1
|
Pereira-Castelo G, Bengoetxea de Tena I, Martínez-Gardeazabal J, Moreno-Rodríguez M, de San Román EG, Manuel I, Rodríguez-Puertas R. Neurolipid systems: A new target for the treatment of dementia. Basic Clin Pharmacol Toxicol 2024; 135:225-236. [PMID: 39034736 DOI: 10.1111/bcpt.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
AbstractNeurolipids comprise a diverse class of bioactive lipids that include molecules capable of activating G protein‐coupled receptors, thereby inducing systemic effects that contribute to the maintenance of homeostasis. Dementia, a non‐specific brain disorder characterized by a common set of signs and symptoms, usually arises subsequent to brain injuries or diseases and is often associated with the aging process. Individuals affected by dementia suffer from the disruption of several neurotransmitter and neuromodulatory systems, among which neurolipids play an important role, including the endocannabinoid, lysophosphatidic acid and sphingosine 1‐phosphate systems. In this review, we present an overview of the most recent and pertinent findings regarding the involvement of these neurolipidic systems in dementia, including data from a wide range of both in vitro and in vivo experiments as well as clinical trials.
Collapse
Affiliation(s)
- Gorka Pereira-Castelo
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | - Marta Moreno-Rodríguez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Iván Manuel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
2
|
Urmeneta-Ortíz MF, Tejeda-Martínez AR, González-Reynoso O, Flores-Soto ME. Potential Neuroprotective Effect of the Endocannabinoid System on Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:5519396. [PMID: 39104613 PMCID: PMC11300097 DOI: 10.1155/2024/5519396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by alterations in motor capacity resulting from a decrease in the neurotransmitter dopamine due to the selective death of dopaminergic neurons of the nigrostriatal pathway. Unfortunately, conventional pharmacological treatments fail to halt disease progression; therefore, new therapeutic strategies are needed, and currently, some are being investigated. The endocannabinoid system (ECS), highly expressed in the basal ganglia (BG) circuit, undergoes alterations in response to dopaminergic depletion, potentially contributing to motor symptoms and the etiopathogenesis of PD. Substantial evidence supports the neuroprotective role of the ECS through various mechanisms, including anti-inflammatory, antioxidative, and antiapoptotic effects. Therefore, the ECS emerges as a promising target for PD treatment. This review provides a comprehensive summary of current clinical and preclinical evidence concerning ECS alterations in PD, along with potential pharmacological targets that may exert the protection of dopaminergic neurons.
Collapse
Affiliation(s)
- María Fernanda Urmeneta-Ortíz
- Chemical Engineering Department, University Center for Exact and Engineering SciencesUniversity of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Aldo Rafael Tejeda-Martínez
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Orfil González-Reynoso
- Chemical Engineering Department, University Center for Exact and Engineering SciencesUniversity of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico
| | - Mario Eduardo Flores-Soto
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
3
|
Monsalvo-Maraver LA, Ovalle-Noguez EA, Nava-Osorio J, Maya-López M, Rangel-López E, Túnez I, Tinkov AA, Tizabi Y, Aschner M, Santamaría A. Interactions Between the Ubiquitin-Proteasome System, Nrf2, and the Cannabinoidome as Protective Strategies to Combat Neurodegeneration: Review on Experimental Evidence. Neurotox Res 2024; 42:18. [PMID: 38393521 PMCID: PMC10891226 DOI: 10.1007/s12640-024-00694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Luis Angel Monsalvo-Maraver
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| | - Enid A Ovalle-Noguez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Jade Nava-Osorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
| | - Marisol Maya-López
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Edgar Rangel-López
- Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC), Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U. Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
4
|
Yu X, Jia Y, Dong Y. Research progress on the cannabinoid type-2 receptor and Parkinson's disease. Front Aging Neurosci 2024; 15:1298166. [PMID: 38264546 PMCID: PMC10804458 DOI: 10.3389/fnagi.2023.1298166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) is featured by movement impairments, including tremors, bradykinesia, muscle stiffness, and imbalance. PD is also associated with many non-motor symptoms, such as cognitive impairments, dementia, and mental disorders. Previous studies identify the associations between PD progression and factors such as α-synuclein aggregation, mitochondrial dysfunction, inflammation, and cell death. The cannabinoid type-2 receptor (CB2 receptor) is a transmembrane G-protein-coupled receptor and has been extensively studied as part of the endocannabinoid system. CB2 receptor is recently emerged as a promising target for anti-inflammatory treatment for neurodegenerative diseases. It is reported to modulate mitochondrial function, oxidative stress, iron transport, and neuroinflammation that contribute to neuronal cell death. Additionally, CB2 receptor possesses the potential to provide feedback on electrophysiological processes, offering new possibilities for PD treatment. This review summarized the mechanisms underlying PD pathogenesis. We also discussed the potential regulatory role played by CB2 receptor in PD.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yi Jia
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Papadogkonaki S, Spyridakos D, Lapokonstantaki E, Chaniotakis N, Makriyannis A, Malamas MS, Thermos K. Investigating the Effects of Exogenous and Endogenous 2-Arachidonoylglycerol on Retinal CB1 Cannabinoid Receptors and Reactive Microglia in Naive and Diseased Retina. Int J Mol Sci 2023; 24:15689. [PMID: 37958673 PMCID: PMC10650178 DOI: 10.3390/ijms242115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.
Collapse
Affiliation(s)
- Sofia Papadogkonaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | - Dimitris Spyridakos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| | | | - Nikos Chaniotakis
- Department of Chemistry, University of Crete, Heraklion, 71003 Crete, Greece; (E.L.); (N.C.)
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Michael S. Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.M.); (M.S.M.)
| | - Kyriaki Thermos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (S.P.); (D.S.)
| |
Collapse
|
6
|
Fernández-Moncada I, Eraso-Pichot A, Tor TD, Fortunato-Marsol B, Marsicano G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol Dis 2023:106235. [PMID: 37481040 DOI: 10.1016/j.nbd.2023.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Neurodegenerative disorders are debilitating conditions that impair patient quality of life and that represent heavy social-economic burdens to society. Whereas the root of some of these brain illnesses lies in autosomal inheritance, the origin of most of these neuropathologies is scantly understood. Similarly, the cellular and molecular substrates explaining the progressive loss of brain functions remains to be fully described too. Indeed, the study of brain neurodegeneration has resulted in a complex picture, composed of a myriad of altered processes that include broken brain bioenergetics, widespread neuroinflammation and aberrant activity of signaling pathways. In this context, several lines of research have shown that the endocannabinoid system (ECS) and its main signaling hub, the type-1 cannabinoid (CB1) receptor are altered in diverse neurodegenerative disorders. However, some of these data are conflictive or poorly described. In this review, we summarize the findings about the alterations in ECS and CB1 receptors signaling in three representative brain illnesses, the Alzheimer's, Parkinson's and Huntington's diseases, and we discuss the relevance of these studies in understanding neurodegeneration development and progression, with a special focus on astrocyte function. Noteworthy, the analysis of ECS defects in neurodegeneration warrant much more studies, as our conceptual understanding of ECS function has evolved quickly in the last years, which now include glia cells and the subcellular-specific CB1 receptors signaling as critical players of brain functions.
Collapse
Affiliation(s)
| | - Abel Eraso-Pichot
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Tommaso Dalla Tor
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | | | - Giovanni Marsicano
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
7
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
8
|
The monoacylglycerol lipase inhibitor, JZL184, has comparable effects to therapeutic hypothermia, attenuating global cerebral injury in a rat model of cardiac arrest. Biomed Pharmacother 2022; 156:113847. [DOI: 10.1016/j.biopha.2022.113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
|
9
|
Lipidomics of Bioactive Lipids in Alzheimer's and Parkinson's Diseases: Where Are We? Int J Mol Sci 2022; 23:ijms23116235. [PMID: 35682914 PMCID: PMC9181703 DOI: 10.3390/ijms23116235] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Lipids are not only constituents of cellular membranes, but they are also key signaling mediators, thus acting as “bioactive lipids”. Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation, and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between the immune and nervous systems, and lipids can interact particularly with the aggregation and propagation of many pathogenic proteins that are well-renowned hallmarks of several neurodegenerative disorders, including Alzheimer’s (AD) and Parkinson’s (PD) diseases. In this review, we summarize the current knowledge about the presence and quantification of the main classes of endogenous bioactive lipids, namely glycerophospholipids/sphingolipids, classical eicosanoids, pro-resolving lipid mediators, and endocannabinoids, in AD and PD patients, as well as their most-used animal models, by means of lipidomic analyses, advocating for these lipid mediators as powerful biomarkers of pathology, diagnosis, and progression, as well as predictors of response or activity to different current therapies for these neurodegenerative diseases.
Collapse
|
10
|
Stress upregulates 2-arachidonoylglycerol levels in the hypothalamus, midbrain, and hindbrain, and it is sustained by green nut oil supplementation in SAMP8 mice revealed by DESI-MSI. Biochem Biophys Res Commun 2022; 609:9-14. [DOI: 10.1016/j.bbrc.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022]
|
11
|
Paes-Colli Y, Aguiar AFL, Isaac AR, Ferreira BK, Campos RMP, Trindade PMP, de Melo Reis RA, Sampaio LS. Phytocannabinoids and Cannabis-Based Products as Alternative Pharmacotherapy in Neurodegenerative Diseases: From Hypothesis to Clinical Practice. Front Cell Neurosci 2022; 16:917164. [PMID: 35707521 PMCID: PMC9189313 DOI: 10.3389/fncel.2022.917164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Historically, Cannabis is one of the first plants to be domesticated and used in medicine, though only in the last years the amount of Cannabis-based products or medicines has increased worldwide. Previous preclinical studies and few published clinical trials have demonstrated the efficacy and safety of Cannabis-based medicines in humans. Indeed, Cannabis-related medicines are used to treat multiple pathological conditions, including neurodegenerative disorders. In clinical practice, Cannabis products have already been introduced to treatment regimens of Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis’s patients, and the mechanisms of action behind the reported improvement in the clinical outcome and disease progression are associated with their anti-inflammatory, immunosuppressive, antioxidant, and neuroprotective properties, due to the modulation of the endocannabinoid system. In this review, we describe the role played by the endocannabinoid system in the physiopathology of Alzheimer, Parkinson, and Multiple Sclerosis, mainly at the neuroimmunological level. We also discuss the evidence for the correlation between phytocannabinoids and their therapeutic effects in these disorders, thus describing the main clinical studies carried out so far on the therapeutic performance of Cannabis-based medicines.
Collapse
Affiliation(s)
- Yolanda Paes-Colli
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrey F. L. Aguiar
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Instituto de Bioquímica Médica Leopoldo De Meis (IBqM), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna K. Ferreira
- Instituto de Bioquímica Médica Leopoldo De Meis (IBqM), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Maria P. Campos
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila Martins Pinheiro Trindade
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luzia S. Sampaio,
| |
Collapse
|
12
|
Kohansal F, Mobed A, Ansari R, Hasanzadeh M, Ahmadalipour A, Shadjou N. An innovative electrochemical immuno-platform towards ultra-sensitive monitoring of 2-arachidonoyl glycerol in samples from rats with sleep deprivation: bioanalysis of endogenous cannabinoids using biosensor technology. RSC Adv 2022; 12:14154-14166. [PMID: 35558840 PMCID: PMC9092357 DOI: 10.1039/d2ra00380e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
The endocannabinoid system (ECS) is a complex of neurotransmitters in the central nervous system and plays a key role in regulating cognitive and physiological processes. 2-Arachidonoylglycerol (2-AG) is one of the imperative endocannabinoids that play key roles in the central nervous system. It acts as a signaling lipid and activates the cannabinoid CB1 receptor. In addition, 2-AG is involved in a variety of physiological functions such as energy balance, emotion, pain sensation, cognition, and neuroinflammation. So, rapid and specific diagnosis of 2-AG is of great importance in medical neuroscience. The development of new methods in this area has been one of the most important research areas in recent years. Herein, an innovative immunosensor is developed for quantification of 2-AG. For this means, gold nanostars (GNS) were synthesized and conjugated with a specific biotinylated antibody against 2-AG. The resultant bioconjugate, a bioreceptor with GNS, was immobilized on the surface of a gold electrode and used for the detection of the antigen based on the immunocomplex formation followed by analysis using different electrochemical techniques. For the first time, 2-AG protein was measured with an excellent linear range of 0.48–1 ng mL−1 and lower limit of quantification of 0.48 ng L−1 by the electroanalysis method. The engineered immunosensor showed high sensitivity and specificity in the presence of interfering antigens, proving its utility in neurological disorder detection. This immunosensor is the first sandwich type immunoassay for the detection of 2-AG in real samples and the first innovation of designing a novel sandwich type immunosensor for this analyte. Also, excellent analytical results are other advantages of this biosensor for the detection of 2-AG in human plasma samples and serum samples of rats under sleep deprivation. So, this is the first report of an immunosensor of 2-AG using a sandwich type immunosensor. A novel electrochemical immunosensor based gold nanoparticles for the sensitive recognition of 2-AG was introduced.![]()
Collapse
Affiliation(s)
- Fereshteh Kohansal
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
| | - Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran.,Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Rana Ansari
- Drug Applied Research Center, Tabriz University of Medical Sciences Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran .,Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nanotechnology Research Center, Faculty of Science and Chemistry, Urmia University Urmia Iran
| |
Collapse
|
13
|
Young AP, Denovan-Wright EM. The Dynamic Role of Microglia and the Endocannabinoid System in Neuroinflammation. Front Pharmacol 2022; 12:806417. [PMID: 35185547 PMCID: PMC8854262 DOI: 10.3389/fphar.2021.806417] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the brain, can take on a range of pro- or anti-inflammatory phenotypes to maintain homeostasis. However, the sustained activation of pro-inflammatory microglia can lead to a state of chronic neuroinflammation characterized by high concentrations of neurotoxic soluble factors throughout the brain. In healthy brains, the inflammatory processes cease and microglia transition to an anti-inflammatory phenotype, but failure to halt the pro-inflammatory processes is a characteristic of many neurological disorders. The endocannabinoid system has been identified as a promising therapeutic target for chronic neuroinflammation as there is evidence that synthetic and endogenously produced cannabinoids temper the pro-inflammatory response of microglia and may encourage a switch to an anti-inflammatory phenotype. Activation of cannabinoid type 2 (CB2) receptors has been proposed as the mechanism of action responsible for these effects. The abundance of components of the endocannabinoid system in microglia also change dynamically in response to several brain pathologies. This can impact the ability of microglia to synthesize and degrade endocannabinoids or react to endogenous and exogenous cannabinoids. Cannabinoid receptors also participate in the formation of receptor heteromers which influences their function specifically in cells that express both receptors, such as microglia. This creates opportunities for drug-drug interactions between CB2 receptor-targeted therapies and other classes of drugs. In this article, we review the roles of pro- and anti-inflammatory microglia in the development and resolution of neuroinflammation. We also discuss the fluctuations observed in the components of the endocannabinoid in microglia and examine the potential of CB2 receptors as a therapeutic target in this context.
Collapse
|
14
|
Kelly R, Bemelmans AP, Joséphine C, Brouillet E, McKernan DP, Dowd E. Time-Course of Alterations in the Endocannabinoid System after Viral-Mediated Overexpression of α-Synuclein in the Rat Brain. Molecules 2022; 27:507. [PMID: 35056822 PMCID: PMC8778740 DOI: 10.3390/molecules27020507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Since the discovery of α-synuclein as the major component in Lewy bodies, research into this protein in the context of Parkinson's disease pathology has been exponential. Cannabinoids are being investigated as potential therapies for Parkinson's disease from numerous aspects, but still little is known about the links between the cannabinoid system and the pathogenic α-synuclein protein; understanding these links will be necessary if cannabinoid therapies are to reach the clinic in the future. Therefore, the aim of this study was to investigate the time-course of alterations in components of the endocannabinoid system after viral-mediated α-synuclein overexpression in the rat brain. Rats were given unilateral intranigral injections of AAV-GFP or AAV-α-synuclein and sacrificed 4, 8 and 12 weeks later for qRT-PCR and liquid chromatography-mass spectrometry analyses of the endocannabinoid system, in addition to histological visualization of α-synuclein expression along the nigrostriatal pathway. As anticipated, intranigral delivery of AAV-α-synuclein induced widespread overexpression of human α-synuclein in the nigrostriatal pathway, both at the mRNA level and the protein level. However, despite this profound α-synuclein overexpression, we detected no differences in CB1 or CB2 receptor expression in the nigrostriatal pathway; however, interestingly, there was a reduction in the expression of neuroinflammatory markers. Furthermore, there was a reduction in the levels of the endocannabinoid 2-AG and the related lipid immune mediator OEA at week 12 post-surgery, indicating that α-synuclein overexpression triggers dysregulation of the endocannabinoid system. Although this research does show that the endocannabinoid system is impacted by α-synuclein, further research is necessary to more comprehensively understand the link between the cannabinoid system and the α-synuclein aspect of Parkinson's disease pathology in order for cannabinoid-based therapies to be feasible for the treatment of this disease in the coming years.
Collapse
Affiliation(s)
- Rachel Kelly
- Department of Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Alexis-Pierre Bemelmans
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Paris-Saclay University, CEA, CNRS, F-92265 Fontenay-aux-Roses, France; (A.-P.B.); (C.J.); (E.B.)
| | - Charlène Joséphine
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Paris-Saclay University, CEA, CNRS, F-92265 Fontenay-aux-Roses, France; (A.-P.B.); (C.J.); (E.B.)
| | - Emmanuel Brouillet
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Paris-Saclay University, CEA, CNRS, F-92265 Fontenay-aux-Roses, France; (A.-P.B.); (C.J.); (E.B.)
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| | - Eilís Dowd
- Department of Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (D.P.M.)
| |
Collapse
|
15
|
The Endocannabinoid System in Glial Cells and Their Profitable Interactions to Treat Epilepsy: Evidence from Animal Models. Int J Mol Sci 2021; 22:ijms222413231. [PMID: 34948035 PMCID: PMC8709154 DOI: 10.3390/ijms222413231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.
Collapse
|
16
|
Schmitz K, Trautmann S, Hahnefeld L, Fischer C, Schreiber Y, Wilken-Schmitz A, Gurke R, Brunkhorst R, Werner ER, Watschinger K, Wicker S, Thomas D, Geisslinger G, Tegeder I. Sapropterin (BH4) Aggravates Autoimmune Encephalomyelitis in Mice. Neurotherapeutics 2021; 18:1862-1879. [PMID: 33844153 PMCID: PMC8609075 DOI: 10.1007/s13311-021-01043-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Depletion of the enzyme cofactor, tetrahydrobiopterin (BH4), in T-cells was shown to prevent their proliferation upon receptor stimulation in models of allergic inflammation in mice, suggesting that BH4 drives autoimmunity. Hence, the clinically available BH4 drug (sapropterin) might increase the risk of autoimmune diseases. The present study assessed the implications for multiple sclerosis (MS) as an exemplary CNS autoimmune disease. Plasma levels of biopterin were persistently low in MS patients and tended to be lower with high Expanded Disability Status Scale (EDSS). Instead, the bypass product, neopterin, was increased. The deregulation suggested that BH4 replenishment might further drive the immune response or beneficially restore the BH4 balances. To answer this question, mice were treated with sapropterin in immunization-evoked autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Sapropterin-treated mice had higher EAE disease scores associated with higher numbers of T-cells infiltrating the spinal cord, but normal T-cell subpopulations in spleen and blood. Mechanistically, sapropterin treatment was associated with increased plasma levels of long-chain ceramides and low levels of the poly-unsaturated fatty acid, linolenic acid (FA18:3). These lipid changes are known to contribute to disruptions of the blood-brain barrier in EAE mice. Indeed, RNA data analyses revealed upregulations of genes involved in ceramide synthesis in brain endothelial cells of EAE mice (LASS6/CERS6, LASS3/CERS3, UGCG, ELOVL6, and ELOVL4). The results support the view that BH4 fortifies autoimmune CNS disease, mechanistically involving lipid deregulations that are known to contribute to the EAE pathology.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Caroline Fischer
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Robert Brunkhorst
- Department of Clinical Neurology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Ernst R Werner
- Institute of Biological Chemistry, Medical University of Innsbruck, Biocenter, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Medical University of Innsbruck, Biocenter, Austria
| | - Sabine Wicker
- Occupational Health Services, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
17
|
Clarke TL, Johnson RL, Simone JJ, Carlone RL. The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration. Int J Mol Sci 2021; 22:2103. [PMID: 33672634 PMCID: PMC7924210 DOI: 10.3390/ijms22042103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis has long been used for its medicinal and psychoactive properties. With the relatively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration.
Collapse
Affiliation(s)
- Tristyn L. Clarke
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Rachael L. Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
- eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada
| | - Robert L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
18
|
Bononi G, Poli G, Rizzolio F, Tuccinardi T, Macchia M, Minutolo F, Granchi C. An updated patent review of monoacylglycerol lipase (MAGL) inhibitors (2018-present). Expert Opin Ther Pat 2020; 31:153-168. [PMID: 33085920 DOI: 10.1080/13543776.2021.1841166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Monoacylglycerol lipase (MAGL) belongs to the endocannabinoid system and is responsible for the inactivation of endocannabinoid 2-arachidonoylglycerol. Importantly, it was found that MAGL degradation of lipids in cancer cells enhances the availability of free fatty acids for new cellular membrane formation and pro-oncogenic lipid modulators. The multifaceted role of MAGL has greatly stimulated the search for MAGL inhibitors, which could be effective to treat diseases, such as inflammation, neurodegeneration and cancer. AREAS COVERED This review covers patents published since 2018 up to now, concerning new MAGL inhibitors and their potential therapeutic applications. EXPERT OPINION In the years 2018-2020, several well-known chemical scaffolds of MAGL inhibitors have been further optimized and developed and some new chemical classes have also been identified as MAGL inhibitors. Moreover, an increasing number of scientific publications covering MAGL inhibitors is focused on MAGL-specific positron emission tomography (PET) ligands. The numerous efforts of pharmaceutical companies and academic research groups finalized to find new potent MAGL inhibitors confirm that this research area is rapidly growing. Nevertheless, most of the patented compounds still belong to the large group of irreversible MAGL inhibitors, highlighting that the development of reversible MAGL inhibitors is still an unmet pharmaceutical need.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa , Pisa, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa , Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS , Aviano, Italy.,Department of Molecular Science and Nanosystems, Ca' Foscari University , Venezia, Italy
| | | | - Marco Macchia
- Department of Pharmacy, University of Pisa , Pisa, Italy
| | | | | |
Collapse
|
19
|
Cooray R, Gupta V, Suphioglu C. Current Aspects of the Endocannabinoid System and Targeted THC and CBD Phytocannabinoids as Potential Therapeutics for Parkinson's and Alzheimer's Diseases: a Review. Mol Neurobiol 2020; 57:4878-4890. [PMID: 32813239 PMCID: PMC7515854 DOI: 10.1007/s12035-020-02054-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Neurodegeneration leading to Parkinson's disease (PD) and Alzheimer's disease (AD) has become a major health burden globally. Current treatments mainly target controlling symptoms and there are no therapeutics available in clinical practice to preventing the neurodegeneration or inducing neuronal repairing. Thus, the demand of novel research for the two disorders is imperative. This literature review aims to provide a collection of published work on PD and AD and current uses of endocannabinoid system (ECS) as a potential drug target for neurodegeneration. PD is frequently treated with L-DOPA and deep brain stimulation. Recent gene modification and remodelling techniques, such as CRISPR through human embryonic stem cells and induced pluripotent stem cells, have shown promising strategy for personalised medicine. AD characterised by extracellular deposits of amyloid β-senile plaques and neurofibrillary tangles of tau protein commonly uses choline acetyltransferase enhancers as therapeutics. The ECS is currently being studied as PD and AD drug targets where overexpression of ECS receptors exerted neuroprotection against PD and reduced neuroinflammation in AD. The delta-9-tetrahydrocannabinoid (Δ9-THC) and cannabidiol (CBD) cannabinoids of plant Cannabis sativa have shown neuroprotection upon PD and AD animal models yet triggered toxic effects on patients when administered directly. Therefore, understanding the precise molecular cascade following cannabinoid treatment is suggested, focusing especially on gene expression to identify drug targets for preventing and repairing neurodegeneration.
Collapse
Affiliation(s)
- R Cooray
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
- Section of Genetics, Institute for Research & Development in Health & Social Care, Colombo, Sri Lanka.
| | - V Gupta
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - C Suphioglu
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
20
|
Elmazoglu Z, Rangel-López E, Medina-Campos ON, Pedraza-Chaverri J, Túnez I, Aschner M, Santamaría A, Karasu Ç. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ 1-42 peptide in rat hippocampal neurons. Neurochem Int 2020; 140:104817. [PMID: 32781098 PMCID: PMC7572748 DOI: 10.1016/j.neuint.2020.104817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder linked to various converging toxic mechanisms. Evidence suggests that hyperglycemia induces oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity, all of which play important roles in the onset and progression of AD pathogenesis. The endocannabinoid system (ECS) orchestrates major physiological responses, including neuronal plasticity, neuroprotection, and redox homeostasis, to name a few. The multi-targeted effectiveness of the ECS emerges as a potential approach to treat AD. Here we characterized the protective properties of the endocannabinoids arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), the synthetic cannabinoids CP 55-940 and WIN 55,212-2, and the fatty acid amide hydrolase (FAAH) inhibitor URB597, on a combined hyperglycemia + oligomeric amyloid β peptide (Aβ1-42) neurotoxic model in primary hippocampal neurons which exhibit several AD features. Cells were treated with cannabinoid agents at increased concentrations (1 nM-1 μM) for 6 h, and then co-treated with 150 mM glucose (GLU, 24 h), followed by incubation with 500 nM Aβ1-42 (24 h). Cell viability/survival, reactive oxygen species (ROS) levels, antioxidant enzyme (SOD, CAT, GPx and GRx) activities, biological products of oxidative damage (AGE and HNE adducts) and nitrosative stress (3-NT), several endpoints of inflammation (iNOS, IL-1β and TNF-α), amyloid quantification, mitochondrial membrane potential, and the involvement of the Nrf2 pathway, were all evaluated. The combined high glucose + amyloid beta 1-42 (GLU + Aβ1-42) condition decreased cell viability and mitochondrial membrane potential, while augmenting oxidative damage and inflammation. All agents tested preserved cell viability and stimulated mitochondrial membrane potential, while reducing all the evaluated toxic endpoints in a differential manner, with URB597 showing the highest efficacy. The neuroprotective efficacy of all cannabinoid agents, except for URB597, led to partial recruitment of specific antioxidant activity and Nrf2 pathway regulation. Our results support the neuroprotective potential of these agents at low concentrations against the damaging effects of GLU + Aβ1-42, affording new potential modalities for the design of AD therapies.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico
| | - Omar Noel Medina-Campos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, 14004, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, 14269, Mexico.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey.
| |
Collapse
|
21
|
Tyukhtenko S, Ma X, Rajarshi G, Karageorgos I, Anderson KW, Hudgens JW, Guo JJ, Nasr ML, Zvonok N, Vemuri K, Wagner G, Makriyannis A. Conformational gating, dynamics and allostery in human monoacylglycerol lipase. Sci Rep 2020; 10:18531. [PMID: 33116203 PMCID: PMC7595040 DOI: 10.1038/s41598-020-75497-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/08/2020] [Indexed: 11/09/2022] Open
Abstract
Inhibition of human Monoacylglycerol Lipase (hMGL) offers a novel approach for treating neurological diseases. The design of inhibitors, targeting active-inactive conformational transitions of the enzyme, can be aided by understanding the interplay between structure and dynamics. Here, we report the effects of mutations within the catalytic triad on structure, conformational gating and dynamics of hMGL by combining kinetics, NMR, and HDX-MS data with metadynamics simulations. We found that point mutations alter delicate conformational equilibria between active and inactive states. HDX-MS reveals regions of the hMGL that become substantially more dynamic upon substitution of catalytic acid Asp-239 by alanine. These regions, located far from the catalytic triad, include not only loops but also rigid α-helixes and β-strands, suggesting their involvement in allosteric regulation as channels for long-range signal transmission. The results identify the existence of a preorganized global communication network comprising of tertiary (residue-residue contacts) and quaternary (rigid-body contacts) networks that mediate robust, rapid intraprotein signal transmission. Catalytic Asp-239 controls hMGL allosteric communications and may be considered as an essential residue for the integration and transmission of information to enzymes' remote regions, in addition to its well-known role to facilitate Ser-122 activation. Our findings may assist in the identification of new druggable sites in hMGL.
Collapse
Affiliation(s)
- Sergiy Tyukhtenko
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA.
| | - Xiaoyu Ma
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA
| | - Ioannis Karageorgos
- BioProcess Measurements Group, Biomolecular Measurement Division, National Institute of Standards & Technology, Rockville, MD, 20850, USA.,Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Kyle W Anderson
- BioProcess Measurements Group, Biomolecular Measurement Division, National Institute of Standards & Technology, Rockville, MD, 20850, USA.,Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Jeffrey W Hudgens
- BioProcess Measurements Group, Biomolecular Measurement Division, National Institute of Standards & Technology, Rockville, MD, 20850, USA.,Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Jason J Guo
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA.,Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115-5000, USA
| | - Mahmoud L Nasr
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.,Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikolai Zvonok
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA
| | - Kiran Vemuri
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115-5000, USA.
| |
Collapse
|
22
|
Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin 2020; 41:1263-1271. [PMID: 32203086 PMCID: PMC7608191 DOI: 10.1038/s41401-020-0385-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
The endocannabinoid system (ECS) has received extensive attention for its neuroprotective effect on the brain. This system comprises endocannabinoids, endocannabinoid receptors, and the corresponding ligands and proteins. The molecular players involved in their regulation and metabolism are potential therapeutic targets for neuropsychiatric diseases including anxiety, depression and neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The inhibitors of two endocannabinoid hydrolases, i.e., fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), have the capacity to increase the level of endocannabinoids indirectly, causing fewer side effects than those associated with direct supplementation of cannabinoids. Their antidepressant and anxiolytic mechanisms are considered to modulate the hypothalamic-pituitary-adrenal axis and regulate synaptic and neural plasticity. In terms of AD/PD, treatment with FAAH/MAGL inhibitors leads to reduction in amyloid β-protein deposition and inhibition of the death of dopamine neurons, which are commonly accepted to underlie the pathogenesis of AD and PD, respectively. Inflammation as the cause of depression/anxiety and PD/AD is also the target of FAAH/MAGL inhibitors. In this review, we summarize the application and involvement of FAAH/MAGL inhibitors in related neurological diseases. Focus on the latest research progress using FAAH/MAGL inhibitors is expected to facilitate the development of novel approaches with therapeutic potential.
Collapse
|
23
|
Ingram TL, Shephard F, Sarmad S, Ortori CA, Barrett DA, Chakrabarti L. Sex specific inflammatory profiles of cerebellar mitochondria are attenuated in Parkinson's disease. Aging (Albany NY) 2020; 12:17713-17737. [PMID: 32855358 PMCID: PMC7521528 DOI: 10.18632/aging.103937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/01/2020] [Indexed: 01/24/2023]
Abstract
Response to inflammation is a key determinant in many diseases and their outcomes. Diseases that commonly affect older people are frequently associated with altered inflammatory processes. Neuroinflammation has been described in Parkinson's disease (PD) brain. PD is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and at the sub-cellular level, mitochondrial dysfunction is a key feature. However, there is evidence that a different region of the brain, the cerebellum, is involved in the pathophysiology of PD. We report relative levels of 40 pro- and anti-inflammatory cytokines measured in PD and control cerebellar mitochondria. These data were obtained by screening cytokine antibody arrays. In parallel, we present concentrations of 29 oxylipins and 4 endocannabinoids measured in mitochondrial fractions isolated from post-mortem PD cerebellum with age and sex matched controls. Our oxylipin and endocannabinoid data were acquired via quantitation by LC-ESI-MS/MS. The separate sample sets both show there are clearly different inflammatory profiles between the sexes in control samples. Sex specific profiles were not maintained in cerebellar mitochondria isolated from PD brains.
Collapse
Affiliation(s)
- Thomas L. Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Freya Shephard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Sarir Sarmad
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Catherine A. Ortori
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, UK
| |
Collapse
|
24
|
Endocannabinoid levels in patients with Parkinson's disease with and without levodopa-induced dyskinesias. J Neural Transm (Vienna) 2020; 127:1359-1367. [PMID: 32797288 DOI: 10.1007/s00702-020-02240-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Levodopa-induced dyskinesias (LID) in Parkinson's disease (PD) are frequent complications, and the endocannabinoid system has a role on its pathophysiology. To test the hypothesis that the functioning of the endocannabinoid system would be altered in PD and in LID by measuring plasma and CSF levels of α-N-arachidonoylethanolamine (AEA) and 2-arachidonoyl-glycerol (2-AG) in patients with PD with and without LID and in healthy controls. Blood and CSF samples were collected from 20 healthy controls, 23 patients with PD without LID, and 24 patients with PD with LID. The levels of AEA and 2-AG were measured using a highly sensitive column switching ultrahigh-performance liquid chromatography-tandem mass spectrometry method. When pooled together, patients with PD had lower plasma and CSF levels of 2-AG and higher CSF levels of AEA compared to healthy controls (Mann-Whitney statistics = 303.0, p = 0.02). Patients with PD without LID had lower CSF levels of 2-AG (Kruskal-Wallis statistics = 7.76, p = 0.02) and higher CSF levels of AEA levels than healthy controls (Kruskal-Wallis statistics = 8.81, p = 0.01). The findings suggest that the endocannabinoid system participates in the pathophysiology of PD symptoms, but its role in the pathophysiology of LID is still unclear.
Collapse
|
25
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
26
|
Rocha L, Cinar R, Guevara-Guzmán R, Alonso-Vanegas M, San-Juan D, Martínez-Juárez I, Castañeda-Cabral JL, Carmona-Cruz F. Endocannabinoid System and Cannabinoid 1 Receptors in Patients With Pharmacoresistant Temporal Lobe Epilepsy and Comorbid Mood Disorders. Front Behav Neurosci 2020; 14:52. [PMID: 32435186 PMCID: PMC7218130 DOI: 10.3389/fnbeh.2020.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
Experimental evidence points out that the activation of the endocannabinoid system induces neuroprotective effects and reduces mood disorders. In the hippocampus of patients with mesial temporal lobe epilepsy (MTLE), studies indicated augmented cannabinoid 1 receptor (CB1R) binding, in spite of its low mRNA and protein expressions. Although this situation suggests an enhanced CB1R-induced neurotransmission in patients with MTLE, especially those with pharmacoresistant seizures, which present important neuronal damage and high comorbid mood disorders. The present study focused to investigate the status of CB1R and the endocannabinoid system by obtaining CB1R-induced G-protein signaling efficacy and measuring the tissue levels of endocannabinoids in the hippocampus and the temporal neocortex of patients with pharmacoresistant MTLE. Furthermore, the obtained results were correlated with comorbid anxiety and depression. The experiments revealed that patients with MTLE present increased CB1R-induced G-protein signaling efficacy (Emax) as well as an augmented tissue content of anandamide and oleoylethanolamine and low 2-arachidonoylglycerol. Some of these changes were more evident in patients with MTLE without mood disorders. The current findings indicate that pharmacoresistant MTLE is associated with increased CB1R-induced transductional mechanisms as well as augmented tissue content of specific endocannabinoids in the hippocampus and the temporal neocortex. The enhanced endocannabinoid neurotransmission may be involved in the absence of comorbid mood disorders in some patients with MTLE.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | | | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Daniel San-Juan
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Iris Martínez-Juárez
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | | | - Francia Carmona-Cruz
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico
| |
Collapse
|
27
|
Rivera P, Vargas A, Pastor A, Boronat A, López-Gambero AJ, Sánchez-Marín L, Medina-Vera D, Serrano A, Pavón FJ, de la Torre R, Agirregoitia E, Lucena MI, Rodríguez de Fonseca F, Decara J, Suárez J. Differential hepatoprotective role of the cannabinoid CB 1 and CB 2 receptors in paracetamol-induced liver injury. Br J Pharmacol 2020; 177:3309-3326. [PMID: 32167157 DOI: 10.1111/bph.15051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Protective mechanisms of the endogenous cannabinoid system against drug-induced liver injury (DILI) are actively being investigated regarding the differential regulatory role of the cannabinoid CB1 and CB2 receptors in liver fibrogenesis and inflammation. EXPERIMENTAL APPROACH The 2-arachidonoylglycerol (2-AG)-related signalling receptors and enzymatic machinery, and inflammatory/fibrogenic factors were investigated in the liver of a mouse model of hepatotoxicity induced by acute and repeated overdoses (750 mg·kg-1 ·day-1 ) of paracetamol (acetaminophen), previously treated with selective CB1 (ACEA) and CB2 (JWH015) agonists (10 mg·kg-1 ), or lacking CB1 and CB2 receptors. KEY RESULTS Acute paracetamol increased the expression of CB2 , ABHD6 and COX-2, while repeated paracetamol increased that of CB1 and COX-2 and decreased that of DAGLβ. Both acute paracetamol and repeated paracetamol decreased the liver content of acylglycerols (2-AG, 2-LG and 2-OG). Human liver samples from a patient suffering APAP hepatotoxicity confirmed CB1 and CB2 increments. Acute paracetamol-exposed CB2 KO mice had higher expression of the fibrogenic αSMA and the cytokine IL-6 and lower apoptotic cleaved caspase 3. CB1 deficiency enhanced the repeated APAP-induced increases in αSMA and cleaved caspase 3 and blocked those of CYP2E1, TNF-α, the chemokine CCL2 and the circulating γ-glutamyltransferase (γGT). Although JWH015 reduced the expression of αSMA and TNF-α in acute paracetamol, ACEA increased the expression of cleaved caspase 3 and CCL2 in repeated paracetamol. CONCLUSION AND IMPLICATIONS The differential role of CB1 versus CB2 receptors on inflammatory/fibrogenic factors related to paracetamol-induced hepatotoxicity should be considered for designing alternative therapies against DILI.
Collapse
Affiliation(s)
- Patricia Rivera
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain.,UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antonio Vargas
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antoni Pastor
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Boronat
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio Jesús López-Gambero
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez-Marín
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Dina Medina-Vera
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.,UGC Corazón, Hospital Universitario Virgen de la Victoria, IBIMA, Universidad de Málaga, Málaga, Spain
| | - Rafael de la Torre
- Farmacología Integrada y Neurociencia de Sistemas, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - María Isabel Lucena
- Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, IBIMA, Universidad de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
28
|
Murillo-Rodríguez E, Budde H, Veras AB, Rocha NB, Telles-Correia D, Monteiro D, Cid L, Yamamoto T, Machado S, Torterolo P. The Endocannabinoid System May Modulate Sleep Disorders in Aging. Curr Neuropharmacol 2020; 18:97-108. [PMID: 31368874 PMCID: PMC7324886 DOI: 10.2174/1570159x17666190801155922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is an inevitable process that involves changes across life in multiple neurochemical, neuroanatomical, hormonal systems, and many others. In addition, these biological modifications lead to an increase in age-related sickness such as cardiovascular diseases, osteoporosis, neurodegenerative disorders, and sleep disturbances, among others that affect activities of daily life. Demographic projections have demonstrated that aging will increase its worldwide rate in the coming years. The research on chronic diseases of the elderly is important to gain insights into this growing global burden. Novel therapeutic approaches aimed for treatment of age-related pathologies have included the endocannabinoid system as an effective tool since this biological system shows beneficial effects in preclinical models. However, and despite these advances, little has been addressed in the arena of the endocannabinoid system as an option for treating sleep disorders in aging since experimental evidence suggests that some elements of the endocannabinoid system modulate the sleep-wake cycle. This article addresses this less-studied field, focusing on the likely perspective of the implication of the endocannabinoid system in the regulation of sleep problems reported in the aged. We conclude that beneficial effects regarding the putative efficacy of the endocannabinoid system as therapeutic tools in aging is either inconclusive or still missing.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, México
- Intercontinental Neuroscience Research Group
| | - Henning Budde
- Intercontinental Neuroscience Research Group
- Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group
- Dom Bosco Catholic University, Campo Grande, Mato Grosso do Sul, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group
- School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Diogo Telles-Correia
- Intercontinental Neuroscience Research Group
- University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Diogo Monteiro
- Intercontinental Neuroscience Research Group
- Sport Science School of Rio Maior-Polytechnic Institute of Santarém, Rio Maior, Portugal
- Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Luis Cid
- Intercontinental Neuroscience Research Group
- Sport Science School of Rio Maior-Polytechnic Institute of Santarém, Rio Maior, Portugal
- Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group
- Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Pablo Torterolo
- Intercontinental Neuroscience Research Group
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
29
|
Hohmann U, Pelzer M, Kleine J, Hohmann T, Ghadban C, Dehghani F. Opposite Effects of Neuroprotective Cannabinoids, Palmitoylethanolamide, and 2-Arachidonoylglycerol on Function and Morphology of Microglia. Front Neurosci 2019; 13:1180. [PMID: 31787870 PMCID: PMC6853843 DOI: 10.3389/fnins.2019.01180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
Various studies performed in cultured cells and in in vivo models of neuronal damage showed that cannabinoids exert a neuroprotective effect. The increase in cannabinoids and cannabinoid like substances after stroke has been postulated to limit the content of neuronal injury. As well-accepted, inflammation, and neuronal damage are coupled processes and microglial cells as the main intrinsic immunological effector within the brain play a central role in their regulation. Treatment with the endocannabinoid, 2-arachidonoylglycerol (2-AG) or the endocannabinoid-like substance, palmitoylethanolamide (PEA) affected microglial cells and led to a decrease in the number of damaged neurons after excitotoxical lesion in organotypic hippocampal slice cultures (OHSC). 2-AG activated abnormal cannabidiol (abn-CBD) receptor, PEA was shown to mediate neuroprotection via peroxisome proliferator-activated receptor (PPAR)α. Despite the known neuroprotective and anti-inflammatory properties, the potential synergistic effect, namely possible entourage effect after treatment with the combination of these two protective cannabinoids has not been examined yet. After excitotoxical lesion OHSC were treated with PEA, 2-AG or a combination of both and the number of damaged neurons was evaluated. To investigate the role of microglial cells in PEA and 2-AG mediated protection, primary microglial cell cultures were treated with lipopolysaccharide (LPS) and 2-AG, PEA or a combination of those. Thereafter, we measured NO production, ramification index, proliferation and PPARα distribution in microglial cells. While PEA or 2-AG alone were neuroprotective, their co-application vanished the protective effect. This behavior was independent of microglial cells. Furthermore, PEA and 2-AG had contrary effects on ramification index and on NO production. No significant changes were observed in the proliferation rate of microglial cells after treatment. The expression of PPARα was not changed upon stimulation with PEA or 2-AG, but the distribution was significantly altered. 2-AG and PEA mediated neuroprotection was abolished when co-applied. Both cannabinoids exert contrary effects on morphology and function of microglial cells. Co-application of both cannabinoids with different targets did not lead to a positive additive effect as expected, presumably due to the contrary polarization of microglial cells.
Collapse
Affiliation(s)
- Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Pelzer
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Joshua Kleine
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
30
|
Junior NCF, Dos-Santos-Pereira M, Guimarães FS, Del Bel E. Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2019; 37:12-29. [PMID: 31637586 DOI: 10.1007/s12640-019-00109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient's quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure. Manipulation of the endocannabinoid system could be a promising therapy to control PD and LID symptoms. In this way, phytocannabinoids and synthetic cannabinoids, such as cannabidiol (CBD), the principal non-psychotomimetic constituent of the Cannabis sativa plant, have received considerable attention in the last decade. In this review, we present clinical and preclinical evidence suggesting CBD and other cannabinoids have therapeutic effects in PD and LID. Here, we discuss CBD pharmacology, as well as its neuroprotective effects and those of other cannabinoids. Finally, we discuss the modulation of several pro- or anti-inflammatory factors as possible mechanisms responsible for the therapeutic/neuroprotective potential of Cannabis-derived/cannabinoid synthetic compounds in motor disorders.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Maurício Dos-Santos-Pereira
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil.,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Elaine Del Bel
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil. .,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil. .,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
31
|
Grimsey NL, Savinainen JR, Attili B, Ahamed M. Regulating membrane lipid levels at the synapse by small-molecule inhibitors of monoacylglycerol lipase: new developments in therapeutic and PET imaging applications. Drug Discov Today 2019; 25:330-343. [PMID: 31622747 DOI: 10.1016/j.drudis.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a major endocannabinoid hydrolyzing enzyme and can be regulated to control endogenous lipid levels in the brain. This review highlights the pharmacological roles and in vivo PET imaging of MAGL in brain.
Collapse
Affiliation(s)
- Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Juha R Savinainen
- Institute of Biomedicine, Faculty of Health Sciences, The University of Eastern Finland, Finland
| | - Bala Attili
- Department of Radiology, The University of Cambridge, UK
| | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
32
|
Wu MM, Zhang X, Asher MJ, Thayer SA. Druggable targets of the endocannabinoid system: Implications for the treatment of HIV-associated neurocognitive disorder. Brain Res 2019; 1724:146467. [PMID: 31539547 DOI: 10.1016/j.brainres.2019.146467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) affects nearly half of all HIV-infected individuals. Synaptodendritic damage correlates with neurocognitive decline in HAND, and many studies have demonstrated that HIV-induced neuronal injury results from excitotoxic and inflammatory mechanisms. The endocannabinoid (eCB) system provides on-demand protection against excitotoxicity and neuroinflammation. Here, we discuss evidence of the neuroprotective and anti-inflammatory properties of the eCB system from in vitro and in vivo studies. We examine the pharmacology of the eCB system and evaluate the therapeutic potential of drugs that modulate eCB signaling to treat HAND. Finally, we provide perspective on the need for additional studies to clarify the role of the eCB system in HIV neurotoxicity and speculate that strategies that enhance eCB signaling might slow cognitive decline in HAND.
Collapse
Affiliation(s)
- Mariah M Wu
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Melissa J Asher
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Stanley A Thayer
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Analysis of endocannabinoids in plasma samples by biocompatible solid-phase microextraction devices coupled to mass spectrometry. Anal Chim Acta 2019; 1091:135-145. [PMID: 31679567 DOI: 10.1016/j.aca.2019.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/23/2022]
Abstract
Anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) represent two of the most important endocannabinoids (ECs) investigated in neurobiology as therapeutic targets for several mental disorders. However, the determination of these ECs in biological matrices remains a challenging task because of the low concentrations, low stability and high protein-bound (LogP ∼ 6). This work describes innovative analytical methods based on biocompatible SPME (Bio-SPME), SPME-UHPLC-MS/MS and Bio-SPME-Nano-ESI-MS/MS, to determine AEA and 2-AG in human plasma samples. The direct coupling of Bio-SPME with nano-ESI-MS/MS can be considered an alternative tool for faster analysis. Different Bio-SPME fibers based on silica and polymeric coating (i.e. C18, C30, and HLB) were evaluated. Different desorption solvents based on combinations of methanol, acetonitrile, and isopropanol were also evaluated for efficient elution with minimum carry-over. Given the high protein binding analytes and the fact that SPME extracts the free-concentration of the analytes, the plasma samples were modified with additives such as guanidine hydrochloride (Gu-HCl), trifluoroacetic acid, and acetonitrile. This study was carried out by experimental design to achieve complete protein denaturation and the release of target analytes. The maximum extraction efficiency was obtained under the following conditions: HLB coated fibers (10 mm length, 20 μm coating thickness), matrix modified (300 μL of plasma) with 50 μL of Gu-HCL 1 mol L-1, 75 μL of ACN and 75 μL of water, and desorption with methanol/isopropanol solution (50:50, v/v). Both methods were validated based on current international guidelines and can be applied for monitoring of concentrations of endocannabinoids in plasma samples. SPME-UHPLC-MS/MS method presented lower LOQ values than SPME-nanoESI-MS/MS. The additional separation (chromatographic column) favored the detectability of LC-MS/MS method. However, the SPME-nano-ESI-MS/MS decrease the total analysis time, due to significant reductions in desorption and detection times.
Collapse
|
34
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
35
|
Szeremeta J, Karlsson J, Alhouayek M, Fowler CJ. Low mRNA expression and activity of monoacylglycerol lipase in human SH-SY5Y neuroblastoma cells. Prostaglandins Other Lipid Mediat 2019; 142:59-67. [PMID: 30978461 DOI: 10.1016/j.prostaglandins.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023]
Abstract
Relatively little is known about the endocannabinoid system in human neuroblastoma cell lines. In the present study, we have investigated the expression of the genes coding for the enzymes involved in the synthesis and catabolism of endocannabinoids in the SH-SY5Y cell line. The expression of MGLL, the gene coding for the 2-arachidonoylglycerol hydrolytic enzyme monoacylglycerol lipase (MAGL), was found to be 85 and 340 fold lower than the expression levels for the genes coding for alpha/beta-hydrolase domain containing 6 and 12 (ABHD6, ABHD12), which are alternative hydrolytic enzymes for this endocannabinoid. In comparison, mRNA levels of MGLL were 1.5 fold higher than ABHD6 and 2 fold lower than the levels of ABHD12 in DU-145 human prostate cells. In functional assays, the hydrolysis of the 2-arachidonoylglycerol homologue 2-oleoylglycerol by intact SH-SY5Y cells was partially inhibited by the ABHD6 inhibitor WWL70, but not by the MAGL inhibitor JZL184, whereas the reverse was true in DU-145 cells. The combination of JZL184 + WWL70 did, however produce a significantly greater inhibition of 2-OG hydrolysis than seen with WWL70 alone in the SH-SY5Y cells. The low MGLL expression in the SH-SY5Y cells was not due to epigenetic silencing, since levels were not affected by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine and/or the histone acetylase inhibitor trichostatin A. The low MGLL expression in SH-SY5Y cells should be taken into account when using these cells in experiments investigating the involvement of the endocannabinoid system in models of physiological and pathological processes.
Collapse
Affiliation(s)
- Janis Szeremeta
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Jessica Karlsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
36
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
37
|
Recent advances in LC-MS/MS methods to determine endocannabinoids in biological samples: Application in neurodegenerative diseases. Anal Chim Acta 2018; 1044:12-28. [DOI: 10.1016/j.aca.2018.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
|
38
|
Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson's disease model of mice. Anat Sci Int 2018; 94:119-127. [PMID: 30159851 DOI: 10.1007/s12565-018-0457-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is caused by damage to substantia nigra dopaminergic neurons. Factors such as oxidative stress, inflammatory factors, and acetylcholinesterase activity may induce this disease. On the other hand, crocin-one of the active ingredients of saffron-has anti-oxidant and anti-inflammatory properties. This study was performed to evaluate the protective effect of crocin to decrease dopaminergic neuron damage and Parkinson's disease complications induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). A set of 24 male BALB/c Mice were divided randomly into four groups: (1) MPTP group receiving 30 mg/kg MPTP for 5 days; (2) MPTP + crocin group receiving 30 mg/kg MPTP for 5 days and 30 mg/kg crocin for 15 days; (3) NS group receiving normal saline for 5 days; and (4) NSIG group receiving normal saline intraperitoneally for 5 days and also normal saline by gavage for 15 days. After the treatment period, pole and hanging motor tests were performed in all groups. Then, the brains of all the animals were removed and fixed in formalin, prepared according to routine histologic methods and cut into sections of 5 µm thickness. Prepared sections were stained by immunohistochemistry techniques and toluidine blue to detect tyrosine-hydroxylase (TH)-positive neurons and dark neurons, respectively. Finally, the mean number of these cells were calculated by stereological methods and compared with the statistical tests in different groups. The results showed a significant increase in the time taken for the animal to fall from the pole in the MPTP group in comparison with other groups (P < 0.001). The time taken for them to stay on the wire in the hanging test decreased significantly in the MPTP group compared to the other groups (P < 0.001).,while in the MPTP + crocin group, the time to falling decreased (P < 0.05) and the time staying on the wire increased (P < 0.001) compared to the MPTP group. The number of TH-positive neurons in the MPTP group also decreased significantly in comparison with saline and MPTP + crocin groups (P < 0.001). The number of dark neuron sin the MPTP group increased significantly as compared with saline and the MPTP + Crocin groups (P < 0.001). Our results showed that crocin improves MPTP-induced Parkinson's disease complications and decreases cell death in the substantia nigra.
Collapse
|
39
|
Yao L, Dai X, Sun Y, Wang Y, Yang Q, Chen X, Liu Y, Zhang L, Xie W, Liu J. Inhibition of transcription factor SP1 produces neuroprotective effects through decreasing MAO B activity in MPTP/MPP+
Parkinson's disease models. J Neurosci Res 2018; 96:1663-1676. [DOI: 10.1002/jnr.24266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Lu Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Xing Dai
- Department of Orthopaedics; The First Affiliated Hospital, Xi'an Jiaotong University; Xi'an China
| | - Yina Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Yong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Qian Yang
- Department of Neurosurgery; Tangdu Hospital, The Fourth Military Medical University; Xi'an China
| | - Xinlin Chen
- Institute of Neurobiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; Health Science Center, Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
40
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
41
|
Navarrete F, García-Gutiérrez MS, Aracil-Fernández A, Lanciego JL, Manzanares J. Cannabinoid CB1 and CB2 Receptors, and Monoacylglycerol Lipase Gene Expression Alterations in the Basal Ganglia of Patients with Parkinson's Disease. Neurotherapeutics 2018; 15:459-469. [PMID: 29352424 PMCID: PMC5935636 DOI: 10.1007/s13311-018-0603-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previous studies suggest that the endocannabinoid system plays an important role in the neuropathological basis of Parkinson's disease (PD). This study was designed to detect potential alterations in the cannabinoid receptors CB1 (CB1r) and CB2 (A isoform, CB2Ar), and in monoacylglycerol lipase (MAGL) gene expression in the substantia nigra (SN) and putamen (PUT) of patients with PD. Immunohistochemical studies were performed to identify precise CB2r cellular localization in the SN of control and PD patients. To ensure the validity and reliability of gene expression data, the RNA integrity number (RIN) was calculated. CB1r, CB2Ar, and MAGL gene expressions were evaluated by real-time polymerase chain reaction (real-time PCR) using Taqman assays. Immunohistochemical experiments with in situ proximity ligation assay (PLA) were used to detect the precise cellular localization of CB2r in neurons, astrocytes, and/or microglia. All RIN values from control and PD postmortem brain samples were > 6. CB1r gene expression was unchanged in the SN but significantly higher in the PUT of patients with PD. CB2Ar gene expression was significantly increased (4-fold) in the SN but decreased in the PUT, whereas MAGL gene expression was decreased in the SN and increased in the PUT. Immunohistochemical analyses revealed that CB2r co-localize with astrocytes but not with neurons or microglial cells in the SN. The results of the present study suggest that CB1r, CB2r, and MAGL are closely related to the neuropathological processes of PD. Therefore, the pharmacological modulation of these targets could represent a new potential therapeutic tool for the management of PD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Miguel Hernández University-CSIC, San Juan de Alicante, Alicante, Spain
- Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - M Salud García-Gutiérrez
- Instituto de Neurociencias, Miguel Hernández University-CSIC, San Juan de Alicante, Alicante, Spain
- Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Auxiliadora Aracil-Fernández
- Instituto de Neurociencias, Miguel Hernández University-CSIC, San Juan de Alicante, Alicante, Spain
- Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José L Lanciego
- Centro de Investigación Médica Aplicada, División de Neurociencias (CIMA-CIBERNED), Universidad de Navarra, Pamplona, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Miguel Hernández University-CSIC, San Juan de Alicante, Alicante, Spain.
- Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
42
|
Mecha M, Feliú A, Machín I, Cordero C, Carrillo-Salinas F, Mestre L, Hernández-Torres G, Ortega-Gutiérrez S, López-Rodríguez ML, de Castro F, Clemente D, Guaza C. 2-AG limits Theiler's virus induced acute neuroinflammation by modulating microglia and promoting MDSCs. Glia 2018; 66:1447-1463. [PMID: 29484707 DOI: 10.1002/glia.23317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/20/2023]
Abstract
The innate immune response is mediated by primary immune modulators such as cytokines and chemokines that together with immune cells and resident glia orchestrate CNS immunity and inflammation. Growing evidence supports that the endocannabinoid 2-arachidonoylglycerol (2-AG) exerts protective actions in CNS injury models. Here, we used the acute phase of Theiler's virus induced demyelination disease (TMEV-IDD) as a model of acute neuroinflammation to investigate whether 2-AG modifies the brain innate immune responses to TMEV and CNS leukocyte trafficking. 2-AG or the inhibition of its hydrolysis diminished the reactivity and number of microglia at the TMEV injection site reducing their morphological complexity and modulating them towards an anti-inflammatory state via CB2 receptors. Indeed, 2-AG dampened the infiltration of immune cells into the CNS and inhibited their egress from the spleen, resulting in long-term beneficial effects at the chronic phase of the disease. Intriguingly, it is not a generalized action over leukocytes since 2-AG increased the presence and suppressive potency of myeloid derived suppressor cells (MDSCs) in the brain resulting in higher apoptotic CD4+ T cells at the injection site. Together, these data suggest a robust modulatory effect in the peripheral and central immunity by 2-AG and highlight the interest of modulating endogenous cannabinoids to regulate CNS inflammatory conditions.
Collapse
Affiliation(s)
- Miriam Mecha
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | - Ana Feliú
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | - Isabel Machín
- Laboratorio de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM Finca "La Peraleda" s/n, Toledo, Spain
| | - Cesar Cordero
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | - Francisco Carrillo-Salinas
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | - Leyre Mestre
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| | - Gloria Hernández-Torres
- Departamento de Química Orgánica, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - María L López-Rodríguez
- Departamento de Química Orgánica, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando de Castro
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neurobiología del Desarrollo. Instituto Cajal, CSIC, Madrid, Spain
| | - Diego Clemente
- Laboratorio de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM Finca "La Peraleda" s/n, Toledo, Spain
| | - Carmen Guaza
- Departamento de Neurobiología Funcional y de Sistemas, Grupo de Neuroinmunología, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
43
|
Chiurchiù V, van der Stelt M, Centonze D, Maccarrone M. The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: Clues for other neuroinflammatory diseases. Prog Neurobiol 2018; 160:82-100. [DOI: 10.1016/j.pneurobio.2017.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022]
|
44
|
Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab 2017; 19 Suppl 1:76-89. [PMID: 28880480 DOI: 10.1111/dom.13008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Sri Ramachandra Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| |
Collapse
|
45
|
Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson's disease. Neurochem Int 2017; 110:14-24. [PMID: 28826718 DOI: 10.1016/j.neuint.2017.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023]
Abstract
The modulation of the brain endocannabinoid system has been identified as an option to treat neurodegenerative diseases including Parkinson's disease (PD). Especially the elevation of endocannabinoid levels by inhibition of hydrolytic degradation represents a valuable approach. To evaluate whether monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH) inhibition could be beneficial for PD, we examined in parallel the therapeutic potential of the highly selective MAGL inhibitor KML29 elevating 2-arachidonoylglyerol (2-AG) levels and the highly selective FAAH inhibitor PF-3845 elevating anandamide (AEA) levels in a chronic methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/probenecid) mouse model of PD. Chronic administration of KML29 (10 mg/kg) but not PF-3845 (10 mg/kg) attenuated striatal MPTP/probenecid-induced dopamine depletion. Furthermore, KML29 induced an increase in Gdnf but not Bdnf expression, whereas PF-3845 decreased the MPTP/probenecid-induced Cnr2 expression without any effects on neurotrophin expression. Investigation of treatment-naïve striatal mRNA levels revealed a high presence of Gdnf and Mgll in contrast to Bdnf and Faah. Treatment of primary mouse microglia with 2-AG increased Gdnf but not Bdnf expression, suggesting that microglia might mediate the observed KML29-induced increase in Gdnf. In summary, pharmacological MAGL but not FAAH inhibition in the chronic MPTP/probenecid model attenuated the MPTP/probenecid-induced effects on striatal dopamine levels which were accompanied by an increase in 2-AG levels.
Collapse
|
46
|
Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S. Endocannabinoid system in neurodegenerative disorders. J Neurochem 2017; 142:624-648. [PMID: 28608560 DOI: 10.1111/jnc.14098] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York City, New York, USA.,Department of Psychiatry, New York University Langone Medical Center, New York City, New York, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
47
|
Ameen AM, Elkazaz AY, Mohammad HMF, Barakat BM. Anti-inflammatory and neuroprotective activity of boswellic acids in rotenone parkinsonian rats. Can J Physiol Pharmacol 2017; 95:819-829. [PMID: 28249117 DOI: 10.1139/cjpp-2016-0158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is evidence that inflammation and oxidative stress contribute to the neurodegenerative changes observed in Parkinson's disease. Unfortunately, there is a lack of curative treatment for this debilitating movement disorder. Boswellic acids (BAs) are pentacyclic triterpene molecules of plant origin that have been utilized for treating many inflammatory conditions. The current study was conducted to explore the protective role of BAs against rotenone-induced experimental parkinsonism. Twenty-four rats were assigned to one of four treatment groups. The first two groups were a vehicle group (no rotenone) and a rotenone control group in which rats received rotenone (1 mg/kg) every 48 h. The next 2 groups received rotenone (1 mg/kg every 48 h) plus protective oral doses of BAs (125 or 250 mg/kg daily). Rats in the rotenone group showed motor dysfunction when tested in the open-field arena and cylinder and rotarod tests. Moreover, inflammatory markers increased, whereas the dopamine level was lower in the striata of rats in the rotenone group versus those in the vehicle group. BAs taken by rats with rotenone-induced parkinsonism showed enhanced general motor performance, reduced inflammatory markers, and increased striatal dopamine level and nigral tyrosine hydroxylase immunostaining. In conclusion, BAs are promising agents in slowing the progression of Parkinson's disease if appropriate data become available about their safety and efficacy in humans.
Collapse
Affiliation(s)
- Angie M Ameen
- a Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany Y Elkazaz
- b Medical Biochemistry Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hala M F Mohammad
- c Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Bassant M Barakat
- d Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
48
|
Niewiadomski W, Palasz E, Skupinska M, Zylinski M, Steczkowska M, Gasiorowska A, Niewiadomska G, Riedel G. TracMouse: A computer aided movement analysis script for the mouse inverted horizontal grid test. Sci Rep 2016; 6:39331. [PMID: 27982134 PMCID: PMC5159816 DOI: 10.1038/srep39331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
In rodents, detection and quantification of motor impairments is difficult. The traction test (inverted grid with mice clinging to the underside) currently has no objective rating system. We here developed and validated the semi-automatic MATLAB script TracMouse for unbiased detection of video-recorded movement patterns. High precision videos were analyzed by: (i) principal identification of anatomical paw details frame-by-frame by an experimentally blinded rater; (ii) automatic retrieval of proxies by TracMouse for individual paws. The basic states of Hold and Step were discriminated as duration and frequency, and these principle parameters were converted into static and dynamic endpoints and their discriminating power assessed in a dopaminergic lesion model. Relative to hind paws, forepaws performed ~4 times more steps, they were ~20% longer, and Hold duration was ~5 times shorter in normal C57Bl/6 mice. Thus, forepaw steps were classified as exploratory, hind paw movement as locomotive. Multiple novel features pertaining to paw sequence, step lengths and exploratory touches were accessible through TracMouse and revealed subtle Parkinsonian phenotypes. Novel proxies using TracMouse revealed previously unidentified features of movement and may aid the understanding of (i) brain circuits related to motor planning and execution, and (ii) phenotype detection in experimental models of movement disorders.
Collapse
Affiliation(s)
- W. Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
- Warsaw Medical University, Warsaw, Poland
| | | | | | - M. Zylinski
- Warsaw University of Technology, Warsaw, Poland
| | | | - A. Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
- Nencki Institute, Warsaw, Poland
| | | | - G. Riedel
- Institute of Medical Sciences, University of Aberdeen, UK
| |
Collapse
|
49
|
Shi X, Chen YH, Liu H, Qu HD. Therapeutic effects of paeonol on methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson's disease in mice. Mol Med Rep 2016; 14:2397-404. [PMID: 27484986 PMCID: PMC4991680 DOI: 10.3892/mmr.2016.5573] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Paeonol is a major phenolic compound of the Chinese herb, Cortex Moutan, and is known for its antioxidant, anti-inflammatory and antitumor properties. The present study was designed to investigate the therapeutic potential and underlying mechanisms of paeonol on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced mouse model of Parkinson's disease (PD). MPTP (25 mg/kg), followed by probenecid (250 mg/kg), was administered via i.p. injection for five consecutive days to induce the mouse model of PD. Paeonol (20 mg/kg) was administrated orally for 21 days. Behavior was assessed using the rotarod performance and open-field tests. Additionally, the levels of tyrosine hydroxylase (TH), microglia, interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) in the substantia nigra pars compacta (SNpc) were evaluated by immunohistochemical staining. MPTP/p-induced motor deficits were observed to be significantly improved following long-term treatment with paeonol. Paeonol treatment decreased MPTP/p-induced oxidative stress, as determined by evaluating the activity levels of superoxide dismutase, catalase and glutathione. Additionally, MPTP/p-induced neuroinflammation was assessed by examining the levels of microglia and IL-1β, which were significantly decreased following paeonol treatment. Paeonol treatment improved the MPTP/p-induced dopaminergic neurodegeneration, as measured by observing the increased TH level in the SNpc. Furthermore, the BDNF level was significantly elevated in the paeonol treatment group compared with mice treated with MPTP/p only. In conclusion, paeonol exerted therapeutic effects in the MPTP/p-induced mouse model of PD, possibly by decreasing the damage from oxidative stress and neuroinflammation, and by enhancing the neurotrophic effect on dopaminergic neurons. The results demonstrate paeonol as a potential novel treatment for PD.
Collapse
Affiliation(s)
- Xiaojin Shi
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Hua Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hao Liu
- Department of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hong-Dang Qu
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
50
|
Dos-Santos-Pereira M, da-Silva CA, Guimarães FS, Del-Bel E. Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiol Dis 2016; 94:179-95. [PMID: 27373843 DOI: 10.1016/j.nbd.2016.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maurício Dos-Santos-Pereira
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Francisco Silveira Guimarães
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|