1
|
Wittenmayer N, Petkova-Tuffy A, Borgmeyer M, Lee C, Becker J, Böning A, Kügler S, Rhee J, Viotti JS, Dresbach T. S-SCAM is essential for synapse formation. Front Cell Neurosci 2023; 17:1182493. [PMID: 38045729 PMCID: PMC10690602 DOI: 10.3389/fncel.2023.1182493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/02/2023] [Indexed: 12/05/2023] Open
Abstract
Synapse formation is critical for the wiring of neural circuits in the developing brain. The synaptic scaffolding protein S-SCAM/MAGI-2 has important roles in the assembly of signaling complexes at post-synaptic densities. However, the role of S-SCAM in establishing the entire synapse is not known. Here, we report significant effects of RNAi-induced S-SCAM knockdown on the number of synapses in early stages of network development in vitro. In vivo knockdown during the first three postnatal weeks reduced the number of dendritic spines in the rat brain neocortex. Knockdown of S-SCAM in cultured hippocampal neurons severely reduced the clustering of both pre- and post-synaptic components. This included synaptic vesicle proteins, pre- and post-synaptic scaffolding proteins, and cell adhesion molecules, suggesting that entire synapses fail to form. Correspondingly, functional and morphological characteristics of developing neurons were affected by reducing S-SCAM protein levels; neurons displayed severely impaired synaptic transmission and reduced dendritic arborization. A next-generation sequencing approach showed normal expression of housekeeping genes but changes in expression levels in 39 synaptic signaling molecules in cultured neurons. These results indicate that S-SCAM mediates the recruitment of all key classes of synaptic molecules during synapse assembly and is critical for the development of neural circuits in the developing brain.
Collapse
Affiliation(s)
- Nina Wittenmayer
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
- Institute for Translational Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Andonia Petkova-Tuffy
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Maximilian Borgmeyer
- Institute for Translational Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Chungku Lee
- Department of Molecular Neurobiology, Synaptic Physiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jürgen Becker
- Institute of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Böning
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Synaptic Physiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Julio S. Viotti
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
- University of Bordeaux, CNRS, IINS, UMR 5297, Bordeaux, France
| | - Thomas Dresbach
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Huang C, Voglewede MM, Ozsen EN, Wang H, Zhang H. SHANK3 Mutations Associated with Autism and Schizophrenia Lead to Shared and Distinct Changes in Dendritic Spine Dynamics in the Developing Mouse Brain. Neuroscience 2023; 528:1-11. [PMID: 37532012 PMCID: PMC10528879 DOI: 10.1016/j.neuroscience.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Autism Spectrum Disorders (ASD) and schizophrenia are distinct neurodevelopmental disorders that share certain symptoms and genetic components. Both disorders show abnormalities in dendritic spines, which are the main sites of excitatory synaptic inputs. Recent studies have identified the synaptic scaffolding protein Shank3 as a leading candidate gene for both disorders. Mutations in the SHANK3 gene have been linked to both ASD and schizophrenia; however, how patient-derived mutations affect the structural plasticity of dendritic spines during brain development is unknown. Here we use live two photon in vivo imaging to examine dendritic spine structural plasticity in mice with SHANK3 mutations associated with ASD and schizophrenia. We identified shared and distinct phenotypes in dendritic spine morphogenesis and plasticity in the ASD-associated InsG3680 mutant mice and the schizophrenia-associated R1117X mutant mice. No significant changes in dendritic arborization were observed in either mutant, raising the possibility that synaptic dysregulation may be a key contributor to the behavioral defects previously reported in these mice. These findings shed light on how patient-linked mutations in SHANK3 affect dendritic spine dynamics in the developing brain, which provides insight into the synaptic basis for the distinct phenotypes observed in ASD and schizophrenia.
Collapse
Affiliation(s)
- Chengyu Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mikayla M Voglewede
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Elif Naz Ozsen
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
3
|
Yildiz B, Schiedt L, Mulaw M, Bockmann J, Jesse S, Lutz AK, Boeckers TM. Shank3 related muscular hypotonia is accompanied by increased intracellular calcium concentrations and ion channel dysregulation in striated muscle tissue. Front Cell Dev Biol 2023; 11:1243299. [PMID: 37745298 PMCID: PMC10511643 DOI: 10.3389/fcell.2023.1243299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a syndromic form of Autism Spectrum Disorders (ASD) classified as a rare genetic neurodevelopmental disorder featuring global developmental delay, absent or delayed speech, ASD-like behaviour and neonatal skeletal muscle hypotonia. PMS is caused by a heterozygous deletion of the distal end of chromosome 22q13.3 or SHANK3 mutations. We analyzed striated muscles of newborn Shank3Δ11(-/-) animals and found a significant enlargement of the sarcoplasmic reticulum as previously seen in adult Shank3Δ11(-/-) mice, indicative of a Shank3-dependent and not compensatory mechanism for this structural alteration. We analyzed transcriptional differences by RNA-sequencing of muscle tissue of neonatal Shank3Δ11(-/-) mice and compared those to Shank3(+/+) controls. We found significant differences in gene expression of ion channels crucial for muscle contraction and for molecules involved in calcium ion regulation. In addition, calcium storage- [i.e., Calsequestrin (CSQ)], calcium secretion- and calcium-related signaling-proteins were found to be affected. By immunostainings and Western blot analyses we could confirm these findings both in Shank3Δ11(-/-) mice and PMS patient muscle tissue. Moreover, alterations could be induced in vitro by the selective downregulation of Shank3 in C2C12 myotubes. Our results emphasize that SHANK3 levels directly or indirectly regulate calcium homeostasis in a cell autonomous manner that might contribute to muscular hypotonia especially seen in the newborn.
Collapse
Affiliation(s)
- Berra Yildiz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, Ulm, Germany
| | - Lisa Schiedt
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, Ulm, Germany
| | - Medhanie Mulaw
- Unit for Single-cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sarah Jesse
- Neurologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm Site, Ulm, Germany
| |
Collapse
|
4
|
Andres-Alonso M, Grochowska KM, Gundelfinger ED, Karpova A, Kreutz MR. Protein transport from pre- and postsynapse to the nucleus: Mechanisms and functional implications. Mol Cell Neurosci 2023; 125:103854. [PMID: 37084990 DOI: 10.1016/j.mcn.2023.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The extreme length of neuronal processes poses a challenge for synapse-to-nucleus communication. In response to this challenge several different mechanisms have evolved in neurons to couple synaptic activity to the regulation of gene expression. One of these mechanisms concerns the long-distance transport of proteins from pre- and postsynaptic sites to the nucleus. In this review we summarize current evidence on mechanisms of transport and consequences of nuclear import of these proteins for gene transcription. In addition, we discuss how information from pre- and postsynaptic sites might be relayed to the nucleus by this type of long-distance signaling. When applicable, we highlight how long-distance protein transport from synapse-to-nucleus can provide insight into the pathophysiology of disease or reveal new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Maria Andres-Alonso
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Katarzyna M Grochowska
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eckart D Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
| |
Collapse
|
5
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
6
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
7
|
Stirmlinger N, Delling JP, Pfänder S, Boeckers TM. Elevation of SHANK3 Levels by Antisense Oligonucleotides Directed Against the 3'-UTR of the Human SHANK3 mRNA. Nucleic Acid Ther 2023; 33:58-71. [PMID: 36355061 PMCID: PMC9940809 DOI: 10.1089/nat.2022.0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SHANK3 is a member of the SHANK family of scaffolding proteins that localize to the postsynaptic density of excitatory synapses. Mutations within the SHANK3 gene or SHANK3 haploinsufficiency is thought to be one of the major causes for Phelan-McDermid Syndrome (PMDS) that is characterized by a broad spectrum of autism-related behavioral alterations. Several approaches have already been proposed to elevate SHANK3 protein levels in PMDS patients like transcriptional activation or inhibition of SHANK3 degradation. We undertook a systematic screening approach and tested whether defined antisense oligonucleotides (ASOs) directed against the 3' untranslated region (3'-UTR) of the human SHANK3 mRNA are suitable to elevate SHANK3 protein levels. Using human induced pluripotent stem cells (hiPSCs) and hiPSCs-derived motoneurons from controls and PMDS patients we eventually identified two 18 nucleotide ASOs (ASO 4-5.2-4 and 4-5.2-6) that were able to increase SHANK3 protein levels in vitro by about 1.3- to 1.6-fold. These findings were confirmed by co-transfection of the identified ASOs with a GFP-SHANK3-3'-UTR construct in HEK293T cells using GFP protein expression as read-out. Based on these results we propose a novel approach to elevate SHANK3 protein concentrations by 3'-UTR specific ASOs. Further research is needed to test the suitability of SHANK3-specific ASOs as pharmacological compounds also in vivo.
Collapse
Affiliation(s)
- Nadine Stirmlinger
- Institute of Anatomy and Cell Biology and Ulm University, Ulm, Germany.,International Graduate School for Molecular Medicine, Ulm University, Ulm, Germany
| | | | - Stefanie Pfänder
- Institute of Anatomy and Cell Biology and Ulm University, Ulm, Germany
| | - Tobias M. Boeckers
- Institute of Anatomy and Cell Biology and Ulm University, Ulm, Germany.,DZNE, Ulm Site, Ulm, Germany.,Address correspondence to: Tobias Boeckers, MD, Institute of Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
8
|
Atanasova E, Arévalo AP, Graf I, Zhang R, Bockmann J, Lutz AK, Boeckers TM. Immune activation during pregnancy exacerbates ASD-related alterations in Shank3-deficient mice. Mol Autism 2023; 14:1. [PMID: 36604742 PMCID: PMC9814193 DOI: 10.1186/s13229-022-00532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is mainly characterized by deficits in social interaction and communication and repetitive behaviors. Known causes of ASD are mutations of certain risk genes like the postsynaptic protein SHANK3 and environmental factors including prenatal infections. METHODS To analyze the gene-environment interplay in ASD, we combined the Shank3Δ11-/- ASD mouse model with maternal immune activation (MIA) via an intraperitoneal injection of polyinosinic/polycytidylic acid (Poly I:C) on gestational day 12.5. The offspring of the injected dams was further analyzed for autistic-like behaviors and comorbidities followed by biochemical experiments with a focus on synaptic analysis. RESULTS We show that the two-hit mice exhibit excessive grooming and deficits in social behavior more prominently than the Shank3Δ11-/- mice. Interestingly, these behavioral changes were accompanied by an unexpected upregulation of postsynaptic density (PSD) proteins at excitatory synapses in striatum, hippocampus and prefrontal cortex. LIMITATIONS We found several PSD proteins to be increased in the two-hit mice; however, we can only speculate about possible pathways behind the worsening of the autistic phenotype in those mice. CONCLUSIONS With this study, we demonstrate that there is an interplay between genetic susceptibility and environmental factors defining the severity of ASD symptoms. Moreover, we show that a general misbalance of PSD proteins at excitatory synapses is linked to ASD symptoms, making this two-hit model a promising tool for the investigation of the complex pathophysiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Ines Graf
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Rong Zhang
- Neuroscience Research Institute, Health Science Centre, Peking University, Peking, China
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm Site, Ulm, Germany.
| |
Collapse
|
9
|
Malara M, Lutz AK, Incearap B, Bauer HF, Cursano S, Volbracht K, Lerner JJ, Pandey R, Delling JP, Ioannidis V, Arévalo AP, von Bernhardi JE, Schön M, Bockmann J, Dimou L, Boeckers TM. SHANK3 deficiency leads to myelin defects in the central and peripheral nervous system. Cell Mol Life Sci 2022; 79:371. [PMID: 35726031 PMCID: PMC9209365 DOI: 10.1007/s00018-022-04400-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
Mutations or deletions of the SHANK3 gene are causative for Phelan–McDermid syndrome (PMDS), a syndromic form of autism spectrum disorders (ASDs). We analyzed Shank3Δ11(−/−) mice and organoids from PMDS individuals to study effects on myelin. SHANK3 was found to be expressed in oligodendrocytes and Schwann cells, and MRI analysis of Shank3Δ11(−/−) mice revealed a reduced volume of the corpus callosum as seen in PMDS patients. Myelin proteins including myelin basic protein showed significant temporal and regional differences with lower levels in the CNS but increased amounts in the PNS of Shank3Δ11(−/−) animals. Node, as well as paranode, lengths were increased and ultrastructural analysis revealed region-specific alterations of the myelin sheaths. In PMDS hiPSC-derived cerebral organoids we observed an altered number and delayed maturation of myelinating cells. These findings provide evidence that, in addition to a synaptic deregulation, impairment of myelin might profoundly contribute to the clinical manifestation of SHANK3 deficiency.
Collapse
Affiliation(s)
- Mariagiovanna Malara
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, 89081, Ulm, Germany
| | - Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Berra Incearap
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, 89081, Ulm, Germany
| | - Helen Friedericke Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, 89081, Ulm, Germany
| | - Silvia Cursano
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Katrin Volbracht
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Joanna Janina Lerner
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
- International Graduate School in Molecular Medicine, IGradU, 89081, Ulm, Germany
| | - Rakshita Pandey
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Andrea Pérez Arévalo
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Leda Dimou
- Molecular and Translational Neuroscience, Department of Neurology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany.
- DZNE, Ulm Site, 89081, Ulm, Germany.
| |
Collapse
|
10
|
Lutz AK, Bauer HF, Ioannidis V, Schön M, Boeckers TM. SHANK3 Antibody Validation: Differential Performance in Western Blotting, Immunocyto- and Immunohistochemistry. Front Synaptic Neurosci 2022; 14:890231. [PMID: 35734418 PMCID: PMC9207774 DOI: 10.3389/fnsyn.2022.890231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
SHANK3 is a scaffolding protein implicated in autism spectrum disorders (ASD). Its function at excitatory glutamatergic synapses has been studied for the last two decades, however, tissue-specific expression patterns as well as its subcellular localization need to be studied in further detail. Especially the close sequence homology of SHANK3 to its protein family members SHANK2 and SHANK1 raises the emerging need for specific antibodies that are validated for the desired methodology. With this study, we aim to validate a set of commercial as well as homemade SHANK3 antibodies in Western Blotting, and synaptic immunocyto- and immunohistochemistry. We found that only a small subset of the antibodies included in this study meet the criteria of quality and specificity. Therefore, we aim to share our findings on SHANK3 antibody validation but also raise awareness of the necessity of antibody specificity testing in the field.
Collapse
Affiliation(s)
- Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
- *Correspondence: Tobias M. Boeckers,
| |
Collapse
|
11
|
Wu CH, Tatavarty V, Jean Beltran PM, Guerrero AA, Keshishian H, Krug K, MacMullan MA, Li L, Carr SA, Cottrell JR, Turrigiano GG. A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. eLife 2022; 11:e74277. [PMID: 35471151 PMCID: PMC9084893 DOI: 10.7554/elife.74277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Homeostatic synaptic plasticity requires widespread remodeling of synaptic signaling and scaffolding networks, but the role of post-translational modifications in this process has not been systematically studied. Using deep-scale quantitative analysis of the phosphoproteome in mouse neocortical neurons, we found widespread and temporally complex changes during synaptic scaling up and down. We observed 424 bidirectionally modulated phosphosites that were strongly enriched for synapse-associated proteins, including S1539 in the autism spectrum disorder-associated synaptic scaffold protein Shank3. Using a parallel proteomic analysis performed on Shank3 isolated from rat neocortical neurons by immunoaffinity, we identified two sites that were persistently hypophosphorylated during scaling up and transiently hyperphosphorylated during scaling down: one (rat S1615) that corresponded to S1539 in mouse, and a second highly conserved site, rat S1586. The phosphorylation status of these sites modified the synaptic localization of Shank3 during scaling protocols, and dephosphorylation of these sites via PP2A activity was essential for the maintenance of synaptic scaling up. Finally, phosphomimetic mutations at these sites prevented scaling up but not down, while phosphodeficient mutations prevented scaling down but not up. These mutations did not impact baseline synaptic strength, indicating that they gate, rather than drive, the induction of synaptic scaling. Thus, an activity-dependent switch between hypo- and hyperphosphorylation at S1586 and S1615 of Shank3 enables scaling up or down, respectively. Collectively, our data show that activity-dependent phosphoproteome dynamics are important for the functional reconfiguration of synaptic scaffolds and can bias synapses toward upward or downward homeostatic plasticity.
Collapse
Affiliation(s)
- Chi-Hong Wu
- Department of Biology, Brandeis UniversityWalthamUnited States
| | | | | | | | - Hasmik Keshishian
- Proteomics Platform, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Karsten Krug
- Proteomics Platform, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Melanie A MacMullan
- Proteomics Platform, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Li Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeUnited States
| | | |
Collapse
|
12
|
Salomaa SI, Miihkinen M, Kremneva E, Paatero I, Lilja J, Jacquemet G, Vuorio J, Antenucci L, Kogan K, Hassani Nia F, Hollos P, Isomursu A, Vattulainen I, Coffey ET, Kreienkamp HJ, Lappalainen P, Ivaska J. SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling. Curr Biol 2021; 31:4956-4970.e9. [PMID: 34610274 DOI: 10.1016/j.cub.2021.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Actin-rich cellular protrusions direct versatile biological processes from cancer cell invasion to dendritic spine development. The stability, morphology, and specific biological functions of these protrusions are regulated by crosstalk between three main signaling axes: integrins, actin regulators, and small guanosine triphosphatases (GTPases). SHANK3 is a multifunctional scaffold protein, interacting with several actin-binding proteins and a well-established autism risk gene. Recently, SHANK3 was demonstrated to sequester integrin-activating small GTPases Rap1 and R-Ras to inhibit integrin activity via its Shank/ProSAP N-terminal (SPN) domain. Here, we demonstrate that, in addition to scaffolding actin regulators and actin-binding proteins, SHANK3 interacts directly with actin through its SPN domain. Molecular simulations and targeted mutagenesis of the SPN-ankyrin repeat region (ARR) interface reveal that actin binding is inhibited by an intramolecular closed conformation of SHANK3, where the adjacent ARR domain covers the actin-binding interface of the SPN domain. Actin and Rap1 compete with each other for binding to SHANK3, and mutation of SHANK3, resulting in reduced actin binding, augments inhibition of Rap1-mediated integrin activity. This dynamic crosstalk has functional implications for cell morphology and integrin activity in cancer cells. In addition, SHANK3-actin interaction regulates dendritic spine morphology in neurons and autism-linked phenotypes in vivo.
Collapse
Affiliation(s)
- Siiri I Salomaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Mitro Miihkinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Johanna Lilja
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
| | - Lina Antenucci
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Patrik Hollos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
| | - Eleanor T Coffey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Viikinkaari 5B, PO Box 56, 00014 Helsinki, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Turku 20520, Finland; Department of Life Technologies, University of Turku, Tykistökatu 6, Turku 20520, Finland.
| |
Collapse
|
13
|
Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. J Neurodev Disord 2021; 13:55. [PMID: 34784886 PMCID: PMC8594088 DOI: 10.1186/s11689-021-09397-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. MAIN TEXT This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. CONCLUSIONS Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany. .,Ulm Site, DZNE, Ulm, Germany.
| |
Collapse
|
14
|
Lutz AK, Pfaender S, Incearap B, Ioannidis V, Ottonelli I, Föhr KJ, Cammerer J, Zoller M, Higelin J, Giona F, Stetter M, Stoecker N, Alami NO, Schön M, Orth M, Liebau S, Barbi G, Grabrucker AM, Delorme R, Fauler M, Mayer B, Jesse S, Roselli F, Ludolph AC, Bourgeron T, Verpelli C, Demestre M, Boeckers TM. Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles. Sci Transl Med 2021; 12:12/547/eaaz3267. [PMID: 32522805 DOI: 10.1126/scitranslmed.aaz3267] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.
Collapse
Affiliation(s)
- Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Stefanie Pfaender
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Berra Incearap
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Ilaria Ottonelli
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Karl J Föhr
- Department of Anesthesiology, Ulm University Hospital, 89081 Ulm, Germany
| | - Judith Cammerer
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Marvin Zoller
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Julia Higelin
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Federica Giona
- CNR Neuroscience Institute, University of Milan, 20129 Milan, Italy.,BIOMETRA University of Milan, 20129 Milan, Italy
| | - Maximilian Stetter
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Nicole Stoecker
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | | | - Stefan Liebau
- Institute of Neuroanatomy and Developmental Biology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Gotthold Barbi
- Institute for Human Genetics, Ulm University Hospital, 89081 Ulm, Germany
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland.,Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, V94T9PX Limerick, Ireland
| | - Richard Delorme
- Child and Adolescent Psychiatry Department, APHP, Robert-Debré Hospital, 750197 Paris, France
| | - Michael Fauler
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany
| | | | | | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Université Paris Diderot, Institut Pasteur, 75015 Paris, France
| | - Chiara Verpelli
- CNR Neuroscience Institute, University of Milan, 20129 Milan, Italy.,BIOMETRA University of Milan, 20129 Milan, Italy
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany. .,DZNE, Ulm Site, 89081 Ulm, Germany
| |
Collapse
|
15
|
Xu X, Liu J, Wang Y, Wang Y, Gong X, Pan L. Mechanistic Insights into the Interactions of Ras Subfamily
GTPases
with the
SPN
Domain of Autism‐associated
SHANK3
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolong Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yingli Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yaru Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xinyu Gong
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
16
|
Hassani Nia F, Woike D, Kloth K, Kortüm F, Kreienkamp HJ. Truncating mutations in SHANK3 associated with global developmental delay interfere with nuclear β-catenin signaling. J Neurochem 2020; 155:250-263. [PMID: 32202324 DOI: 10.1111/jnc.15014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/18/2023]
Abstract
Mutations in SHANK3, coding for a large scaffold protein of excitatory synapses in the CNS, are associated with neurodevelopmental disorders including autism spectrum disorders and intellectual disability (ID). Several cases have been identified in which the mutation leads to truncation of the protein, eliminating C-terminal sequences required for post-synaptic targeting of the protein. We identify here a patient with a truncating mutation in SHANK3, affected by severe global developmental delay and intellectual disability. By analyzing the subcellular distribution of this truncated form of Shank3, we identified a nuclear localization signal (NLS) in the N-terminal part of the protein which is responsible for targeting Shank3 fragments to the nucleus. To determine the relevance of Shank3 for nuclear signaling, we analyze how it affects signaling by β-catenin, a component of the Wnt pathway. We show that full length as well as truncated variants of Shank3 interact with β-catenin via the PDZ domain of Shank3, and the armadillo repeats of β-catenin. As a result of this interaction, truncated forms of Shank3 and β-catenin strictly co-localize in small intra-nuclear bodies both in 293T cells and in rat hippocampal neurons. On a functional level, the sequestration of both proteins in these nuclear bodies is associated with a strongly repressed transcriptional activation by β-catenin owing to interaction with the truncated Shank3 fragment found in patients. Our data suggest that truncating mutations in SHANK3 may not only lead to a reduction in Shank3 protein available at postsynaptic sites but also negatively affect the Wnt signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Woike
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Kloth
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
de Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front Psychiatry 2020; 11:369. [PMID: 32477178 PMCID: PMC7240307 DOI: 10.3389/fpsyt.2020.00369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) or suboptimal response to antipsychotics affects almost 30% of schizophrenia (SCZ) patients, and it is a relevant clinical issue with significant impact on the functional outcome and on the global burden of disease. Among putative novel treatments, glycine-centered therapeutics (i.e. sarcosine, glycine itself, D-Serine, and bitopertin) have been proposed, based on a strong preclinical rationale with, however, mixed clinical results. Therefore, a better appraisal of glycine interaction with the other major players of SCZ pathophysiology and specifically in the framework of dopamine - glutamate interactions is warranted. New methodological approaches at cutting edge of technology and drug discovery have been applied to study the role of glycine in glutamate signaling, both at presynaptic and post-synaptic level and have been instrumental for unveiling the role of glycine in dopamine-glutamate interaction. Glycine is a non-essential amino acid that plays a critical role in both inhibitory and excitatory neurotransmission. In caudal areas of central nervous system (CNS), such as spinal cord and brainstem, glycine acts as a powerful inhibitory neurotransmitter through binding to its receptor, i.e. the Glycine Receptor (GlyR). However, glycine also works as a co-agonist of the N-Methyl-D-Aspartate receptor (NMDAR) in excitatory glutamatergic neurotransmission. Glycine concentration in the synaptic cleft is finely tuned by glycine transporters, i.e. GlyT1 and GlyT2, that regulate the neurotransmitter's reuptake, with the first considered a highly potential target for psychosis therapy. Reciprocal regulation of dopamine and glycine in forebrain, glycine modulation of glutamate, glycine signaling interaction with postsynaptic density proteins at glutamatergic synapse, and human genetics of glycinergic pathways in SCZ are tackled in order to highlight the exploitation of this neurotransmitters and related molecules in SCZ and TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Federica Marmo
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| |
Collapse
|
18
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
19
|
Gawel K, Banono NS, Michalak A, Esguerra CV. A critical review of zebrafish schizophrenia models: Time for validation? Neurosci Biobehav Rev 2019; 107:6-22. [PMID: 31381931 DOI: 10.1016/j.neubiorev.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a mental disorder that affects 1% of the population worldwide and is manifested as a broad spectrum of symptoms, from hallucinations to memory impairment. It is believed that genetic and/or environmental factors may contribute to the occurrence of this disease. Recently, the zebrafish has emerged as a valuable and attractive model for various neurological disorders including schizophrenia. In this review, we describe current pharmacological models of schizophrenia with special emphasis on providing insights into the pros and cons of using zebrafish as a behavioural model of this disease. Moreover, we highlight the advantages and utility of using zebrafish for elucidating the genetic mechanisms underlying this psychiatric disorder. We believe that the zebrafish has high potential also in the area of precision medicine and may complement the development of therapeutics, especially for pharmacoresistant patients.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland.
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway
| | - Agnieszka Michalak
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki St. 4A, 20-093, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, 0349, Oslo, Norway; Department of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
20
|
Parra-Damas A, Saura CA. Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders. Biol Psychiatry 2019; 86:87-96. [PMID: 30846302 DOI: 10.1016/j.biopsych.2019.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023]
Abstract
Synapse-to-nucleus signaling is critical for converting signals received at synapses into transcriptional programs essential for cognition, memory, and emotion. This neuronal mechanism usually involves activity-dependent translocation of synaptonuclear factors from synapses to the nucleus resulting in regulation of transcriptional programs underlying synaptic plasticity. Acting as synapse-to-nucleus messengers, amyloid precursor protein intracellular domain associated-1 protein, cAMP response element binding protein (CREB)-regulated transcription coactivator-1, Jacob, nuclear factor kappa-light-chain-enhancer of activated B cells, RING finger protein 10, and SH3 and multiple ankyrin repeat domains 3 play essential roles in synapse remodeling and plasticity, which are considered the cellular basis of memory. Other synaptic proteins, such as extracellular signal-regulated kinase, calcium/calmodulin-dependent protein kinase II gamma, and CREB2, translocate from dendrites or cytosol to the nucleus upon synaptic activity, suggesting that they could contribute to synapse-to-nucleus signaling. Notably, some synaptonuclear factors converge on the transcription factor CREB, indicating that CREB signaling is a key hub mediating integration of synaptic signals into transcriptional programs required for neuronal function and plasticity. Although major efforts have been focused on identification and regulatory mechanisms of synaptonuclear factors, the relevance of synapse-to-nucleus communication in brain physiology and pathology is still unclear. Recent evidence, however, indicates that synaptonuclear factors are implicated in neuropsychiatric, neurodevelopmental, and neurodegenerative disorders, suggesting that uncoupling synaptic activity from nuclear signaling may prompt synapse pathology, contributing to a broad spectrum of brain disorders. This review summarizes current knowledge of synapse-to-nucleus signaling in neuron survival, synaptic function and plasticity, and memory. Finally, we discuss how altered synapse-to-nucleus signaling may lead to memory and emotional disturbances, which is relevant for clinical and therapeutic strategies in neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Dosemeci A, Loo HK, Toy D, Winters CA, Reese TS, Tao-Cheng JH. FAM81A protein, a novel component of the postsynaptic density in adult brain. Neurosci Lett 2019; 699:122-126. [PMID: 30735723 DOI: 10.1016/j.neulet.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 11/18/2022]
Abstract
Analysis of affinity-purified PSD-95 complexes had previously identified a 'hypothetical protein', product of the gene FAM81A [1]. The present study examined the tissue and subcellular distribution of FAM81A protein and its expression levels during development. Comparison of different organs indicates selective expression of FAM81A protein in brain. FAM81A is expressed late in development, with a post-natal gradual increase in brain levels that parallels the expression of PSD-95. Comparison of subcellular fractions from adult brain shows that the distribution of FAM81A protein is similar to that of PSD-95, with a drastic enrichment in the postsynaptic density fraction. Immuno-electron microscopy of adult brain tissue reveals specific immunogold labeling for FAM81A protein at postsynaptic densities in the forebrain. The label for FAM81A protein is concentrated at the cytoplasmic edge of the electron-dense core of the postsynaptic density, with a mean distance of ∼33 nm from the postsynaptic membrane. These observations firmly establish FAM81A protein as a component of the postsynaptic density in the adult brain, suggesting a role in synaptic function.
Collapse
Affiliation(s)
- Ayse Dosemeci
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States.
| | - Hannah K Loo
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | - Dana Toy
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | | | - Thomas S Reese
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | | |
Collapse
|
22
|
Lee Y, Kang H, Jin C, Zhang Y, Kim Y, Han K. Transcriptome analyses suggest minimal effects of Shank3 dosage on directional gene expression changes in the mouse striatum. Anim Cells Syst (Seoul) 2019; 23:270-274. [PMID: 31489248 PMCID: PMC6711111 DOI: 10.1080/19768354.2019.1595142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/22/2022] Open
Abstract
Both deletions and duplications of the SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene, encoding excitatory postsynaptic scaffolds, are causally associated with various brain disorders, suggesting that proper Shank3 dosage is critical for normal brain development and function. In addition to its well-established synaptic functions, recent studies have suggested that Shank3 can also affect gene expression in the nucleus. However, it has not been investigated whether there are a group of genes whose directional expression is regulated in a Shank3 dosage-dependent manner (i.e. showing opposite changes in expression following Shank3 reduction and overexpression). This is an important issue to be examined for better understanding why neuronal development and function are sensitive to Shank3 dosage, and how much transcriptional changes contribute to neuronal phenotypes affected by Shank3 dosage. To examine this, we performed transcriptome analyses on the striatum of Shank3 heterozygous and knock-out mice, which identified three and 17 differentially expressed genes, respectively. We then compared the results to those of our previous striatal transcriptome analysis of Shank3 overexpressing mice and identified 31 candidate genes showing directional expression changes in a Shank3 dosage-dependent manner. However, overall, their Shank3 dosage-dependent fold changes were very subtle (average of absolute log2(fold change) was 0.139). Meanwhile, the gene set enrichment analyses of the striatal transcriptome suggested that Shank3 dosage may affect anchoring junction-related functions. Taken together, these results suggest that Shank3 dosage minimally affects directional gene expression changes in the mouse striatum.
Collapse
Affiliation(s)
- Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, South Korea
| | - Chunmei Jin
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
23
|
Ingiosi AM, Schoch H, Wintler T, Singletary KG, Righelli D, Roser LG, Medina E, Risso D, Frank MG, Peixoto L. Shank3 modulates sleep and expression of circadian transcription factors. eLife 2019; 8:e42819. [PMID: 30973326 PMCID: PMC6488297 DOI: 10.7554/elife.42819] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/10/2019] [Indexed: 12/30/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is the most prevalent neurodevelopmental disorder in the United States and often co-presents with sleep problems. Sleep problems in ASD predict the severity of ASD core diagnostic symptoms and have a considerable impact on the quality of life of caregivers. Little is known, however, about the underlying molecular mechanisms of sleep problems in ASD. We investigated the role of Shank3, a high confidence ASD gene candidate, in sleep architecture and regulation. We show that mice lacking exon 21 of Shank3 have problems falling asleep even when sleepy. Using RNA-seq we show that sleep deprivation increases the differences in prefrontal cortex gene expression between mutants and wild types, downregulating circadian transcription factors Per3, Bhlhe41, Hlf, Tef, and Nr1d1. Shank3 mutants also have trouble regulating wheel-running activity in constant darkness. Overall, our study shows that Shank3 is an important modulator of sleep and clock gene expression.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneUnited States
| | - Hannah Schoch
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneUnited States
| | - Taylor Wintler
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneUnited States
| | - Kristan G Singletary
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneUnited States
| | - Dario Righelli
- Istituto per le Applicazioni del Calcolo “M. Picone”Consiglio Nazionale della RicercheNapoliItaly
- Dipartimento di Scienze Aziendali Management & Innovation SystemsUniversity of FuscianoFiscianoItaly
| | - Leandro G Roser
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneUnited States
| | - Elizabeth Medina
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneUnited States
| | - Davide Risso
- Department of Statistical SciencesUniversity of PadovaPadovaItaly
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and ResearchWeill Cornell MedicineNew YorkUnited States
| | - Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneUnited States
| | - Lucia Peixoto
- Department of Biomedical Sciences, Elson S. Floyd College of MedicineWashington State UniversitySpokaneUnited States
| |
Collapse
|
24
|
Shen X, Yeung HT, Lai KO. Application of Human-Induced Pluripotent Stem Cells (hiPSCs) to Study Synaptopathy of Neurodevelopmental Disorders. Dev Neurobiol 2018; 79:20-35. [PMID: 30304570 DOI: 10.1002/dneu.22644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Synapses are the basic structural and functional units for information processing and storage in the brain. Their diverse properties and functions ultimately underlie the complexity of human behavior. Proper development and maintenance of synapses are essential for normal functioning of the nervous system. Disruption in synaptogenesis and the consequent alteration in synaptic function have been strongly implicated to cause neurodevelopmental disorders such as autism spectrum disorders (ASDs) and schizophrenia (SCZ). The introduction of human-induced pluripotent stem cells (hiPSCs) provides a new path to elucidate disease mechanisms and potential therapies. In this review, we will discuss the advantages and limitations of using hiPSC-derived neurons to study synaptic disorders. Many mutations in genes encoding for proteins that regulate synaptogenesis have been identified in patients with ASDs and SCZ. We use Methyl-CpG binding protein 2 (MECP2), SH3 and multiple ankyrin repeat domains 3 (SHANK3) and Disrupted in schizophrenia 1 (DISC1) as examples to illustrate the promise of using hiPSCs as cellular models to elucidate the mechanisms underlying disease-related synaptopathy.
Collapse
Affiliation(s)
- Xuting Shen
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Hoi Ting Yeung
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kwok-On Lai
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
25
|
Jin C, Kang H, Ryu JR, Kim S, Zhang Y, Lee Y, Kim Y, Han K. Integrative Brain Transcriptome Analysis Reveals Region-Specific and Broad Molecular Changes in Shank3-Overexpressing Mice. Front Mol Neurosci 2018; 11:250. [PMID: 30233305 PMCID: PMC6127286 DOI: 10.3389/fnmol.2018.00250] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Variants of the SH3 and multiple ankyrin repeat domain 3 (SHANK3) gene, encoding excitatory postsynaptic core scaffolding proteins, are causally associated with numerous neurodevelopmental and neuropsychiatric disorders, including autism spectrum disorder (ASD), bipolar disorder, intellectual disability, and schizophrenia (SCZ). Although detailed synaptic changes of various Shank3 mutant mice have been well characterized, broader downstream molecular changes, including direct and indirect changes, remain largely unknown. To address this issue, we performed a transcriptome analysis of the medial prefrontal cortex (mPFC) of adult Shank3-overexpressing transgenic (TG) mice, using an RNA-sequencing approach. We also re-analyzed previously reported RNA-sequencing results of the striatum of adult Shank3 TG mice and of the prefrontal cortex of juvenile Shank3+/ΔC mice with a 50–70% reduction of Shank3 proteins. We found that several myelin-related genes were significantly downregulated specifically in the mPFC, but not in the striatum or hippocampus, of adult Shank3 TG mice by comparing the differentially expressed genes (DEGs) of the analyses side by side. Moreover, we also found nine common DEGs between the mPFC and striatum of Shank3 TG mice, among which we further characterized ASD- and SCZ-associated G protein-coupled receptor 85 (Gpr85), encoding an orphan Gpr interacting with PSD-95. Unlike the mPFC-specific decrease of myelin-related genes, we found that the mRNA levels of Gpr85 increased in multiple brain regions of adult Shank3 TG mice, whereas the mRNA levels of its family members, Gpr27 and Gpr173, decreased in the cortex and striatum. Intriguingly, in cultured neurons, the mRNA levels of Gpr27, Gpr85, and Gpr173 were modulated by the neuronal activity. Furthermore, exogenously expressed GPR85 was co-localized with PSD-95 and Shank3 in cultured neurons and negatively regulated the number of excitatory synapses, suggesting its potential role in homeostatic regulation of excitatory synapses in Shank3 TG neurons. Finally, we performed a gene set enrichment analysis of the RNA-sequencing results, which suggested that Shank3 could affect the directional expression pattern of numerous ribosome-related genes in a dosage-dependent manner. To sum up, these results reveal previously unidentified brain region-specific and broad molecular changes in Shank3-overexpressing mice, further elucidating the complexity of the molecular pathophysiology of SHANK3-associated brain disorders.
Collapse
Affiliation(s)
- Chunmei Jin
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Hyojin Kang
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Jae Ryun Ryu
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea.,Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Shinhyun Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
26
|
Gupta P, Uner OE, Nayak S, Grant GR, Kalb RG. SAP97 regulates behavior and expression of schizophrenia risk enriched gene sets in mouse hippocampus. PLoS One 2018; 13:e0200477. [PMID: 29995933 PMCID: PMC6040763 DOI: 10.1371/journal.pone.0200477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/27/2018] [Indexed: 01/10/2023] Open
Abstract
Synapse associated protein of 97KDa (SAP97) belongs to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs), that are highly enriched in the postsynaptic density of synapses and play an important role in organizing protein complexes necessary for synaptic development and plasticity. The Dlg-MAGUK family of proteins are structurally very similar, and an effort has been made to parse apart the unique function of each Dlg-MAGUK protein by characterization of knockout mice. Knockout mice have been generated and characterized for PSD-95, PSD-93, and SAP102, however SAP97 knockout mice have been impossible to study because the SAP97 null mice die soon after birth due to a craniofacial defect. We studied the transcriptomic and behavioral consequences of a brain-specific conditional knockout of SAP97 (SAP97-cKO). RNA sequencing from hippocampi from control and SAP97-cKO male animals identified 67 SAP97 regulated transcripts. As large-scale genetic studies have implicated MAGUKs in neuropsychiatric disorders such as intellectual disability, autism spectrum disorders, and schizophrenia (SCZ), we analyzed our differentially expressed gene (DEG) set for enrichment of disease risk-associated genes, and found our DEG set to be specifically enriched for SCZ-related genes. Subjecting SAP97-cKO mice to a battery of behavioral tests revealed a subtle male-specific cognitive deficit and female-specific motor deficit, while other behaviors were largely unaffected. These data suggest that loss of SAP97 may have a modest contribution to organismal behavior. The SAP97-cKO mouse serves as a stepping stone for understanding the unique role of SAP97 in biology.
Collapse
Affiliation(s)
- Preetika Gupta
- Neuroscience Graduate Group, Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ogul E. Uner
- School of Arts and Sciences, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Soumyashant Nayak
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert G. Kalb
- Feinberg School of Medicine, Department of Neurology, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
27
|
Mossa A, Giona F, Pagano J, Sala C, Verpelli C. SHANK genes in autism: Defining therapeutic targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:416-423. [PMID: 29175319 DOI: 10.1016/j.pnpbp.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Adele Mossa
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Giona
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Jessica Pagano
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Carlo Sala
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
28
|
Ali Rodriguez R, Joya C, Hines RM. Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:132. [PMID: 29740280 PMCID: PMC5928253 DOI: 10.3389/fnmol.2018.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The term neurodevelopmental disorder (NDD) is an umbrella term used to group together a heterogeneous class of disorders characterized by disruption in cognition, emotion, and behavior, early in the developmental timescale. These disorders are heterogeneous, yet they share common behavioral symptomatology as well as overlapping genetic contributors, including proteins involved in the formation, specialization, and function of synaptic connections. Advances may arise from bridging the current knowledge on synapse related factors indicated from both human studies in NDD populations, and in animal models. Mounting evidence has shown a link to inhibitory synapse formation, specialization, and function among Autism, Angelman, Rett and Dravet syndromes. Inhibitory signaling is diverse, with numerous subtypes of inhibitory interneurons, phasic and tonic modes of inhibition, and the molecular and subcellular diversity of GABAA receptors. We discuss common ribs of inhibitory synapse dysfunction in the umbrella of NDD, highlighting alterations in the developmental switch to inhibitory GABA, dysregulation of neuronal activity patterns by parvalbumin-positive interneurons, and impaired tonic inhibition. Increasing our basic understanding of inhibitory synapses, and their role in NDDs is likely to produce significant therapeutic advances in behavioral symptom alleviation for interrelated NDDs.
Collapse
Affiliation(s)
- Rachel Ali Rodriguez
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Christina Joya
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
29
|
nArgBP2-SAPAP-SHANK, the core postsynaptic triad associated with psychiatric disorders. Exp Mol Med 2018; 50:1-9. [PMID: 29628500 PMCID: PMC5938024 DOI: 10.1038/s12276-017-0018-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Despite the complex genetic architecture, a broad spectrum of psychiatric disorders can still be caused by mutation(s) in the same gene. These disorders are interrelated with overlapping causative mechanisms including variations in the interaction among the risk-associated proteins that may give rise to the specific spectrum of each disorder. Additionally, multiple lines of evidence implicate an imbalance between excitatory and inhibitory neuronal activity (E/I imbalance) as the shared key etiology. Thus, understanding the molecular mechanisms underlying E/I imbalance provides essential insight into the etiology of these disorders. One important class of candidate risk genes is the postsynaptic scaffolding proteins, such as nArgBP2, SAPAP, and SHANK that regulate the actin cytoskeleton in dendritic spines of excitatory synapses. This review will cover and discuss recent studies that examined how these proteins, especially nArgBP2, are associated with psychiatric disorders. Next, we propose a possibility that variations in the interaction among these proteins in a specific brain region might contribute to the onset of diverse phenotypes of psychiatric disorders. The assembly of scaffolding proteins, key regulators of many signaling pathways, found in the brain’s synapses underpin a diverse range of neuropsychiatric disorders. Sunghoe Chang and colleagues from Seoul National University, South Korea, review how these postsynaptic proteins regulate the cellular cytoskeleton in nerve cell protrusions to maintain the balance between excitatory and inhibitory inputs in the brain. They discuss how perturbations in three particular proteins can cause an imbalance in synaptic signals that leads to conditions such as bipolar disorder, schizophrenia and autism. The authors propose that these proteins form a “core scaffolding triad” and interact in different ways to cause different mental illnesses. Dysregulation of these proteins could explain how mutations in the same genes, depending on whether they boost or decrease gene expression, contribute to the onset of diverse psychiatric disorders.
Collapse
|
30
|
Marcello E, Di Luca M, Gardoni F. Synapse-to-nucleus communication: from developmental disorders to Alzheimer's disease. Curr Opin Neurobiol 2018; 48:160-166. [PMID: 29316492 DOI: 10.1016/j.conb.2017.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
In the last decade several synaptonuclear protein messengers including Jacob, CRTC1, AIDA-1, ProSaP2/Shank3 and RNF10 have been identified and characterized as key players for modulation of synaptic transmission and synaptic plasticity. Activation of excitatory glutamatergic synapses leads to their shuttling from the synapse to the nucleus, mostly importin-mediated, and subsequent regulation of gene transcription needed for long lasting modifications of synaptic function. Accordingly, increasing evidences show that alterations of the activity of synaptonuclear messengers are correlated to synaptic failure as observed in different synaptopathies. Specifically, recent studies demonstrate that the modulation of the activity of synaptonuclear messengers could represent a novel molecular target in the pathogenesis of both neurodevelopmental disorders and neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy.
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| |
Collapse
|
31
|
Lee Y, Kim SG, Lee B, Zhang Y, Kim Y, Kim S, Kim E, Kang H, Han K. Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling. Front Mol Neurosci 2017; 10:201. [PMID: 28701918 PMCID: PMC5487420 DOI: 10.3389/fnmol.2017.00201] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3)-overexpressing transgenic (TG) mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1) signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT) mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1), TSC2 and Ras homolog enriched in striatum (Rhes), via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD). Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream regulators of mTORC1 that might contribute to the abnormal striatal mTORC1 activity and to the manic-like behaviors of Shank3 TG mice.
Collapse
Affiliation(s)
- Yeunkum Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Sun Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS)Daejeon, South Korea
| | - Bokyoung Lee
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yinhua Zhang
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Yoonhee Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea
| | - Shinhyun Kim
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS)Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)Daejeon, South Korea
| | - Hyojin Kang
- HPC-enabled Convergence Technology Research Division, Korea Institute of Science and Technology InformationDaejeon, South Korea
| | - Kihoon Han
- Department of Neuroscience, College of Medicine, Korea UniversitySeoul, South Korea.,Department of Biomedical Sciences, College of Medicine, Korea UniversitySeoul, South Korea
| |
Collapse
|
32
|
Pfaender S, Sauer AK, Hagmeyer S, Mangus K, Linta L, Liebau S, Bockmann J, Huguet G, Bourgeron T, Boeckers TM, Grabrucker AM. Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Sci Rep 2017; 7:45190. [PMID: 28345660 PMCID: PMC5366950 DOI: 10.1038/srep45190] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/22/2017] [Indexed: 01/16/2023] Open
Abstract
Phelan McDermid Syndrome (PMDS) is a genetic disorder characterized by features of Autism spectrum disorders. Similar to reports of Zn deficiency in autistic children, we have previously reported high incidence of Zn deficiency in PMDS. However, the underlying mechanisms are currently not well understood. Here, using inductively coupled plasma mass-spectrometry to measure the concentration of Zinc (Zn) and Copper (Cu) in hair samples from individuals with PMDS with 22q13.3 deletion including SHANK3 (SH3 and multiple ankyrin repeat domains 3), we report a high rate of abnormally low Zn/Cu ratios. To investigate possible underlying mechanisms, we generated enterocytes from PMDS patient-derived induced pluripotent stem cells and used Caco-2 cells with knockdown of SHANK3. We detected decreased expression of Zn uptake transporters ZIP2 and ZIP4 on mRNA and protein level correlating with SHANK3 expression levels, and found reduced levels of ZIP4 protein co-localizing with SHANK3 at the plasma membrane. We demonstrated that especially ZIP4 exists in a complex with SHANK3. Furthermore, we performed immunohistochemistry on gut sections from Shank3αβ knockout mice and confirmed a link between enterocytic SHANK3, ZIP2 and ZIP4. We conclude that apart from its well-known role in the CNS, SHANK3 might play a specific role in the GI tract.
Collapse
Affiliation(s)
- Stefanie Pfaender
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Katharina Mangus
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Leonhard Linta
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Guillaume Huguet
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, 75015 Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, 75015 Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 75013 Paris, France
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, 75015 Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, 75015 Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, 75013 Paris, France
- FondaMental Foundation, 94010 Créteil, France
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Andreas M. Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
- WG Molecular Analysis of Synaptopathies, Neurology Dept., Neurocenter of Ulm University, 89081 Ulm, Germany
| |
Collapse
|
33
|
SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras. Nat Cell Biol 2017; 19:292-305. [PMID: 28263956 PMCID: PMC5386136 DOI: 10.1038/ncb3487] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
SHANK3, a synaptic scaffold protein and actin regulator, is widely
expressed outside of the central nervous system with predominantly unknown
function. Solving the structure of the SHANK3 N-terminal region revealed that
the SPN-domain is an unexpected Ras-association domain with high affinity for
GTP-bound Ras and Rap G-proteins. The role of Rap1 in integrin activation is
well established but the mechanisms to antagonize it remain largely unknown.
Here, we show that SHANK1 and SHANK3 act as integrin activation inhibitors by
sequestering active Rap1 and R-Ras via the SPN-domain and thus limiting their
bioavailability at the plasma membrane. Consistently, SHANK3
silencing triggers increased plasma membrane Rap1 activity, cell spreading,
migration and invasion. Autism-related mutations within the SHANK3 SPN-domain
(R12C and L68P) disrupt G-protein interaction and fail to counteract integrin
activation along the Rap1/RIAM/talin axis in cancer cells and neurons.
Altogether, we establish SHANKs as critical regulators of G-protein signalling
and integrin-dependent processes.
Collapse
|
34
|
Tomasetti C, Iasevoli F, Buonaguro EF, De Berardis D, Fornaro M, Fiengo ALC, Martinotti G, Orsolini L, Valchera A, Di Giannantonio M, de Bartolomeis A. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions. Int J Mol Sci 2017; 18:E135. [PMID: 28085108 PMCID: PMC5297768 DOI: 10.3390/ijms18010135] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/25/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of "synapse-based" psychiatric therapeutic strategies.
Collapse
Affiliation(s)
- Carmine Tomasetti
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "Maria SS dello Splendore", 641021 Giulianova, Italy.
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Elisabetta Filomena Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Domenico De Berardis
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- New York State Psychiatric Institute, Columbia University, New York, NY 10027, USA.
| | | | - Giovanni Martinotti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | | | - Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
35
|
Uys MM, Shahid M, Harvey BH. Therapeutic Potential of Selectively Targeting the α 2C-Adrenoceptor in Cognition, Depression, and Schizophrenia-New Developments and Future Perspective. Front Psychiatry 2017; 8:144. [PMID: 28855875 PMCID: PMC5558054 DOI: 10.3389/fpsyt.2017.00144] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
α2A- and α2C-adrenoceptors (ARs) are the primary α2-AR subtypes involved in central nervous system (CNS) function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine) and atypical antipsychotic (e.g., clozapine) drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA) release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine). While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer's disease. This review will emphasize the importance and relevance of the α2C-AR as a neuropsychiatric drug target in major depression, schizophrenia, and associated cognitive deficits. In addition, we will present new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Madeleine Monique Uys
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Brian Herbert Harvey
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
36
|
Sensitivity to isoflurane anesthesia increases in autism spectrum disorder Shank3 +/∆c mutant mouse model. Neurotoxicol Teratol 2016; 60:69-74. [PMID: 27856360 DOI: 10.1016/j.ntt.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/14/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
Autism is a heterogeneous developmental disorder characterized by impaired social interaction, impaired communication skills, and restricted and repetitive behavior. The abnormal behaviors of these patients can make their anesthetic and perioperative management difficult. Evidence in the literature suggests that some patients with autism or specific autism spectrum disorders (ASD) exhibit altered responses to pain and to anesthesia or sedation. A genetic mouse model of one particular ASD, Phelan McDermid Syndrome, has been developed that has a Shank3 haplotype truncation (Shank3+/Δc). These mice exhibit important characteristics of autism that mimic human autistic behavior. Our study demonstrates that a Shank3+/ΔC mutation in mice is associated with a reduction in both the MAC and RREC50 of isoflurane and down regulation of NR1 in vestibular nuclei and PSD95 in spinal cord. Decreased expression of NR1 and PSD95 in the central nervous system of Shank3+/ΔC mice could help reduce the MAC and RREC50 of isoflurane, which would warrant confirmation in a clinical study. If Shank3 mutations are found to affect anesthetic sensitivity in patients with ASD, better communication and stricter monitoring of anesthetic depth may be necessary.
Collapse
|
37
|
Uchino S, Waga C. Novel Therapeutic Approach for Autism Spectrum Disorder: Focus on SHANK3. Curr Neuropharmacol 2016; 13:786-92. [PMID: 26511836 PMCID: PMC4759317 DOI: 10.2174/1570159x13666151029105547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/16/2015] [Accepted: 03/15/2015] [Indexed: 01/12/2023] Open
Abstract
SHANK3 is a synaptic scaffolding protein and plays an important role in neuronal
development. SHANK3 interacts with various synaptic molecules, including post-synaptic density-95
(PSD-95), homer and GluR1 AMPA receptor. SHANK3 gene is a causable gene of the Phelan-
McDermid syndrome (also known as the 22q13.3 deletion syndrome), whose manifestation is global
developmental delay and autistic behavior, especially shows severe speech and language deficit.
Additionally since cumulative gene analysis in autistic subjects identified several mutations in
SHANK3 gene, including deletion and duplication in a particular region, abnormality of SHANK3
gene is thought the be related with the neuropathology of autism spectrum disorder (ASD). We here review the recent
findings in regard to the roles of SHANK3 in higher brain functions, molecular-biologic studies of the complex
expression of Shank3 transcripts and production of SHANK3 isoforms, and behavioral studies of Shank3-mutant mice,
including our recent findings, and discuss a novel therapeutic approach for ASD.
Collapse
Affiliation(s)
- Shigeo Uchino
- Department of Neurobiology, Faculty of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan.
| | | |
Collapse
|
38
|
Jaramillo TC, Speed HE, Xuan Z, Reimers JM, Escamilla CO, Weaver TP, Liu S, Filonova I, Powell CM. Novel Shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function. Autism Res 2016; 10:42-65. [PMID: 27492494 DOI: 10.1002/aur.1664] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/23/2016] [Accepted: 06/14/2016] [Indexed: 12/14/2022]
Abstract
Mutations/deletions in the SHANK3 gene are associated with autism spectrum disorders and intellectual disability. Here, we present electrophysiological and behavioral consequences in novel heterozygous and homozygous mice with a transcriptional stop cassette inserted upstream of the PDZ domain-coding exons in Shank3 (Shank3E13 ). Insertion of a transcriptional stop cassette prior to exon 13 leads to loss of the two higher molecular weight isoforms of Shank3. Behaviorally, both Shank3E13 heterozygous (HET) and homozygous knockout (KO) mice display increased repetitive grooming, deficits in social interaction tasks, and decreased rearing. Shank3E13 KO mice also display deficits in spatial memory in the Morris water maze task. Baseline hippocampal synaptic transmission and short-term plasticity are preserved in Shank3E13 HET and KO mice, while both HET and KO mice exhibit impaired hippocampal long-term plasticity. Additionally, Shank3E13 HET and KO mice display impaired striatal glutamatergic synaptic transmission. These results demonstrate for the first time in this novel Shank3 mutant that both homozygous and heterozygous mutation of Shank3 lead to behavioral abnormalities with face validity for autism along with widespread synaptic dysfunction. Autism Res 2017, 10: 42-65. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas C Jaramillo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haley E Speed
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhong Xuan
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeremy M Reimers
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christine Ochoa Escamilla
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Travis P Weaver
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shunan Liu
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Irina Filonova
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Craig M Powell
- Department of Psychiatry and Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
39
|
Reim D, Weis TM, Halbedl S, Delling JP, Grabrucker AM, Boeckers TM, Schmeisser MJ. The Shank3 Interaction Partner ProSAPiP1 Regulates Postsynaptic SPAR Levels and the Maturation of Dendritic Spines in Hippocampal Neurons. Front Synaptic Neurosci 2016; 8:13. [PMID: 27252646 PMCID: PMC4877498 DOI: 10.3389/fnsyn.2016.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/10/2016] [Indexed: 11/13/2022] Open
Abstract
The postsynaptic density or PSD is a submembranous compartment containing a wide array of proteins that contribute to both morphology and function of excitatory glutamatergic synapses. In this study, we have analyzed functional aspects of the Fezzin ProSAP-interacting protein 1 (ProSAPiP1), an interaction partner of the well-known PSD proteins Shank3 and SPAR. Using lentiviral-mediated overexpression and knockdown of ProSAPiP1, we found that this protein is dispensable for the formation of both pre- and postsynaptic specializations per se. We further show that ProSAPiP1 regulates SPAR levels at the PSD and the maturation of dendritic spines. In line with previous findings on the ProSAPiP1 homolog PSD-Zip70, we conclude that Fezzins essentially contribute to the maturation of excitatory spine synapses.
Collapse
Affiliation(s)
- Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; International Graduate School in Molecular Medicine, Ulm UniversityUlm, Germany
| | - Tobias M Weis
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; International Graduate School in Molecular Medicine, Ulm UniversityUlm, Germany
| | - Sonja Halbedl
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; International Graduate School in Molecular Medicine, Ulm UniversityUlm, Germany
| | - Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; International Graduate School in Molecular Medicine, Ulm UniversityUlm, Germany
| | - Andreas M Grabrucker
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; WG Molecular Analysis of Synaptopathies, Department of Neurology, Neurocenter of Ulm UniversityUlm, Germany
| | | | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; Department of Neurology, Ulm UniversityUlm, Germany
| |
Collapse
|
40
|
Cellular Zinc Homeostasis Contributes to Neuronal Differentiation in Human Induced Pluripotent Stem Cells. Neural Plast 2016; 2016:3760702. [PMID: 27247802 PMCID: PMC4876239 DOI: 10.1155/2016/3760702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
Disturbances in neuronal differentiation and function are an underlying factor of many brain disorders. Zinc homeostasis and signaling are important mediators for a normal brain development and function, given that zinc deficiency was shown to result in cognitive and emotional deficits in animal models that might be associated with neurodevelopmental disorders. One underlying mechanism of the observed detrimental effects of zinc deficiency on the brain might be impaired proliferation and differentiation of stem cells participating in neurogenesis. Thus, to examine the molecular mechanisms regulating zinc metabolism and signaling in differentiating neurons, using a protocol for motor neuron differentiation, we characterized the expression of zinc homeostasis genes during neurogenesis using human induced pluripotent stem cells (hiPSCs) and evaluated the influence of altered zinc levels on the expression of zinc homeostasis genes, cell survival, cell fate, and neuronal function. Our results show that zinc transporters are highly regulated genes during neuronal differentiation and that low zinc levels are associated with decreased cell survival, altered neuronal differentiation, and, in particular, synaptic function. We conclude that zinc deficiency in a critical time window during brain development might influence brain function by modulating neuronal differentiation.
Collapse
|
41
|
Halbedl S, Schoen M, Feiler MS, Boeckers TM, Schmeisser MJ. Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals. J Neurochem 2016; 137:26-32. [PMID: 26725465 DOI: 10.1111/jnc.13523] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 01/31/2023]
Abstract
Autism-related Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses. A few studies, however, have already indicated that within a neuron, the presence of Shank family members is not limited to the postsynaptic density. By separating axons from dendrites of developing hippocampal neurons in microfluidic chambers, we show that RNA of all three Shank family members is present within axons. Immunostaining confirms these findings as all three Shanks are indeed found within separated axons and further co-localize with well-known proteins of the presynaptic specialization in axon terminals. Therefore, Shank proteins might not only serve as postsynaptic scaffold proteins, but also play a crucial role during axonal outgrowth and presynaptic development and function. This is supported by our findings that shRNA-mediated knockdown of Shank3 results in up-regulation of the NMDA receptor subunit GluN1 in axon terminals. Taken together, our findings will have major implications for the future analysis of neuronal Shank biology in both health and disease. Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses strongly related to several neuropsychiatric disorders. However, a few studies have already implicated a functional role of the Shanks beyond the postsynaptic density (PSD). We here show that all three Shanks are localized in both axons and pre-synaptic specializiations of developing hippocampal neurons in culture. We further provide evidence that Shank3 is involved in the modulation of NMDA receptor levels at axon terminals. Taken together, our study will open up novel avenues for the future analysis of neuronal Shank biology in both health and disease.
Collapse
Affiliation(s)
- Sonja Halbedl
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, IGradU, Ulm University, Ulm, Germany
| | - Michael Schoen
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Marisa S Feiler
- International Graduate School in Molecular Medicine Ulm, IGradU, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
42
|
Peykov S, Berkel S, Schoen M, Weiss K, Degenhardt F, Strohmaier J, Weiss B, Proepper C, Schratt G, Nöthen MM, Boeckers TM, Rietschel M, Rappold GA. Identification and functional characterization of rare SHANK2 variants in schizophrenia. Mol Psychiatry 2015; 20:1489-98. [PMID: 25560758 PMCID: PMC4653611 DOI: 10.1038/mp.2014.172] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/30/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Recent genetic data on schizophrenia (SCZ) have suggested that proteins of the postsynaptic density of excitatory synapses have a role in its etiology. Mutations in the three SHANK genes encoding for postsynaptic scaffolding proteins have been shown to represent risk factors for autism spectrum disorders and other neurodevelopmental disorders. To address if SHANK2 variants are associated with SCZ, we sequenced SHANK2 in 481 patients and 659 unaffected individuals. We identified a significant increase in the number of rare (minor allele frequency<1%) SHANK2 missense variants in SCZ individuals (6.9%) compared with controls (3.9%, P=0.039). Four out of fifteen non-synonymous variants identified in the SCZ cohort (S610Y, R958S, P1119T and A1731S) were selected for functional analysis. Overexpression and knockdown-rescue experiments were carried out in cultured primary hippocampal neurons with a major focus on the analysis of morphological changes. Furthermore, the effect on actin polymerization in fibroblast cell lines was investigated. All four variants revealed functional impairment to various degrees, as a consequence of alterations in spine volume and clustering at synapses and an overall loss of presynaptic contacts. The A1731S variant was identified in four unrelated SCZ patients (0.83%) but not in any of the sequenced controls and public databases (P=4.6 × 10(-5)). Patients with the A1731S variant share an early prodromal phase with an insidious onset of psychiatric symptoms. A1731S overexpression strongly decreased the SHANK2-Bassoon-positive synapse number and diminished the F/G-actin ratio. Our results strongly suggest a causative role of rare SHANK2 variants in SCZ and underline the contribution of SHANK2 gene mutations in a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
- S Peykov
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - S Berkel
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - M Schoen
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - K Weiss
- Institute of Physiological Chemistry, Phillipps-University Marburg, Marburg, Germany
| | - F Degenhardt
- Institute of Human Genetics, Bonn University, Bonn, Germany
| | - J Strohmaier
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - B Weiss
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - C Proepper
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - G Schratt
- Institute of Physiological Chemistry, Phillipps-University Marburg, Marburg, Germany
| | - M M Nöthen
- Institute of Human Genetics, Bonn University, Bonn, Germany,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - T M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - G A Rappold
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany,Interdisciplinary Center of Neurosciences (IZN), Heidelberg University, Heidelberg, Germany,Department of Human Molecular Genetics, Institute of Human Genetics, Im Neuenheimer Feld 366, Heidelberg 69120, Germany. E-mail:
| |
Collapse
|
43
|
Sala C, Vicidomini C, Bigi I, Mossa A, Verpelli C. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem 2015; 135:849-58. [PMID: 26338675 DOI: 10.1111/jnc.13232] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/01/2023]
Abstract
Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia. Thus, the term 'Shankopathies' identifies a number of neuronal diseases caused by alteration of Shank protein expression leading to abnormal synaptic development. With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations and also patients affected by other neurodevelopmental and neuropsychiatric disorders. Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia (SCZ). With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations.
Collapse
Affiliation(s)
- Carlo Sala
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Cinzia Vicidomini
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Bigi
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Adele Mossa
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Zhang J, Sun XY, Zhang LY. MicroRNA-7/Shank3 axis involved in schizophrenia pathogenesis. J Clin Neurosci 2015; 22:1254-7. [DOI: 10.1016/j.jocn.2015.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/24/2015] [Accepted: 01/25/2015] [Indexed: 01/12/2023]
|
45
|
Cochoy DM, Kolevzon A, Kajiwara Y, Schoen M, Pascual-Lucas M, Lurie S, Buxbaum JD, Boeckers TM, Schmeisser MJ. Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID. Mol Autism 2015; 6:23. [PMID: 26045941 PMCID: PMC4455919 DOI: 10.1186/s13229-015-0020-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND SHANK proteins are crucial for the formation and plasticity of excitatory synapses. Although mutations in all three SHANK genes are associated with autism spectrum disorder (ASD), SHANK3 appears to be the major ASD gene with a prevalence of approximately 0.5% for SHANK3 mutations in ASD, with higher rates in individuals with ASD and intellectual disability (ID). Interestingly, the most relevant mutations are typically de novo and often are frameshift or nonsense mutations resulting in a premature stop and a truncation of SHANK3 protein. METHODS We analyzed three different SHANK3 stop mutations that we identified in individuals with ASD and/or ID, one novel (c.5008A > T) and two that we recently described (c.1527G > A, c.2497delG). The mutations were inserted into the human SHANK3a sequence and analyzed for effects on subcellular localization and neuronal morphology when overexpressed in rat primary hippocampal neurons. RESULTS Clinically, all three individuals harboring these mutations had global developmental delays and ID. In our in vitro assay, c.1527G > A and c.2497delG both result in proteins that lack most of the SHANK3a C-terminus and accumulate in the nucleus of transfected cells. Cells expressing these mutants exhibit converging morphological phenotypes including reduced complexity of the dendritic tree, less spines, and less excitatory, but not inhibitory synapses. In contrast, the truncated protein based on c.5008A > T, which lacks only a short part of the sterile alpha motif (SAM) domain in the very SHANK3a C-terminus, does not accumulate in the nucleus and has minor effects on neuronal morphology. CONCLUSIONS In spite of the prevalence of SHANK3 disruptions in ASD and ID, only a few human mutations have been functionally characterized; here we characterize three additional mutations. Considering the transcriptional and functional complexity of SHANK3 in healthy neurons, we propose that any heterozygous stop mutation in SHANK3 will lead to a dysequilibrium of SHANK3 isoform expression and alterations in the stoichiometry of SHANK3 protein complexes, resulting in a distinct perturbation of neuronal morphology. This could explain why the clinical phenotype in all three individuals included in this study remains quite severe - regardless of whether there are disruptions in one or more SHANK3 interaction domains.
Collapse
Affiliation(s)
- Daniela M Cochoy
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Yuji Kajiwara
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Michael Schoen
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Maria Pascual-Lucas
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany ; Neuroscience Division, Center for Applied Medical Research, CIMA, University of Navarra, Av. Pio XII 55, 31008 Pamplona, Spain
| | - Stacey Lurie
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
46
|
Lee J, Chung C, Ha S, Lee D, Kim DY, Kim H, Kim E. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci 2015; 9:94. [PMID: 25852484 PMCID: PMC4365696 DOI: 10.3389/fncel.2015.00094] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022] Open
Abstract
Shank3 is a postsynaptic scaffolding protein implicated in synapse development and autism spectrum disorders. The Shank3 gene is known to produce diverse splice variants whose functions have not been fully explored. In the present study, we generated mice lacking Shank3 exon 9 (Shank3 (Δ9) mice), and thus missing five out of 10 known Shank3 splice variants containing the N-terminal ankyrin repeat region, including the longest splice variant, Shank3a. Our X-gal staining results revealed that Shank3 proteins encoded by exon 9-containing splice variants are abundant in upper cortical layers, striatum, hippocampus, and thalamus, but not in the olfactory bulb or cerebellum, despite the significant Shank3 mRNA levels in these regions. The hippocampal CA1 region of Shank3 (Δ9) mice exhibited reduced excitatory transmission at Schaffer collateral synapses and increased frequency of spontaneous inhibitory synaptic events in pyramidal neurons. In contrast, prelimbic layer 2/3 pyramidal neurons in the medial prefrontal cortex displayed decreased frequency of spontaneous inhibitory synaptic events, indicating alterations in the ratio of excitation/inhibition (E/I ratio) in the Shank3 (Δ9) brain. These mice displayed a mild increase in rearing in a novel environment and mildly impaired spatial memory, but showed normal social interaction and repetitive behavior. These results suggest that ankyrin repeat-containing Shank3 splice variants are important for E/I balance, rearing behavior, and spatial memory.
Collapse
Affiliation(s)
- Jiseok Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Changuk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Seungmin Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Dongmin Lee
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University Seoul, South Korea
| | - Do-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon, South Korea ; Center for Synaptic Brain Dysfunctions, Institute for Basic Science Daejeon, South Korea
| |
Collapse
|
47
|
Macromolecular transport in synapse to nucleus communication. Trends Neurosci 2014; 38:108-16. [PMID: 25534890 DOI: 10.1016/j.tins.2014.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Local signaling events at synapses or axon terminals must be communicated to the nucleus to elicit transcriptional responses. The lengths of neuronal processes pose a significant challenge for such intracellular communication. This challenge is met by mechanisms ranging from rapid signals encoded in calcium waves to slower macromolecular signaling complexes carried by molecular motors. Here we summarize recent findings on macromolecular signaling from the synapse to the nucleus, in comparison to those employed in injury signaling along axons. A number of common themes emerge, including combinatorial signal encoding by post-translational mechanisms such as differential phosphorylation and proteolysis, and conserved roles for importins in coordinating signaling complexes. Neurons may integrate ionic flux with motor-transported signals as a temporal code for synaptic plasticity signaling.
Collapse
|
48
|
Kaushik R, Grochowska KM, Butnaru I, Kreutz MR. Protein trafficking from synapse to nucleus in control of activity-dependent gene expression. Neuroscience 2014; 280:340-50. [PMID: 25230285 DOI: 10.1016/j.neuroscience.2014.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/18/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Long-lasting changes in neuronal excitability require activity-dependent gene expression and therefore the transduction of synaptic signals to the nucleus. Synaptic activity is rapidly relayed to the nucleus by membrane depolarization and the propagation of Ca(2+)-waves. However, it is unlikely that Ca(2+)-transients alone can explain the specific genomic response to the plethora of extracellular stimuli that control gene expression. In recent years a steadily growing number of studies report the transport of proteins from synapse to nucleus. Potential mechanisms for active retrograde transport and nuclear targets for these proteins have been identified and recent reports assigned first functions to this type of long-distance signaling. In this review we will discuss how the dissociation of synapto-nuclear protein messenger from synaptic and extrasynaptic sites, their transport, nuclear import and the subsequent genomic response relate to the prevailing concept behind this signaling mechanism, the encoding of signals at their site of origin and their decoding in the nucleus.
Collapse
Affiliation(s)
- R Kaushik
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - K M Grochowska
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - I Butnaru
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - M R Kreutz
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
49
|
Stevens SJC, Blom EW, Siegelaer ITJ, Smeets EEJGL. A recurrent deletion syndrome at chromosome bands 2p11.2-2p12 flanked by segmental duplications at the breakpoints and including REEP1. Eur J Hum Genet 2014; 23:543-6. [PMID: 24986827 DOI: 10.1038/ejhg.2014.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/12/2014] [Accepted: 06/03/2014] [Indexed: 01/26/2023] Open
Abstract
We identified an identical and recurrent 9.4-Mbp deletion at chromosome bands 2p11.2-2p12, which occurred de novo in two unrelated patients. It is flanked at the distal and proximal breakpoints by two homologous segmental duplications consisting of low copy repeat (LCR) blocks in direct orientation, which have >99% sequence identity. Despite the fact that the deletion was almost 10 Mbp in size, the patients showed a relatively mild clinical phenotype, that is, mild-to-moderate intellectual disability, a happy disposition, speech delay and delayed motor development. Their phenotype matches with that of previously described patients. The 2p11.2-2p12 deletion includes the REEP1 gene that is associated with spastic paraplegia and phenotypic features related to this are apparent in most 2p11.2-2p12 deletion patients, but not in all. Other hemizygous genes that may contribute to the clinical phenotype include LRRTM1 and CTNNA2. We propose a recurrent but rare 2p11.2-2p12 deletion syndrome based on (1) the identical, non-random localisation of the de novo deletion breakpoints in two unrelated patients and a patient from literature, (2) the patients' phenotypic similarity and their phenotypic overlap with other 2p deletions and (3) the presence of highly identical LCR blocks flanking both breakpoints, consistent with a non-allelic homologous recombination (NAHR)-mediated rearrangement.
Collapse
Affiliation(s)
- Servi J C Stevens
- Department Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eveline W Blom
- Department Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ingrid T J Siegelaer
- Department Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eric E J G L Smeets
- Department Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
50
|
Rial D, Lara DR, Cunha RA. The Adenosine Neuromodulation System in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:395-449. [DOI: 10.1016/b978-0-12-801022-8.00016-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|