1
|
Sasaki T, Hisada S, Kanki H, Nunomura K, Lin B, Nishiyama K, Kawano T, Matsumura S, Mochizuki H. Modulation of Ca 2+ oscillation following ischemia and nicotinic acetylcholine receptors in primary cortical neurons by high-throughput analysis. Sci Rep 2024; 14:27667. [PMID: 39532929 PMCID: PMC11557898 DOI: 10.1038/s41598-024-77882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium oscillations in primary neuronal cultures and iPSCs have been employed to investigate arrhythmogenicity and epileptogenicity in drug development. Previous studies have demonstrated that Ca2+ influx via NMDA and nicotinic acetylcholine receptors (nAChRs) modulates Ca2+ oscillations. Nevertheless, there has been no comprehensive investigation into the impact of ischemia or nAChR-positive allosteric modulators (PAM) drugs on Ca2+ oscillations at a level that would facilitate high-throughput screening. We investigated the effects of ischemia and nAChR subtypes or nAChR PAM agonists on Ca2+ oscillations in high-density 2D and 3D-sphere primary neuronal cultures using 384-well plates with FDSS-7000. Ischemia for 1 and 2 h resulted in an increase in the frequency of Ca2+ oscillations and a decrease in their amplitude in a time-dependent manner. The NMDA and AMPA receptor inhibition significantly suppressed Ca2+ oscillation. Inhibition of NR2A or NR2B had the opposite effect on Ca oscillations. The potentiation of ischemia-induced Ca2+ oscillations was significantly inhibited by the NMDA receptor antagonist, MK-801, and the frequency of these oscillations was suppressed by the NR2B inhibitor, Ro-256981. In the 3D-neurosphere, the application of an α7nAChR agonist increased the frequency of Ca2+ oscillations, whereas the activation of α4β2 had no effect. The combination of nicotine and PNU-120596 (type II PAM) affected the frequency and amplitude of Ca2+ oscillations in a manner distinct from that of type I PAM. These systems may be useful not only for detecting epileptogenicity but also in the search for neuroprotective agents against cerebral ischemia.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Sunao Hisada
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomohito Kawano
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shigenobu Matsumura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Maiorov SA, Kairat BK, Berezhnov AV, Zinchenko VP, Gaidin SG, Kosenkov AM. Peculiarities of ion homeostasis in neurons containing calcium-permeable AMPA receptors. Arch Biochem Biophys 2024; 754:109951. [PMID: 38452968 DOI: 10.1016/j.abb.2024.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Glutamate excitotoxicity accompanies numerous brain pathologies, including traumatic brain injury, ischemic stroke, and epilepsy. Disturbances of the ion homeostasis, mitochondria dysfunction, and further cell death are considered the main detrimental consequences of excitotoxicity. It is well known that neurons demonstrate different vulnerability to pathological exposures. In this regard, neurons containing calcium-permeable AMPA receptors (CP-AMPARs) may show higher susceptibility to excitotoxicity due to an additional pathway of Ca2+ influx. Here, we demonstrate that neurons containing CP-AMPARs are characterized by the higher amplitude of the glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and slower restoration of [Ca2+]i level compared to non-CP-AMPA neurons. Moreover, we have found that NASPM, an antagonist of CP-AMPARs, significantly decreases the amplitude of the [Ca2+]i elevation induced by glutamate or selective AMPARs agonist, 5-fluorowillardiine. In contrast, the antagonists of NMDARs or KARs affect insignificantly. We have also described some peculiarities of Na+, K+, and H+ intracellular dynamics in neurons containing CP-AMPARs. In particular, the amplitude of [Na+]i elevation was lower compared to non-CP-AMPA neurons, whereas the amplitude of [K+]i decrease was higher. We have shown the significant inverse correlation between [K+]i and [Ca2+]i and between intracellular pH and [Na+]i in CP-AMPARs-containing and non-CP-AMPA neurons upon glutamate excitotoxicity. Our data indicate that CP-AMPARs-mediated Ca2+ influx and slow removal of Ca2+ from the cytosol may underlie the vulnerability of the CP-AMPARs-containing neurons to glutamate excitotoxicity. Further studies of the mechanisms mediating the disturbances in ion homeostasis are crucial for developing new approaches for protecting these neurons at brain pathologies.
Collapse
Affiliation(s)
- Sergei A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | | | - Alexey V Berezhnov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Valery P Zinchenko
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Sergei G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia.
| | - Artem M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia.
| |
Collapse
|
3
|
Turovsky EA, Tarabykin VS, Varlamova EG. Deletion of the Neuronal Transcription Factor Satb1 Induced Disturbance of the Kinome and Mechanisms of Hypoxic Preconditioning. BIOLOGY 2023; 12:1207. [PMID: 37759606 PMCID: PMC10667992 DOI: 10.3390/biology12091207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
Genetic disorders affecting the functioning of the brain lead not only to the development of numerous hereditary diseases but also to the development of neurodegenerative and cognitive disorders. The result of this may be the disability of part of the able-bodied population. Almost all pathological states of the brain are characterized by serious defects in the intracellular and intercellular signaling of neurons and glial cells. At the same time, the mechanisms of disruption of these signaling cascades are not well understood due to the large number of molecules, including transcription factors that, when mutated, cause brain malformations. The transcription factor Satb1 is one of the least studied factors in the cerebral cortex, and the effects of its deletion in the postnatal brain are practically not studied. Hyperexcitability of neurons is observed in many genetic diseases of the nervous system (Hirschsprung's disease, Martin-Bell syndrome, Huntington's disease, Alzheimer's, etc.), as well as in ischemic brain phenomena and convulsive and epileptic conditions of the brain. In turn, all these disorders of brain physiology are associated with defects in intracellular and intercellular signaling and are often the result of genetic disorders. Using Satb1 mutant mice and calcium neuroimaging, we show that Satb1 deletion in projection neurons of the neocortex causes downregulation of protein kinases PKC, CaMKII, and AKT/PKB, while a partial deletion does not cause a dramatic disruption of kinome and Ca2+ signaling. As a result, Satb1-null neurons are characterized by increased spontaneous Ca2+ activity and hyperexcitability when modeling epileptiform activity. As a result of the deletion of Satb1, preconditioning mechanisms are disrupted in neurons during episodes of hypoxia. This occurs against the background of increased sensitivity of neurons to a decrease in the partial pressure of oxygen, which may indicate the vulnerability of neuronal networks and be accompanied by impaired expression of the Satb1 transcription factor. Here, we show that Satb1 deletion impaired the expression of a number of key kinases and neuronal hyperexcitation in models of epileptiform activity and hypoxia.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia;
| | - Viktor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia;
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Sun W, Wang M, Zhao J, Zhao S, Zhu W, Wu X, Li F, Liu W, Wang Z, Gao M, Zhang Y, Xu J, Zhang M, Wang Q, Wen Z, Shen J, Zhang W, Huang Z. Sulindac selectively induces autophagic apoptosis of GABAergic neurons and alters motor behaviour in zebrafish. Nat Commun 2023; 14:5351. [PMID: 37660128 PMCID: PMC10475106 DOI: 10.1038/s41467-023-41114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs compose one of the most widely used classes of medications, but the risks for early development remain controversial, especially in the nervous system. Here, we utilized zebrafish larvae to assess the potentially toxic effects of nonsteroidal anti-inflammatory drugs and found that sulindac can selectively induce apoptosis of GABAergic neurons in the brains of zebrafish larvae brains. Zebrafish larvae exhibit hyperactive behaviour after sulindac exposure. We also found that akt1 is selectively expressed in GABAergic neurons and that SC97 (an Akt1 activator) and exogenous akt1 mRNA can reverse the apoptosis caused by sulindac. Further studies showed that sulindac binds to retinoid X receptor alpha (RXRα) and induces autophagy in GABAergic neurons, leading to activation of the mitochondrial apoptotic pathway. Finally, we verified that sulindac can lead to hyperactivity and selectively induce GABAergic neuron apoptosis in mice. These findings suggest that excessive use of sulindac may lead to early neurodevelopmental toxicity and increase the risk of hyperactivity, which could be associated with damage to GABAergic neurons.
Collapse
Affiliation(s)
- Wenwei Sun
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meimei Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jun Zhao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Zhao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoting Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhuo Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518055, China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Dehdar K, Raoufy MR. Effects of inhaled corticosteroids on brain volumetry, depression and anxiety-like behaviors in a rat model of asthma. Respir Physiol Neurobiol 2023:104121. [PMID: 37473791 DOI: 10.1016/j.resp.2023.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Brain functional deficits have been reported in asthma patients which can result in behavioral disorders like depression and anxiety. These deficits may be associated with factors like resistance to treatment, incorrect self-evaluation, and inadequate self-control. However, changes in the brain volume in allergic asthma and the effects of inhaled corticosteroids, the most common anti-inflammatory agents for asthma treatment, on these alterations remain largely unclear. Here, we evaluated depression and anxiety-like behavior as well as volume changes in different brain area, using magnetic resonance imaging in an animal model of allergic asthma with pretreatment of inhaled fluticasone propionate. Asthma-induced behavioral changes were partially, but not completely, prevented by pretreatment with inhaled fluticasone propionate. Volumetry findings showed that the allergen decreased volumes of the corpus callosum and subcortical white matter, as well as the septal region and hippocampus (especially CA1 and fimbria). However, volumes of neocortex, insular, and anterior cingulate cortex increased in asthmatic rats compared to controls. Namely, pretreatment with inhaled fluticasone propionate partially prevented asthma-induced brain volume changes, but not completely. These findings suggest that asthma is associated with structural alterations in the brain, which may contribute to the induction of psychological disorders. Thus, considering brain changes in the clinical assessments could have important implications for asthma treatment.
Collapse
Affiliation(s)
- Kolsoum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Zhu X, Liu H, Wang D, Guan R, Zou Y, Li M, Zhang J, Chen J. NLRP3 deficiency protects against hypobaric hypoxia induced neuroinflammation and cognitive dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114828. [PMID: 36989949 DOI: 10.1016/j.ecoenv.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
As increasing number of people migrated to high altitude, highland encephalopathy and hypoxia-induced cognitive impairment arouse public attention. Yet, its underlying mechanisms remain unclear. Emerging evidence has implied neuroinflammation and neuronal loss may be involved. In the present study, we investigated the neuroinflammation and neuronal loss in mice after hypoxic insult. Our reports showed hypobaric hypoxia exposure for 3 weeks led to impaired spatial exploration and short-term memory in mice, concomitant with neuron loss. In addition, hypoxia induced neuroinflammation and NLRP3 inflammasome activation. Besides, to explore the role of the inflammasome in hypoxia-induced cognitive dysfunction, NLRP3 knockout mice were applied and the results showed that NLRP3 could negatively regulate GPX4 to modify antioxidant capacity. In summary, our work demonstrated that hypoxia exposure led to neuroinflammation and neuronal-deletion, which may be the key events in the process of hypoxia induced cognitive impairment. NLRP3 inflammasome promoted antioxidant deficiency by negatively regulating GPX4.
Collapse
Affiliation(s)
- Xiaozheng Zhu
- Tianjin Institute of Environmental and Operational Medicine, China
| | - Huiping Liu
- School of Medicine, Quzhou College of Technology, China
| | - Diya Wang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Ming Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China.
| | - Jingyuan Chen
- Tianjin Institute of Environmental and Operational Medicine, China.
| |
Collapse
|
7
|
Varlamova EG, Plotnikov EY, Turovsky EA. Neuronal Calcium Sensor-1 Protects Cortical Neurons from Hyperexcitation and Ca 2+ Overload during Ischemia by Protecting the Population of GABAergic Neurons. Int J Mol Sci 2022; 23:ijms232415675. [PMID: 36555318 PMCID: PMC9778989 DOI: 10.3390/ijms232415675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
A defection of blood circulation in the brain leads to ischemia, damage, and the death of nerve cells. It is known that individual populations of GABAergic neurons are the least resistant to the damaging factors of ischemia and therefore they die first of all, which leads to impaired inhibition in neuronal networks. To date, the neuroprotective properties of a number of calcium-binding proteins (calbindin, calretinin, and parvalbumin), which are markers of GABAergic neurons, are known. Neuronal calcium sensor-1 (NCS-1) is a signaling protein that is expressed in all types of neurons and is involved in the regulation of neurotransmission. The role of NCS-1 in the protection of neurons and especially their individual populations from ischemia and hyperexcitation has not been practically studied. In this work, using the methods of fluorescence microscopy, vitality tests, immunocytochemistry, and PCR analysis, the molecular mechanisms of the protective action of NCS-1 in ischemia/reoxygenation and hyperammonemia were established. Since NCS-1 is most expressed in GABAergic neurons, the knockdown of this protein with siRNA led to the most pronounced consequences in GABAergic neurons. The knockdown of NCS-1 (NCS-1-KD) suppressed the basic expression of protective proteins without significantly reducing cell viability. However, ischemia-like conditions (oxygen-glucose deprivation, OGD) and subsequent 24-h reoxygenation led to a more massive activation of apoptosis and necrosis in neurons with NCS-1-KD, compared to control cells. The mass death of NCS-1-KD cells during OGD and hyperammonemia has been associated with the induction of a more pronounced network hyperexcitation symptom, especially in the population of GABAergic neurons, leading to a global increase in cytosolic calcium ([Ca2+]i). The symptom of hyperexcitation of neurons with NCS-1-KD correlated with a decrease in the level of expression of the calcium-binding protein-parvalbumin. This was accompanied by an increase in the expression of excitatory ionotropic glutamate receptors, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (NMDAR and AMPAR) against the background of suppression of the expression of glutamate decarboxylase (synthesis of γ-aminobutyric acid).
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence: (E.G.V.); (E.A.T.)
| |
Collapse
|
8
|
Fiskum V, Sandvig A, Sandvig I. Silencing of Activity During Hypoxia Improves Functional Outcomes in Motor Neuron Networks in vitro. Front Integr Neurosci 2021; 15:792863. [PMID: 34975426 PMCID: PMC8716921 DOI: 10.3389/fnint.2021.792863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of hypoxia, or reduced oxygen supply, to brain tissue can be disastrous, leading to extensive loss of function. Deoxygenated tissue becomes unable to maintain healthy metabolism, which leads to increased production of reactive oxygen species (ROS) and loss of calcium homoeostasis, with damaging downstream effects. Neurons are a highly energy demanding cell type, and as such they are highly sensitive to reductions in oxygenation and some types of neurons such as motor neurons are even more susceptible to hypoxic damage. In addition to the immediate deleterious effects hypoxia can have on neurons, there can be delayed effects which lead to increased risk of developing neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), even if no immediate consequences are apparent. Furthermore, impairment of the function of various hypoxia-responsive factors has been shown to increase the risk of developing several neurodegenerative disorders. Longitudinal assessment of electrophysiological network activity is underutilised in assessing the effects of hypoxia on neurons and how their activity and communication change over time following a hypoxic challenge. This study utilised multielectrode arrays and motor neuron networks to study the response to hypoxia and the subsequent development of the neuronal activity over time, as well as the effect of silencing network activity during the hypoxic challenge. We found that motor neuron networks exposed to hypoxic challenge exhibited a delayed fluctuation in multiple network activity parameters compared to normoxic networks. Silencing of activity during the hypoxic challenge leads to maintained bursting activity, suggesting that functional outcomes are better maintained in these networks and that there are activity-dependent mechanisms involved in the network damage following hypoxia.
Collapse
Affiliation(s)
- Vegard Fiskum
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
10
|
Cheng S, Wang HN, Xu LJ, Li F, Miao Y, Lei B, Sun X, Wang Z. Soluble tumor necrosis factor-alpha-induced hyperexcitability contributes to retinal ganglion cell apoptosis by enhancing Nav1.6 in experimental glaucoma. J Neuroinflammation 2021; 18:182. [PMID: 34419081 PMCID: PMC8380326 DOI: 10.1186/s12974-021-02236-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Neuroinflammation plays an important role in the pathogenesis of glaucoma. Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine released from activated retinal glial cells in glaucoma. Here, we investigated how TNF-α induces retinal ganglion cell (RGC) hyperexcitability and injury. METHODS Whole-cell patch-clamp techniques were performed to explore changes in spontaneous firing and evoked action potentials, and Na+ currents in RGCs. Both intravitreal injection of TNF-α and chronic ocular hypertension (COH) models were used. Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction (q-PCR), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) techniques were employed to investigate the molecular mechanisms of TNF-α effects on RGCs. RESULTS Intravitreal injection of soluble TNF-α significantly increased the spontaneous firing frequencies of RGCs in retinal slices. When the synaptic transmissions were blocked, more than 90% of RGCs still showed spontaneous firing; both the percentage of cells and firing frequency were higher than the controls. Furthermore, the frequency of evoked action potentials was also higher than the controls. Co-injection of the TNF-α receptor 1 (TNFR1) inhibitor R7050 eliminated the TNF-α-induced effects, suggesting that TNF-α may directly act on RGCs to induce cell hyperexcitability through activating TNFR1. In RGCs acutely isolated from TNF-α-injected retinas, Na+ current densities were upregulated. Perfusing TNF-α in RGCs of normal rats mimicked this effect, and the activation curve of Na+ currents shifted toward hyperpolarization direction, which was mediated through p38 MAPK and STAT3 signaling pathways. Further analysis revealed that TNF-α selectively upregulated Nav1.6 subtype of Na+ currents in RGCs. Similar to observations in retinas of rats with COH, intravitreal injection of TNF-α upregulated the expression of Nav1.6 proteins in both total cell and membrane components, which was reversed by the NF-κB inhibitor BAY 11-7082. Inhibition of TNFR1 blocked TNF-α-induced RGC apoptosis. CONCLUSIONS TNF-α/TNFR1 signaling induces RGC hyperexcitability by selectively upregulating Nav1.6 Na+ channels, thus contributing to RGC apoptosis in glaucoma.
Collapse
Affiliation(s)
- Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Henan Provincial People’s Hospital, Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003 China
| | - Xinghuai Sun
- Department of Ophthalmology at Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031 China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
11
|
Turovskaya MV, Gaidin SG, Vedunova MV, Babaev AA, Turovsky EA. BDNF Overexpression Enhances the Preconditioning Effect of Brief Episodes of Hypoxia, Promoting Survival of GABAergic Neurons. Neurosci Bull 2020; 36:733-760. [PMID: 32219700 PMCID: PMC7340710 DOI: 10.1007/s12264-020-00480-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia causes depression of synaptic plasticity, hyperexcitation of neuronal networks, and the death of specific populations of neurons. However, brief episodes of hypoxia can promote the adaptation of cells. Hypoxic preconditioning is well manifested in glutamatergic neurons, while this adaptive mechanism is virtually suppressed in GABAergic neurons. Here, we show that brain-derived neurotrophic factor (BDNF) overexpression in neurons enhances the preconditioning effect of brief episodes of hypoxia. The amplitudes of the NMDAR- and AMPAR-mediated Ca2+ responses of glutamatergic and GABAergic neurons gradually decreased after repetitive brief hypoxia/reoxygenation cycles in cell cultures transduced with the (AAV)-Syn-BDNF-EGFP virus construct. In contrast, the amplitudes of the responses of GABAergic neurons increased in non-transduced cultures after preconditioning. The decrease of the amplitudes in GABAergic neurons indicated the activation of mechanisms of hypoxic preconditioning. Preconditioning suppressed apoptotic or necrotic cell death. This effect was most pronounced in cultures with BDNF overexpression. Knockdown of BDNF abolished the effect of preconditioning and promoted the death of GABAergic neurons. Moreover, the expression of the anti-apoptotic genes Stat3, Socs3, and Bcl-xl substantially increased 24 h after hypoxic episodes in the transduced cultures compared to controls. The expression of genes encoding the pro-inflammatory cytokines IL-10 and IL-6 also increased. In turn, the expression of pro-apoptotic (Bax, Casp-3, and Fas) and pro-inflammatory (IL-1β and TNFα) genes decreased after hypoxic episodes in cultures with BDNF overexpression. Inhibition of vesicular BDNF release abolished its protective action targeting inhibition of the oxygen-glucose deprivation (OGD)-induced [Ca2+]i increase in GABAergic and glutamatergic neurons, thus promoting their death. Bafilomycin A1, Brefeldin A, and tetanus toxin suppressed vesicular release (including BDNF) and shifted the gene expression profile towards excitotoxicity, inflammation, and apoptosis. These inhibitors of vesicular release abolished the protective effects of hypoxic preconditioning in glutamatergic neurons 24 h after hypoxia/reoxygenation cycles. This finding indicates a significant contribution of vesicular BDNF release to the development of the mechanisms of hypoxic preconditioning. Thus, our results demonstrate that BDNF plays a pivotal role in the activation and enhancement of the preconditioning effect of brief episodes of hypoxia and promotes tolerance of the most vulnerable populations of GABAergic neurons to hypoxia/ischemia.
Collapse
Affiliation(s)
- M V Turovskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - S G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - M V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - E A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| |
Collapse
|
12
|
Gaidin SG, Turovskaya MV, Mal’tseva VN, Zinchenko VP, Blinova EV, Turovsky EA. A Complex Neuroprotective Effect of Alpha-2-Adrenergic Receptor Agonists in a Model of Cerebral Ischemia–Reoxygenation In Vitro. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747819040068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Gaidin SG, Turovskaya MV, Gavrish MS, Babaev AA, Mal'tseva VN, Blinova EV, Turovsky EA. The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. Int J Neurosci 2019; 130:363-383. [PMID: 31694441 DOI: 10.1080/00207454.2019.1691205] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: Cerebral ischemia is accompanied by damage and death of a significant number of neurons due to glutamate excitotoxicity with subsequent a global increase of cytosolic Ca2+ concentration ([Ca2+]i). This study aimed to investigate the neuroprotective action of BDNF overexpression in hippocampal neurons against injury under ischemia-like conditions (oxygen and glucose deprivation) and glutamate-induced excitotoxicity (GluTox).Methods: The overexpression of BDNF was reached by the transduction of cell cultures with the adeno-associated (AAV)-Syn-BDNF-EGFP virus construct. Neuroprotective effects were mediated by Ca2+-dependent BDNF release followed by activation of the neuroprotective signaling cascades and changes of the gene expression. Thus, BDNF overexpression modulates Ca2+ homeostasis in cells, preventing Ca2+ overload and initiation of apoptotic and necrotic processes.Results:Antiapoptotic effect of BDNF overexpression is mediated via activation of phosphoinositide-3-kinase (PI3K) pathway and changing the expression of PI3K, HIF-1, Src and an anti-inflammatory cytokine IL-10. On the contrary, the decrease of expression of proapoptotic proteins such as Jun, Mapk8, caspase-3 and an inflammatory cytokine IL-1β was observed. These changes of expression were accompanied by the decrease of quantity of IL-1β receptors and the level of TNFα in cells in control, as well as 24 h after OGD. Besides, BDNF overexpression changes the expression of GABA(B) receptors. Also, the expression of NMDA and AMPA receptor subunits was altered towards a change in the conductivity of the receptors for Ca2+.Conclusion: Thus, our results demonstrate that neuronal BDNF overexpression reveals complex neuroprotective effects on the neurons and astrocytes under OGD and GluTox via inhibition of Ca2+ responses and regulation of gene expression.
Collapse
Affiliation(s)
- S G Gaidin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M V Turovskaya
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M S Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V N Mal'tseva
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - E V Blinova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,N. P. Ogarev Mordovia State University, Saransk, Russia
| | - E A Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
14
|
Domoic acid suppresses hyperexcitation in the network due to activation of kainate receptors of GABAergic neurons. Arch Biochem Biophys 2019; 671:52-61. [DOI: 10.1016/j.abb.2019.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 01/01/2023]
|
15
|
Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons. Mol Cell Neurosci 2019; 96:10-24. [PMID: 30776416 DOI: 10.1016/j.mcn.2019.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023] Open
Abstract
Cerebral blood flow disturbances lead to the massive death of brain cells. The death of >80% of cells is observed in hippocampal cell cultures after 40 min of oxygen and glucose deprivation (ischemia-like conditions, OGD). However, there are some populations of GABAergic neurons which are characterized by increased vulnerability to oxygen-glucose deprivation conditions. Using fluorescent microscopy, immunocytochemical assay, vitality tests and PCR-analysis, we have shown that population of GABAergic neurons are characterized by a different (faster) Ca2+ dynamics in response to OGD and increased basal ROS production under OGD conditions. A plant flavonoid taxifolin inhibited an excessive ROS production and an irreversible cytosolic Ca2+ concentration increase in GABAergic neurons, preventing the death of these neurons and further excitation of a neuronal network; neuroprotective effect of taxifolin increased after incubation of 24 h and correlated with increased expression of antiapoptocic and antioxidant genes Stat3 Nrf-2 Bcl-2, Bcl-xL, Ikk2, and genes coding for AMPA and kainate receptor subunits; in addition, taxifolin decreased expression of prooxidant enzyme NOS and proinflammatory cytokine IL-1β.
Collapse
|
16
|
Aminoethane Sulfonic Acid Magnesium Salt Inhibits Ca 2+ Entry Through NMDA Receptor Ion Channel In Vitro. Bull Exp Biol Med 2018; 166:39-42. [PMID: 30417298 DOI: 10.1007/s10517-018-4284-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 10/27/2022]
Abstract
The effect of a cerebroprotective agent magnesium bis-aminoethanesulfonate (laboratory code FS-LKhT-317) on intracellular calcium concentration was studied by the fluorescent imaging technique on neuroglial cell culture from Spraque-Dawley rat hippocampus. The substance produced a pronounced inhibitory effect and suppressed NMDA receptor activity in concentrations of ≥50 μM. The observed effects were reversible or partially reversible and were detected by a decrease in Ca2+ signal amplitude in neurons in response to NMDA applications in a Mg2+-free medium and by inhibition of Ca2+ pulses in magnesium-free medium (elimination of magnesium block).
Collapse
|
17
|
Turovskaya MV, Zinchenko VP, Babaev AA, Epifanova EA, Tarabykin VS, Turovsky EA. Mutation in the Sip1 transcription factor leads to a disturbance of the preconditioning of AMPA receptors by episodes of hypoxia in neurons of the cerebral cortex due to changes in their activity and subunit composition. The protective effects of interleukin-10. Arch Biochem Biophys 2018; 654:126-135. [PMID: 30056076 DOI: 10.1016/j.abb.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
The Sip1 mutation plays the main role in pathogenesis of the Mowat-Wilson syndrome, which is characterized by the pronounced epileptic symptoms. Cortical neurons of homozygous mice with Sip1 mutation are resistant to AMPA receptor activators. Disturbances of the excitatory signaling components are also observed on such a phenomenon of neuroplasticity as hypoxic preconditioning. In this work, the mechanisms of loss of the AMPA receptor's ability to precondition by episodes of short-term hypoxia were investigated on cortical neurons derived from the Sip1 homozygous mice. The preconditioning effect was estimated by the level of suppression of the AMPA receptors activity with hypoxia episodes. Using fluorescence microscopy, we have shown that cortical neurons from the Sip1fl/fl mice are characterized by the absence of hypoxic preconditioning effect, whereas the amplitude of Ca2+-responses to the application of the AMPA receptor agonist, 5-Fluorowillardiine, in neurons from the Sip1 mice brainstem is suppressed by brief episodes of hypoxia. The mechanism responsible for this process is hypoxia-induced desensitization of the AMPA receptors, which is absent in the cortex neurons possessing the Sip1 mutation. However, the appearance of preconditioning in these neurons can be induced by phosphoinositide-3-kinase activation with a selective activator or an anti-inflammatory cytokine interleukin-10.
Collapse
Affiliation(s)
| | | | - Alexei A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Ekaterina A Epifanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Victor S Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Russia.
| |
Collapse
|
18
|
Synaptic transmission and excitability during hypoxia with inflammation and reoxygenation in hippocampal CA1 neurons. Neuropharmacology 2018; 138:20-31. [PMID: 29775678 DOI: 10.1016/j.neuropharm.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/19/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
Although a number of experimental and clinical studies have shown that hypoxia typically accompanies acute inflammatory responses, the combinatorial effect of the two insults on basic neural function has not been thoroughly investigated. Previous studies have predominantly suggested that hypoxia reduces network activity; however, several studies suggest the opposite effect. Of note, inflammation is known to increase neural activity. In the current study, we examined the effects of limited oxygen in combination with an inflammatory stimulus, as well as the effects of reoxygenation, on synaptic transmission and excitability. We observed a significant reduction of both synaptic transmission and excitability when hypoxia and inflammation occurred in combination, whereas reoxygenation caused hyperexcitability of neurons. Further, we found that the observed reduction in synaptic transmission was due to compromised presynaptic release efficiency based on an adenosine-receptor-dependent increase in synaptic facilitation. Excitability changes in both directions were attributable to dynamic regulation of the hyperpolarization-activated cation current (Ih) and to changes in the input resistance and the voltage difference between resting membrane potential and action potential threshold. We found that zatebradine, an Ih current inhibitor, reduced the fluctuation in excitability, suggesting that it may have potential as a drug to ameliorate reperfusion brain injury.
Collapse
|
19
|
Lariccia V, Amoroso S. Calcium- and ATP-dependent regulation of Na/Ca exchange function in BHK cells: Comparison of NCX1 and NCX3 exchangers. Cell Calcium 2018; 73:95-103. [PMID: 29705719 DOI: 10.1016/j.ceca.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
Na+/Ca2+ exchangers (NCX) mediate bidirectional Ca2+ fluxes across cell membranes and contribute to Ca2+ homeostasis in many cell types. Exchangers are regulated by gating reactions that depend on Na+ and Ca2+ binding to transport and regulatory sites. A Na+i-dependent inactivation is prominent in all isoforms, whereas Ca2+i-dependent regulation varies among isoforms. Here we characterize new details of NCX operation and describe differences and similarities between NCX3 and NCX1 regulation by intracellular Ca2+ and ATP. To compare isoforms, we employed BHK cells expressing NCX3 or NCX1 constitutively and exchange activity was analysed in whole-cell and excised patch recordings under "zero-trans" conditions (i.e., with only one transported ion species on each side). Using BHK cells with low cytoplasmic Ca2+ buffering, outward (reverse) currents, reflecting Ca2+ influx, are activated by applying extracellular Ca2+ (Cao) in the presence of Na+ on the cytoplasmic side. When firstly activated, peak outward NCX3 currents rapidly decay over seconds and then typically develop a secondary transient peak with slower kinetics, until Cao removal abolishes all outward current. The delayed rise of outward current is the signature of an activating process since peak outward NCX3 currents elicited at subsequent Cao bouts remain stimulated for minutes and slower decline towards a non-zero level during continued Cao application. Secondary transient peaks and current stimulation are suppressed by increasing the intracellular Ca2+ buffer capacity or by replacing cytoplasmic ATP with the analogues AMP-PNP or ATPγS. In BHK cells expressing NCX1, outward currents activated under identical settings decay to a steady-state level during single Cao application and are significantly larger, causing strong and long-lived run down of subsequent outward currents. NCX1 current run down is not prevented by increasing cytoplasmic Ca2+ buffering but secondary transient peaks in the outward current profile can be resolved in the presence of ATP. Finally, inward currents recorded in patches excised from NCX3-expressing cells reveal a proteolysis-sensitive, Ca-dependent inactivation process that is unusual for NCX1 forward activity. Together, our results suggest that NCX function is regulated more richly than appreciated heretofore, possibly including processes that are lost in excised membrane patches.
Collapse
Affiliation(s)
- Vincenzo Lariccia
- Department of Biomedical Science and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Science and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| |
Collapse
|
20
|
Turovsky EA, Zinchenko VP, Gaidin SG, Turovskaya MV. Calcium-Binding Proteins Protect GABAergic Neurons of the Hippocampus from Hypoxia and Ischemia in vitro. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818010105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Involvement of mGluR I in EphB/ephrinB reverse signaling activation induced retinal ganglion cell apoptosis in a rat chronic hypertension model. Brain Res 2018; 1683:27-35. [PMID: 29366625 DOI: 10.1016/j.brainres.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
EphB/ephrinB reverse signaling is involved in retinal ganglion cell (RGC) apoptosis in experimental glaucoma. Here, we further investigated the mechanisms underlying EphB/ephrinB reverse signaling activation induced RGC apoptosis in a rat chronic ocular hypertension (COH) model, using patch-clamp techniques in retinal slices. In COH retinas, RGCs showed higher spontaneous firing frequency and much more depolarized membrane potential as compared to control, which was mimicked by intravitreally injection of EphB2-Fc, an activator of ephrinB2. The changes in RGC spontaneous firing and membrane potential could be reversed by the tyrosine kinase inhibitor PP2, suggesting that EphB/ephrinB reverse signaling activation induced RGC hyperexcitability. Intravitreal pre-injection of either LY367385 or MPEP, selective mGluR1 and mGluR5 antagonists, also blocked the changes in RGC spontaneous firing and membrane potential. Co-immunoprecipitation experiments showed an interaction between ephrinB2 and group I metabotropic glutamate receptor (mGluR I) (mGluR1/mGluR5). Furthermore, intravitreal pre-injection of the mixture of L-NAME (an NO synthase inhibitor) and XPro1595 (a selective inhibitor of soluble TNF-α) could reduce the EphB2-Fc injection induced increase in RGC firing, suggesting that Müller cells might be involved in EphB/ephrinB reverse signaling activation induced change in RGC hyperexcitability. In addition, LY367385/MPEP reduced the numbers of TUNEL-positive RGCs both in EphB2-Fc injected and COH retinas. All results suggest that activation of EphB/ephrinB reverse signaling induces RGC hyperexcitability and apoptosis by interacting with mGluR I in COH rats. Appropriate reduction of EphB/ephrinB reverse signaling could alleviate the loss of RGCs in glaucoma.
Collapse
|
22
|
Pereira AC, Mao X, Jiang CS, Kang G, Milrad S, McEwen BS, Krieger AC, Shungu DC. Dorsolateral prefrontal cortex GABA deficit in older adults with sleep-disordered breathing. Proc Natl Acad Sci U S A 2017; 114:10250-10255. [PMID: 28874569 PMCID: PMC5617247 DOI: 10.1073/pnas.1700177114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep-disordered breathing (SDB) is a common disorder in aging that is associated with cognitive decline, including significant executive dysfunction, for which the neurobiological underpinnings remain poorly understood. Using proton magnetic resonance spectroscopy (1H MRS), this study assessed whether dysregulation of the homeostatic balance of the major inhibitory and excitatory amino acid neurotransmitter systems of γ-aminobutyric acid (GABA) and glutamate, respectively, play a role in SDB. Levels of GABA and those of the combined resonances of glutamate and glutamine (Glx), were measured by 1H MRS in the left dorsolateral prefrontal cortex (l-DLPFC) and bilateral hippocampal regions of 19 older adults (age ± SD: 66.1 ± 1.9 years) with moderate to severe SDB, defined as having an Apnea-Hypopnea Index (AHI) greater than 15 as assessed by polysomnography, and in 14 older adults (age ± SD: 62.3 ± 1.3 years) without SDB (AHI < 5). In subjects with SDB, levels of l-DLPFC GABA, but not Glx, were significantly lower than in control subjects (P < 0.0002). Additionally, there was a negative correlation between l-DLPFC GABA levels, but not Glx, and SDB severity by AHI (r = -0.68, P < 0.0001), and a positive correlation between l-DLPFC GABA levels, but not Glx, and minimal oxygen saturation during sleep (r = 0.62, P = 0.0005). By contrast, no group differences or oxygenation associations were found for levels of GABA or Glx in right or left hippocampal region. These findings are interpreted in terms of a pathophysiological model of SDB in which hypoxia-mediated inhibitory neurotransmission deficit in DLPFC could lead to hyperexcitability and, potentially neuronal dysfunction and cognitive decline.
Collapse
Affiliation(s)
- Ana C Pereira
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065;
- Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Xiangling Mao
- Laboratory for Advanced MRS Research, Department of Radiology, Weill Cornell Medicine, New York, NY 10065
| | - Caroline S Jiang
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
| | - Guoxin Kang
- Laboratory for Advanced MRS Research, Department of Radiology, Weill Cornell Medicine, New York, NY 10065
| | - Sara Milrad
- Center for Sleep Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065;
| | - Ana C Krieger
- Center for Sleep Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Dikoma C Shungu
- Laboratory for Advanced MRS Research, Department of Radiology, Weill Cornell Medicine, New York, NY 10065;
| |
Collapse
|
23
|
Turovskaya MV, Babaev AA, Zinchenko VP, Epifanova EA, Borisova EV, Tarabykin VS, Turovsky EA. Sip-1 mutations cause disturbances in the activity of NMDA- and AMPA-, but not kainate receptors of neurons in the cerebral cortex. Neurosci Lett 2017; 650:180-186. [PMID: 28455101 DOI: 10.1016/j.neulet.2017.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 11/30/2022]
Abstract
Smad-interacting protein-1 (Sip1) [Zinc finger homeobox (Zfhx1b), Zeb2] is a transcription factor implicated in the genesis of Mowat-Wilson syndrome (MWS) in humans. MWS is a rare genetic autosomal dominant disease caused by a mutation in the Sip1 gene (aka Zeb2 or Zfhx1b) mapped to 2q22.3 locus. MWS affects 1 in every 50-100 newborns worldwide. It is characterized by mental retardation, small stature, typical facial abnormalities as well as disturbances in the development of the cardio-vascular and renal systems as well as some other organs. Sip1 mutations cause abnormal neurogenesis in the brain during development as well as susceptibility to epileptic seizures. In the current study we investigated the role of the Sip1 gene in the activity of NMDA-, AMPA- and KA- receptors. We showed that a particular Sip1 mutation in the mouse causes changes in the activity of both NMDA- and AMPA- receptors in the neocortical neurons in vitro. We demonstrate that neocortical neurons that have only one copy of Sip1 (heterozygous, Sip1fI/wt), are more sensitive to both NMDA- and AMPA- receptors agonists as compared to wild type neurons (Sip1wt/wt). This is reflected in higher amplitudes of agonist induced Ca2+ signals as well as a lower half maximal effective concentration (ЕC50). In contrast, neurons from homozygous Sip1 mice (Sip1fI/fI), demonstrate higher resistance to these respective receptor agonists. This is reflected in lower amplitudes of Ca2+-responses and so a higher concentration of receptor activators is required for activation.
Collapse
Affiliation(s)
- Maria V Turovskaya
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia; Institute of Cell Biophysics, Russian Academy of Sciences, Russia
| | - Alexei A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | | | - Ekaterina A Epifanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Ekaterina V Borisova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Victor S Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Egor A Turovsky
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia; Institute of Cell Biophysics, Russian Academy of Sciences, Russia.
| |
Collapse
|
24
|
Cytokine IL-10, activators of PI3-kinase, agonists of α-2 adrenoreceptor and antioxidants prevent ischemia-induced cell death in rat hippocampal cultures. Arch Biochem Biophys 2017; 615:35-43. [PMID: 28063948 DOI: 10.1016/j.abb.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 12/27/2022]
Abstract
In the present work we compared the protective effect of anti-inflammatory cytokine IL-10 with the action of a PI3-kinase selective activator 740 Y-P, selective agonists of alpha-2 adrenoreceptor, guanfacine and UK-14,304, and compounds having antioxidant effect: recombinant human peroxiredoxin 6 and B27, in hippocampal cell culture during OGD (ischemia-like conditions). It has been shown that the response of cells to OGD in the control includes two phases. The first phase was accompanied by an increase in the frequency of spontaneous synchronous Ca2+-oscillations (SSCO) in neurons and Ca2+-pulse in astrocytes. Spontaneous Ca2+ events in astrocytes during ischemia in control experiments disappeared. The second phase started after a few minutes of OGD and looked like a sharp/avalanche, global synchronic (within 20 s) increase in [Ca2+]i in many cells. Within 1 h after OGD, a mass death of cells, primarily astrocytes, was observed. To study the protective action of the compounds, cells were incubated in the presence of the neuroprotective agents for 10-40 min or 24 h before ischemia. All the neuroprotective agents delayed a global [Ca2+]i increase during OGD or completely inhibited this process and increased cell survival.
Collapse
|
25
|
Carlson SM, Kim J, Khan DA, King K, Lucarelli RT, McColl R, Peshock R, Brown ES. Hippocampal volume in patients with asthma: Results from the Dallas Heart Study. J Asthma 2016; 54:9-16. [PMID: 27187077 DOI: 10.1080/02770903.2016.1186174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Asthma is associated with an increased risk of mild cognitive impairment and dementia. Depression and oral corticosteroid use are associated with atrophy of the hippocampus and are common in asthma. However, minimal neuroimaging data are available in asthma patients. METHODS We conducted a retrospective analysis of 1,287 adult participants from the Dallas Heart Study, an epidemiological sample of Dallas County residents. Study outcome variables were hippocampal volumes measured by FreeSurfer. ANOVA was used to examine a gender difference in hippocampal volumes. General Linear Models (GLM) were conducted to examine asthma diagnosis association with hippocampal volumes. RESULTS The prevalence rate of asthma among our study sample was 10.8% with 9.6% in males and 11.7% in females. After controlling for demographic characteristics, participants with asthma had significantly smaller total, right, and left hippocampal volumes than those without asthma. The association of asthma with smaller hippocampal volume was significant among males but not among females. CONCLUSION Hippocampal volume in a large and diverse sample of adults was significantly smaller in people with asthma as compared to those without asthma. These findings suggest that asthma may be associated with structural brain differences. Thus, medical illnesses without obvious direct neurodegenerative or even vascular involvement can be associated with brain changes. Because the hippocampus is a brain region involved in memory formation, these findings may have implications for treatment adherence that could have important implications for asthma treatment. Study limitations are the reliance on a self-reported asthma diagnosis and lack of additional asthma clinical information.
Collapse
Affiliation(s)
- Scott M Carlson
- a Department of Psychiatry , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Julie Kim
- b Division of Allergy & Immunology in the Department of Internal Medicine , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - David A Khan
- b Division of Allergy & Immunology in the Department of Internal Medicine , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Kevin King
- c Department of Radiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Richard T Lucarelli
- c Department of Radiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Roderick McColl
- c Department of Radiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Ronald Peshock
- c Department of Radiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - E Sherwood Brown
- a Department of Psychiatry , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
26
|
Tukhovskaya EA, Turovsky EA, Turovskaya MV, Levin SG, Murashev AN, Zinchenko VP, Godukhin OV. Anti-inflammatory cytokine interleukin-10 increases resistance to brain ischemia through modulation of ischemia-induced intracellular Ca²⁺ response. Neurosci Lett 2014; 571:55-60. [PMID: 24796809 DOI: 10.1016/j.neulet.2014.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
It is suggested that anti-inflammatory cytokine interleukin-10 (IL-10) mediates the delayed protective effects through activation of Jak-Stat3, PI3K-Akt and NF-κB signaling pathways. However, our previous experiments have demonstrated that IL-10 is capable to exert the rapid neuroprotective action through modulation of hypoxia-induced intracellular Ca(2+) ([Ca(2+)]i) response. The first purpose of the present study was to evaluate the neuroprotective effects of IL-10 using three models of the ischemic insults in rats: permanent middle cerebral artery occlusion, ischemia in acute hippocampal slices in vitro and ischemia in cultured hippocampal cells in vitro. The second purpose of the study was to elucidate a role of [Ca(2+)]i changes in the mechanisms underlying IL-10 elicited protection of neurons and astrocytes from ischemia-induced death in cultures of primary hippocampal cells. The data presented here shown that anti-inflammatory cytokine IL-10 is capable to induce a resistance of the brain cells to ischemia-evoked damages in in vivo and in vitro models of the ischemic insults in rats. This protective effect in cultured hippocampal cells is developed rapidly after application of IL-10 and strongly associated with the IL-10 elicited elimination of [Ca(2+)]i response to ischemia. Thus, our results provide the evidence that anti-inflammatory cytokine IL-10, in addition to an activation of the canonical signaling pathways, is capable to exert the rapid neuroprotective effects through transcription-independent modulation of ischemia-induced intracellular Ca(2+) responses in the brain cells.
Collapse
Affiliation(s)
- Elena A Tukhovskaya
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Pushchino, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia
| | - Maria V Turovskaya
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia
| | - Sergei G Levin
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Russia
| | - Arkady N Murashev
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Pushchino, Russia
| | - Valery P Zinchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia
| | - Oleg V Godukhin
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|