1
|
Sun Z, Tang J, You T, Zhang B, Liu Y, Liu J. lncRNA OIP5-AS1 promotes mitophagy to alleviate osteoarthritis by upregulating PPAR-γ to activate the AMPK/Akt/mTOR pathway. Mod Rheumatol 2024; 34:1265-1276. [PMID: 38441253 DOI: 10.1093/mr/roae015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/21/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common chronic joint degenerative disease. Herein, we investigated long non-coding RNA Opa-interacting protein 5-antisense transcript 1's (OIP5-AS1) in regulating mitophagy during OA. METHODS RNA immunoprecipitation and RNA pull-down verified the relationship between molecules. Cell counting kit-8 detected cell viability. Enzyme-linked immunosorbent assay evaluated inflammatory cytokines secretion. Flow cytometry measured the contents of reactive oxygen species (ROS) and calcium. Immunofluorescence staining analysed TOMM20 and LC3B levels. JC-1 staining was adopted to measure mitochondrial membrane potential. The changes of mitophagy were analysed by transmission electron microscopy. RESULTS Lipopolysaccharide (LPS) treatment contributed to the decrease of chondrocyte viability, and calcium level and inhibited mitochondrial membrane potential, while elevating the secretion of inflammatory factors, ROS, and TOMM20 expression. OIP5-AS1 overexpression inhibited LPS-induced chondrocyte injury and activated mitophagy. OIP5-AS1 upregulated the peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA level to regulate adenosine monophosphate-activated protein kinase (AMPK)/v-akt murine thymoma viral oncogene homolog (Akt)/mammalian target of rapamycin (mTOR) signalling by interacting with FUS. PPAR-γ overexpression alleviated LPS-induced chondrocyte injury by activating AMPK/Akt/mTOR signalling. PPAR-γ knockdown reversed the promotion of OIP5-AS1 upregulation on mitophagy. CONCLUSIONS OIP5-AS1 promotes PPAR-γ expression to activate the AMPK/Akt/mTOR signalling, thereby enhancing mitophagy and alleviating OA progression.
Collapse
Affiliation(s)
- Zhilu Sun
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Jie Tang
- The First Affiliated Hospital, Department of Pain, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Ting You
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Bihong Zhang
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Yu Liu
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan Province, P.R. China
| |
Collapse
|
2
|
Singh S, Bruder-Nascimento A, Costa RM, Alves JV, Bharathi S, Goetzman ES, Bruder-Nascimento T. Adjusted vascular contractility relies on integrity of progranulin pathway: Insights into mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564485. [PMID: 37961631 PMCID: PMC10634918 DOI: 10.1101/2023.10.27.564485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Cardiovascular disease (CVD) is a global health crisis and a leading cause of mortality. The intricate interplay between vascular contractility and mitochondrial function is central to CVD pathogenesis. The progranulin gene (GRN) encodes glycoprotein progranulin (PGRN), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in CVD remains enigmatic. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. Method Our investigation utilized aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice, encompassing wire myograph assays to assess vascular contractility and primary aortic vascular smooth muscle cells (VSMCs) for mechanistic insights. Results Our results showed suppression of contractile activity in PGRN-/- VSMCs and aorta, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency impaired mitochondrial oxygen consumption rate (OCR), complex I activity, mitochondrial turnover, and mitochondrial redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted OCR. In addition, VSMC overexpressing PGRN displayed higher mitochondrial respiration and complex I activity accompanied by cellular hypercontractility. Furthermore, increased PGRN triggered lysosome biogenesis by regulating transcription factor EB and accelerated mitophagy flux in VSMC, while treatment with spermidine, an autophagy inducer, improved mitochondrial phenotype and enhanced vascular contractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/- suggesting a key role of PGRN to maintain the vascular tone. Conclusion Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial complex I activity, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in CVD development.
Collapse
Affiliation(s)
- Shubhnita Singh
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Ariane Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rafael M Costa
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sivakama Bharathi
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S Goetzman
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Genetic and Genomic Medicine Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Fagen SJ, Burgess JD, Lim MJ, Amerna D, Kaya ZB, Faroqi AH, Perisetla P, DeMeo NN, Stojkovska I, Quiriconi DJ, Mazzulli JR, Delenclos M, Boschen SL, McLean PJ. Honokiol decreases alpha-synuclein mRNA levels and reveals novel targets for modulating alpha-synuclein expression. Front Aging Neurosci 2023; 15:1179086. [PMID: 37637959 PMCID: PMC10449643 DOI: 10.3389/fnagi.2023.1179086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Background Intracytoplasmic inclusions comprised of aggregated alpha-synuclein (αsyn) represent a key histopathological feature of neurological disorders collectively termed "synucleinopathies," which includes Parkinson's disease (PD). Mutations and multiplications in the SNCA gene encoding αsyn cause familial forms of PD and a large body of evidence indicate a correlation between αsyn accumulation and disease. Decreasing αsyn expression is recognized as a valid target for PD therapeutics, with down-regulation of SNCA expression potentially attenuating downstream cascades of pathologic events. Here, we evaluated if Honokiol (HKL), a polyphenolic compound derived from magnolia tree bark with demonstrated neuroprotective properties, can modulate αsyn levels in multiple experimental models. Methods Human neuroglioma cells stably overexpressing αsyn, mouse primary neurons, and human iPSC-derived neurons were exposed to HKL and αsyn protein and SNCA messenger RNA levels were assessed. The effect of HKL on rotenone-induced overexpression of αsyn levels was further assessed and transcriptional profiling of mouse cortical neurons treated with HKL was performed to identify potential targets of HKL. Results We demonstrate that HKL can successfully reduce αsyn protein levels and SNCA expression in multiple in vitro models of PD with our data supporting a mechanism whereby HKL acts by post-transcriptional modulation of SNCA rather than modulating αsyn protein degradation. Transcriptional profiling of mouse cortical neurons treated with HKL identifies several differentially expressed genes (DEG) as potential targets to modulate SNCA expression. Conclusion This study supports a HKL-mediated downregulation of SNCA as a viable strategy to modify disease progression in PD and other synucleinopathies. HKL has potential as a powerful tool for investigating SNCA gene modulation and its downstream effects.
Collapse
Affiliation(s)
- Sara J. Fagen
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Jeremy D. Burgess
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Melina J. Lim
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Zeynep B. Kaya
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Ayman H. Faroqi
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Priyanka Perisetla
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Natasha N. DeMeo
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Iva Stojkovska
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Drew J. Quiriconi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Mazzulli
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
| | - Suelen L. Boschen
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Rochester, MN, United States
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jackson ville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
4
|
Vázquez-González D, Corona JC. Pioglitazone enhances brain mitochondrial biogenesis and phase II detoxification capacity in neonatal rats with 6-OHDA-induced unilateral striatal lesions. Front Neurosci 2023; 17:1186520. [PMID: 37575308 PMCID: PMC10416244 DOI: 10.3389/fnins.2023.1186520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
The psychostimulant methylphenidate (MPH) is the first-line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD), but has numerous adverse side effects. The PPARγ receptor agonist pioglitazone (PIO) is known to improve mitochondrial bioenergetics and antioxidant capacity, both of which may be deficient in ADHD, suggesting utility as an adjunct therapy. Here, we assessed the effects of PIO on ADHD-like symptoms, mitochondrial biogenesis and antioxidant pathways in multiple brain regions of neonate rats with unilateral striatal lesions induced by 6-hydroxydopamine (6-OHDA) as an experimental ADHD model. Unilateral striatal injection of 6-OHDA reduced ipsilateral dopaminergic innervation by 33% and increased locomotor activity. This locomotor hyperactivity was not altered by PIO treatment for 14 days. However, PIO increased the expression of proteins contributing to mitochondrial biogenesis in the striatum, hippocampus, cerebellum and prefrontal cortex of 6-OHDA-lesioned rats. In addition, PIO treatment enhanced the expression of the phase II transcription factor Nrf2 in the striatum, prefrontal cortex and cerebellum. In contrast, no change in the antioxidant enzyme catalase was observed in any of the brain regions analyzed. Thus, PIO may improve mitochondrial biogenesis and phase 2 detoxification in the ADHD brain. Further studies are required to determine if different dose regimens can exert more comprehensive therapeutic effects against ADHD neuropathology and behavior.
Collapse
Affiliation(s)
| | - Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
5
|
Pan Y, Qiu D, Chen S, Han X, Li R. High glucose inhibits neural differentiation by excessive autophagy <em>via</em> peroxisome proliferator-activated receptor gamma. Eur J Histochem 2023; 67. [PMID: 37170914 DOI: 10.4081/ejh.2023.3691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The high prevalence of prediabetes and diabetes globally has led to the widespread occurrence of severe complications, such as diabetic neuropathy, which is a result of chronic hyperglycemia. Studies have demonstrated that maternal diabetes can lead to neural tube defects by suppressing neurogenesis during neuroepithelium development. While aberrant autophagy has been associated with abnormal neuronal differentiation, the mechanism by which high glucose suppresses neural differentiation in stem cells remains unclear. Therefore, we developed a neuronal cell differentiation model of retinoic acid induced P19 cells to investigate the impact of high glucose on neuronal differentiation in vitro. Our findings indicate that high glucose (HG) hinders neuronal differentiation and triggers excessive. Furthermore, HG treatment significantly reduces the expression of markers for neurons (Tuj1) and glia (GFAP), while enhancing autophagic activity mediated by peroxisome proliferator-activated receptor gamma (PPARγ). By manipulating PPARγ activity through pharmacological approaches and genetically knocking it down using shRNA, we discovered that altering PPARγ activity affects the differentiation of neural stem cells exposed to HG. Our study reveals that PPARγ acts as a downstream mediator in high glucose-suppressed neural stem cell differentiation and that refining autophagic activity via PPARγ at an appropriate level could improve neuronal differentiation efficiency. Our data provide novel insights and potential therapeutic targets for the clinical management of gestational diabetes mellitus.
Collapse
Affiliation(s)
- Yin Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Di Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Shu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Xiaoxue Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| |
Collapse
|
6
|
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, Narayanaswamy A, Senthil Kumar N, Vellingiri B. Type 2 Diabetes (T2DM) and Parkinson's Disease (PD): a Mechanistic Approach. Mol Neurobiol 2023:10.1007/s12035-023-03359-y. [PMID: 37118323 PMCID: PMC10144908 DOI: 10.1007/s12035-023-03359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Growing evidence suggest that there is a connection between Parkinson's disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson's disease (PD) with a potential therapy option.
Collapse
Affiliation(s)
- S Sri Sabari
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, Tamil Nadu, India
| | - Harysh Winster Sureshbabu
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Arul Narayanaswamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796004, Mizoram, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India.
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
7
|
Léger T, Balaguer P, Le Hégarat L, Fessard V. Fate and PPARγ and STATs-driven effects of the mitochondrial complex I inhibitor tebufenpyrad in liver cells revealed with multi-omics. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130083. [PMID: 36206710 DOI: 10.1016/j.jhazmat.2022.130083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The biological effects of the pesticide and mitochondrial complex I inhibitor tebufenpyrad (TEBU) on liver cells were investigated by combining proteomics and metabolomics. Both cell culture media and cellular lysates were analyzed in dose-response and kinetic experiments on the HepaRG cell line. Responses were compared with those obtained on primary human and rat hepatocytes. A multitude of phase I and II metabolites (>80) mainly common to HepaRG cells and primary hepatocytes and an increase in metabolization enzymes were observed. Synthesis of mitochondrion and oxidative phosphorylation complex constituents, fatty acid oxidation, and cellular uptake of lipids were induced to compensate for complex I inhibition and the decrease in ATP intracellular contents caused by TEBU. Secretion of the 20 S circulating proteasome and overall inhibition of acute inflammation followed by IL-6 secretion in later stages were observed in HepaRG cells. These effects were associated with a decrease in STAT1 and STAT3 transcription factor abundances, but with different kinetics. Based on identified TEBU targets, docking experiments, and nuclear receptor reporter assays, we concluded that liver cell response to TEBU is mediated by its interaction with the PPARγ transcription factor.
Collapse
Affiliation(s)
- Thibaut Léger
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères Cedex, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, Montpellier, France
| | - Ludovic Le Hégarat
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères Cedex, France
| | - Valérie Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 35306 Fougères Cedex, France
| |
Collapse
|
8
|
Effect of Pesticides on Peroxisome Proliferator-Activated Receptors (PPARs) and Their Association with Obesity and Diabetes. PPAR Res 2023; 2023:1743289. [PMID: 36875280 PMCID: PMC9984265 DOI: 10.1155/2023/1743289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Obesity and diabetes mellitus are considered the most important diseases of the XXI century. Recently, many epidemiological studies have linked exposure to pesticides to the development of obesity and type 2 diabetes mellitus. The role of pesticides and their possible influence on the development of these diseases was investigated by examining the relationship between these compounds and one of the major nuclear receptor families controlling lipid and carbohydrate metabolism: the peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ; this was possible through in silico, in vitro, and in vivo assays. The present review aims to show the effect of pesticides on PPARs and their contribution to the changes in energy metabolism that enable the development of obesity and type 2 diabetes mellitus.
Collapse
|
9
|
Yang J, Wei Y, Zhao T, Li X, Zhao X, Ouyang X, Zhou L, Zhan X, Qian M, Wang J, Shen X. Magnolol effectively ameliorates diabetic peripheral neuropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154434. [PMID: 36122436 DOI: 10.1016/j.phymed.2022.154434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking efficient treatment. Magnolol (MG), a peroxisome proliferator-activated receptor γ (PPARγ) agonist, is a natural product derived from Magnolia officinalis and widely used to treat a variety of diseases as a traditional Chinese medicine and Japanese Kampo medicine. PURPOSE Here, we aimed to investigate the potential of MG in ameliorating DPN-like pathology in mice and decipher the mechanism of MG in treating DPN. MATERIALS AND METHODS 12-week-old male streptozotocin (STZ)-induced type 1 diabetic (T1DM) mice and 15-week-old male BKS Cg-m+/+Lepr db/J (db/db) type 2 diabetic mice (T2DM) were used as DPN mice. MG was administrated (i.p) daily for 4 weeks. Peripheral nerve functions of mice were evaluated by measuring mechanical response latency, thermal response latency and motor nerve conduction velocity (MNCV). The mechanisms underlying the amelioration of MG on DPN-like pathology were examined by qRT-PCR, western blot and immunohistochemistry assays, and verified in the DPN mice with PPARγ-specific knockdown in dorsal root ganglia (DRG) neuron and sciatic nerve tissues by injecting adeno-associated virus (AAV)8-PPARγ-RNAi. RESULTS MG promoted DRG neuronal neurite outgrowth and effectively ameliorated neurological dysfunctions in both T1DM and T2DM diabetic mice, including improvement of paw withdrawal threshold, thermal response latency and MNCV. Additionally, MG promoted neurite outgrowth of DRG neurons, protected sciatic nerve myelin sheath structure, and ameliorated foot skin intraepidermal nerve fiber (IENF) density in DPN mice by targeting PPARγ. Mechanism research results indicated that MG improved mitochondrial dysfunction involving PPARγ/MKP-7/JNK/SIRT1/LKB1/AMPK/PGC-1α pathway in DRG neurons, repressed inflammation via PPARγ/NF-κB signaling and inhibited apoptosis through regulation of PPARγ-mediated Bcl-2 family proteins in DRG neurons and sciatic nerves. CONCLUSIONS Our work has detailed the mechanism underlying the amelioration of PPARγ agonist on DPN-like pathology in mice with MG as a probe, and highlighted the potential of MG in the treatment of DPN.
Collapse
Affiliation(s)
- Juanzhen Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Yuxi Wei
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Tong Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xiaoqian Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xuejian Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xingnan Ouyang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Lihua Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xiuqin Zhan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Minyi Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| | - Jiaying Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| | - Xu Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| |
Collapse
|
10
|
Krajčová A, Skagen C, Džupa V, Urban T, Rustan AC, Jiroutková K, Bakalář B, Thoresen GH, Duška F. Effect of noradrenaline on propofol-induced mitochondrial dysfunction in human skeletal muscle cells. Intensive Care Med Exp 2022; 10:47. [DOI: 10.1186/s40635-022-00474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Mitochondrial dysfunction is a hallmark of both critical illness and propofol infusion syndrome and its severity seems to be proportional to the doses of noradrenaline, which patients are receiving. We comprehensively studied the effects of noradrenaline on cellular bioenergetics and mitochondrial biology in human skeletal muscle cells with and without propofol-induced mitochondrial dysfunction.
Methods
Human skeletal muscle cells were isolated from vastus lateralis biopsies from patients undergoing elective hip replacement surgery (n = 14) or healthy volunteers (n = 4). After long-term (96 h) exposure to propofol (10 µg/mL), noradrenaline (100 µM), or both, energy metabolism was assessed by extracellular flux analysis and substrate oxidation assays using [14C] palmitic and [14C(U)] lactic acid. Mitochondrial membrane potential, morphology and reactive oxygen species production were analysed by confocal laser scanning microscopy. Mitochondrial mass was assessed both spectrophotometrically and by confocal laser scanning microscopy.
Results
Propofol moderately reduced mitochondrial mass and induced bioenergetic dysfunction, such as a reduction of maximum electron transfer chain capacity, ATP synthesis and profound inhibition of exogenous fatty acid oxidation. Noradrenaline exposure increased mitochondrial network size and turnover in both propofol treated and untreated cells as apparent from increased co-localization with lysosomes. After adjustment to mitochondrial mass, noradrenaline did not affect mitochondrial functional parameters in naïve cells, but it significantly reduced the degree of mitochondrial dysfunction induced by propofol co-exposure. The fatty acid oxidation capacity was restored almost completely by noradrenaline co-exposure, most likely due to restoration of the capacity to transfer long-chain fatty acid to mitochondria. Both propofol and noradrenaline reduced mitochondrial membrane potential and increased reactive oxygen species production, but their effects were not additive.
Conclusions
Noradrenaline prevents rather than aggravates propofol-induced impairment of mitochondrial functions in human skeletal muscle cells. Its effects on bioenergetic dysfunctions of other origins, such as sepsis, remain to be demonstrated.
Collapse
|
11
|
Rosiglitazone Ameliorates Spinal Cord Injury via Inhibiting Mitophagy and Inflammation of Neural Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5583512. [PMID: 35028008 PMCID: PMC8752267 DOI: 10.1155/2022/5583512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/03/2021] [Accepted: 11/14/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease, and traumatic brain and spinal cord injury (SCI) are prevalent in clinical practice. Inhibition of hyperactive inflammation and proliferation of endogenous neural stem cells (NSCs) is a promising treatment strategy for SCI. Our previous studies demonstrated the beneficial effects of rosiglitazone (Rosi) on SCI, but its roles in inflammation inhibition and proliferation of NSCs are unknown. METHODS SCI in a rat model was established, and the effects of Rosi on motor functions were assessed. The effects of Rosi on NSC proliferation and the underlying mechanisms were explored in details. RESULTS We showed that Rosi ameliorated impairment of moto functions in SCI rats, inhibited inflammation, and promoted proliferation of NSCs in vivo. Rosi increased ATP production through enhancing glycolysis but not oxidative phosphorylation. Rosi reduced mitophagy by downregulating PTEN-induced putative kinase 1 (PINK1) transcription to promote NSC proliferation, which was effectively reversed by an overexpression of PINK1 in vitro. Through KEGG analysis and experimental validations, we discovered that Rosi reduced the expression of forkhead box protein O1 (FOXO1) which was a critical transcription factor of PINK1. Three FOXO1 consensus sequences (FCSs) were found in the first intron of the PINK1 gene, which could be potentially binding to FOXO1. The proximal FCS (chr 5: 156680169-156680185) from the translation start site exerted a more significant influence on PINK1 transcription than the other two FCSs. The overexpression of FOXO1 entirely relieved the inhibition of PINK1 transcription in the presence of Rosi. CONCLUSIONS Besides inflammation inhibition, Rosi suppressed mitophagy by reducing FOXO1 to decrease the transcription of PINK1, which played a pivotal role in accelerating the NSC proliferation.
Collapse
|
12
|
Li D, Yang S, Xing Y, Pan L, Zhao R, Zhao Y, Liu L, Wu M. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target. Front Cell Dev Biol 2021; 9:673839. [PMID: 34307357 PMCID: PMC8293691 DOI: 10.3389/fcell.2021.673839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained through the dynamic processes of fusion and fission. Mitochondria are involved in many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune cell activation, redox signaling, apoptosis, and inflammation, among others. Under stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential (MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated. mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and release interleukin, an event that eventually leads to tissue damage and inflammatory responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3 through the production of mitochondrial ROS, which together aggravate accumulating mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are risk factors for the progression of CVD, which are closely related to mitochondrial dynamics. Mitochondrial dynamics may represent a new target in the treatment of atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to correct mitochondrial dysfunction represent a few directions for future research on therapeutic intervention and amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixi Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett 2021; 595:1184-1204. [PMID: 33742459 DOI: 10.1002/1873-3468.14077] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
In animals, mitochondria are mainly organised into an interconnected tubular network extending across the cell along a cytoskeletal scaffold. Mitochondrial fission and fusion, as well as distribution along cytoskeletal tracks, are counterbalancing mechanisms acting in concert to maintain a mitochondrial network tuned to cellular function. Balanced mitochondrial dynamics permits quality control of the network including biogenesis and turnover, and distribution of mitochondrial DNA, and is linked to metabolic status. Cellular and organismal health relies on a delicate balance between fission and fusion, and large rearrangements in the mitochondrial network can be seen in response to cellular insults and disease. Indeed, dysfunction in the major components of the fission and fusion machineries including dynamin-related protein 1 (DRP1), mitofusins 1 and 2 (MFN1, MFN2) and optic atrophy protein 1 (OPA1) and ensuing imbalance of mitochondrial dynamics can lead to neurodegenerative disease. Altered mitochondrial dynamics is also seen in more common diseases. In this review, the machinery involved in mitochondrial dynamics and their dysfunction in disease will be discussed.
Collapse
Affiliation(s)
- Nethmi M B Yapa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Boris Reljic
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
14
|
Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther 2021; 219:107705. [PMID: 33039420 PMCID: PMC7887032 DOI: 10.1016/j.pharmthera.2020.107705] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent some of the most devastating neurological disorders, characterized by progressive loss of the structure and function of neurons. Current therapy for neurodegenerative disorders is limited to symptomatic treatment rather than disease modifying interventions, emphasizing the desperate need for improved approaches. Abundant evidence indicates that impaired mitochondrial function plays a crucial role in pathogenesis of many neurodegenerative diseases and so biochemical factors in mitochondria are considered promising targets for pharmacological-based therapies. Peroxisome proliferator-activated receptors-γ (PPARγ) are ligand-inducible transcription factors involved in regulating various genes including peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC1α). This review summarizes the evidence supporting the ability of PPARγ-PGC1α to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in neurons and provide directions for future work to explore the potential benefit of targeting mitochondrial biogenesis in neurodegenerative disorders. We have highlighted key roles of NRF2, uncoupling protein-2 (UCP2), and paraoxonase-2 (PON2) signaling in mediating PGC1α-induced mitochondrial biogenesis. In addition, the status of PPARγ modulators being used in clinical trials for Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD) has been compiled. The overall purpose of this review is to update and critique our understanding of the role of PPARγ-PGC1α-NRF2 in the induction of mitochondrial biogenesis together with suggestions for strategies to target PPARγ-PGC1α-NRF2 signaling in order to combat mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer K Blackburn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
15
|
Wang N, Zhu P, Huang R, Wang C, Sun L, Lan B, He Y, Zhao H, Gao Y. PINK1: The guard of mitochondria. Life Sci 2020; 259:118247. [PMID: 32805222 DOI: 10.1016/j.lfs.2020.118247] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
PTEN-induced putative kinase 1 (PINK1) performs many important functions in cells and has been highlighted for its role in early-onset Parkinson's disease. In recent years, an increasing number of studies have revealed the involvement of PINK1 in regulation of a variety of cell physiological and pathophysiological processes, of which regulation of mitochondrial function remains the most prominent. As the "energy factory" of cells, mitochondria provide energy support for various cellular activities. Changes in mitochondrial function often have a fundamental and global impact on cellular activities. Moreover, mitochondrial dysfunction has been implicated in many diseases, especially those related to aging. Thus, a comprehensive study of PINK1 will help us better understand the various cell physiological and pathophysiological processes in which PINK1 is involved, including a variety of mitochondria-related diseases such as Parkinson's disease. This article will review the structural characteristics and expression regulation of PINK1, as well as its unique role in mitochondrial quality control (MQC) systems.
Collapse
Affiliation(s)
- Nan Wang
- China-Japan Union Hospital, Jilin University, China
| | - Peining Zhu
- China-Japan Union Hospital, Jilin University, China
| | | | - Chong Wang
- China-Japan Union Hospital, Jilin University, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, China
| | - Beiwu Lan
- China-Japan Union Hospital, Jilin University, China
| | - Yichun He
- China-Japan Union Hospital, Jilin University, China
| | | | - Yufei Gao
- China-Japan Union Hospital, Jilin University, China.
| |
Collapse
|
16
|
Dysregulation of metabolic pathways by carnitine palmitoyl-transferase 1 plays a key role in central nervous system disorders: experimental evidence based on animal models. Sci Rep 2020; 10:15583. [PMID: 32973137 PMCID: PMC7519132 DOI: 10.1038/s41598-020-72638-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The etiology of CNS diseases including multiple sclerosis, Parkinson’s disease and amyotrophic lateral sclerosis remains elusive despite decades of research resulting in treatments with only symptomatic effects. In this study, we provide evidence that a metabolic shift from glucose to lipid is a key mechanism in neurodegeneration. We show that, by downregulating the metabolism of lipids through the key molecule carnitine palmitoyl transferase 1 (CPT1), it is possible to reverse or slowdown disease progression in experimental models of autoimmune encephalomyelitis-, SOD1G93A and rotenone models, mimicking these CNS diseases in humans. The effect was seen both when applying a CPT1 blocker or by using a Cpt1a P479L mutant mouse strain. Furthermore, we show that diet, epigenetics, and microbiota are key elements in this metabolic shift. Finally, we present a systemic model for understanding the complex etiology of neurodegeneration and how different regulatory systems are interconnected through a central metabolic pathway that becomes deregulated under specific conditions.
Collapse
|
17
|
Liu Y, Bi X, Zhang Y, Wang Y, Ding W. Mitochondrial dysfunction/NLRP3 inflammasome axis contributes to angiotensin II-induced skeletal muscle wasting via PPAR-γ. J Transl Med 2020; 100:712-726. [PMID: 31857693 DOI: 10.1038/s41374-019-0355-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/19/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Angiotensin II (Ang II) levels are elevated in patients with chronic kidney disease or heart failure, and directly causes skeletal muscle wasting in rodents, but the molecular mechanisms of Ang II-induced skeletal muscle wasting and its potential as a therapeutic target are unknown. We investigated the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated muscle atrophy response to Ang II in C2C12 myotubes and Nlrp3 knockout mice. We also assessed the mitochondrial dysfunction (MtD)/NLRP3 inflammasome axis in Ang II-induced C2C12 myotubes. Finally, we examined whether a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist could attenuate skeletal muscle wasting by targeting the MtD/NLRP3 inflammasome axis in vitro and in vivo. We demonstrated that Ang II increased NLRP3 inflammasome activation in cultured C2C12 myotubes dose dependently. Nlrp3 knockdown or Nlrp3-/- mice were protected from the imbalance of protein synthesis and degradation. Exposure of C2C12 to Ang II increased mitochondrial ROS (mtROS) generation, accompanied by MtD. Remarkably, the mitochondrial-targeted antioxidant not only decreased mtROS and MtD, it also significantly inhibited NLRP3 inflammasome activation and restored skeletal muscle atrophy. Finally, the PPAR-γ agonist protected against Ang II-induced muscle wasting by preventing MtD, oxidative stress, and NLRP3 inflammasome activation in vitro and in vivo. This work suggests a potential role of MtD/NLRP3 inflammasome pathway in the pathogenesis of Ang II-induced skeletal muscle wasting, and targeting the PPAR-γ/MtD/NLRP3 inflammasome axis may provide a therapeutic approach for muscle wasting.
Collapse
Affiliation(s)
- Yuqing Liu
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China
| | - Xiao Bi
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China
| | - Yumei Zhang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China
| | - Yingdeng Wang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China
| | - Wei Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China.
| |
Collapse
|
18
|
Cheng H, Gang X, Liu Y, Wang G, Zhao X, Wang G. Mitochondrial dysfunction plays a key role in the development of neurodegenerative diseases in diabetes. Am J Physiol Endocrinol Metab 2020; 318:E750-E764. [PMID: 31714795 DOI: 10.1152/ajpendo.00179.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria have an essential function in cell survival due to their role in bioenergetics, reactive oxygen species generation, calcium buffering, and other metabolic activities. Mitochondrial dysfunctions are commonly found in neurodegenerative diseases (NDs), and diabetes is a risk factor for NDs. However, the role of mitochondria in diabetic neurodegeneration is still unclear. In the present study, we review the latest evidence on the role of mitochondrial dysfunctions in the development of diabetes-related NDs and the underlying molecular mechanisms. Hypoglycemic agents, especially metformin, have been proven to have neuroprotective effects in the treatment of diabetes, in which mitochondria could act as one of the underlying mechanisms. Other hypoglycemic agents, including thiazolidinediones (TZDs), dipeptidyl peptidase 4 (DPP-4) inhibitors, and glucagon-like peptide 1 (GLP-1) receptor agonists, have gained more attention because of their beneficial effects on NDs, presumably by improving mitochondrial function. Our review highlights the notion that mitochondria could be a promising therapeutic target in the treatment of NDs in patients with diabetes.
Collapse
Affiliation(s)
- Han Cheng
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yujia Liu
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Gang Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
19
|
Majumder P, Blacker TS, Nolan LS, Duchen MR, Gale JE. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep 2019; 9:18907. [PMID: 31827194 PMCID: PMC6906381 DOI: 10.1038/s41598-019-55329-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
An increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.
Collapse
Affiliation(s)
- Paromita Majumder
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.
| | - Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK. .,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lisa S Nolan
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.,Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
20
|
Foltynie T, Athauda D. Repurposing anti-diabetic drugs for the treatment of Parkinson's disease: Rationale and clinical experience. PROGRESS IN BRAIN RESEARCH 2019; 252:493-523. [PMID: 32247373 DOI: 10.1016/bs.pbr.2019.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The most pressing need in Parkinson's disease (PD) clinical practice is to identify agents that might slow down, stop or reverse the neurodegenerative process of Parkinson's disease and therefore avoid the onset of the most disabling, dopa-refractory symptoms of the disease. These include dementia, speech and swallowing problems, poor balance and falling. To date, there have been no agents which have yet had robust trial data to confirm positive effects at slowing down the neurodegenerative disease process of PD. In this chapter we will review the reasons why there is growing interest in drugs currently licensed for the treatment of diabetes as agents which may slow down disease progression in PD, including a review of the published trials regarding exenatide, a GLP-1 receptor agonist licensed to treat type 2 diabetes, and recently shown to be associated with reduced severity of PD in a randomized, placebo controlled washout design trial of 60 patients treated for 48 weeks. This subject is now a major area of interest for multiple pharmaceutical companies hoping to bring GLP-1 receptor agonists forward as treatment options in PD.
Collapse
Affiliation(s)
- Tom Foltynie
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, United Kingdom.
| | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
21
|
Zakaria A, Rady M, Mahran L, Abou-Aisha K. Pioglitazone Attenuates Lipopolysaccharide-Induced Oxidative Stress, Dopaminergic Neuronal Loss and Neurobehavioral Impairment by Activating Nrf2/ARE/HO-1. Neurochem Res 2019; 44:10.1007/s11064-019-02907-0. [PMID: 31713708 DOI: 10.1007/s11064-019-02907-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to examine the neuroprotective potential of pioglitazone via activation of Nrf2/ARE-dependent HO-1 signaling pathway in chronic neuroinflammation and progressive neurodegeneration mouse model induced by lipopolysaccharide (LPS). After assessing spatial memory, anxiety and motor-coordination, TH+ neurons in substantia nigra (SN) were counted. The oxidative stress marker carbonyl protein levels and HO-1 enzyme activity were also evaluated. RT-qPCR was conducted to detect HO-1, Nrf2 and NF-κp65 mRNA expression levels and Nrf2 transcriptional activation of antioxidant response element (ARE) of HO-1 was investigated. Pioglitazone ameliorated LPS-induced dopaminergic neuronal loss, as well as mitigated neurobehavioral impairments. It enhanced Nrf2 mRNA expression, and augmented Nrf2/ARE-dependent HO-1 pathway activation by amplifying HO-1 mRNA expression. Moreover, it induced a significant decrease in NF-κB p65 mRNA expression, while reducing carbonyl protein levels and restoring the HO-1 enzyme activity. Interestingly, LPS induced Nrf2/antioxidant response element (ARE) of HO-1 activation, ultimately resulting in slight enhanced HO-1 mRNA expression. However, LPS elicited decrease in HO-1 enzyme activity. Zinc protoporphyrin-IX (ZnPPIX) administrated with pioglitazone abolished its effects in the LPS mouse model. The study results demonstrate that coordinated activation of Nrf2/ARE-dependent HO-1 pathway defense mechanism by the PPARγ agonist pioglitazone mediated its neuroprotective effects.
Collapse
Affiliation(s)
- Aya Zakaria
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt.
| | - Mona Rady
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt
| | - Laila Mahran
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo, Egypt.
| |
Collapse
|
22
|
d'Angelo M, Castelli V, Catanesi M, Antonosante A, Dominguez-Benot R, Ippoliti R, Benedetti E, Cimini A. PPARγ and Cognitive Performance. Int J Mol Sci 2019; 20:ijms20205068. [PMID: 31614739 PMCID: PMC6834178 DOI: 10.3390/ijms20205068] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Recent findings have led to the discovery of many signaling pathways that link nuclear receptors with human conditions, including mental decline and neurodegenerative diseases. PPARγ agonists have been indicated as neuroprotective agents, supporting synaptic plasticity and neurite outgrowth. For these reasons, many PPARγ ligands have been proposed for the improvement of cognitive performance in different pathological conditions. In this review, the research on this issue is extensively discussed.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Reyes Dominguez-Benot
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
23
|
Corona JC, Carreón-Trujillo S, González-Pérez R, Gómez-Bautista D, Vázquez-González D, Salazar-García M. Atomoxetine produces oxidative stress and alters mitochondrial function in human neuron-like cells. Sci Rep 2019; 9:13011. [PMID: 31506604 PMCID: PMC6737196 DOI: 10.1038/s41598-019-49609-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Atomoxetine (ATX) is a non-stimulant drug used in the treatment of attention-deficit/hyperactivity disorder (ADHD) and is a selective norepinephrine reuptake inhibitor. It has been shown that ATX has additional effects beyond the inhibition of norepinephrine reuptake, affecting several signal transduction pathways and alters gene expression. Here, we study alterations in oxidative stress and mitochondrial function in human differentiated SH-SY5Y cells exposed over a range of concentrations of ATX. We found that the highest concentrations of ATX in neuron-like cells, caused cell death and an increase in cytosolic and mitochondrial reactive oxygen species, and alterations in mitochondrial mass, membrane potential and autophagy. Interestingly, the dose of 10 μM ATX increased mitochondrial mass and decreased autophagy, despite the induction of cytosolic and mitochondrial reactive oxygen species. Thus, ATX has a dual effect depending on the dose used, indicating that ATX produces additional active therapeutic effects on oxidative stress and on mitochondrial function beyond the inhibition of norepinephrine reuptake.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico.
| | - Sonia Carreón-Trujillo
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Raquel González-Pérez
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Denise Gómez-Bautista
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Daniela Vázquez-González
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| | - Marcela Salazar-García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, 06720, Mexico City, Mexico
| |
Collapse
|
24
|
Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol 2019; 70:74-89. [DOI: 10.2478/aiht-2019-70-3263] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic neurodegeneration seen in Parkinson’s disease. The main neurotoxic mechanisms include oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, and cypermethrin. We also review common targets and pathways of Parkinson’s disease therapy, including Nrf2, Nurr1, and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by future research of novel methods of protection against neurological disorders caused by pesticides that may also find their use in the management/treatment of Parkinson’s disease.
Collapse
|
25
|
Khan MA, Alam Q, Haque A, Ashafaq M, Khan MJ, Ashraf GM, Ahmad M. Current Progress on Peroxisome Proliferator-activated Receptor Gamma Agonist as an Emerging Therapeutic Approach for the Treatment of Alzheimer's Disease: An Update. Curr Neuropharmacol 2019; 17:232-246. [PMID: 30152284 PMCID: PMC6425074 DOI: 10.2174/1570159x16666180828100002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/14/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder, characterized by the deposition of amyloid-β within the brain parenchyma resulting in a significant decline in cognitive functions. The pathophysiological conditions of the disease are recognized by the perturbation of synaptic function, energy and lipid metabolism. In Addition deposition of amyloid plaques also triggers inflammation upon the induction of microglia. Peroxisome proliferatoractivated receptors (PPARs) are ligand-activated transcription factors known to play important role in the regulation of glucose absorption, homeostasis of lipid metabolism and are further known to involved in repressing the expression of genes related to inflammation. Therefore, agonists of this receptor represent an attractive therapeutic target for AD. Recently, both clinical and preclinical studies showed that use of Peroxisome proliferator-activated receptor gamma (PPARγ) agonist improves both learning and memory along with other AD related pathology. Thus, PPARγ signifies a significant new therapeutic target in treating AD. In this review, we have shed some light on the recent progress of how, PPARγ agonist selectively modulated different cellular targets in AD and its amazing potential in the treatment of AD.
Collapse
Affiliation(s)
- Mahmood Ahmad Khan
- Address correspondence to these authors at the Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India; E-mail: , and King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | | | | | | | | | - Ghulam Md Ashraf
- Address correspondence to these authors at the Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi 110095, India; E-mail: , and King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | | |
Collapse
|
26
|
Zhang Q, Bai J, Yao X, Jiang L, Wu W, Yang L, Gao N, Qiu T, Yang G, Habtemariam Hidru T, Sun X. Taurine rescues the arsenic-induced injury in the pancreas of rat offsprings and in the INS-1 cells. Biomed Pharmacother 2018; 109:815-822. [PMID: 30551535 DOI: 10.1016/j.biopha.2018.10.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023] Open
Abstract
Arsenic was an established carcinogen and toxicant, occurring in drinking water and food. Arsenic was increasingly being blamed as a risk factor for diabetes mellitus. Recent studies have found that arsenic could induce the generation of reactive oxygen species (ROS) and mitochondria were the major targets of ROS. Damage mitochondria could be removed by mitophagy and mitophagy played a defensive role against cellular apoptosis. To investigate whether the arsenic could induce the injury in mitochondria, we treated Wistar rat offsprings and INS-1 cells with As2O3 and sodium arsenite, respectively. Our results showed that arsenic induced the generation of ROS in both rat offsprings' pancreas and INS-1 cells. The generation of ROS induced by arsenic could inhibit the expression of PPARγ. PPARγ is a major impact on mitochondrial function. The inhibition of PPARγ induced the reduction of PINK1 signaling and the upregulation of Bax. PINK1 signaling was one of the classical pathways of mitophagy. The inhibition of mitophagy induced the activation of apoptosis both in rat offsprings' pancreas and INS-1 cells. After treated with Rosiglitazone (RGS, PPARγ receptor agonist), PPARγ was rescued, the expression of PINK1 significantly increasing and the apoptosis was restrained. We used Taurine (Tau) as the protective agent both in rat offsprings' pancreas and INS-1 cells, after treated with Tau, the production of ROS was decreased significantly and the downgrade of PPARγ was rescued.
Collapse
Affiliation(s)
- Qiaoting Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian medical university, 9W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Department of Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9W Lvshun South Road, Dalian 116044, PR China
| | - Wei Wu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Lei Yang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Ni Gao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Department of Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9W Lvshun South Road, Dalian 116044, PR China
| | | | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
27
|
Tiefenbach J, Magomedova L, Liu J, Reunov AA, Tsai R, Eappen NS, Jockusch RA, Nislow C, Cummins CL, Krause HM. Idebenone and coenzyme Q 10 are novel PPARα/γ ligands, with potential for treatment of fatty liver diseases. Dis Model Mech 2018; 11:11/9/dmm034801. [PMID: 30171034 PMCID: PMC6177011 DOI: 10.1242/dmm.034801] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Current peroxisome proliferator-activated receptor (PPAR)-targeted drugs, such as the PPARγ-directed diabetes drug rosiglitazone, are associated with undesirable side effects due to robust agonist activity in non-target tissues. To find new PPAR ligands with fewer toxic effects, we generated transgenic zebrafish that can be screened in high throughput for new tissue-selective PPAR partial agonists. A structural analog of coenzyme Q10 (idebenone) that elicits spatially restricted partial agonist activity for both PPARα and PPARγ was identified. Coenzyme Q10 was also found to bind and activate both PPARs in a similar fashion, suggesting an endogenous role in relaying the states of mitochondria, peroxisomes and cellular redox to the two receptors. Testing idebenone in a mouse model of type 2 diabetes revealed the ability to reverse fatty liver development. These findings indicate new mechanisms of action for both PPARα and PPARγ, and new potential treatment options for nonalcoholic fatty liver disease (NAFLD) and steatosis. This article has an associated First Person interview with the first author of the paper. Summary: A zebrafish screen identifies a novel PPARα/γ ligand, idebenone, with potential for treatment of fatty liver diseases, as seen by testing it in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Jens Tiefenbach
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada .,InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jiabao Liu
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada
| | - Arkadiy A Reunov
- InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ricky Tsai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Neena S Eappen
- Department of Chemistry, 80 St George St, University of Toronto, Toronto, ON M5S 3H4, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, 80 St George St, University of Toronto, Toronto, ON M5S 3H4, Canada
| | - Corey Nislow
- The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, 144 College St, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Henry M Krause
- University of Toronto, Donnelly Ctr., 160 College St, Toronto, ON M5S 3E1, Canada .,InDanio Bioscience Inc., 160 College Street, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
28
|
PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018; 44:8-21. [PMID: 29580918 DOI: 10.1016/j.arr.2018.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Recently, growing evidence has demonstrated that peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a superior transcriptional regulator that acts via controlling the expression of anti-oxidant enzymes and uncoupling proteins and inducing mitochondrial biogenesis, which plays a beneficial part in the central nervous system (CNS). Given the significance of PGC-1α, we summarize the current literature on the molecular mechanisms and roles of PGC-1α in the CNS. Thus, in this review, we first briefly introduce the basic characteristics regarding PGC-1α. We then depict some of its important cerebral functions and discuss upstream modulators, partners, and downstream effectors of the PGC-1α signaling pathway. Finally, we highlight recent progress in research on the involvement of PGC-1α in certain major neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Collectively, the data presented here may be useful for supporting the future potential of PGC-1α as a therapeutic target.
Collapse
|
29
|
Zeissler ML, Eastwood J, McCorry K, Hanemann CO, Zajicek JP, Carroll CB. Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis. Oncotarget 2018; 7:46603-46614. [PMID: 27366949 PMCID: PMC5216821 DOI: 10.18632/oncotarget.10314] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 11/25/2022] Open
Abstract
Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson's disease (PD).The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use. The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress. Differentiated SH-SY5Y neuroblastoma cells were exposed to the PD relevant mitochondrial complex 1 inhibitor 1-methyl-4-phenylpyridinium iodide (MPP+). We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content. Co-application of Δ9-THC with pioglitazone further increased the neuroprotection against MPP+ toxicity as compared to pioglitazone treatment alone. Furthermore, using lentiviral knock down of the PPARγ receptor we showed that, unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress. We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment.
Collapse
Affiliation(s)
- Marie-Louise Zeissler
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - Jordan Eastwood
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - Kieran McCorry
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - C Oliver Hanemann
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - John P Zajicek
- School of Medicine, Medical and Biological Sciences, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Camille B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BX, United Kingdom
| |
Collapse
|
30
|
The Peroxisome-Mitochondria Connection: How and Why? Int J Mol Sci 2017; 18:ijms18061126. [PMID: 28538669 PMCID: PMC5485950 DOI: 10.3390/ijms18061126] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, peroxisomes have emerged as key regulators in overall cellular lipid and reactive oxygen species metabolism. In mammals, these organelles have also been recognized as important hubs in redox-, lipid-, inflammatory-, and innate immune-signaling networks. To exert these activities, peroxisomes must interact both functionally and physically with other cell organelles. This review provides a comprehensive look of what is currently known about the interconnectivity between peroxisomes and mitochondria within mammalian cells. We first outline how peroxisomal and mitochondrial abundance are controlled by common sets of cis- and trans-acting factors. Next, we discuss how peroxisomes and mitochondria may communicate with each other at the molecular level. In addition, we reflect on how these organelles cooperate in various metabolic and signaling pathways. Finally, we address why peroxisomes and mitochondria have to maintain a healthy relationship and why defects in one organelle may cause dysfunction in the other. Gaining a better insight into these issues is pivotal to understanding how these organelles function in their environment, both in health and disease.
Collapse
|
31
|
The effects of PPARγ on the regulation of the TOMM40-APOE-C1 genes cluster. Biochim Biophys Acta Mol Basis Dis 2017; 1863:810-816. [PMID: 28065845 DOI: 10.1016/j.bbadis.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
Chromosome 19q13.32 is a gene rich region, and has been implicated in multiple human phenotypes in adulthood including lipids traits, Alzheimer's disease, and longevity. Peroxisome Proliferator Activated Receptor Gamma (PPARγ) is a ligand-activated nuclear transcription factor that plays a role in human complex traits that are also genetically associated with the chromosome 19q13.32 region. Here, we study the effects of PPARγ on the regional expression regulation of the genes clustered within chromosome 19q13.32, specifically TOMM40, APOE, and APOC1, applying two complementary approaches. Using the short hairpin RNA (shRNA) method in the HepG2 cell-line we knocked down PPARγ expression and measured the effect on mRNA expression. We discovered PPARγ knock down increased the levels of TOMM40-, APOE-, and APOC1-mRNAs, with the highest increase in expression observed for APOE-mRNA. To complement the PPARγ knockdown findings we also examined the effects of low doses of PPARγ agonists (nM range) on mRNA expression of these genes. Low (nM) concentrations of pioglitazone (Pio) decreased transcription of TOMM40, APOE, and APOC1 genes, with the lowest mRNA levels for each gene observed at 1.5nM. Similar to the effect of PPARγ knockdown, the strongest response to pioglitazone was also observed for APOE-mRNA, and rosiglitazone (Rosi), another PPARγ agonist, produced results that were consistent with these. In conclusion, our results further established a role for PPARγ in regional transcriptional regulation of chr19q13.32, underpinning the association between PPARγ, the chr19q13.32 genes cluster, and human complex traits and disease.
Collapse
|
32
|
Corona JC, Duchen MR. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016; 100:153-163. [PMID: 27352979 PMCID: PMC5145801 DOI: 10.1016/j.freeradbiomed.2016.06.023] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
There is increasing evidence for the involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis of many of the major neurodegenerative and neuroinflammatory diseases, suggesting that mitochondrial and antioxidant pathways may represent potential novel therapeutic targets. Recent years have seen a rapidly growing interest in the use of therapeutic strategies that can limit the defects in, or even to restore, mitochondrial function while reducing free radical generation. The peroxisome proliferation-activated receptor gamma (PPARγ), a ligand-activated transcription factor, has a wide spectrum of biological functions, regulating mitochondrial function, mitochondrial turnover, energy metabolism, antioxidant defence and redox balance, immune responses and fatty acid oxidation. In this review, we explore the evidence for potential beneficial effects of PPARγ agonists in a number of neurological disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis and Huntington's disease, ischaemia, autoimmune encephalomyelitis and neuropathic pain. We discuss the mechanisms underlying those beneficial effects in particular in relation to mitochondrial function, antioxidant defence, cell death and inflammation, and suggest that the PPARγ agonists show significant promise as therapeutic agents in otherwise intractable neurological disease.
Collapse
Affiliation(s)
- Juan Carlos Corona
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom; Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
33
|
Athauda D, Foltynie T. Insulin resistance and Parkinson's disease: A new target for disease modification? Prog Neurobiol 2016; 145-146:98-120. [PMID: 27713036 DOI: 10.1016/j.pneurobio.2016.10.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that patients with Type 2 diabetes have an increased risk of developing Parkinson's disease and share similar dysregulated pathways suggesting common underlying pathological mechanisms. Historically insulin was thought solely to be a peripherally acting hormone responsible for glucose homeostasis and energy metabolism. However accumulating evidence indicates insulin can cross the blood-brain-barrier and influence a multitude of processes in the brain including regulating neuronal survival and growth, dopaminergic transmission, maintenance of synapses and pathways involved in cognition. In conjunction, there is growing evidence that a process analogous to peripheral insulin resistance occurs in the brains of Parkinson's disease patients, even in those without diabetes. This raises the possibility that defective insulin signalling pathways may contribute to the development of the pathological features of Parkinson's disease, and thereby suggests that the insulin signalling pathway may potentially be a novel target for disease modification. Given these growing links between PD and Type 2 diabetes it is perhaps not unsurprising that drugs used the treatment of T2DM are amongst the most promising treatments currently being prioritised for repositioning as possible novel treatments for PD and several clinical trials are under way. In this review, we will examine the underlying cellular links between insulin resistance and the pathogenesis of PD and then we will assess current and future pharmacological strategies being developed to restore neuronal insulin signalling as a potential strategy for slowing neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| | - T Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
34
|
Ko J, Park JH, Park YS, Koh HC. PPAR-γ activation attenuates deltamethrin-induced apoptosis by regulating cytosolic PINK1 and inhibiting mitochondrial dysfunction. Toxicol Lett 2016; 260:8-17. [PMID: 27553674 DOI: 10.1016/j.toxlet.2016.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 11/26/2022]
Abstract
Central events in the mitochondrial-dependent cell death pathway include the disruption of mitochondrial membrane potential, which causes the release of apoptogenic molecules leading to cell death. Based on the cytotoxic mechanism of deltamethrin (DLM), we examined the neuroprotective mechanisms of rosiglitazone (RGZ), which is against DLM-induced neuronal cell death. In this study, we found that DLM induces apoptosis in SH-SY5Y cells as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, neuronal cell death in response to DLM was due to mitochondrial dependent-apoptosis pathways since DLM increased cytochrome c release into the cytosol and activated caspase-9. DLM exposure reduced PINK1 expression, and pretreatment with RGZ significantly reduced cytochrome c release and caspase-9 activation. RGZ also attenuated the reduction of complex I activity, mitochondrial membrane potential, and ATP levels. Pretreatment with RGZ significantly enhanced PINK1 expression in DLM-exposed cells. In addition, RGZ increased cytosolic PINK1 by inhibiting mitochondrial translocation of PINK1. Interestingly, RGZ fails to rescue DLM-induced mitochondrial dysfunction both in PINK1 knockdown and PPAR-γ antagonist treated cells. Results from this study suggest that RGZ exerts anti-apoptotic effects against DLM-induced cytotoxicity by attenuation of mitochondrial dysfunction through cytosolic PINK1-dependent signaling pathways.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, Seoul, Republic of Korea
| | - Jae Hyeon Park
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yun Sun Park
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 2016; 483:1166-1177. [PMID: 27514452 DOI: 10.1016/j.bbrc.2016.08.043] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India.
| |
Collapse
|
36
|
Taurine protects against As2O3-induced autophagy in livers of rat offsprings through PPARγ pathway. Sci Rep 2016; 6:27733. [PMID: 27291853 PMCID: PMC4904213 DOI: 10.1038/srep27733] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 11/08/2022] Open
Abstract
Chronic exposures to arsenic had been associated with metabolism diseases. Peroxisome proliferator-activated receptor gamma (PPARγ) was found in the liver, regulated metabolism. Here, we found that the expression of PPARγ was decreased, the generation of reactive oxygen species (ROS) and autophagy were increased after treatment with As2O3 in offsprings’ livers. Taurine (Tau), a sulfur-containing β–amino acid could reverse As2O3-inhibited PPARγ. Tau also inhibit the generation of ROS and autophagy. We also found that As2O3 caused autophagic cell death and ROS accelerated in HepG2 cells. Before incubation with As2O3, the cells were pretreated with PPARγ activator Rosiglitazone (RGS), we found that autophagy and ROS was inhibited in HepG2 cells, suggesting that inhibition of PPARγ contributed to As2O3-induced autophagy and the generation of ROS. After pretreatment with Tau, the level of PPARγ was improved and the autophagy and ROS was inhibited in As2O3-treated cells, suggesting that Tau could protect hepatocytes against As2O3 through modulating PPARγ pathway.
Collapse
|
37
|
Engel PA. Is age-related failure of metabolic reprogramming a principal mediator in idiopathic Parkinson's disease? Implications for treatment and inverse cancer risk. Med Hypotheses 2016; 93:154-60. [PMID: 27372878 DOI: 10.1016/j.mehy.2016.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/16/2016] [Accepted: 05/29/2016] [Indexed: 02/06/2023]
Abstract
Idiopathic Parkinson's disease (IPD) is a neurodegenerative disorder characterized by selective degeneration of the substantia nigra pars compacta (SNc), dorsal motor nucleus of the vagus and other vulnerable nervous system regions characterized by extensive axonal arborization and intense energy requirements. Systemic age-related depression of mitochondrial function, oxidative phosphorylation (OXPHOS) and depressed expression of genes supporting energy homeostasis is more severe in IPD than normal aging such that energy supply may exceed regional demand. In IPD, the overall risk of malignancy is reduced. Cancer is a collection of proliferative diseases marked by malignant transformation, dysregulated mitosis, invasion and metastasis. Many cancers demonstrate normal mitochondrial function, preserved OXPHOS, competent mechanisms of energy homeostasis, and metabolic reprogramming capacities that are lacking in IPD. Metabolic reprogramming adjusts OXPHOS and glycolytic pathways in response to changing metabolic needs. These opposite metabolic features form the basis of a two component hypothesis. First, that depressed mitochondrial function, OXPHOS deficiency and impaired metabolic reprogramming contribute to focal energy failure, neurodegeneration and disease expression in IPD. Second, that the same systemic metabolic deficits inhibit development and proliferation of malignancies in IPD. Studies of mitochondrial aging, familial PD (FPD), the lysosomal storage disorder, Gaucher's disease, Parkinson's disease cybrids, the mitochondrial cytopathies, and disease-related metabolic reprogramming both in IPD and cancer provide support for this model.
Collapse
Affiliation(s)
- Peter A Engel
- Geriatric Research, Education and Clinical Center, VA Boston Healthcare System and Harvard Medical School, USA.
| |
Collapse
|
38
|
Taurine protects against As2O3-induced autophagy in pancreas of rat offsprings through Nrf2/Trx pathway. Biochimie 2016; 123:1-6. [DOI: 10.1016/j.biochi.2016.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
|
39
|
Genetic Variants of Microtubule Actin Cross-linking Factor 1 (MACF1) Confer Risk for Parkinson’s Disease. Mol Neurobiol 2016; 54:2878-2888. [DOI: 10.1007/s12035-016-9861-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/17/2016] [Indexed: 01/12/2023]
|
40
|
Nurr1 and Retinoid X Receptor Ligands Stimulate Ret Signaling in Dopamine Neurons and Can Alleviate α-Synuclein Disrupted Gene Expression. J Neurosci 2016; 35:14370-85. [PMID: 26490873 DOI: 10.1523/jneurosci.1155-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED α-synuclein, a protein enriched in Lewy bodies and highly implicated in neurotoxicity in Parkinson's disease, is distributed both at nerve terminals and in the cell nucleus. Here we show that a nuclear derivative of α-synuclein induces more pronounced changes at the gene expression level in mouse primary dopamine (DA) neurons compared to a derivative that is excluded from the nucleus. Moreover, by RNA sequencing we analyzed the extent of genome-wide effects on gene expression resulting from expression of human α-synuclein in primary mouse DA neurons. The results implicated the transcription factor Nurr1 as a key dysregulated target of α-synuclein toxicity. Forced Nurr1 expression restored the expression of hundreds of dysregulated genes in primary DA neurons expressing α-synuclein, and therefore prompted us to test the possibility that Nurr1 can be pharmacologically targeted by bexarotene, a ligand for the retinoid X receptor that forms heterodimers with Nurr1. Although our data demonstrated that bexarotene was ineffective in neuroprotection in rats in vivo, the results revealed that bexarotene has the capacity to coregulate subsets of Nurr1 target genes including the receptor tyrosine kinase subunit Ret. Moreover, bexarotene was able to restore dysfunctional Ret-dependent neurotrophic signaling in α-synuclein-overexpressing mouse DA neurons. These data highlight the role of the Nurr1-Ret signaling pathway as a target of α-synuclein toxicity and suggest that retinoid X receptor ligands with appropriate pharmacological properties could have therapeutic potential in Parkinson's disease. SIGNIFICANCE STATEMENT How α-synuclein, a protein enriched in Lewy bodies in Parkinson's disease, is causing neuropathology in dopamine neurons remains unclear. This study elucidated how α-synuclein is influencing gene expression and how Nurr1, a transcription factor known to protect dopamine neurons against α-synuclein toxicity, can counteract these effects. Moreover, given the protective role of Nurr1, this study also investigated how Nurr1 could be pharmacologically targeted via bexarotene, a ligand of Nurr1's heterodimerization partner retinoid X receptor (RXR). The results showed that RXR ligands could increase neurotrophic signaling, but provided a mixed picture of its potential in a Parkinson's disease rat model in vivo. However, this study clearly emphasized Nurr1's neuroprotective role and indicated that other RXR ligands could have therapeutic potential in Parkinson's disease.
Collapse
|
41
|
Zhang Z, Guo M, Zhao S, Xu W, Shao J, Zhang F, Wu L, Lu Y, Zheng S. The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomed Pharmacother 2015; 74:17-29. [DOI: 10.1016/j.biopha.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023] Open
|
42
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
43
|
Steer EK, Dail MK, Chu CT. Beyond mitophagy: cytosolic PINK1 as a messenger of mitochondrial health. Antioxid Redox Signal 2015; 22:1047-59. [PMID: 25557302 PMCID: PMC4390087 DOI: 10.1089/ars.2014.6206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Disruptions in mitochondrial homeostasis are implicated in human diseases across the lifespan. Recessive mutations in PINK1, which encodes the mitochondrially targeted PTEN-induced putative kinase 1 (PINK1), cause an autosomal recessive form of Parkinson's disease. As with all kinases, PINK1 participates in multiple functional pathways, and its dysregulation has been implicated in a growing number of diseases. RECENT ADVANCES In addition to its heavily studied role in mitophagy, PINK1 regulates mitochondrial respiratory function, reactive oxygen species generation, and mitochondrial transport. Moreover, recent studies implicate processed PINK1 in cytosolic signaling cascades that promote cell survival and neuron differentiation. Cytosolic PINK1 is also capable of suppressing autophagy and mitophagy. We propose a working hypothesis that PINK1 is released by functional mitochondria as a signal to coordinate cell growth and differentiation in response to mitochondrial status. CRITICAL ISSUES PINK1 biology needs to be better understood in primary neurons, as the stability and subcellular localization of PINK1 is differentially regulated in different cell types. Delineating factors that regulate its mitochondrial import/export, processing by different peptidases, kinase activity, subcellular localization, and degradation will be important for defining relevant downstream kinase targets. FUTURE DIRECTIONS It is becoming clear that different subcellular pools of PINK1 mediate distinct functions. Future studies will undoubtedly expand on the spectrum of cellular functions regulated by PINK1. Continued study of cytosolic PINK1 may offer novel insights into how functional mitochondria communicate their status with the rest of the cell.
Collapse
Affiliation(s)
- Erin K Steer
- 1 Department of Pathology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
44
|
Evangelisti C, de Biase D, Kurelac I, Ceccarelli C, Prokisch H, Meitinger T, Caria P, Vanni R, Romeo G, Tallini G, Gasparre G, Bonora E. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors. BMC Cancer 2015; 15:157. [PMID: 25880213 PMCID: PMC4374372 DOI: 10.1186/s12885-015-1122-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/24/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. METHODS Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. RESULTS In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. CONCLUSIONS These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Cell Signaling Laboratory, University of Bologna, Bologna, Italy.
| | - Dario de Biase
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Claudio Ceccarelli
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomy, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy.
| | - Holger Prokisch
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Thomas Meitinger
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany.
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Giovanni Tallini
- Department of Diagnostic, Experimental and Specialty Medicine (DIMES), Unit of Anatomic Pathology, Bellaria Hospital, University of Bologna, Bologna, Italy.
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), Policlinico S. Orsola-Malpighi, Unit of Medical Genetics, University of Bologna, Bologna, Italy.
| |
Collapse
|
45
|
Yuan HF, Niu XL, Gao DF, Hao GH, Song AQ, Wei J. Expression of p-PPARγ in the aging thoracic aorta of spontaneously hypertensive rat and inhibitory effect of rosiglitazone. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.201414b416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
46
|
Li X, Zhang W, Zhang C, Yi Z, Zhang DF, Gong W, Tang J, Wang D, Lu W, Chen X, Fang Y, Yao YG. Common variants of the PINK1 and PARL genes do not confer genetic susceptibility to schizophrenia in Han Chinese. Mol Genet Genomics 2014; 290:585-92. [PMID: 25354644 DOI: 10.1007/s00438-014-0942-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Abstract
Schizophrenia is a prevalent psychiatric disorder with a complex etiology. Mitochondrial dysfunction has been frequently reported in schizophrenia. Phosphatase and tension homologue-induced kinase 1 (PINK1) and presenilin-associated rhomboid-like protease (PARL) are mitochondrial proteins, and genetic variants of these two genes may confer genetic susceptibility to schizophrenia by influencing mitochondrial function. In this study, we conducted a two-stage genetic association study to test this hypothesis. We genotyped 4 PINK1 and 5 PARL genetic variants and evaluated the potential association of the 9 SNPs with schizophrenia in two independent case-control cohorts of 2510 Han Chinese individuals. No positive association of common genetic variants of the PINK1 and PARL genes with schizophrenia was identified in our samples after Bonferroni correction. Re-analysis of the newly updated Psychiatric Genetics Consortium (PGC) data sets confirmed our negative result. Intriguingly, one PINK1 SNP (rs10916832), which showed a marginally significant association in only Hunan samples (P = 0.032), is associated with the expression of a schizophrenia susceptible gene KIF17 according to the expression quantitative trait locus (eQTL) analysis. Our study indicated that common genetic variants of the PINK1 and PARL genes are unlikely to be involved in schizophrenia. Further studies are essential to characterize the role of the PINK1 and PARL genes in schizophrenia.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets? J Bioenerg Biomembr 2014; 47:89-99. [PMID: 25216534 PMCID: PMC4323516 DOI: 10.1007/s10863-014-9576-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022]
Abstract
The sustained integrity of the mitochondrial population of a cell is critical for maintained cell health, and disruption of that integrity is linked strongly to human disease, especially to the neurodegenerative diseases. These are appalling diseases causing untold levels of suffering for which treatment is woefully inadequate. Understanding the mechanisms that disturb mitochondrial homeostasis may therefore prove key to identification of potential new therapeutic pathways. Mechanisms causing mitochondrial dysfunction include the acute catastrophic loss of function caused by opening of the mitochondrial permeability transition pore (mPTP), which collapses bioenergetic function and initiates cell death. This is best characterised in ischaemic reperfusion injury, although it may also contribute to a number of other diseases. More insidious disturbances of mitochondrial homeostasis may result from impaired balance in the pathways that promote mitochondrial repair (biogenesis) and pathways that remove dysfunctional mitochondria (mitophagy). Impaired coordination between these processes is emerging as a key feature of a number of neurodegenerative and neuromuscular disorders. Here we review pathways that may prove to be valuable potential therapeutic targets, focussing on the molecular mechanisms that govern the coordination of these processes and their involvement in neurodegenerative diseases.
Collapse
|
48
|
PPARγ and PGC-1α as therapeutic targets in Parkinson's. Neurochem Res 2014; 40:308-16. [PMID: 25007880 PMCID: PMC4326663 DOI: 10.1007/s11064-014-1377-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/19/2014] [Accepted: 06/28/2014] [Indexed: 12/30/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPARγ was initially identified through its role in the regulation of glucose and lipid metabolism and cell differentiation. It also influences the expression or activity of a number of genes in a variety of signalling networks. These include regulation of redox balance, fatty acid oxidation, immune responses and mitochondrial function. Recent studies suggest that the PPARγ agonists may serve as good candidates for the treatment of several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease, Huntington’s disease and amyotrophic lateral sclerosis, even though multiple etiological factors contribute to the development of these disorders. Recent reports have also signposted a role for PPARγ coactivator-1α (PGC-1α) in several neurodegenerative disorders including PD. In this review, we explore the current knowledge of mechanisms underlying the beneficial effects of PPARγ agonists and PGC-1α in models of PD.
Collapse
|
49
|
Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and PINK1: much more than mitophagy. Trends Neurosci 2014; 37:315-24. [PMID: 24735649 DOI: 10.1016/j.tins.2014.03.004] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that causes a debilitating movement disorder. Although most cases of PD appear to be sporadic, rare Mendelian forms have provided tremendous insight into disease pathogenesis. Accumulating evidence suggests that impaired mitochondria underpin PD pathology. In support of this theory, data from multiple PD models have linked Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and parkin, two recessive PD genes, in a common pathway impacting mitochondrial health, prompting a flurry of research to identify their mitochondrial targets. Recent work has focused on the role of PINK1 and parkin in mediating mitochondrial autophagy (mitophagy); however, emerging evidence casts parkin and PINK1 as key players in multiple domains of mitochondrial health and quality control.
Collapse
Affiliation(s)
- Leslie A Scarffe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Daniel A Stevens
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.
| |
Collapse
|