few investigations about the role of chronic coffee consumption in nigrostriatal structural neurodegeneration in PD. We aimed to investigate whether chronic coffee consumption is associated with the change in striatal volume in PD. METHODS In this study, 130 de novo patients with PD and 69 healthy controls were enrolled from the Parkinson's Progression Markers Initiative cohort. Patients with PD and healthy controls were, respectively, divided into three subgroups, including current, ever, and never coffee consumers. Then, striatal volume was compared across the three subgroups. Correlation analyses were performed to assess the relationship between cups consumed per day and striatal volume. Furthermore, we included the factors that may have influenced nigrostriatal dopaminergic neurons in multiple linear regression analyses to identify significant contributing factors to striatal volume in each investigated striatal region. RESULTS Current coffee consumers had decreased striatal volume compared with ever consumers in controls but not patients with PD. Furthermore, the correlation analyses revealed that cups per day were negatively correlated with striatal volume in current consumers of patients with PD and controls. In addition, multiple linear regression analyses showed that current coffee consumption remained as an independent predictor of a decrease in striatal volume in controls. CONCLUSIONS Our study showed that chronic coffee consumption was negatively correlated with striatal volume. In addition, our study showed that chronic coffee consumption was associated with the change in striatal volume in current-rather than ever coffee consumers, which suggests that the chronic effects of caffeine on striatal morphology may fade and even compensate after quitting coffee. Our study provides evidence for the effect of chronic coffee consumption on striatal volume in human brain in vivo.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Siyu Yang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
8
|
Adeyeye TA, Babatunde BR, Ehireme SE, Shallie PD. Caffeine alleviates anxiety-like behavior and brainstem lesions in a rotenone-induced rat model of Parkinson's disease. J Chem Neuroanat 2023; 132:102315. [PMID: 37481171 DOI: 10.1016/j.jchemneu.2023.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. In 2016, approximately 6.1 million individuals were affected by PD, with 211,296 deaths attributed to the disease. The understanding of PD initially came from the observation of dopaminergic system alterations in a specific region of the brainstem, indicating that the core motor and non-motor features of PD are closely associated with brainstem dysfunction. The primary treatment approach for PD revolves around dopamine replacement, as many of the symptoms are responsive to this therapeutic intervention. However, long-term administration of this approach is linked to several complications, and a definitive gold-standard therapy for PD is yet to be identified. The pharmacological management of PD has been challenging and inconsistent, mainly due to the unclear underlying cause of the disease. This study aims to evaluate the effects of caffeine on the brainstem of rats with PD induced by rotenone. METHODOLOGY Fifty adult male Wistar rats weighing between 150 and 200 g were used in this study. The rats were randomly divided into five groups of ten rats each: Vehicle Group, Rotenone-only treated Group (rotenone only treated with 3 mg/kg, intraperitoneal administration [IP]), Preventive Group (caffeine 30 mg/kg + rotenone 3 mg/kg, IP), Curative Group (rotenone 3 mg/kg + caffeine 30 mg/kg, IP), and Caffeine only treated Group (caffeine only treated with 30 mg/kg, IP). The animals underwent neurobehavioral assessments, followed by sacrifice. The brains were then excised, weighed, and processed histologically. Appropriate brain sections were taken and processed. Photomicrographs were obtained, morphometric and statistical analysis was performed using an Omax LED digital RESULTS: The results demonstrated a significant (p < 0.05) reduction in body weight and relative brain weight, which were increased by caffeine treatments. Rotenone administration led to histological changes similar to those observed in PD, including neuronal structural derangement, degenerated nerve fibers, loss of myelinated neurons, and Nissl substance, as well as downregulation in the expressions of NRF2 and TH in the midbrain. However, these pathological features were counteracted or ameliorated by caffeine treatment. CONCLUSION Our study contributes additional evidence to the growing body of research supporting the therapeutic potential of caffeine in Parkinson's disease (PD). The results underscore the neuroprotective properties of caffeine and its capacity to mitigate oxidative stress by modulating TH (tyrosine hydroxylase) and cytoplasmic NRF2 (nuclear factor erythroid 2-related factor 2) in the mesencephalon. These findings suggest that caffeine holds promise as a viable treatment option for PD.
Collapse
|
9
|
Wang C, Zhou C, Guo T, Jiaerken Y, Yang S, Xu X, Hu L, Huang P, Xu X, Zhang M. Current coffee consumption is associated with decreased striatal dopamine transporter availability in Parkinson's disease patients and healthy controls. BMC Med 2023; 21:272. [PMID: 37491235 PMCID: PMC10369815 DOI: 10.1186/s12916-023-02994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Coffee is the most widely consumed psychostimulant worldwide. Emerging evidence indicates that coffee consumption habit significantly reduces the risk of developing Parkinson's disease (PD). However, the effect of coffee consumption on nigrostriatal dopaminergic neurodegeneration is still largely unknown. We therefore aim to investigate the role of coffee consumption in nigrostriatal dopaminergic neurodegeneration using dopamine transporter (DAT) imaging in PD and healthy controls (HC). METHODS A total of 138 PD patients and 75 HC with questionnaires about coffee consumption, and DAT scans were recruited from the Parkinson's Progression Markers Initiative cohort. Demographic, clinical, and striatal DAT characteristics were compared across subgroups of current, former, and never coffee consumers in PD and HC, respectively. Furthermore, partial correlation analyses were performed to determine whether there was a relationship between coffee cups consumed per day and striatal DAT characteristics in each striatal region. In addition, the factors that may have influenced the loss of nigrostriatal dopaminergic neurons were included in multiple linear regression analyses to identify significant contributing factors to DAT availability in each striatal region. RESULTS PD patients had lower DAT availability in each striatal region than HC (p < 0.001). In PD patients, there were significant differences in DAT availability in the caudate (p = 0.008, Bonferroni corrected) across three PD subgroups. Specifically, post hoc tests showed that current coffee consumers had significantly lower DAT availability in the caudate than former coffee consumers (p = 0.01) and never coffee consumers (p = 0.022). In HC, there were significant differences in DAT availability in the caudate (p = 0.031, Bonferroni uncorrected) across three HC subgroups. Specifically, post hoc tests showed that current coffee consumers had significantly lower DAT availability in the caudate than former coffee consumers (p = 0.022). Moreover, correlation analysis revealed that cups per day were negatively correlated with DAT availability in the caudate in current consumers of PD patients (r = - 0.219, p = 0.047). In addition, multiple linear regression analyses showed that current coffee consumption remained an independent predictor of decreased DAT availability in the caudate in PD patients and HC. CONCLUSIONS This study demonstrates that current coffee consumption is associated with decreased striatal DAT availability in the caudate. However, the effects of caffeine on striatal DAT may fade and disappear after quitting coffee consumption. TRIAL REGISTRATION ClinicalTrials.gov, NCT01141023.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China.
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Siyu Yang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Ling Hu
- Department of Ultrasound in Medicine, Hangzhou Women's Hospital, Hangzhou, Zhejiang, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
10
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
11
|
Ősz BE, Jîtcă G, Ștefănescu RE, Pușcaș A, Tero-Vescan A, Vari CE. Caffeine and Its Antioxidant Properties-It Is All about Dose and Source. Int J Mol Sci 2022; 23:13074. [PMID: 36361861 PMCID: PMC9654796 DOI: 10.3390/ijms232113074] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/16/2023] Open
Abstract
Caffeine is the most frequently used substance with a central nervous system stimulant effect, but its consumption is most often due to the intake of foods and drinks that contain it (coffee, tea, chocolate, food supplements with plant extracts of Guarana, Mate herba, Cola nuts). Due to its innocuity, caffeine is a safe xanthine alkaloid for human consumption in a wide range of doses, being used for its central nervous stimulating effect, lipolytic and diuresis-enhancing properties, but also as a permitted ergogenic compound in athletes. In addition to the mechanisms that explain the effects of caffeine on the targeted organ, there are many proposed mechanisms by which this substance would have antioxidant effects. As such, its consumption prevents the occurrence/progression of certain neurodegenerative diseases as well as other medical conditions associated with increased levels of reactive oxygen or nitrogen species. However, most studies that have assessed the beneficial effects of caffeine have used pure caffeine. The question, therefore, arises whether the daily intake of caffeine from food or drink has similar benefits, considering that in foods or drinks with a high caffeine content, there are other substances that could interfere with this action, either by potentiating or decreasing its antioxidant capacity. Natural sources of caffeine often combine plant polyphenols (phenol-carboxylic acids, catechins) with known antioxidant effects; however, stimulant drinks and dietary supplements often contain sugars or artificial sweeteners that can significantly reduce the effects of caffeine on oxidative stress. The objective of this review is to clarify the effects of caffeine in modulating oxidative stress and assess these benefits, considering the source and the dose administered.
Collapse
Affiliation(s)
- Bianca-Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ruxandra-Emilia Ștefănescu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amalia Pușcaș
- Department of Biochemistry and Chemistry of Environmental Factors, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Camil-Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
12
|
Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int J Mol Sci 2022; 23:ijms232112958. [PMID: 36361750 PMCID: PMC9658704 DOI: 10.3390/ijms232112958] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
13
|
Olopade F, Femi-Akinlosotu O, Ibitoye C, Shokunbi T. Probing Caffeine Administration as a Medical Management for Hydrocephalus: An Experimental Study. Pediatr Neurol 2022; 135:12-21. [PMID: 35970099 DOI: 10.1016/j.pediatrneurol.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Hydrocephalus is currently managed by cerebrospinal fluid diversion from the cerebral ventricles to other body sites, but this is complicated by obstruction and infection in young infants, thus adding to morbidity and mortality. Studies have reported caffeine to be a pleiotropic neuroprotective drug in the developing brain due to its antioxidant, anti-inflammatory, and antiapoptotic properties, with improved white matter microstructural development. In this study, we investigate the use of caffeine administration as a possible means of pharmacological management for hydrocephalus. METHODS A total of 76 three-day-old mice pups from 10 dams were divided into four groups: hydrocephalus was induced in the pups in two groups by intracisternal injection of kaolin suspension, and their dams were given either caffeine (50 mg/kg by gavage) or water daily for 21 days; the dams in the other 2 (non-hydrocephalic) groups similarly had either caffeine or water; the pups received caffeine administered via lactation. Developmental neurobehavioral tests were performed until day 21, when the pups were sacrificed. Their brains were removed and processed for Cresyl and Golgi staining; both quantitative and qualitative analyses were then carried out. RESULTS Improved developmental motor activities and reflexes were observed in the hydrocephalus + caffeine-treated pups. Caffeine administration was associated with reduced cell death and increased dendritic arborization of the neurons in the sensorimotor cortex and striatum of hydrocephalic mice pups. CONCLUSION Caffeine administration appears to have promise as an adjunct in hydrocephalus management, and its use needs to be further explored.
Collapse
Affiliation(s)
- Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | - Chloe Ibitoye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Shokunbi
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
14
|
Sahebnasagh A, Eghbali S, Saghafi F, Sureda A, Avan R. Neurohormetic phytochemicals in the pathogenesis of neurodegenerative diseases. Immun Ageing 2022; 19:36. [PMID: 35953850 PMCID: PMC9367062 DOI: 10.1186/s12979-022-00292-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/24/2022] [Indexed: 12/02/2022]
Abstract
The world population is progressively ageing, assuming an enormous social and health challenge. As the world ages, neurodegenerative diseases are on the rise. Regarding the progressive nature of these diseases, none of the neurodegenerative diseases are curable at date, and the existing treatments can only help relieve the symptoms or slow the progression. Recently, hormesis has increased attention in the treatment of age-related neurodegenerative diseases. The concept of hormesis refers to a biphasic dose-response phenomenon, where low levels of the drug or stress exert protective of beneficial effects and high doses deleterious or toxic effects. Neurohormesis, as the adaptive aspect of hormetic dose responses in neurons, has been shown to slow the onset of neurodegenerative diseases and reduce the damages caused by aging, stroke, and traumatic brain injury. Hormesis was also observed to modulate anxiety, stress, pain, and the severity of seizure. Thus, neurohormesis can be considered as a potentially innovative approach in the treatment of neurodegenerative and other neurologic disorders. Herbal medicinal products and supplements are often considered health resources with many applications. The hormesis phenomenon in medicinal plants is valuable and several studies have shown that hormetic mechanisms of bioactive compounds can prevent or ameliorate the neurodegenerative pathogenesis in animal models of Alzheimer’s and Parkinson’s diseases. Moreover, the hormesis activity of phytochemicals has been evaluated in other neurological disorders such as Autism and Huntington’s disease. In this review, the neurohormetic dose–response concept and the possible underlying neuroprotection mechanisms are discussed. Different neurohormetic phytochemicals used for the better management of neurodegenerative diseases, the rationale for using them, and the key findings of their studies are also reviewed.
Collapse
|
15
|
Ishola I, Afolayan O, Badru A, Olubodun-Obadun T, John N, Adeyemi O. Angiotensin converting enzyme inhibitor captopril prevents neuronal overexpression of amyloid-beta and alpha-synuclein in Drosophila melanogaster genetic models of neurodegenerative diseases. Niger J Physiol Sci 2022; 37:21-28. [PMID: 35947848 DOI: 10.54548/njps.v37i1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Parkinson disease (PD) and Alzheimer's disease (AD) are progressive neurodegenerative disorders characterized by loss of selective neurons in discreet part of the brain. The peptide angiotensin II (Ang II) plays significant role in hippocampal and striatal neurons degeneration through the generation of reactive oxygen species. Blockade of the angiotensin converting enzyme or ATI receptors provides protection in animal models of neurodegenerative diseases. In the present study, the neuroprotective effect of captopril was investigated in Drosophila melanogaster model using the UAS-GAL4 system to express the synuclein and Aβ42 peptide in the flies' neurons. METHODS The disease causing human Aβ42 peptide or α-syn was expressed pan-neuronally (elav-GAL4) or dopamine neuron (DDC-GAL4) using the UAS-GAL4 system. Flies were either grown in food media with or without captopril (1, 5, or 10µM). This was followed by fecundity, larva motility, negative geotaxis assay (climbing) and lifespan as a measure of neurodegeneration. RESULTS Elav-Gal4<Aβ or DDC-GAL4<α-syn flies displayed significant decrease in larva motility when compared with normal control (w1118) which was reversed by the supplementation of the media with captopril (5 or 10 mM) indicative of neuroprotection. Interestingly, supplementation of flies' media with captopril improved climbing activity in Elav-Gal4<Aβ or DDC-GAL4<α-syn flies when compared with vehicle treated only. Moreover, flies grown on captopril caused no significant change in lifespan. Conclusion: Findings from this study confirmed the neuroprotective action of captopril in genetic or familial forms of neurodegeneration.
Collapse
|
16
|
Reichmann H. [Caffeine, Chocolate and Adenosine A2A Receptor Antagonists in the Treatment of Parkinson's Disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022. [PMID: 35584767 DOI: 10.1055/a-1785-3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Patients with Parkinson's disease can apparently benefit from caffeine consumption, as a number of experimental and clinical studies have already shown. METHODS The review examined the available literature on caffeine and Parkinson's disease. RESULTS Caffeine can penetrate the blood-brain barrier and exerts its biological effects mainly by antagonizing adenosine receptors. Numerous studies indicate that caffeine and its derivatives theobromine and theophylline are associated with a reduced risk of Parkinson's disease. Caffeine and adenosine antagonists reduce the excitotoxicity caused by glutamate. Evidence from animal models supports the potential of A2A receptor antagonism as an innovative disease-modifying target in Parkinson's disease CONCLUSION: The present review shows that the investigation and synthesis of xanthine derivatives as well as their analysis in clinical studies could be a promising approach in the therapy of neurodegenerative diseases.
Collapse
|
17
|
Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A 2A Receptor Antagonists for Treating Parkinson's Disease. Molecules 2022; 27:2366. [PMID: 35408767 PMCID: PMC9000505 DOI: 10.3390/molecules27072366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson's disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase inhibitors in adults with PD experiencing OFF episodes or a wearing-off phenomenon; however, the full potential of this drug class remains to be explored. In this article, we review the pharmacology of adenosine A2A receptor antagonists from the perspective of the treatment of both motor and non-motor symptoms of PD and their potential for disease modification.
Collapse
Affiliation(s)
- Akihisa Mori
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou 325015, China;
| | - Shinichi Uchida
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | | | | | - Peter Jenner
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| |
Collapse
|
18
|
Jost WH, Tönges L. [Adenosine A2A Receptor Antagonists as a Treatment Option for Parkinson's Disease?]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:565-570. [PMID: 35226930 DOI: 10.1055/a-1771-6225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In Parkinson's disease, the focus has long been on motor symptoms and therapy with dopaminergic substances. In recent years, the importance of non-motor symptoms has been increasingly recognized, as they occur early in the course of the disease and restrict considerably the quality of life. However, this also made the need for treatment of non-dopaminergic deficits obvious. Adenosine A2A receptor antagonists were identified as an additional therapy, since the adenosine A2A receptors are non-dopaminergic and selectively localized in the basal ganglia. This means that the striato-thalamo-cortical loops can be modulated. An adenosine A2A receptor antagonist was already approved in Japan in 2013 and in the USA in 2019 as an add-on to L-DOPA. Approval for this drug in Europe is expected in the near future. In this overview, we present the theoretical basis and current data on its efficacy and therapeutic use.
Collapse
Affiliation(s)
| | - Lars Tönges
- Klinik für Neurologie, Ruhr-Universität Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
19
|
Leodori G, De Bartolo MI, Belvisi D, Ciogli A, Fabbrini A, Costanzo M, Manetto S, Conte A, Villani C, Fabbrini G, Berardelli A. Salivary caffeine in Parkinson's disease. Sci Rep 2021; 11:9823. [PMID: 33972579 PMCID: PMC8110998 DOI: 10.1038/s41598-021-89168-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
We aimed to investigate salivary caffeine content, caffeine absorption and metabolism in Parkinson’s disease (PD) and verify whether salivary caffeine can be used as a biomarker of PD. We enrolled 98 PD patients and 92 healthy subjects. Caffeine and its major metabolite, paraxanthine, were measured in saliva samples collected before and 4 h after the oral intake of caffeine (100 mg). We measured caffeine absorption as the normalized increase in caffeine levels, and caffeine metabolism as the paraxanthine/caffeine ratio. The Movement Disorder Society Unified Parkinson's Disease Rating Scale part III, the Hoehn & Yahr, the presence of motor complications, and levodopa equivalent dose (LED) were assessed and correlated with caffeine levels, absorption, and metabolism. The effects of demographic and environmental features possibly influencing caffeine levels were also investigated. Caffeine levels were decreased in patients with moderate/advanced PD, while caffeine levels were normal in patients with early and de-novo PD, unrelated to caffeine intake. Caffeine absorption and metabolism were normal in PD. Decreased salivary caffeine levels in PD were associated with higher disease severity, longer duration, and the presence of motor complications, no significant association was found with LED. Salivary caffeine decrease correlates with PD progression.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS NEUROMED, Via Atinense, 18, 86077, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | | | - Daniele Belvisi
- IRCCS NEUROMED, Via Atinense, 18, 86077, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Matteo Costanzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Simone Manetto
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonella Conte
- IRCCS NEUROMED, Via Atinense, 18, 86077, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giovanni Fabbrini
- IRCCS NEUROMED, Via Atinense, 18, 86077, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy
| | - Alfredo Berardelli
- IRCCS NEUROMED, Via Atinense, 18, 86077, Pozzilli, Italy. .,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185, Rome, Italy.
| |
Collapse
|
20
|
Khaw KY, Chong CW, Murugaiyah V. LC-QTOF-MS analysis of xanthone content in different parts of Garcinia mangostana and its influence on cholinesterase inhibition. J Enzyme Inhib Med Chem 2021; 35:1433-1441. [PMID: 32608273 PMCID: PMC7717613 DOI: 10.1080/14756366.2020.1786819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mangosteen is one of the best tasting tropical fruit widely cultivated in Southeast Asia. This study aimed to quantify xanthone content in different parts of Garcinia mangostana by LC-QTOF-MS and determine its influence on their cholinesterase inhibitory activities. The total xanthone content in G. mangostana was in the following order: pericarp > calyx > bark > stalk > stem > leaves > aril. The total xanthone content of pericarp was 100 times higher than the aril. Methanol extracts of the pericarp and calyx demonstrated the most potent inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of 0.90 and 0.37 µg/mL, respectively. Statistical analysis showed a strong correlation between xanthone content and cholinesterase inhibition. Nonmetric multidimensional scaling analysis revealed α-mangostin and γ-mangostin of pericarp as the key metabolites contributing to cholinesterase inhibition. Due to the increasing demand of mangosteen products, repurposing of fruit waste (pericarp) has great potential for enhancement of the cognitive health of human beings.
Collapse
Affiliation(s)
- Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Vikneswaran Murugaiyah
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
21
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
22
|
Do caffeine and more selective adenosine A 2A receptor antagonists protect against dopaminergic neurodegeneration in Parkinson's disease? Parkinsonism Relat Disord 2020; 80 Suppl 1:S45-S53. [PMID: 33349580 PMCID: PMC8102090 DOI: 10.1016/j.parkreldis.2020.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/26/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
The adenosine A2A receptor is a major target of caffeine, the most widely used psychoactive substance worldwide. Large epidemiological studies have long shown caffeine consumption is a strong inverse predictor of Parkinson’s disease (PD). In this review, we first examine the epidemiology of caffeine use vis-à-vis PD and follow this by looking at the evidence for adenosine A2A receptor antagonists as potential neuroprotective agents. There is a wealth of accumulating biological, epidemiological and clinical evidence to support the further investigation of selective adenosine A2A antagonists, as well as caffeine, as promising candidate therapeutics to fill the unmet need for disease modification of PD.
Collapse
|
23
|
Ren X, Chen JF. Caffeine and Parkinson's Disease: Multiple Benefits and Emerging Mechanisms. Front Neurosci 2020; 14:602697. [PMID: 33390888 PMCID: PMC7773776 DOI: 10.3389/fnins.2020.602697] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by dopaminergic neurodegeneration, motor impairment and non-motor symptoms. Epidemiological and experimental investigations into potential risk factors have firmly established that dietary factor caffeine, the most-widely consumed psychoactive substance, may exerts not only neuroprotective but a motor and non-motor (cognitive) benefits in PD. These multi-benefits of caffeine in PD are supported by convergence of epidemiological and animal evidence. At least six large prospective epidemiological studies have firmly established a relationship between increased caffeine consumption and decreased risk of developing PD. In addition, animal studies have also demonstrated that caffeine confers neuroprotection against dopaminergic neurodegeneration using PD models of mitochondrial toxins (MPTP, 6-OHDA, and rotenone) and expression of α-synuclein (α-Syn). While caffeine has complex pharmacological profiles, studies with genetic knockout mice have clearly revealed that caffeine’s action is largely mediated by the brain adenosine A2A receptor (A2AR) and confer neuroprotection by modulating neuroinflammation and excitotoxicity and mitochondrial function. Interestingly, recent studies have highlighted emerging new mechanisms including caffeine modulation of α-Syn degradation with enhanced autophagy and caffeine modulation of gut microbiota and gut-brain axis in PD models. Importantly, since the first clinical trial in 2003, United States FDA has finally approved clinical use of the A2AR antagonist istradefylline for the treatment of PD with OFF-time in Sept. 2019. To realize therapeutic potential of caffeine in PD, genetic study of caffeine and risk genes in human population may identify useful pharmacogenetic markers for predicting individual responses to caffeine in PD clinical trials and thus offer a unique opportunity for “personalized medicine” in PD.
Collapse
Affiliation(s)
- Xiangpeng Ren
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China.,Department of Biochemistry, Medical College, Jiaxing University, Jiaxing, China
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, China
| |
Collapse
|
24
|
Silva JM, Nobre MSC, Albino SL, Lócio LL, Nascimento APS, Scotti L, Scotti MT, Oshiro-Junior JA, Lima MCA, Mendonça-Junior FJB, Moura RO. Secondary Metabolites with Antioxidant Activities for the Putative Treatment of Amyotrophic Lateral Sclerosis (ALS): "Experimental Evidences". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5642029. [PMID: 33299526 PMCID: PMC7707995 DOI: 10.1155/2020/5642029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that is characterized by progressive loss of the upper and lower motor neurons at the spinal or bulbar level. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain are factors that contribute to neurodegeneration and perform a potential role in the pathogenesis of ALS. Natural antioxidant molecules have been proposed as an alternative form of treatment for the prevention of age-related neurological diseases, in which ALS is included. Researches support that regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in this disease, and antioxidant drugs are aimed at a promising pathway to treatment. Among the strategies used for obtaining new drugs, we can highlight the isolation of secondary metabolite compounds from natural sources that, along with semisynthetic derivatives, correspond to approximately 40% of the drugs found on the market. Among these compounds, we emphasize oxygenated and nitrogenous compounds, such as flavonoids, coumarins, and alkaloids, in addition to the fatty acids, that already stand out in the literature for their antioxidant properties, consisting in a part of the diets of millions of people worldwide. Therefore, this review is aimed at presenting and summarizing the main articles published within the last years, which represent the therapeutic potential of antioxidant compounds of natural origin for the treatment of ALS.
Collapse
Affiliation(s)
- Jamire M. Silva
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Michelangela S. C. Nobre
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Sonaly L. Albino
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Lucas L. Lócio
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Agnis P. S. Nascimento
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - Marcus T. Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - João A. Oshiro-Junior
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Maria C. A. Lima
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
| | - Francisco J. B. Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, 58071-160 João Pessoa PB, Brazil
| | - Ricardo O. Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| |
Collapse
|
25
|
Lee D, Jo MG, Kim SY, Chung CG, Lee SB. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson's Disease Treatment. Antioxidants (Basel) 2020; 9:antiox9111056. [PMID: 33126703 PMCID: PMC7692176 DOI: 10.3390/antiox9111056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson’s disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Min Gu Jo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea; (D.L.); (M.G.J.); (S.Y.K.)
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Correspondence: (C.G.C.); (S.B.L.)
| |
Collapse
|
26
|
Crotty GF, Maciuca R, Macklin EA, Wang J, Montalban M, Davis SS, Alkabsh JI, Bakshi R, Chen X, Ascherio A, Astarita G, Huntwork-Rodriguez S, Schwarzschild MA. Association of caffeine and related analytes with resistance to Parkinson disease among LRRK2 mutation carriers: A metabolomic study. Neurology 2020; 95:e3428-e3437. [PMID: 32999056 PMCID: PMC7836665 DOI: 10.1212/wnl.0000000000010863] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/17/2020] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To identify markers of resistance to developing Parkinson disease (PD) among LRRK2 mutation carriers (LRRK2+), we carried out metabolomic profiling in individuals with PD and unaffected controls (UC), with and without the LRRK2 mutation. METHODS Plasma from 368 patients with PD and UC in the LRRK2 Cohort Consortium (LCC), comprising 118 LRRK2+/PD+, 115 LRRK2+/UC, 70 LRRK2-/PD+, and 65 LRRK2-/UC, and CSF available from 68 of them, were analyzed by liquid chromatography with mass spectrometry. For 282 analytes quantified in plasma and CSF, we assessed differences among the 4 groups and interactions between LRRK2 and PD status, using analysis of covariance models adjusted by age, study site cohort, and sex, with p value corrections for multiple comparisons. RESULTS Plasma caffeine concentration was lower in patients with PD vs UC (p < 0.001), more so among LRRK2+ carriers (by 76%) than among LRRK2- participants (by 31%), with significant interaction between LRRK2 and PD status (p = 0.005). Similar results were found for caffeine metabolites (paraxanthine, theophylline, 1-methylxanthine) and a nonxanthine marker of coffee consumption (trigonelline) in plasma, and in the subset of corresponding CSF samples. Dietary caffeine was also lower in LRRK2+/PD+ compared to LRRK2+/UC with significant interaction effect with the LRRK2+ mutation (p < 0.001). CONCLUSIONS Metabolomic analyses of the LCC samples identified caffeine, its demethylation metabolites, and trigonelline as prominent markers of resistance to PD linked to pathogenic LRRK2 mutations, more so than to idiopathic PD. Because these analytes are known both as correlates of coffee consumption and as neuroprotectants in animal PD models, the findings may reflect their avoidance by those predisposed to develop PD or their protective effects among LRRK2 mutation carriers.
Collapse
Affiliation(s)
- Grace F Crotty
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA.
| | - Romeo Maciuca
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Eric A Macklin
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Junhua Wang
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Manuel Montalban
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Sonnet S Davis
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jamal I Alkabsh
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Rachit Bakshi
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Xiqun Chen
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Alberto Ascherio
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Giuseppe Astarita
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Sarah Huntwork-Rodriguez
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| | - Michael A Schwarzschild
- From the Department of Neurology (G.F.C., R.B., X.C., M.A.S.) and Biostatistics Center, Department of Medicine (E.A.M.), Massachusetts General Hospital; Harvard Medical School (G.F.C., E.A.M., R.B., X.C., A.A., M.A.S.), Boston, MA; Denali Therapeutics Inc. (R.M., J.W., M.M., S.S.D., J.I.A., G.A., S.H.-R.), San Francisco, CA; and Department of Nutrition (A.A.), Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
27
|
Schneider J, Ribeiro R, Alfonso-Prieto M, Carloni P, Giorgetti A. Hybrid MM/CG Webserver: Automatic Set Up of Molecular Mechanics/Coarse-Grained Simulations for Human G Protein-Coupled Receptor/Ligand Complexes. Front Mol Biosci 2020; 7:576689. [PMID: 33102525 PMCID: PMC7500467 DOI: 10.3389/fmolb.2020.576689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hybrid Molecular Mechanics/Coarse-Grained (MM/CG) simulations help predict ligand poses in human G protein-coupled receptors (hGPCRs), the most important protein superfamily for pharmacological applications. This approach allows the description of the ligand, the binding cavity, and the surrounding water molecules at atomistic resolution, while coarse-graining the rest of the receptor. Here, we present the Hybrid MM/CG Webserver (mmcg.grs.kfa-juelich.de) that automatizes and speeds up the MM/CG simulation setup of hGPCR/ligand complexes. Initial structures for such complexes can be easily and efficiently generated with other webservers. The Hybrid MM/CG server also allows for equilibration of the systems, either fully automatically or interactively. The results are visualized online (using both interactive 3D visualizations and analysis plots), helping the user identify possible issues and modify the setup parameters accordingly. Furthermore, the prepared system can be downloaded and the simulation continued locally.
Collapse
Affiliation(s)
- Jakob Schneider
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-Institute: Molecular Neuroscience and Neuroimaging, Institute for Neuroscience and Medicine INM-11/JARA-BRAIN Institute JBI-2, Forschungszentrum Jülich GmbH, Jülich, Germany.,Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Rui Ribeiro
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,Medical Faculty, Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-Institute: Molecular Neuroscience and Neuroimaging, Institute for Neuroscience and Medicine INM-11/JARA-BRAIN Institute JBI-2, Forschungszentrum Jülich GmbH, Jülich, Germany.,Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
28
|
Kasabova-Angelova A, Tzankova D, Mitkov J, Georgieva M, Tzankova V, Zlatkov A, Kondeva-Burdina M. Xanthine Derivatives as Agents Affecting Non-dopaminergic Neuroprotection in Parkinson`s Disease. Curr Med Chem 2020; 27:2021-2036. [PMID: 30129404 DOI: 10.2174/0929867325666180821153316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative and debilitating disease that affects 1% of the elderly population. Patient's motor disability results in extreme difficulty to deal with daily activities. Conventional treatment is limited to dopamine replacement therapy, which fails to delay disease's progression and is often associated with a number of adverse reactions. Recent progress in understanding the mechanisms involved in PD has revealed new molecular targets for therapeutic approaches. Among them, caffeine and xanthine derivatives are promising drug candidates, because of the possible symptomatic benefits in PD. In fact, consumption of coffee correlates with a reduced risk of PD. Over the last decades, a lot of efforts have been made to uncover the therapeutic potential of xanthine structures. The substituted xanthine molecule is used as a scaffold for the synthesis of new compounds with protective effects in neurodegenerative diseases, including PD, asthma, cancer and others. The administration of the xanthines has been proposed as a non-dopaminergic strategy for neuroprotection in PD and the mechanisms of protection have been associated with antagonism of adenosine A2A receptors and Monoamine Oxidase type B (MAO-B) inhibition. The current review summarizes frequently suspected non-dopaminergic neuroprotective mechanisms and the possible beneficial effects of the xanthine derivatives in PD, along with some synthetic approaches to produce perspective xanthine derivatives as non-dopaminergic agents in PD treatment.
Collapse
Affiliation(s)
- Alexandra Kasabova-Angelova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
29
|
Schepici G, Silvestro S, Bramanti P, Mazzon E. Caffeine: An Overview of Its Beneficial Effects in Experimental Models and Clinical Trials of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21134766. [PMID: 32635541 PMCID: PMC7369844 DOI: 10.3390/ijms21134766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurological disease characterized by the progressive degeneration of the nigrostriatal dopaminergic pathway with consequent loss of neurons in the substantia nigra pars compacta and dopamine depletion. The cytoplasmic inclusions of α-synuclein (α-Syn), known as Lewy bodies, are the cytologic hallmark of PD. The presence of α-Syn aggregates causes mitochondrial degeneration, responsible for the increase in oxidative stress and consequent neurodegeneration. PD is a progressive disease that shows a complicated pathogenesis. The current therapies are used to alleviate the symptoms of the disease without changing its clinical course. Recently, phytocompounds with neuroprotective effects and antioxidant properties such as caffeine have aroused the interest of researchers. The purpose of this review is to summarize the preclinical studies present in the literature and clinical trials recorded in ClinicalTrial.gov, aimed at illustrating the effects of caffeine used as a nutraceutical compound combined with the current PD therapies. Therefore, the preventive effects of caffeine in the neurodegeneration of dopaminergic neurons encourage the use of this alkaloid as a supplement to reduce the progress of the PD.
Collapse
|
30
|
Choudhury H, Chellappan DK, Sengupta P, Pandey M, Gorain B. Adenosine Receptors in Modulation of Central Nervous System Disorders. Curr Pharm Des 2020; 25:2808-2827. [PMID: 31309883 DOI: 10.2174/1381612825666190712181955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Abstract
The ubiquitous signaling nucleoside molecule, adenosine is found in different cells of the human body to provide its numerous pharmacological role. The associated actions of endogenous adenosine are largely dependent on conformational change of the widely expressed heterodimeric G-protein-coupled A1, A2A, A2B, and A3 adenosine receptors (ARs). These receptors are well conserved on the surface of specific cells, where potent neuromodulatory properties of this bioactive molecule reflected by its easy passage through the rigid blood-brainbarrier, to simultaneously act on the central nervous system (CNS). The minimal concentration of adenosine in body fluids (30-300 nM) is adequate to exert its neuromodulatory action in the CNS, whereas the modulatory effect of adenosine on ARs is the consequence of several neurodegenerative diseases. Modulatory action concerning the activation of such receptors in the CNS could be facilitated towards neuroprotective action against such CNS disorders. Our aim herein is to discuss briefly pathophysiological roles of adenosine on ARs in the modulation of different CNS disorders, which could be focused towards the identification of potential drug targets in recovering accompanying CNS disorders. Researches with active components with AR modulatory action have been extended and already reached to the bedside of the patients through clinical research in the improvement of CNS disorders. Therefore, this review consist of recent findings in literatures concerning the impact of ARs on diverse CNS disease pathways with the possible relevance to neurodegeneration.
Collapse
Affiliation(s)
- Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Dinesh K Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MA`HSA University, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
31
|
Kasabova-Angelova A, Kondeva-Burdina M, Mitkov J, Georgieva M, Tzankova V, Zlatkov A. Neuroprotective and MAOB inhibitory effects of a series of caffeine-8-thioglycolic acid amides. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
32
|
Potential new therapies against a toxic relationship: neuroinflammation and Parkinson’s disease. Behav Pharmacol 2019; 30:676-688. [DOI: 10.1097/fbp.0000000000000512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Kumar VHS, Lipshultz SE. Caffeine and Clinical Outcomes in Premature Neonates. CHILDREN (BASEL, SWITZERLAND) 2019; 6:E118. [PMID: 31653108 PMCID: PMC6915633 DOI: 10.3390/children6110118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022]
Abstract
Caffeine is the most widely used drug by both adults and children worldwide due to its ability to promote alertness and elevate moods. It is effective in the management of apnea of prematurity in premature infants. Caffeine for apnea of prematurity reduces the incidence of bronchopulmonary dysplasia in very-low-birth-weight infants and improves survival without neurodevelopmental disability at 18-21 months. Follow-up studies of the infants in the Caffeine for Apnea of Prematurity trial highlight the long-term safety of caffeine in these infants, especially relating to motor, behavioral, and intelligence skills. However, in animal models, exposure to caffeine during pregnancy and lactation adversely affects neuronal development and adult behavior of their offspring. Prenatal caffeine predisposes to intrauterine growth restriction and small growth for gestational age at birth. However, in-utero exposure to caffeine is also associated with excess growth, obesity, and cardio-metabolic changes in children. Caffeine therapy is a significant advance in newborn care, conferring immediate benefits in preterm neonates. Studies should help define the appropriate therapeutic window for caffeine treatment along with with the mechanisms relating to its beneficial effects on the brain and the lung. The long-term consequences of caffeine in adults born preterm are being studied and may depend on the ability of caffeine to modulate both the expression and the maturation of adenosine receptors in infants treated with caffeine.
Collapse
Affiliation(s)
- Vasantha H S Kumar
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA.
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
34
|
Kalampokini S, Becker A, Fassbender K, Lyros E, Unger MM. Nonpharmacological Modulation of Chronic Inflammation in Parkinson's Disease: Role of Diet Interventions. PARKINSON'S DISEASE 2019; 2019:7535472. [PMID: 31534664 PMCID: PMC6732577 DOI: 10.1155/2019/7535472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Neuroinflammation is increasingly recognized as an important pathophysiological feature of neurodegenerative diseases such as Parkinson's disease (PD). Recent evidence suggests that neuroinflammation in PD might originate in the intestine and the bidirectional communication between the central and enteric nervous system, the so-called "gut-brain axis," has received growing attention due to its contribution to the pathogenesis of neurological disorders. Diet targets mediators of inflammation with various mechanisms and combined with dopaminergic treatment can exert various beneficial effects in PD. Food-based therapies may favorably modulate gut microbiota composition and enhance the intestinal epithelial integrity or decrease the proinflammatory response by direct effects on immune cells. Diets rich in pre- and probiotics, polyunsaturated fatty acids, phenols including flavonoids, and vitamins, such as the Mediterranean diet or a plant-based diet, may attenuate chronic inflammation and positively influence PD symptoms and even progression of the disease. Dietary strategies should be encouraged in the context of a healthy lifestyle with physical activity, which also has neuroimmune-modifying properties. Thus, diet adaptation appears to be an effective additive, nonpharmacological therapeutic strategy that can attenuate the chronic inflammation implicated in PD, potentially slow down degeneration, and thereby modify the course of the disease. PD patients should be highly encouraged to adopt corresponding lifestyle modifications, in order to improve not only PD symptoms, but also general quality of life. Future research should focus on planning larger clinical trials with dietary interventions in PD in order to obtain hard evidence for the hypothesized beneficial effects.
Collapse
Affiliation(s)
- Stefania Kalampokini
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Anouck Becker
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Epameinondas Lyros
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Marcus M. Unger
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| |
Collapse
|
35
|
Caffeine Neuroprotection Decreases A2A Adenosine Receptor Content in Aged Mice. Neurochem Res 2019; 44:787-795. [PMID: 30610653 DOI: 10.1007/s11064-018-02710-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/14/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
Caffeine is a bioactive compound worldwide consumed with effect into the brain. Part of its action in reducing incidence or delaying Alzheimer's and Parkinson's diseases symptoms in human is credited to the adenosine receptors properties. However, the impact of caffeine consumption during aging on survival of brain cells remains debatable. This work, we investigated the effect of low-dose of caffeine on the ectonucleotidase activities, adenosine receptors content, and paying particular attention to its pro-survival effect during aging. Male young adult and aged Swiss mice drank water or caffeine (0.3 g/L) ad libitum for 4 weeks. The results showed that long-term caffeine treatment did not unchanged ATP, ADP or AMP hydrolysis in hippocampus when compared to the mice drank water. Nevertheless, the ATP/ADP hydrolysis ratio was higher in young adult (3:1) compared to the aged (1:1) animals regardless of treatment. The content of A1 receptors did not change in any groups of mice, but the content of A2A receptors was reduced in hippocampus of mice that consumed caffeine. Moreover, the cell viability results indicated that aged mice not only had increased pyknotic neurons in the hippocampus but also had reduced damage after caffeine treatment. Overall, these findings indicate a potential neuroprotective effect of caffeine during aging through the adenosinergic system.
Collapse
|
36
|
Herden L, Weissert R. The Impact of Coffee and Caffeine on Multiple Sclerosis Compared to Other Neurodegenerative Diseases. Front Nutr 2018; 5:133. [PMID: 30622948 PMCID: PMC6308803 DOI: 10.3389/fnut.2018.00133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background: The literature concerning the effect of coffee and caffeine on Multiple Sclerosis (MS) with focus on fatigue is investigated in this review. Potentially clinically relevant effects were also assessed in studies concerning comparable neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Since the existing studies obtained very inconclusive results, we systematically reviewed these studies to summarize the evidence on the possible effects of coffee and caffeine on those disease entities. Previous studies suggested that coffee and caffeine intake is associated with a reduced risk of developing MS and other neurological diseases. Methods: The PubMed database was searched using the keywords “coffee” OR “caffeine” in combination with keywords for each of the different diseases. Besides the keyword search, we included studies by reference list search. Studies on the effects of coffee and caffeine on the single neurological diseases were included for this review. A total of 51 articles met our inclusion criteria. The reviewed articles assessed the impact of coffee and caffeine on the susceptibility for neurological diseases, as well as the effect of coffee and caffeine on disease progression and possible symptomatic effects like on performance enhancement. Results: Higher intake of coffee and caffeine was associated with a lower risk of developing PD. In some of the MS studies there, is evidence for a similar effect and experimental studies confirmed the positive impact. Interestingly in MS coffee and caffeine may have a stronger impact on disease course compared to effects on disease susceptibility. In ALS no such beneficial effect could be observed in the clinical and experimental studies. Conclusion: This literature assessment revealed that coffee and especially caffeine could have a preventative role in the development of several neurodegenerative diseases if provided in comparatively high doses. The systematic assessment indicates that coffee and caffeine intake must not be considered as a health risk. Additional clinical studies are needed to fully understand how far coffee and caffeine intake should be considered as a potential therapeutic approach for certain disease entities and conditions.
Collapse
Affiliation(s)
- Lena Herden
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
37
|
Abstract
Caffeine, a popular psychostimulant that acts as an adenosine receptor antagonist, is the most widely used drug in history, consumed daily by people worldwide. Knowledge of the physiological and pathological effects of caffeine is crucial in improving public health because of its widespread use. We provide a summary of the current evidence on the effect of caffeine on the eye. Most of the research conducted to date is in relation to cataract and glaucoma, two of the most common eye diseases among the elderly.
Collapse
|
38
|
Stefanello N, Spanevello RM, Passamonti S, Porciúncula L, Bonan CD, Olabiyi AA, Teixeira da Rocha JB, Assmann CE, Morsch VM, Schetinger MRC. Coffee, caffeine, chlorogenic acid, and the purinergic system. Food Chem Toxicol 2018; 123:298-313. [PMID: 30291944 DOI: 10.1016/j.fct.2018.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Coffee is a drink prepared from roasted coffee beans and is lauded for its aroma and flavour. It is the third most popular beverage in the world. This beverage is known by its stimulant effect associated with the presence of methylxanthines. Caffeine, a purine-like molecule (1,3,7 trymetylxantine), is the most important bioactive compound in coffee, among others such as chlorogenic acid (CGA), diterpenes, and trigonelline. CGA is a phenolic acid with biological properties as antioxidant, anti-inflammatory, neuroprotector, hypolipidemic, and hypoglicemic. Purinergic system plays a key role inneuromodulation and homeostasis. Extracellular ATP, other nucleotides and adenosine are signalling molecules that act through their specific receptors, namely purinoceptors, P1 for nucleosides and P2 for nucleotides. They regulate many pathological processes, since adenosine, for instance, can limit the damage caused by ATP in the excitotoxicity from the neuronal cells. The primary purpose of this review is to discuss the effects of coffee, caffeine, and CGA on the purinergic system. This review focuses on the relationship/interplay between coffee, caffeine, CGA, and adenosine, and their effects on ectonucleotidases activities as well as on the modulation of P1 and P2 receptors from central nervous system and also in peripheral tissue.
Collapse
Affiliation(s)
- Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção: Centro de Ciências Farmacêuticas, Químicas e de Alimentos, UFPel, Campus Capão do Leão 96010-900, Pelotas, RS, Brazil
| | - Sabina Passamonti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Lisiane Porciúncula
- Departamento de Bioquímica, UFRGS, 90040-060, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Denise Bonan
- Programa de Pós-graduação em Biologia Celular e Molecular Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | | | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
39
|
Calabrese V, Santoro A, Trovato Salinaro A, Modafferi S, Scuto M, Albouchi F, Monti D, Giordano J, Zappia M, Franceschi C, Calabrese EJ. Hormetic approaches to the treatment of Parkinson's disease: Perspectives and possibilities. J Neurosci Res 2018; 96:1641-1662. [PMID: 30098077 DOI: 10.1002/jnr.24244] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/17/2023]
Abstract
Age-related changes in the brain reflect a dynamic interaction of genetic, epigenetic, phenotypic, and environmental factors that can be temporally restricted or more longitudinally present throughout the lifespan. Fundamental to these mechanisms is the capacity for physiological adaptation through modulation of diverse molecular and biochemical signaling occurring from the intracellular to the network-systemic level throughout the brain. A number of agents that affect the onset and progression of Parkinson's disease (PD)-like effects in experimental models exhibit temporal features, and mechanisms of hormetic dose responses. These findings have particular significance since the hormetic dose response describes the amplitude and range of potential therapeutic effects, thereby affecting the design and conduct of studies of interventions against PD (and other neurodegenerative diseases), and may also be important to a broader consideration of hormetic processes in resilient adaptive responses that might afford protection against the onset and/or progression of PD and related disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania.,IBREGENS, Nutraceuticals and Functional Food Biotechnologies Research Associated, University of Catania, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Ferdaous Albouchi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Daniela Monti
- Department of Experimental, Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - James Giordano
- Departments of Neurology and Biochemistry, and Neuroethics Studies Program, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mario Zappia
- Department of Medical Sciences, Surgical and Advanced Technologies G.F. Ingrassia, Section of Neurosciences, University of Catania, Italy
| | | | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
40
|
Kim IY, O'Reilly ÉJ, Hughes KC, Gao X, Schwarzschild MA, Ascherio A. Differences in Parkinson's Disease Risk with Caffeine Intake and Postmenopausal Hormone Use. JOURNAL OF PARKINSONS DISEASE 2018; 7:677-684. [PMID: 28984617 DOI: 10.3233/jpd-171175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Caffeine intake has been associated with a lower risk of Parkinson's disease (PD). This association is robust in men, but inconsistent in women due to a possible interaction with post-menopausal hormone (PMH) use. OBJECTIVE To (1) evaluate the association between caffeine intake and PD risk and (2) assess potential effect modification of the association by PMH use among women. METHODS We examined associations between caffeine intake and incident PD risk in the Nurses' Health Study (NHS) (N = 121,701 women) and the Health Professionals Follow-up Study (HPFS) (N = 51,529 men). Dietary data on coffee and caffeine from other sources were collected every four years using a validated semi-quantitative food frequency questionnaire for both cohorts. Information on lifestyle and incident PD diagnosis was updated biennially and PD diagnoses were confirmed by medical record review. We estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models. RESULTS We documented a total of 1,219 PD cases over the follow-up period. The multivariable-adjusted HR comparing the highest to lowest quintile of caffeine intake was 0.50 (95% CI: 0.37, 0.68; Ptrend<0.0001) in the HPFS. Among women, there was a suggestion of an interaction between coffee intake and PMH use (P = 0.08). In the pooled analyses combining men and women who have never used PMH, the risk of PD was lower as coffee intake increased (Ptrend<0.001). CONCLUSIONS Our results support previous findings that increased caffeine intake may be associated with a decreased PD risk in men and women who have never used PMH.
Collapse
Affiliation(s)
- Iris Y Kim
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Éilis J O'Reilly
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,School of Public Health, University College Cork, Ireland
| | - Katherine C Hughes
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xiang Gao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Monteiro J, Alves MG, Oliveira PF, Silva BM. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit Rev Food Sci Nutr 2018; 59:2597-2625. [PMID: 29624433 DOI: 10.1080/10408398.2018.1461607] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.
Collapse
Affiliation(s)
- João Monteiro
- Mass Spectrometry Centre, Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,Institute of Health Research an Innovation (i3S), University of Porto , Porto , Portugal
| | | |
Collapse
|
42
|
Wadhwa M, Chauhan G, Roy K, Sahu S, Deep S, Jain V, Kishore K, Ray K, Thakur L, Panjwani U. Caffeine and Modafinil Ameliorate the Neuroinflammation and Anxious Behavior in Rats during Sleep Deprivation by Inhibiting the Microglia Activation. Front Cell Neurosci 2018; 12:49. [PMID: 29599709 PMCID: PMC5863523 DOI: 10.3389/fncel.2018.00049] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background: Sleep deprivation (SD) plagues modern society due to the professional demands. It prevails in patients with mood and neuroinflammatory disorders. Although growing evidence suggests the improvement in the cognitive performance by psychostimulants during sleep-deprived conditions, the impending involved mechanism is rarely studied. Thus, we hypothesized that mood and inflammatory changes might be due to the glial cells activation induced modulation of the inflammatory cytokines during SD, which could be improved by administering psychostimulants. The present study evaluated the role of caffeine/modafinil on SD-induced behavioral and inflammatory consequences. Methods: Adult male Sprague-Dawley rats were sleep deprived for 48 h using automated SD apparatus. Caffeine (60 mg/kg/day) or modafinil (100 mg/kg/day) were administered orally to rats once every day during SD. Rats were subjected to anxious and depressive behavioral evaluation after SD. Subsequently, blood and brain were collected for biochemical, immunohistochemical and molecular studies. Results: Sleep deprived rats presented an increased number of entries and time spent in closed arms in elevated plus maze test and decreased total distance traveled in the open field (OF) test. Caffeine/modafinil treatment significantly improved these anxious consequences. However, we did not observe substantial changes in immobility and anhedonia in sleep-deprived rats. Caffeine/modafinil significantly down-regulated the pro- and up-regulated the anti-inflammatory cytokine mRNA and protein expression in the hippocampus during SD. Similar outcomes were observed in blood plasma cytokine levels. Caffeine/modafinil treatment significantly decreased the microglial immunoreactivity in DG, CA1 and CA3 regions of the hippocampus during SD, however, no significant increase in immunoreactivity of astrocytes was observed. Sholl analysis signified the improvement in the morphological alterations of astrocytes and microglia after caffeine/modafinil administration during SD. Stereological analysis demonstrated a significant improvement in the number of ionized calcium binding adapter molecule I (Iba-1) positive cells (different states) in different regions of the hippocampus after caffeine or modafinil treatment during SD without showing any significant change in total microglial cell number. Eventually, the correlation analysis displayed a positive relationship between anxiety, pro-inflammatory cytokines and activated microglial cell count during SD. Conclusion: The present study suggests the role of caffeine or modafinil in the amelioration of SD-induced inflammatory response and anxious behavior in rats. Highlights - SD induced mood alterations in rats. - Glial cells activated in association with the changes in the inflammatory cytokines. - Caffeine or modafinil improved the mood and restored inflammatory changes during SD. - SD-induced anxious behavior correlated with the inflammatory consequences.
Collapse
Affiliation(s)
- Meetu Wadhwa
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Garima Chauhan
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Koustav Roy
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Surajit Sahu
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Satyanarayan Deep
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Vishal Jain
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Krishna Kishore
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Koushik Ray
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Lalan Thakur
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| | - Usha Panjwani
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), New Delhi, India
| |
Collapse
|
43
|
Nazario LR, da Silva RS, Bonan CD. Targeting Adenosine Signaling in Parkinson's Disease: From Pharmacological to Non-pharmacological Approaches. Front Neurosci 2017; 11:658. [PMID: 29217998 PMCID: PMC5703841 DOI: 10.3389/fnins.2017.00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disease displaying negative impacts on both the health and social ability of patients and considerable economical costs. The classical anti-parkinsonian drugs based in dopaminergic replacement are the standard treatment, but several motor side effects emerge during long-term use. This mini-review presents the rationale to several efforts from pre-clinical and clinical studies using adenosine receptor antagonists as a non-dopaminergic therapy. As several studies have indicated that the monotherapy with adenosine receptor antagonists reaches limited efficacy, the usage as a co-adjuvant appeared to be a promising strategy. The formulation of multi-targeted drugs, using adenosine receptor antagonists and other neurotransmitter systems than the dopaminergic one as targets, have been receiving attention since Parkinson's disease presents a complex biological impact. While pharmacological approaches to cure or ameliorate the conditions of PD are the leading strategy in this area, emerging positive aspects have arisen from non-pharmacological approaches and adenosine function inhibition appears to improve both strategies.
Collapse
Affiliation(s)
- Luiza R Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane S da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
44
|
Akomolafe SF. The effects of caffeine, caffeic acid, and their combination on acetylcholinesterase, adenosine deaminase and arginase activities linked with brain function. J Food Biochem 2017. [DOI: 10.1111/jfbc.12401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Martucci M, Ostan R, Biondi F, Bellavista E, Fabbri C, Bertarelli C, Salvioli S, Capri M, Franceschi C, Santoro A. Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev 2017; 75:442-455. [PMID: 28595318 PMCID: PMC5914347 DOI: 10.1093/nutrit/nux013] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A coherent set of epidemiological data shows that the Mediterranean diet has beneficial effects capable of preventing a variety of age-related diseases in which low-grade, chronic inflammation/inflammaging plays a major role, but the underpinning mechanism(s) is/are still unclear. It is suggested here that the Mediterranean diet can be conceptualized as a form of chronic hormetic stress, similar to what has been proposed regarding calorie restriction, the most thoroughly studied nutritional intervention. Data on the presence in key Mediterranean foods of a variety of compounds capable of exerting hormetic effects are summarized, and the mechanistic role of the nuclear factor erythroid 2 pathway is highlighted. Within this conceptual framework, particular attention has been devoted to the neurohormetic and neuroprotective properties of the Mediterranean diet, as well as to its ability to maintain an optimal balance between pro- and anti-inflammaging. Finally, the European Commission-funded project NU-AGE is discussed because it addresses a number of variables not commonly taken into consideration, such as age, sex, and ethnicity/genetics, that can modulate the hormetic effect of the Mediterranean diet.
Collapse
Affiliation(s)
- Morena Martucci
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Rita Ostan
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Fiammetta Biondi
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Elena Bellavista
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Cristina Fabbri
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Claudia Bertarelli
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Stefano Salvioli
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Miriam Capri
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Claudio Franceschi
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Aurelia Santoro
- M. Martucci, F. Biondi, E. Bellavista, C. Fabbri, C. Bertarelli, S. Salvioli, M. Capri, and A. Santoro are with the Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. R. Ostan, S. Salvioli, M. Capri, and A. Santoro are with the Interdepartmental Center “L. Galvani” (CIG), University of Bologna, Bologna, Italy. C. Franceschi is with the Institute of Neurological Sciences (IRCCS), Bologna, Italy
| |
Collapse
|
46
|
Temple JL, Bernard C, Lipshultz SE, Czachor JD, Westphal JA, Mestre MA. The Safety of Ingested Caffeine: A Comprehensive Review. Front Psychiatry 2017; 8:80. [PMID: 28603504 PMCID: PMC5445139 DOI: 10.3389/fpsyt.2017.00080] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Caffeine is the most widely consumed psychoactive drug in the world. Natural sources of caffeine include coffee, tea, and chocolate. Synthetic caffeine is also added to products to promote arousal, alertness, energy, and elevated mood. Over the past decade, the introduction of new caffeine-containing food products, as well as changes in consumption patterns of the more traditional sources of caffeine, has increased scrutiny by health authorities and regulatory bodies about the overall consumption of caffeine and its potential cumulative effects on behavior and physiology. Of particular concern is the rate of caffeine intake among populations potentially vulnerable to the negative effects of caffeine consumption: pregnant and lactating women, children and adolescents, young adults, and people with underlying heart or other health conditions, such as mental illness. Here, we review the research into the safety and safe doses of ingested caffeine in healthy and in vulnerable populations. We report that, for healthy adults, caffeine consumption is relatively safe, but that for some vulnerable populations, caffeine consumption could be harmful, including impairments in cardiovascular function, sleep, and substance use. We also identified several gaps in the literature on which we based recommendations for the future of caffeine research.
Collapse
Affiliation(s)
- Jennifer L. Temple
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Community Health and Health Behavior, University at Buffalo, Buffalo, NY, USA
| | | | - Steven E. Lipshultz
- Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Jason D. Czachor
- Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Joslyn A. Westphal
- Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Miriam A. Mestre
- Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
47
|
Kolahdouzan M, Hamadeh MJ. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther 2017; 23:272-290. [PMID: 28317317 PMCID: PMC6492672 DOI: 10.1111/cns.12684] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Caffeine is the most widely used psychostimulant in Western countries, with antioxidant, anti-inflammatory and anti-apoptotic properties. In Alzheimer's disease (AD), caffeine is beneficial in both men and women, in humans and animals. Similar effects of caffeine were observed in men with Parkinson's disease (PD); however, the effect of caffeine in female PD patients is controversial due to caffeine's competition with estrogen for the estrogen-metabolizing enzyme, CYP1A2. Studies conducted in animal models of amyotrophic lateral sclerosis (ALS) showed protective effects of A2A R antagonism. A study found caffeine to be associated with earlier age of onset of Huntington's disease (HD) at intakes >190 mg/d, but studies in animal models have found equivocal results. Caffeine is protective in AD and PD at dosages equivalent to 3-5 mg/kg. However, further research is needed to investigate the effects of caffeine on PD in women. As well, the effects of caffeine in ALS, HD and Machado-Joseph disease need to be further investigated. Caffeine's most salient mechanisms of action relevant to neurodegenerative diseases need to be further explored.
Collapse
Affiliation(s)
- Mahshad Kolahdouzan
- School of Kinesiology and Health ScienceFaculty of HealthYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoONCanada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health ScienceFaculty of HealthYork UniversityTorontoONCanada
- Muscle Health Research CentreYork UniversityTorontoONCanada
| |
Collapse
|
48
|
Oñatibia-Astibia A, Franco R, Martínez-Pinilla E. Health benefits of methylxanthines in neurodegenerative diseases. Mol Nutr Food Res 2017; 61. [PMID: 28074613 DOI: 10.1002/mnfr.201600670] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/24/2023]
Abstract
Methylxanthines (MTXs) are consumed by almost everybody in almost every area of the world. Caffeine, theophylline and theobromine are the most well-known members of this family of compounds; they are present, inter alia, in coffee, tea, cacao, yerba mate and cola drinks. MTXs are readily absorbed in the gastrointestinal tract and are able to penetrate into the central nervous system, where they exert significant psychostimulant actions, which are more evident in acute intake. Coffee has been paradigmatic, as its use was forbidden in many diseases, however, this negative view has radically changed; evidence shows that MTXs display health benefits in diseases involving cell death in the nervous system. This paper reviews data that appraise the preventive and even therapeutic potential of MTXs in a variety of neurodegenerative diseases. Future perspectives include the use of MTXs to advance the understanding the pathophysiology of, inter alia, Alzheimer's disease (AD) and Parkinson's disease (PD), and the use of the methylxanthine chemical moiety as a basis for the development of new and more efficacious drugs.
Collapse
Affiliation(s)
| | - Rafael Franco
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,CIBERNED, Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| |
Collapse
|
49
|
Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3472032. [PMID: 27829983 PMCID: PMC5088323 DOI: 10.1155/2016/3472032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.
Collapse
|
50
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|