1
|
Dunker C, Schlegel K, Junker A. Phenol (bio)isosteres in drug design and development. Arch Pharm (Weinheim) 2025; 358:e2400700. [PMID: 39580699 PMCID: PMC11726161 DOI: 10.1002/ardp.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Due to their versatile properties, phenolic compounds are integral to various biologically active molecules, including many pharmaceuticals. However, their application in drug design is often hindered by issues such as poor oral bioavailability, rapid metabolism, and potential toxicity. This review explores the use of phenol bioisosteres-structurally similar compounds that can mimic the biological activity of phenols while potentially offering improved drug-like properties. We provide an extensive analysis of various phenol bioisosteres, including benzimidazolones, benzoxazolones, indoles, quinolinones, and pyridones, highlighting their impact on the pharmacokinetic and pharmacodynamic profiles of drugs. Case studies illustrate the successful application of these bioisosteres in enhancing metabolic stability, receptor selectivity, and overall therapeutic efficacy. Additionally, the review addresses the challenges associated with phenol bioisosterism, such as maintaining potency and avoiding undesirable side effects. By offering a detailed examination of current strategies and potential future directions, this review serves as a valuable resource for medicinal chemists seeking to optimize phenolic scaffolds in drug development. The insights provided herein aim to facilitate the design of more effective and safer therapeutic agents through strategic bioisosteric modifications.
Collapse
Affiliation(s)
- Calvin Dunker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| | - Katja Schlegel
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| |
Collapse
|
2
|
Zhang N, Zhao L, Li J, Li H, Chen Y. Harnessing Nanotechnology for Gout Therapy: Colchicine-Loaded Nanoparticles Regulate Macrophage Polarization and Reduce Inflammation. Biomater Res 2024; 28:0089. [PMID: 39665079 PMCID: PMC11632155 DOI: 10.34133/bmr.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 12/13/2024] Open
Abstract
Gout is a disease caused by hyperuricemia, characterized by inflammation reactions triggered by macrophage polarization. Colchicine is a commonly used drug for gout treatment, but its mechanism of action remains unclear. The aim of this study was to investigate the regulatory effect of colchicine on macrophage polarization to enhance the therapeutic effectiveness against gout inflammation. To accomplish this, a mouse model was established, and peripheral blood mononuclear cell samples were collected. Single-cell RNA sequencing was employed to reveal cellular heterogeneity and identify key genes. Molecular docking and experimental validation were performed to confirm the binding between the key genes and colchicine. Lentiviral intervention and biochemical indicator detection were conducted to assess the impact of key genes on gout mice. Additionally, the therapeutic effect of colchicine incorporated into neutrophil membrane-coated nanoparticles was investigated. The study found that macrophage polarization plays a critical role in gout, and AHNAK was identified as the key gene through which colchicine affects macrophage polarization. Lentiviral intervention to decrease AHNAK expression was shown to alleviate joint swelling in gout mice and regulate macrophage polarization. Colchicine encapsulated in R4F peptide-modified neutrophil membrane-coated Pluronic F127 nanoparticle (R4F-NM@F127) nanocarriers inhibited M1 macrophage polarization, induced M2 macrophage polarization, alleviated gout, and minimized toxicity to normal tissues. Colchicine suppressed M1 macrophage polarization and induced M2 macrophage polarization by binding to AHNAK protein, thereby alleviating gout. Colchicine incorporated into R4F-NM@F127 nanocarriers can serve as a targeted therapeutic drug to regulate macrophage polarization, alleviate gout, and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Rheumatology and Immunology,
Shengjing Hospital Affiliated to China Medical University, Shenyang 110000, China
| | - Lanqing Zhao
- Department of Sleep Medicine Center, The Shengjing Affiliated Hospital,
China Medical University, Shenyang 110000, Liaoning, China
| | - Jinwei Li
- Department of Neurology/Stroke Center, the First Affiliated Hospital ofChina Medical University, China Medical University, Shenyang 110000, Liaoning, China
| | - Hongxi Li
- Department of Pain Management,
Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yu Chen
- Department of The Fourth Otolaryngology Head and Neck Surgery,
Shengjing Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
3
|
Zhang Y, Yu Z, Ye N, Zhen X. Macrophage migration inhibitory factor (MIF) in CNS diseases: Functional regulation and potential therapeutic indication. FUNDAMENTAL RESEARCH 2024; 4:1375-1388. [PMID: 39734533 PMCID: PMC11670708 DOI: 10.1016/j.fmre.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 12/31/2024] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional protein that possesses cytokine, enzyme, and endocrine activities and acts as a chaperone-like molecule. Owing to its immune-inflammatory regulatory properties, the role of MIF has long been an attractive target in research on various autoimmune and inflammatory disorders. MIF is also widely expressed in the central nervous system (CNS), and its potential roles in CNS disorders have become a focus to elucidate the physiological and pathological effects of MIF and to explore its potential significance in the treatment of CNS diseases. Previously, the majority of work on MIF functional regulation was focused on MIF tautomerase inhibitors. However, mounting information has indicated that the functions of MIF extend far beyond its tautomerase activity. Here, we review the recent advances in understanding the complex roles of MIF in the pathogenesis of CNS disorders as well as the discovery and design of small molecules targeted to tautomerase and nuclease of MIF.
Collapse
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People′ Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Zhexiang Yu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2 D02, Ireland
| |
Collapse
|
4
|
Kaufmann LK, Custers E, Vreeken D, Snabel J, Morrison MC, Kleemann R, Wiesmann M, Hazebroek EJ, Aarts E, Kiliaan AJ. Additive effects of depression and obesity on neural correlates of inhibitory control. J Affect Disord 2024; 362:174-185. [PMID: 38960334 DOI: 10.1016/j.jad.2024.06.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Depression and obesity are associated with impaired inhibitory control. Behavioral evidence indicates an exacerbating additive effect when both conditions co-occur. However, the underlying neural mechanisms remain unclear. Moreover, systemic inflammation affects neurocognitive performance in both individuals with depression and obesity. Here, we investigate additive effects of depression and obesity on neural correlates of inhibitory control, and examine inflammation as a connecting pathway. METHODS We assessed inhibitory control processing in 64 individuals with obesity and varying degrees of depressed mood by probing neural activation and connectivity during an fMRI Stroop task. Additionally, we explored associations of altered neural responses with individual differences in systemic inflammation. Data were collected as part of the BARICO (Bariatric surgery Rijnstate and Radboudumc neuroimaging and Cognition in Obesity) study. RESULTS Concurrent depression and obesity were linked to increased functional connectivity between the supplementary motor area and precuneus and between the inferior occipital and inferior parietal gyrus. Exploratory analysis revealed that circulating inflammation markers, including plasma leptin, IL-6, IL-8, and CCL-3 correlated with the additive effect of depression and obesity on altered functional connectivity. LIMITATIONS The observational design limits causal inferences. Future research employing longitudinal or intervention designs is required to validate these findings and elucidate causal pathways. CONCLUSION These findings suggest increased neural crosstalk underlying impaired inhibitory control in individuals with concurrent obesity and depressed mood. Our results support a model of an additive detrimental effect of concurrent depression and obesity on neurocognitive functioning, with a possible role of inflammation.
Collapse
Affiliation(s)
- Lisa-Katrin Kaufmann
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Emma Custers
- Department of Medical Imaging, Anatomy, Radboud university medical center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud university medical center, Nijmegen, the Netherlands; Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Arnhem, the Netherlands
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, Radboud university medical center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud university medical center, Nijmegen, the Netherlands; Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Arnhem, the Netherlands
| | - Jessica Snabel
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud university medical center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud university medical center, Nijmegen, the Netherlands
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Arnhem, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Esther Aarts
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud university medical center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behavior and Radboudumc Alzheimer Center, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
6
|
Zeng L, Hu P, Zhang Y, Li M, Zhao Y, Li S, Luo A. Macrophage migration inhibitor factor (MIF): Potential role in cognitive impairment disorders. Cytokine Growth Factor Rev 2024; 77:67-75. [PMID: 38548489 DOI: 10.1016/j.cytogfr.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 06/22/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine in the immune system, participated in both innate and adaptive immune responses. Except from immune cells, MIF is also secreted by a variety of non-immune cells, including hematopoietic cells, endothelial cells (ECs), and neurons. MIF plays a crucial role in various diseases, such as sepsis, rheumatoid arthritis, acute kidney injury, and neurodegenerative diseases. The role of MIF in the neuropathogenesis of cognitive impairment disorders is emphasized, as it recruits multiple inflammatory mediators, leading to activating microglia or astrocyte-derived neuroinflammation. Furthermore, it contributes to the cell death of neurons and ECs with the binding of apoptosis-inducing factor (AIF) through parthanatos-associated apoptosis-inducing factor nuclease (PAAN) / MIF pathway. This review comprehensively delves into the relationship between MIF and the neuropathogenesis of cognitive impairment disorders, providing a series of emerging MIF-targeted pharmaceuticals as potential treatments for cognitive impairment disorders.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengchao Hu
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Zhang
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Mingyue Li
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Yilin Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Alfahel L, Gschwendtberger T, Kozareva V, Dumas L, Gibbs R, Kertser A, Baruch K, Zaccai S, Kahn J, Thau-Habermann N, Eggenschwiler R, Sterneckert J, Hermann A, Sundararaman N, Vaibhav V, Van Eyk JE, Rafuse VF, Fraenkel E, Cantz T, Petri S, Israelson A. Targeting low levels of MIF expression as a potential therapeutic strategy for ALS. Cell Rep Med 2024; 5:101546. [PMID: 38703766 PMCID: PMC11148722 DOI: 10.1016/j.xcrm.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/03/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.
Collapse
Affiliation(s)
- Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; Center for Systems Neuroscience, Hannover Medical School, 30625 Hannover, Germany
| | - Velina Kozareva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura Dumas
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Rachel Gibbs
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Ness Ziona 7404905, Israel
| | - Shir Zaccai
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | | | - Reto Eggenschwiler
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, 30625 Hannover, Germany; Translational Hepatology and Stem Cell Biology, REBIRTH - Research Center for Translational Regenerative Medicine and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technical University Dresden, 01307 Dresden, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Niveda Sundararaman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vineet Vaibhav
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Victor F Rafuse
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tobias Cantz
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, 30625 Hannover, Germany; Translational Hepatology and Stem Cell Biology, REBIRTH - Research Center for Translational Regenerative Medicine and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, 48149 Münster, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; Center for Systems Neuroscience, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
8
|
Zhang J, Hu X, Geng Y, Xiang L, Wu Y, Li Y, Yang L, Zhou K. Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches. J Adv Res 2024:S2090-1232(24)00174-7. [PMID: 38704090 DOI: 10.1016/j.jare.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| |
Collapse
|
9
|
Huang X, Li H, Zhang Z, Wang Z, Du X, Zhang Y. Macrophage migration inhibitory factor: A noval biomarker upregulates in myasthenia gravis and correlates with disease severity and relapse. Cytokine 2024; 175:156485. [PMID: 38159470 DOI: 10.1016/j.cyto.2023.156485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To explore the relationship between macrophage migration inhibitory factor (MIF) and disease severity and relapse in patients with myasthenia gravis (MG). METHODS 145 MG patients including 79 new-onset patients, 30 remission patients and 36 relapse patients were enrolled in this study. The detailed characteristics of all enrolled MG patients were routinely recorded, including gender, age, type, MGFA classification, antibody, thymic status, clinical score, treatment, MGFA-PIS and B cell subsets (memory B cells, plasmablast cells and plasma cells) detected by flow cytometry. Serum MIF levels were measured by enzyme-linked immunosorbent assay (ELISA) kit. The correlation of MIF levels with clinical subtypes, disease severity and B cell subsets were investigated. Moreover, logistic regression analysis was applied to assess the factors affecting relapse of generalized MG (GMG). RESULTS Serum MIF levels were higher in new-onset MG patients than those in controls and were positively associated with QMG score, MGFA classification and memory B cells. Subgroup analysis revealed that MIF levels were increased in GMG patients than in ocular MG (OMG), as well as elevated in MGFA III/IV compared with MGFA I/II. With the remission of the disease, the expression of serum MIF decreased. The multivariate logistic regression models indicated that high MIF and thymoma was a risk factor for relapse of GMG, and rituximab could prevent disease relapse. CONCLUSIONS MIF can be used as a novel biomarker to reflect disease severity and predict disease relapse in MG patients.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Zhouyi Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China.
| |
Collapse
|
10
|
Matejuk A, Benedek G, Bucala R, Matejuk S, Offner H, Vandenbark AA. MIF contribution to progressive brain diseases. J Neuroinflammation 2024; 21:8. [PMID: 38178143 PMCID: PMC10765708 DOI: 10.1186/s12974-023-02993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive brain diseases create a huge social and economic burden on modern societies as a major cause of disability and death. Incidence of brain diseases has a significantly increasing trend and merits new therapeutic strategies. At the base of many progressive brain malfunctions is a process of unresolved, chronic inflammation. Macrophage migration inhibitory factor, MIF, is an inflammatory mediator that recently gained interest of neuro-researchers due to its varied effects on the CNS such as participation of nervous system development, neuroendocrine functions, and modulation of neuroinflammation. MIF appears to be a candidate as a new biomarker and target of novel therapeutics against numerous neurologic diseases ranging from cancer, autoimmune diseases, vascular diseases, neurodegenerative pathology to psychiatric disorders. In this review, we will focus on MIF's crucial role in neurological diseases such as multiple sclerosis (MS), Alzheimer's disease (AD) and glioblastoma (GBM).
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Bucala
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Meisinger C, Freuer D, Schmitz T, Ertl M, Zickler P, Naumann M, Linseisen J. Inflammation biomarkers in acute ischemic stroke according to different etiologies. Eur J Neurol 2024; 31:e16006. [PMID: 37522399 PMCID: PMC11235198 DOI: 10.1111/ene.16006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND High throughput technologies provide new opportunities to further investigate the pathophysiology of ischemic strokes. The present cross-sectional study aimed to evaluate potential associations between the etiologic subtypes of ischemic stroke and blood-based proteins. METHODS We investigated the associations between ischemic stroke subtypes and a panel of circulating inflammation biomarkers in 364 patients included in the Stroke Cohort Augsburg (SCHANA). Stroke etiologies were categorized according to the TOAST (Trial of Org 10172 in Acute Stroke Treatment) classification. Serum concentrations of 52 biomarkers were measured using the Bio-Plex Pro™ Human Cytokine Screening Panel, ICAM-1 set and VCAM-1 set, plus the Pro™ Human TH17 cytokine sCD40L set and IL31 set (all Bio-Rad, USA). Multivariable linear regression models were used to examine associations. Point estimates were calculated as the mean difference inσ -standardized cytokine levels on the log2 -scale. RESULTS Stromal-cell-derived-factor 1 alpha (SDF-1a) showed significantly higher serum levels in cardioembolic compared with large vessel atherosclerotic stroke (β = 0.48; 95% CI 0.22; 0.75; Padj = 0.036). Significantly lower levels of interleukin-6 (IL-6) (β = -0.53; 95% CI -0.84; -0.23; Padj = 0.036) and macrophage migration inhibitory factor (MIF) (β = -0.52; 95% CI -0.84; -0.21; Padj = 0.043) were found in the small vessel versus large vessel stroke subtype. CONCLUSIONS Immune dysregulations observed in different stroke subtypes might help uncover pathophysiological mechanisms of the disease. Further studies are needed to validate identified biomarkers in diverse study populations before they can potentially be used in clinical practice to further improve stroke management and patient outcomes.
Collapse
Affiliation(s)
| | - Dennis Freuer
- Epidemiology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Timo Schmitz
- Epidemiology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Michael Ertl
- Department of Neurology and Clinical NeurophysiologyUniversity Hospital AugsburgAugsburgGermany
| | - Philipp Zickler
- Department of Neurology and Clinical NeurophysiologyUniversity Hospital AugsburgAugsburgGermany
| | - Markus Naumann
- Department of Neurology and Clinical NeurophysiologyUniversity Hospital AugsburgAugsburgGermany
| | - Jakob Linseisen
- Epidemiology, Medical FacultyUniversity of AugsburgAugsburgGermany
- Institute for Medical Information Processing, Biometry and Epidemiology – IBELudwig‐Maximilians‐Universität Munich (LMU)MunichGermany
| |
Collapse
|
12
|
He H, Luo H, Qian B, Xu H, Zhang G, Zou X, Zou J. Autonomic Nervous System Dysfunction Is Related to Chronic Prostatitis/Chronic Pelvic Pain Syndrome. World J Mens Health 2024; 42:1-28. [PMID: 37118962 PMCID: PMC10782122 DOI: 10.5534/wjmh.220248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/30/2023] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common and non-lethal urological condition with painful symptoms. The complexity of CP/CPPS's pathogenesis and lack of efficient etiological diagnosis results in incomplete treatment and recurrent episodes, causing long-term mental and psychological suffering in patients. Recent findings indicate that the autonomic nervous system involves in CP/CPPS, including sensory, sympathetic, parasympathetic, and central nervous systems. Neuro-inflammation and sensitization of sensory nerves lead to persistent inflammation and pain. Sympathetic and parasympathetic alterations affect the cardiovascular and reproductive systems and the development of prostatitis. Central sensitization lowers pain thresholds and increases pelvic pain perception in chronic prostatitis. Therefore, this review summarized the detailed processes and mechanisms of the critical role of the autonomic nervous system in developing CP/CPPS. Furthermore, it describes the neurologically relevant substances and channels or receptors involved in this process, which provides new perspectives for new therapeutic approaches to CP/CPPS.
Collapse
Affiliation(s)
- Hailan He
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Hui Xu
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China.
| |
Collapse
|
13
|
Hao H, Hou Y, Li A, Niu L, Li S, He B, Zhang X, Song H, Cai R, Zhou Y, Yao C, Wang Y, Wang Y. HIF-1α promotes astrocytic production of macrophage migration inhibitory factor following spinal cord injury. CNS Neurosci Ther 2023; 29:3802-3814. [PMID: 37334735 PMCID: PMC10651974 DOI: 10.1111/cns.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an important mediator of neuropathology in various central nervous system (CNS) diseases. However, little is known about its inducers for production from the nerve cells, as well as the underlying regulatory mechanism. Injury-induced HIF-1α has been shown to exacerbate neuroinflammation by activating multiple downstream target molecules. It is postulated that HIF-1α is involved in the regulation of MIF following spinal cord injury (SCI). METHODS SCI model of Sprague-Dawley rats was established by cord contusion at T8-T10. The dynamic changes of HIF-1α and MIF protein levels at lesion site of rat spinal cord were determined by Western blot. The specific cell types of HIF-1α and MIF expression were examined by immunostaining. Primary astrocytes were isolated from the spinal cord, cultured and stimulated with various agonist or inhibitor of HIF-1α for analysis of HIF-1α-mediated expression of MIF. Luciferase report assay was used to determine the relationship between HIF-1α and MIF. The Basso, Beattie, and Bresnahan (BBB) locomotor scale was used to assess the locomotor function following SCI. RESULTS The protein levels of HIF-1α and MIF at lesion site were significantly elevated by SCI. Immunofluorescence demonstrated that both HIF-1α and MIF were abundantly expressed in the astrocytes of the spinal cord. By using various agonists or inhibitors of HIF-1α, it was shown that HIF-1α sufficiently induced astrocytic production of MIF. Mechanistically, HIF-1α promoted MIF expression through interaction with MIF promoter. Inhibition of HIF-1α activity using specific inhibitor markedly reduced the protein levels of MIF at lesion site following SCI, which in turn favored for the functional recovery. CONCLUSION SCI-induced activation of HIF-1α is able to promote MIF production from astrocytes. Our results have provided new clues for SCI-induced production of DAMPs, which may be helpful for clinical treatment of neuroinflammation.
Collapse
Affiliation(s)
- Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Li Niu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Shaolan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yue Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
14
|
Spiller L, Manjula R, Leissing F, Basquin J, Bourilhon P, Sinitski D, Brandhofer M, Levecque S, Gerra S, Sabelleck B, Zhang L, Feederle R, Flatley A, Hoffmann A, Panstruga R, Bernhagen J, Lolis E. Plant MDL proteins synergize with the cytokine MIF at CXCR2 and CXCR4 receptors in human cells. Sci Signal 2023; 16:eadg2621. [PMID: 37988455 DOI: 10.1126/scisignal.adg2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Mammalian macrophage migration inhibitory factor (MIF) and its paralog, D-dopachrome tautomerase, are multifunctional inflammatory cytokines. Plants have orthologous MIF and D-dopachrome tautomerase-like (MDL) proteins that mimic some of the effects of MIF on immune cells in vitro. We explored the structural and functional similarities between the three Arabidopsis thaliana MDLs and MIF. X-ray crystallography of the MDLs revealed high structural similarity between MDL and MIF homotrimers and suggested a potential explanation for the lack of tautomerase activity in the MDLs. MDL1 and MDL2 interacted with each other and with MIF in vitro, in yeast, and in plant leaves and formed hetero-oligomeric complexes with MIF in vitro. The MDLs stimulated signaling through the MIF receptors CXCR2 or CXCR4 and enhanced the responses to MIF in a yeast reporter system, in human neutrophils, and in human lung epithelial cells. Pharmacological inhibitors that disrupted MIF activity or prevented the formation of MIF-MDL hetero-oligomers blocked the observed synergism. These findings demonstrate that MDLs can enhance cellular responses to MIF, which may have functional implications in tissues exposed to MDLs from the diet or environment.
Collapse
Affiliation(s)
- Lukas Spiller
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Ramu Manjula
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jerome Basquin
- Department of Structural Cell Biology and Crystallization Facility, Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Sophie Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Hasib RA, Ali MC, Rahman MH, Ahmed S, Sultana S, Summa SZ, Shimu MSS, Afrin Z, Jamal MAHM. Integrated gene expression profiling and functional enrichment analyses to discover biomarkers and pathways associated with Guillain-Barré syndrome and autism spectrum disorder to identify new therapeutic targets. J Biomol Struct Dyn 2023; 42:11299-11321. [PMID: 37776011 DOI: 10.1080/07391102.2023.2262586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Guillain-Barré syndrome (GBS) is one of the most prominent and acute immune-mediated peripheral neuropathy, while autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental disorders. The complete mechanism regarding the neuropathophysiology of these disorders is still ambiguous. Even after recent breakthroughs in molecular biology, the link between GBS and ASD remains a mystery. Therefore, we have implemented well-established bioinformatic techniques to identify potential biomarkers and drug candidates for GBS and ASD. 17 common differentially expressed genes (DEGs) were identified for these two disorders, which later guided the rest of the research. Common genes identified the protein-protein interaction (PPI) network and pathways associated with both disorders. Based on the PPI network, the constructed hub gene and module analysis network determined two common DEGs, namely CXCL9 and CXCL10, which are vital in predicting the top drug candidates. Furthermore, coregulatory networks of TF-gene and TF-miRNA were built to detect the regulatory biomolecules. Among drug candidates, imatinib had the highest docking and MM-GBSA score with the well-known chemokine receptor CXCR3 and remained stable during the 100 ns molecular dynamics simulation validated by the principal component analysis and the dynamic cross-correlation map. This study predicted the gene-based disease network for GBS and ASD and suggested prospective drug candidates. However, more in-depth research is required for clinical validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rizone Al Hasib
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
- Laboratory of Medical and Environmental Biotechnology Islamic University, Kushtia, Bangladesh
| | - Md Chayan Ali
- Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, Bangladesh
| | - Sabbir Ahmed
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Shaharin Sultana
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
- Laboratory of Medical and Environmental Biotechnology Islamic University, Kushtia, Bangladesh
| | - Sadia Zannat Summa
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
- Laboratory of Medical and Environmental Biotechnology Islamic University, Kushtia, Bangladesh
| | | | - Zinia Afrin
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Mohammad Abu Hena Mostofa Jamal
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
- Laboratory of Medical and Environmental Biotechnology Islamic University, Kushtia, Bangladesh
| |
Collapse
|
16
|
Kim JH, Lee BM, Kang MK, Park DJ, Choi IS, Park HY, Lim CH, Son KH. Assessment of nematicidal and plant growth-promoting effects of Burkholderia sp. JB-2 in root-knot nematode-infested soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1216031. [PMID: 37538060 PMCID: PMC10394650 DOI: 10.3389/fpls.2023.1216031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Root-knot nematodes (RKN), Meloidogyne spp., are plant-parasitic nematodes that are responsible for considerable economic losses worldwide, because of the damage they cause to numerous plant species and the inadequate biological agents available to combat them. Therefore, developing novel and eco-friendly nematicides is necessary. In the present study, Burkholderia sp. JB-2, isolated from RKN-infested rhizosphere soil in South Korea, was evaluated to determine its nematicidal and plant growth-promoting effects under in vitro and in vivo conditions. Cell-free filtrates of the JB-2 strain showed high levels of nematicidal activity against second-stage juveniles (J2) of M. incognita, with 87.5% mortality following two days of treatment. In addition, the assessment of the activity against other six plant parasitic nematodes (M. javanica, M. hapla, M. arenaria, Ditylenchus destructor, Aphelenchoides subtenuis, and Heterodera trifolii) showed that the cell-free filtrates have a broad nematicidal spectrum. The three defense-responsive (MiMIF-2, MiDaf16-like1, and MiSkn1-like1) genes were activated, while Mi-cm-3 was downregulated when treated with cell-free filtrates of JB-2 cultures on J2. The greenhouse experiments suggested that the cell-free filtrates of the JB-2 strain efficiently controlled the nematode population in soil and egg mass formations of M. incognita in tomato (Solanum lycopersicum L., cv. Rutgers). An improvement in the host plant growth was observed, in which the shoot length and fresh weights of shoots and roots increased. The treatment with 10% of JB-2 cell-free filtrates significantly upregulated the expression levels of plant defenses (SlPR1, SlPR5, and SlPAL) and growth-promoting (ACO1, Exp18, and SlIAA1) genes compared with the corresponding parameters of the control group. Therefore, JB-2 could be a promising candidate for the sustainable management of RKN.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Byeong-Min Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Min-Kyoung Kang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Jin Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - In-Soo Choi
- Nematode Research Center, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chi-Hwan Lim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kwang-Hee Son
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Hok-A-Hin YS, Del Campo M, Boiten WA, Stoops E, Vanhooren M, Lemstra AW, van der Flier WM, Teunissen CE. Neuroinflammatory CSF biomarkers MIF, sTREM1, and sTREM2 show dynamic expression profiles in Alzheimer's disease. J Neuroinflammation 2023; 20:107. [PMID: 37147668 PMCID: PMC10163795 DOI: 10.1186/s12974-023-02796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND There is a need for novel fluid biomarkers tracking neuroinflammatory responses in Alzheimer's disease (AD). Our recent cerebrospinal fluid (CSF) proteomics study revealed that migration inhibitory factor (MIF) and soluble triggering receptor expressed on myeloid cells 1 (sTREM1) increased along the AD continuum. We aimed to assess the potential use of these proteins, in addition to sTREM2, as CSF biomarkers to monitor inflammatory processes in AD. METHODS We included cognitively unimpaired controls (n = 67, 63 ± 9 years, 24% females, all amyloid negative), patients with mild cognitive impairment (MCI; n = 92, 65 ± 7 years, 47% females, 65% amyloid positive), AD (n = 38, 67 ± 6 years, 8% females, all amyloid positive), and DLB (n = 50, 67 ± 6 years, 5% females, 54% amyloid positive). MIF, sTREM1, and sTREM2 levels were measured by validated immunoassays. Differences in protein levels between groups were tested with analysis of covariance (corrected for age and sex). Spearman correlation analysis was performed to evaluate the association between these neuroinflammatory markers with AD-CSF biomarkers (Aβ42, tTau, pTau) and mini-mental state examination (MMSE) scores. RESULTS MIF levels were increased in MCI (p < 0.01), AD (p < 0.05), and DLB (p > 0.05) compared to controls. Levels of sTREM1 were specifically increased in AD compared to controls (p < 0.01), MCI (p < 0.05), and DLB patients (p > 0.05), while sTREM2 levels were increased specifically in MCI compared to all other groups (all p < 0.001). Neuroinflammatory proteins were highly correlated with CSF pTau levels (MIF: all groups; sTREM1: MCI, AD and DLB; sTREM2: controls, MCI and DLB). Correlations with MMSE scores were observed in specific clinical groups (MIF in controls, sTREM1 in AD, and sTREM2 in DLB). CONCLUSION Inflammatory-related proteins show diverse expression profiles along different AD stages, with increased protein levels in the MCI stage (MIF and sTREM2) and AD stage (MIF and sTREM1). The associations of these inflammatory markers primarily with CSF pTau levels indicate an intertwined relationship between tau pathology and inflammation. These neuroinflammatory markers might be useful in clinical trials to capture dynamics in inflammatory responses or monitor drug-target engagement of inflammatory modulators.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Walter A Boiten
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Afina W Lemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, VU University Medical Centers, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Cardoso MGDF, de Barros JLVM, de Queiroz RAB, Rocha NP, Silver C, da Silva AS, da Silva EWM, Roque IG, Carvalho JDL, Dos Santos LF, Cota LB, Lemos LM, Miranda MF, Miranda MF, Vianna PP, Oliveira RA, de Oliveira Furlam T, Soares TSS, Pedroso VSP, Faleiro RM, Vieira ÉLM, Teixeira AL, de Souza LC, de Miranda LS. Potential Biomarkers of Impulsivity in Mild Traumatic Brain Injury: A Pilot Study. Behav Brain Res 2023; 449:114457. [PMID: 37116663 DOI: 10.1016/j.bbr.2023.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Very few studies have investigated cognition and impulsivity following mild traumatic brain injury (mTBI) in the general population. Furthermore, the neurobiological mechanisms underlying post-TBI neurobehavioral syndromes are complex and remain to be fully clarified. Herein, we took advantage of machine learning based-modeling to investigate potential biomarkers of mTBI-associated impulsivity. Twenty-one mTBI patients were assessed within one-month post-TBI and their data were compared to 19 healthy controls on measures of impulsivity (Barratt Impulsiveness Scale - BIS), executive functioning, episodic memory, self-report cognitive failures and blood biomarkers of inflammation, vascular and neuronal damage. mTBI patients were significantly more impulsive than controls in BIS total and subscales. Serum levels of sCD40L, Cathepsin D, IL-4, Neuropilin-1, IFN-α2, and Copeptin were associated with impulsivity in mTBI patients. Besides showing that mTBI are associated with impulsivity in non-military people, we unveiled different pathophysiological pathways potentially implicated in mTBI-related impulsivity.
Collapse
Affiliation(s)
- Maíra Glória de Freitas Cardoso
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG
| | - João Luís Vieira Monteiro de Barros
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Alves Bonfim de Queiroz
- Departamento de Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto-UFOP, Ouro Preto, MG, Brasil
| | - Natalia Pessoa Rocha
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carlisa Silver
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Agnes Stéphanie da Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG
| | - Ewelin Wasner Machado da Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Isadora Gonçalves Roque
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Júlia de Lima Carvalho
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Laura Ferreira Dos Santos
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Letícia Bitencourt Cota
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Lucas Miranda Lemos
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Mariana Figueiredo Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Millena Figueiredo Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Parenti Vianna
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Arantes Oliveira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Tiago de Oliveira Furlam
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Túlio Safar Sarquis Soares
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Vinicius Sousa Pietra Pedroso
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil
| | - Rodrigo Moreira Faleiro
- Hospital João XXIII, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG. Belo Horizonte, Minas Gerais, Brasil
| | - Érica Leandro Marciano Vieira
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Centre for Addiction and Mental Health - CAMH, Toronto, Canada
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston. Houston, Texas; Faculdade Santa Casa BH, Belo Horizonte, Brasil
| | - Leonardo Cruz de Souza
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG; Departamento de Clínica Médica, Faculdade de Medicina, UFMG, Belo Horizonte, MG, Brasil.
| | - Line Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG). Belo Horizonte, Minas Gerais, Brasil; Programa de Pós-Graduação em Neurociências da UFMG; Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brasil.
| |
Collapse
|
19
|
Macrophage Migration Inhibitory Factor in Major Depressive Disorder: A Multilevel Pilot Study. Int J Mol Sci 2022; 23:ijms232415460. [PMID: 36555097 PMCID: PMC9779321 DOI: 10.3390/ijms232415460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a controversially discussed inflammatory marker in major depressive disorder (MDD). While some studies show an association of high MIF protein levels with depression, animal models have yielded conflicting results. Thus, it remains elusive as to whether MIF plays an anti- or pro-depressive role. Therefore, we aimed to examine the potential of MIF at the genetic, expression and protein levels as a risk factor and biomarker to diagnose, monitor, or predict the course of MDD. Patients with a current major depressive episode (n = 66 with, and n = 63 without, prior medication) and remitted patients (n = 39) were compared with healthy controls (n = 61). Currently depressed patients provided a second blood sample after three weeks of therapy. Depression severity was assessed by self-evaluation and clinician rating scales. We genotyped for three MIF polymorphisms and analyzed peripheral MIF expression and serum levels. The absence of minor allele homozygous individuals in the large group of 96 female patients compared with 10-16% in female controls suggests a protective effect for MDD, which was not observed in the male group. There were no significant group differences of protein and expression levels, however, both showed predictive potential for the course of depression severity in some subgroups. While MIF protein levels, but not MIF expression, decreased during treatment, they were not associated with changes in depression severity. This project is the first to investigate three biological levels of MIF in depression. The data hint toward a genetic effect in women, but do not provide robust evidence for the utility of MIF as a biomarker for the diagnosis or monitoring of MDD. The observed predictive potential requires further analysis, emphasizing future attention to confounding factors such as sex and premedication.
Collapse
|
20
|
Jean-Pierre M, Michalovicz LT, Kelly KA, O'Callaghan JP, Nathanson L, Klimas N, J. A. Craddock T. A pilot reverse virtual screening study suggests toxic exposures caused long-term epigenetic changes in Gulf War Illness. Comput Struct Biotechnol J 2022; 20:6206-6213. [DOI: 10.1016/j.csbj.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
21
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
22
|
Li H, He B, Zhang X, Hao H, Yang T, Sun C, Song H, Wang Y, Zhou Y, Zhu Z, Hu Y, Wang Y. D-dopachrome tautomerase drives astroglial inflammation via NF-κB signaling following spinal cord injury. Cell Biosci 2022; 12:128. [PMID: 35965310 PMCID: PMC9375920 DOI: 10.1186/s13578-022-00867-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Reactive astrocytes are increasingly recognized as crucial regulators of innate immunity in degenerative or damaged central nervous system (CNS). Many proinflammatory mediators have been shown to drive inflammatory cascades of astrocytes through activation of NF-κB, thereby affecting the functional outcome of the insulted CNS. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of proinflammatory macrophage migration inhibitory factor (MIF), has been revealed to share receptor and overlapping functional spectrum with MIF, but little is known about its roles in the neuropathological progression of the CNS and relevant regulatory mechanisms.
Results
D-DT protein levels were significantly elevated within neurons and astrocytes following SCI. Analysis of transcriptome profile revealed that D-DT was able to activate multiple signal pathways of astrocytes, which converged to NF-κB, a hub regulator governing proinflammatory response. Rat D-DT recombinant protein was efficient in inducing the production of inflammatory cytokines from astrocytes through interaction with CD74 receptor. Activation of mitogen-activated protein kinases (MAPKs) and NF-κB was observed to be essential for the transduction of D-DT signaling. Administration of D-DT specific inhibitor at lesion sites of the cord resulted in significant attenuation of NF-κB activation and reduction of the inflammatory cytokines following SCI, and accordingly improved the recovery of locomotor functions.
Conclusion
Collectively, D-DT is a novel proinflammatory mediator of astrocytes following SCI. Insights of its cell-specific expression and relevant proinflammatory mechanisms will provide clues for the control of CNS inflammation.
Collapse
|
23
|
Neuroprotective Effect of Macrophage Migration Inhibitory Factor (MIF) in a Mouse Model of Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23136975. [PMID: 35805977 PMCID: PMC9267067 DOI: 10.3390/ijms23136975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The mechanism of the neuroprotective effect of the macrophage migration inhibitory factor (MIF) in vivo is unclear. We investigated whether the MIF promotes neurological recovery in an in vivo mouse model of ischemic stroke. Transient middle cerebral artery occlusion (MCAO) surgery was performed to make ischemic stroke mouse model. Male mice were allocated to a sham vehicle, a sham MIF, a middle cerebral artery occlusion (MCAO) vehicle, and MCAO+MIF groups. Transient MCAO (tMCAO) was performed in the MCAO groups, and the vehicle and the MIF were administered via the intracerebroventricular route. We evaluated the neurological functional scale, the rotarod test, and T2-weighted magnetic resonance imaging. The expression level of the microtubule-associated protein 2 (MAP2), Bcl2, and the brain-derived neurotrophic factor (BDNF) were further measured by Western blot assay. The Garcia test was significantly higher in the MCAO+MIF group than in the MCAO+vehicle group. The MCAO+MIF group exhibited significantly better performance on the rotarod test than the MCAO+vehicle group, which further had a significantly reduced total infarct volume on T2-weighted MRI imaging than the MCAO vehicle group. Expression levels of BDNF, and MAP2 tended to be higher in the MCAO+MIF group than in the MCAO+vehicle group. The MIF exerts a neuroprotective effect in an in vivo ischemic stroke model. The MIF facilitates neurological recovery and protects brain tissue from ischemic injury, indicating a possibility of future novel therapeutic agents for stroke patients.
Collapse
|
24
|
Alaskarov A, Barel S, Bakavayev S, Kahn J, Israelson A. MIF homolog d-dopachrome tautomerase (D-DT/MIF-2) does not inhibit accumulation and toxicity of misfolded SOD1. Sci Rep 2022; 12:9570. [PMID: 35688953 PMCID: PMC9187739 DOI: 10.1038/s41598-022-13744-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/27/2022] [Indexed: 12/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons. About 20% of familial ALS cases are caused by dominant mutations in SOD1. It has been suggested that toxicity of mutant SOD1 results from its misfolding, however, it is unclear why misfolded SOD1 accumulates within specific tissues. We have demonstrated that macrophage migration inhibitory factor (MIF), a multifunctional protein with cytokine/chemokine and chaperone-like activity, inhibits the accumulation and aggregation of misfolded SOD1. Although MIF homolog, D-dopachrome tautomerase (D-DT/MIF-2), shares structural and genetic similarities with MIF, its biological function is not well understood. In the current study, we investigated, for the first time, the mechanism of action of D-DT in a model of ALS. We show that D-DT inhibits mutant SOD1 amyloid aggregation in vitro, promoting the formation of amorphous aggregates. Moreover, we report that D-DT interacts with mutant SOD1, but does not inhibit misfolded mutant SOD1 accumulation and toxicity in neuronal cells. Finally, we show that D-DT is expressed mainly in liver and kidney, with extremely low expression in brain and spinal cord of adult mice. Our findings contribute to better understanding of D-DT versus MIF function in the context of ALS.
Collapse
Affiliation(s)
- Amina Alaskarov
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Shir Barel
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Shamchal Bakavayev
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
25
|
Varyani F, Löser S, Filbey KJ, Harcus Y, Drurey C, Poveda MC, Rasid O, White MPJ, Smyth DJ, Gerbe F, Jay P, Maizels RM. The IL-25-dependent tuft cell circuit driven by intestinal helminths requires macrophage migration inhibitory factor (MIF). Mucosal Immunol 2022; 15:1243-1256. [PMID: 35288645 PMCID: PMC9705247 DOI: 10.1038/s41385-022-00496-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a key innate immune mediator with chemokine- and cytokine-like properties in the inflammatory pathway. While its actions on macrophages are well-studied, its effects on other cell types are less understood. Here we report that MIF is required for expansion of intestinal tuft cells during infection with the helminth Nippostrongylus brasiliensis. MIF-deficient mice show defective innate responses following infection, lacking intestinal epithelial tuft cell hyperplasia or upregulation of goblet cell RELMβ, and fail to expand eosinophil, type 2 innate lymphoid cell (ILC2) and macrophage (M2) populations. Similar effects were observed in MIF-sufficient wild-type mice given the MIF inhibitor 4-IPP. MIF had no direct effect on epithelial cells in organoid cultures, and MIF-deficient intestinal stem cells could generate tuft cells in vitro in the presence of type 2 cytokines. In vivo the lack of MIF could be fully compensated by administration of IL-25, restoring tuft cell differentiation and goblet cell expression of RELM-β, demonstrating its requirement upstream of the ILC2-tuft cell circuit. Both ILC2s and macrophages expressed the MIF receptor CXCR4, indicating that MIF may act as an essential co-factor on both cell types to activate responses to IL-25 in helminth infection.
Collapse
Affiliation(s)
- Fumi Varyani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Stephan Löser
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Kara J Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Lydia Becker Institute for Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Claire Drurey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marta Campillo Poveda
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Orhan Rasid
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - François Gerbe
- IGF, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- IGF, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
26
|
Yang T, Jiang H, Luo X, Hou Y, Li A, He B, Zhang X, Hao H, Song H, Cai R, Wang X, Wang Y, Yao C, Qi L, Wang Y. Thrombin acts as inducer of proinflammatory macrophage migration inhibitory factor in astrocytes following rat spinal cord injury. J Neuroinflammation 2022; 19:120. [PMID: 35624475 PMCID: PMC9137112 DOI: 10.1186/s12974-022-02488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The danger-associated molecular patterns (DAMPs) are critical contributors to the progressive neuropathology and thereafter affect the functional outcomes following spinal cord injury (SCI). Up to now, the regulatory mechanisms on their inducible production from the living cells remain elusive, aside from their passive release from the necrotic cells. Thrombin is immediately activated by the damaged or stressed central nervous system (CNS), which potently mediates inflammatory astrocytic responses through proteolytic cleavage of protease-activated receptors (PARs). Therefore, SCI-activated thrombin is conceived to induce the production of DAMPs from astrocytes at lesion site. METHODS Rat SCI model was established by the cord contusion at T8-T10. The expression of thrombin and macrophage migration inhibitory factor (MIF) was determined by ELISA and Western blot. The PAR1, PAR3, and PAR4 receptors of thrombin were examined by PCR and immunohistochemistry. Primary astrocytes were isolated and purified from the spinal cord, followed by stimulation with different concentrations of thrombin either for transcriptome sequencing or for analysis of thrombin-mediated expression of MIF and related signal pathways in the presence or absence of various inhibitors. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. RESULTS MIF protein levels were significantly elevated in parallel with those of thrombin induced by SCI. Immunostaining demonstrated that PAR1 receptor, together with MIF, was abundantly expressed in astrocytes. By transcriptome sequencing and bioinformatical analysis of thrombin-stimulated primary astrocytes, MIF was identified to be dynamically regulated by the serine protease. Investigation of the underlying mechanism using various inhibitors revealed that thrombin-activated PAR1 was responsible for the MIF production of astrocytes through modulation of JNK/NFκB pathway. Administration of PAR1 inhibitor at lesion sites following SCI significantly reduced the protein levels of MIF and ameliorated functional deficits of rat locomotion. CONCLUSION SCI-activated thrombin is a robust inducer of MIF production from astrocytes. Exploring the roles of thrombin in promoting the production of DAMPs from astrocytes at lesion site will provide an alternative strategy for the clinical therapy of CNS inflammation.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Haiyan Jiang
- Health Management Center, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Xinye Luo
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China.
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
27
|
Macrophage migration inhibitory factor (MIF) acetylation protects neurons from ischemic injury. Cell Death Dis 2022; 13:466. [PMID: 35585040 PMCID: PMC9117661 DOI: 10.1038/s41419-022-04918-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Ischemia-induced neuronal death leads to serious lifelong neurological deficits in ischemic stroke patients. Histone deacetylase 6 (HDAC6) is a promising target for neuroprotection in many neurological disorders, including ischemic stroke. However, the mechanism by which HDAC6 inhibition protects neurons after ischemic stroke remains unclear. Here, we discovered that genetic ablation or pharmacological inhibition of HDAC6 reduced brain injury after ischemic stroke by increasing macrophage migration inhibitory factor (MIF) acetylation. Mass spectrum analysis and biochemical results revealed that HDAC6 inhibitor or aspirin treatment promoted MIF acetylation on the K78 residue. MIF K78 acetylation suppressed the interaction between MIF and AIF, which impaired MIF translocation to the nucleus in ischemic cortical neurons. Moreover, neuronal DNA fragmentation and neuronal death were impaired in the cortex after ischemia in MIF K78Q mutant mice. Our results indicate that the neuroprotective effect of HDAC6 inhibition and aspirin treatment results from MIF K78 acetylation; thus, MIF K78 acetylation may be a therapeutic target for ischemic stroke and other neurological diseases.
Collapse
|
28
|
Okazaki S, Boku S, Watanabe Y, Otsuka I, Horai T, Morikawa R, Kimura A, Shimmyo N, Tanifuji T, Someya T, Hishimoto A. Polymorphisms in the hypoxia inducible factor binding site of the macrophage migration inhibitory factor gene promoter in schizophrenia. PLoS One 2022; 17:e0265738. [PMID: 35324982 PMCID: PMC8946738 DOI: 10.1371/journal.pone.0265738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that promotes neurogenesis and neuroprotection. MIF is predominantly expressed in astrocytes in the brain. The serum MIF level and microsatellites/single nucleotide polymorphisms (SNPs) in the MIF gene promoter region are known to be associated with schizophrenia (SCZ). Interestingly, previous studies reported that hypoxia, an environmental risk factor for SCZ, induced MIF expression through binding of the hypoxia inducible factor (HIF)-1 to the hypoxia response element (HRE) in the MIF promoter. Methods We investigated the involvement of MIF in SCZ while focusing on the HIF pathway. First, we conducted an association study of the SNP rs17004038 (C>A) in the HRE of the MIF promoter between 1758 patients with SCZ and 1507 controls. Next, we investigated the effect of hypoxia on MIF expression in primary cultured astrocytes derived from neonatal mice forebrain. Results SNP rs17004038 was significantly associated with SCZ (p = 0.0424, odds ratio = 1.445), indicating that this SNP in the HRE of the MIF promoter was a genetic risk factor for SCZ. Hypoxia induced MIF mRNA expression and MIF protein production and increased HIF-1 binding to the MIF promoter, while the activity of the MIF promoter was suppressed by mutations in the HRE and by deletion of the HRE in astrocytes. Conclusion These results suggest that SNP rs17004038 in the HRE of the MIF promoter was significantly associated with SCZ and may be involved in the pathophysiology of SCZ via suppression of hypoxia and HIF pathway-induced MIF expression.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neuropsychiatry, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
- * E-mail:
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Kimura
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naofumi Shimmyo
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
29
|
Song S, Xiao Z, Dekker FJ, Poelarends GJ, Melgert BN. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury. Cell Mol Life Sci 2022; 79:105. [PMID: 35091838 PMCID: PMC8799543 DOI: 10.1007/s00018-021-04038-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.
Collapse
|
30
|
Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R. The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 2022; 79:60. [PMID: 35000037 PMCID: PMC11073082 DOI: 10.1007/s00018-021-04109-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Parthanatos is a form of regulated cell death involved in the pathogenesis of many diseases, particularly neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Parthanatos is a multistep cell death pathway cascade that involves poly (ADP-ribose) polymerase 1 (PARP-1) overactivation, PAR accumulation, PAR binding to apoptosis-inducing factor (AIF), AIF release from the mitochondria, nuclear translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and MIF-mediated large-scale DNA fragmentation. All the key players in the parthanatos pathway are pleiotropic proteins with diverse functions. An in-depth understanding of the structure-based activity of the key factors, and the biochemical mechanisms of parthanatos, is crucial for the development of drugs and therapeutic strategies. In this review, we delve into the key players of the parthanatos pathway and reveal the multiple levels of therapeutic opportunities for treating parthanatos-based pathogenesis.
Collapse
Affiliation(s)
- Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jiaxiang Li
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
31
|
Liu W, Li L, Xia X, Zhou X, Du Y, Yin Z, Wang J. Integration of Urine Proteomic and Metabolomic Profiling Reveals Novel Insights Into Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:780747. [PMID: 35615451 PMCID: PMC9124902 DOI: 10.3389/fpsyt.2022.780747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders whose etiology and pathogenesis are not fully understood. To gain insight into the molecular basis of ASD, we performed comparative integrated proteomic and metabolomic analyses of urine samples from children diagnosed with ASD and healthy children. All 160 samples underwent proteomics analysis and 60 were analyzed by liquid chromatography-mass spectrometry to obtain metabolite profiles. We identified 77 differentially expressed proteins (DEPs; 21 downregulated and 56 upregulated) and 277 differentially expressed metabolites; 31 of the DEPs including glutathione, leukocyte antigens, glycoproteins, neural adhesion factors, and immunoglobulins, have been implicated in neuroinflammation. The proteomic analysis also revealed 8 signaling pathways that were significantly dysregulated in ASD patients; 3 of these (transendothelial leukocyte migration, antigen processing and presentation, and graft vs. host disease) were associated with the neuroimmune response. The metabolism of tryptophan, which is also related to the neuroimmune response, has been found to play a potential role in ASD. Integrated proteome and metabolome analysis showed that 6 signaling pathways were significantly enriched in ASD patients, 3 of which were correlated with impaired neuroinflammation (glutathione metabolism, metabolism of xenobiotics by cytochrome P450 and transendothelial migration of leukocyte). We also found a correlation between prostaglandin (PG) E2 levels and the inflammatory response in ASD. These results underscore the prominent role of the neuroimmune response in ASD and provide potential biomarkers that can be used for diagnosis or as targets for early intervention.
Collapse
Affiliation(s)
- Wenlong Liu
- Department of Child Development and Behavior, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Liming Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xiaochun Xia
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xulan Zhou
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Yukai Du
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqing Yin
- Division of Neonatology, The People's Hospital of Dehong Autonomous Prefecture, Mangshi, China
| | - Juan Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| |
Collapse
|
32
|
All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells 2021; 10:cells10092438. [PMID: 34572087 PMCID: PMC8468417 DOI: 10.3390/cells10092438] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple neurodegenerative diseases (NDDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are being suggested to have common cellular and molecular pathological mechanisms, characterized mainly by protein misfolding and aggregation. These large inclusions, most likely, represent an end stage of a molecular cascade; however, the soluble misfolded proteins, which take part in earlier steps of this cascade, are the more toxic players. These pathological proteins, which characterize each specific disease, lead to the selective vulnerability of different neurons, likely resulting from a combination of different intracellular mechanisms, including mitochondrial dysfunction, ER stress, proteasome inhibition, excitotoxicity, oxidative damage, defects in nucleocytoplasmic transport, defective axonal transport and neuroinflammation. Damage within these neurons is enhanced by damage from the nonneuronal cells, via inflammatory processes that accelerate the progression of these diseases. In this review, while acknowledging the hallmark proteins which characterize the most common NDDs; we place specific focus on the common overlapping mechanisms leading to disease pathology despite these different molecular players and discuss how this convergence may occur, with the ultimate hope that therapies effective in one disease may successfully translate to another.
Collapse
|
33
|
Wu KM, Zhang YR, Huang YY, Dong Q, Tan L, Yu JT. The role of the immune system in Alzheimer's disease. Ageing Res Rev 2021; 70:101409. [PMID: 34273589 DOI: 10.1016/j.arr.2021.101409] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder where the accumulation of amyloid plaques and the formation of tau tangles are the prominent pathological hallmarks. Increasing preclinical and clinical studies have revealed that different components of the immune system may act as important contributors to AD etiology and pathogenesis. The recognition of misfolded Aβ and tau by immune cells can trigger a series of complex immune responses in AD, and then lead to neuroinflammation and neurodegeneration. In parallel, genome-wide association studies have also identified several immune related loci associated with increased - risk of AD by interfering with the function of immune cells. Other immune related factors, such as impaired immunometabolism, defective meningeal lymphatic vessels and autoimmunity might also be involved in the pathogenesis of AD. Here, we review the data showing the alterations of immune cells in the AD trajectory and seek to demonstrate the crosstalk between the immune cell dysfunction and AD pathology. We then discuss the most relevant research findings in regards to the influences of gene susceptibility of immune cells for AD. We also consider impaired meningeal lymphatics, immunometabolism and autoimmune mechanisms in AD. In addition, immune related biomarkers and immunotherapies for AD are also mentioned in order to offer novel insights for future research.
Collapse
|
34
|
Vukićević D, Rovčanin B, Gopčević K, Stanković S, Vučević D, Jorgačević B, Mladenović D, Vesković M, Samardžić J, Ješić R, Radosavljević T. The Role of MIF in Hepatic Function, Oxidative Stress, and Inflammation in Thioacetamide-induced Liver Injury in Mice: Protective Effects of Betaine. Curr Med Chem 2021; 28:3249-3268. [PMID: 33148149 DOI: 10.2174/0929867327666201104151025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a multipotent cytokine that contributes to the inflammatory response to chemical liver injury. This cytokine exhibits pro- and anti-inflammatory effects depending on the etiology and stage of liver disease. OBJECTIVE Our study aimed to investigate the role of MIF in oxidative stress and inflammation in the liver, and modulatory effects of betaine on MIF in thioacetamide (TAA)-induced chronic hepatic damage in mice. METHODS The experiment was performed on wild type and knockout MIF-/- C57BL/6 mice. They were divided into the following groups: control; Bet-group that received betaine (2% wt/v dissolved in drinking water); MIF-/- mice group; MIF-/-+Bet; TAA-group that received TAA (200 mg/kg b.w.), intraperitoneally, 3x/week/8 weeks); TAA+Bet; MIF-/-+TAA, and MIF-/-+TAA+Bet. In TAA- and Bet-treated groups, animals received the same doses. After eight weeks of treatment, blood samples were collected for biochemical analysis, and liver specimens were prepared for the assessment of parameters of oxidative stress and inflammation. RESULTS In MIF-/-mice, TAA reduced transaminases, γ-glutamyltranspeptidase, bilirubin, malondialdehyde (MDA), oxidative protein products (AOPP), total oxidant status (TOS), C-reactive protein (CRP), IL-6, IFN-γ, and increased thiols and total antioxidant status (TAS). Betaine attenuated the mechanism of MIF and mediated effects in TAA-induced liver injury, reducing transaminases, γ-glutamyltranspeptidase, bilirubin, MDA, AOPP, TOS, CRP, IL-6, IFN-g, and increasing thiols. CONCLUSION MIF is a mediator in hepatotoxic, pro-oxidative, and proinflammatoryeffects of TAA-induced liver injury. MIF-targeted therapy can potentially mitigate oxidative stress and inflammation in the liver, but the exact mechanism of its action requires further investigation. Betaine increases anti-oxidative defense and attenuates hepatotoxic effects of MIF, suggesting that betaine can be used for the prevention and treatment of liver damage.
Collapse
Affiliation(s)
- Dušan Vukićević
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislav Rovčanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Kristina Gopčević
- Institute of Chemistry in Medicine "Prof. Dr. Petar Matavulj", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stanković
- Centre of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Danijela Vučević
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bojan Jorgačević
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr. Subotica 9, 11000 Belgrade, Serbia
| | - Rada Ješić
- Institute of Digestive Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Tatjana Radosavljević
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
Du N, Li H, Sun C, He B, Yang T, Song H, Wang Y, Wang Y. Adult astrocytes from reptiles are resistant to proinflammatory activation via sustaining Vav1 expression. J Biol Chem 2021; 296:100527. [PMID: 33705794 PMCID: PMC8065226 DOI: 10.1016/j.jbc.2021.100527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Adult mammalian astrocytes are sensitive to inflammatory stimuli in the context of neuropathology or mechanical injury, thereby affecting functional outcomes of the central nervous system (CNS). In contrast, glial cells residing in the spinal cord of regenerative vertebrates exhibit a weak astroglial reaction similar to those of mammals in embryonic stages. Macrophage migration inhibitory factor (MIF) participates in multiple neurological disorders by activation of glial and immune cells. However, the mechanism of astrocytes from regenerative species, such as gecko astrocytes (gAS), in resistance to MIF-mediated inflammation in the severed cords remains unclear. Here, we compared neural stem cell markers among gAS, as well as adult (rAS) and embryonic (eAS) rat astrocytes. We observed that gAS retained an immature phenotype resembling rat eAS. Proinflammatory activation of gAS with gecko (gMIF) or rat (rMIF) recombinant protein was unable to induce the production of inflammatory cytokines, despite its interaction with membrane CD74 receptor. Using cross-species screening of inflammation-related mediators from models of gMIF- and rMIF-induced gAS and rAS, we identified Vav1 as a key regulator in suppressing the inflammatory activation of gAS. The gAS with Vav1 deficiency displayed significantly restored sensitivity to inflammatory stimuli. Meanwhile, gMIF acts to promote the migration of gAS through regulation of CXCL8 following cord lesion. Taken together, our results suggest that Vav1 contributes to the regulation of astrocyte-mediated inflammation, which might be beneficial for the therapeutic development of neurological diseases.
Collapse
Affiliation(s)
- Nan Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, PR China
| | - Hui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, PR China
| | - Chunshuai Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, PR China
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, PR China
| | - Ting Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, PR China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, PR China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, PR China.
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, PR China.
| |
Collapse
|
36
|
Determining the Optimal Administration Conditions under Which MIF Exerts Neuroprotective Effects by Inducing BDNF Expression and Inhibiting Apoptosis in an In Vitro Stroke Model. Brain Sci 2021; 11:brainsci11020280. [PMID: 33672416 PMCID: PMC7926652 DOI: 10.3390/brainsci11020280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) exerts neuroprotective effects against cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis and inducing the expression of brain-derived neurotrophic factor (BDNF). However, the optimal administration conditions of MIF are currently unknown. Here, we aimed to identify these conditions in an in vitro model. To determine the optimal concentration of MIF, human neuroblastoma cells were assigned to one of seven groups: control, oxygen and glucose deprivation/reperfusion (OGD/R), and OGD/R with different concentrations (1, 10, 30, 60, and 100 ng/mL) of MIF. Six groups were studied to investigate the optimal administration time: control, OGD/R, and OGD/R with MIF administered at different times (pre-OGD, OGD-treat, post-OGD, and whole-processing). Water-soluble tetrazolium salt-1 assay, Western blot analysis, and immunocytochemistry were used to analyze cell viability and protein expression. We found that 60 ng/mL was the optimal concentration of MIF. However, the effects of administration time were not significant; MIF elicited similar neuroprotective effects regardless of administration time. These findings correlated with the expression of BDNF and apoptosis-related proteins. This study provides detailed information on MIF administration, which offers a foundation for future in vivo studies and translation into novel therapeutic strategies for ischemic stroke.
Collapse
|
37
|
Liu M, Xie Z, Sun G, Chen L, Qi D, Zhang H, Xiong J, Furey A, Rahman P, Lei G, Zhai G. Macrophage migration inhibitory factor may play a protective role in osteoarthritis. Arthritis Res Ther 2021; 23:59. [PMID: 33610191 PMCID: PMC7896408 DOI: 10.1186/s13075-021-02442-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent form of arthritis and the major cause of disability and overall diminution of quality of life in the elderly population. Currently there is no cure for OA, partly due to the large gaps in our understanding of its underlying molecular and cellular mechanisms. Macrophage migration inhibitory factor (MIF) is a procytokine that mediates pleiotropic inflammatory effects in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, data on the role of MIF in OA is limited with conflicting results. We undertook this study to investigate the role of MIF in OA by examining MIF genotype, mRNA expression, and protein levels in the Newfoundland Osteoarthritis Study. METHODS One hundred nineteen end-stage knee/hip OA patients, 16 RA patients, and 113 healthy controls were included in the study. Two polymorphisms in the MIF gene, rs755622, and -794 CATT5-8, were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR followed by automated capillary electrophoresis, respectively. MIF mRNA levels in articular cartilage and subchondral bone were measured by quantitative polymerase chain reaction. Plasma concentrations of MIF, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) were measured by enzyme-linked immunosorbent assay. RESULTS rs755622 and -794 CATT5-8 genotypes were not associated with MIF mRNA or protein levels or OA (all p ≥ 0.19). MIF mRNA level in cartilage was lower in OA patients than in controls (p = 0.028) and RA patients (p = 0.004), while the levels in bone were comparable between OA patients and controls (p = 0.165). MIF protein level in plasma was lower in OA patients than in controls (p = 3.01 × 10-10), while the levels of TNF-α, IL-6 and IL-1β in plasma were all significantly higher in OA patients than in controls (all p ≤ 0.0007). Multivariable logistic regression showed lower MIF and higher IL-1β protein levels in plasma were independently associated with OA (OR per SD increase = 0.10 and 8.08; 95% CI = 0.04-0.19 and 4.42-16.82, respectively), but TNF-α and IL-6 became non-significant. CONCLUSIONS Reduced MIF mRNA and protein expression in OA patients suggested MIF might have a protective role in OA and could serve as a biomarker to differentiate OA from other joint disorders.
Collapse
Affiliation(s)
- Ming Liu
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Zikun Xie
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.,Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Guang Sun
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Liujun Chen
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dake Qi
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hongwei Zhang
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Jieying Xiong
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Andrew Furey
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Proton Rahman
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Guangju Zhai
- Division of Biomedical Sciences (Genetics), Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
38
|
Macrophage migration inhibitory factor as a therapeutic target after traumatic spinal cord injury: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1474-1494. [PMID: 33486594 DOI: 10.1007/s00586-021-06718-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/25/2020] [Accepted: 01/01/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Macrophages play an important role in mediating damage after Spinal cord injury (SCI) by secreting macrophage migration inhibitory factor (MMIF) as a secondary injury mediator. We aimed to systematically review the role of MMIF as a therapeutic target after traumatic SCI. METHODS Our systematic review has been performed according to the PRISMA 2009 Checklist. A systematic search in the scientific databases was carried out for studies published before 20 February 2019 from major databases. Two researchers independently screened titles. The risk of bias of eligible articles was assessed, and data were extracted. Finally, we systematically analyzed and interpreted related data. RESULTS 785 papers were selected for the title and abstract screening. 12 papers were included for data extraction. Eight animal studies were of high quality and the remaining two were of medium quality. One of the two human studies was of poor quality and the other was of fair quality. MMIF as a pro-inflammatory mediator can cause increased susceptibility to glutamate-related neurotoxicity, increased nitrite production, increased ERK activation, and increased COX2/PGE2 signaling pathway activation and subsequent stimulation of CCL5-related chemotaxis. Two human studies and six animal studies demonstrated that MMIF level increases after SCI. MMIF inhibition might be a potential therapeutic target in SCI by multiple different mechanisms (6/12 studies). CONCLUSION Most animal studies demonstrate significant neurologic improvement after administration of MMIF inhibitors, but these inhibitors have not been studied in humans yet. Further clinical trials are need to further understand MMIF inhibitor utility in acute or chronic SCI. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
|
39
|
Kloek AT, Seron MV, Schmand B, Tanck MWT, van der Ende A, Brouwer MC, van de Beek D. Individual responsiveness of macrophage migration inhibitory factor predicts long-term cognitive impairment after bacterial meningitis. Acta Neuropathol Commun 2021; 9:4. [PMID: 33407905 PMCID: PMC7789269 DOI: 10.1186/s40478-020-01100-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/06/2020] [Indexed: 01/25/2023] Open
Abstract
Background Patients with pneumococcal meningitis are at risk for death and neurological sequelae including cognitive impairment. Functional genetic polymorphisms of macrophage migration inhibitory factor (MIF) alleles have shown to predict mortality of pneumococcal meningitis. Methods We investigated whether MIF concentrations during the acute phase of disease were predictive for death in a nationwide prospective cohort study. Subsequently, we studied whether individual ex vivo MIF response years after meningitis was associated with the development of cognitive impairment. Results We found that in the acute illness of pneumococcal meningitis, higher plasma MIF concentrations were predictive for mortality (p = 0.009). Cognitive impairment, examined 1–5 years after meningitis, was present in 11 of 79 patients after pneumococcal meningitis (14%), as compared to 1 of 63 (2%) in controls, and was consistently associated with individual variability in MIF production by peripheral blood mononuclear cells after ex vivo stimulation with various infectious stimuli. Conclusions Our study confirms the role of MIF in poor disease outcome of pneumococcal meningitis. Inter-individual differences in MIF production were associated with long-term cognitive impairment years after pneumococcal meningitis. The present study provides evidence that MIF mediates long-term cognitive impairment in bacterial meningitis survivors and suggests a potential role for MIF as a target of immune-modulating adjunctive therapy.
Collapse
|
40
|
Zhao H, Zhang H, Liu S, Luo W, Jiang Y, Gao J. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front Psychiatry 2021; 12:670200. [PMID: 34276441 PMCID: PMC8283413 DOI: 10.3389/fpsyt.2021.670200] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Although increasing evidence suggests an association between alterations in peripheral cytokines and autism spectrum disorder (ASD), a consensus is lacking. To determine whether abnormal cytokine profiles in peripheral blood were associated with ASD, we performed this systemic review and meta-analysis. Methods: A systematic literature search was conducted through the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases up to 4 June 2020. Clinical studies exploring the aberration of peripheral cytokines of autistic patients and controls were included in our meta-analysis. We pooled extracted data using fixed- or random-effects models based on heterogeneity tests with Comprehensive Meta-analysis software. We converted standardized mean differences to Hedges' g statistic to obtain the effect sizes adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also carried out. Results: Sixty-one articles (326 studies) were included to assess the association between 76 cytokines and ASD. We conducted our meta-analysis based on 37 cytokines with 289 studies. Since there were fewer than three studies on any of the other 39 cytokines, we only provided basic information for them. The levels of peripheral IL-6, IL-1β, IL-12p70, macrophage migration inhibitory factor (MIF), eotaxin-1, monocyte chemotactic protein-1 (MCP-1), IL-8, IL-7, IL-2, IL-12, tumor necrosis factor-α (TNF-α), IL-17, and IL-4 were defined as abnormal cytokines in the peripheral blood of ASD patients compared with controls. The other 24 cytokines did not obviously change in ASD patients compared with the controls. Conclusions: The findings of our meta-analysis strengthen the evidence for an abnormal cytokine profile in ASD. These abnormal cytokines may be potential biomarkers for the diagnosis and treatment of ASD in the future.
Collapse
Affiliation(s)
- Huaying Zhao
- Department of Rehabilitation Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Hongqi Zhang
- Department of Pulmonary and Critical Care Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Shijie Liu
- The 947th Hospital of Army, Kashi, China
| | - Wulin Luo
- Department of Medical Psychology and Neurology, The 947th Hospital of Army, Kashi, China
| | - Yongfeng Jiang
- Department of Rehabilitation Medicine, The 947th Hospital of Army, Kashi, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
41
|
Yang J, Ji D, Zhu YQ, Ren Y, Zhang X, Dai HY, Sun X, Zhou Y, Chen ZY, Li QG, Yao H. Hemoperfusion with HA380 in acute type A aortic dissection patients undergoing aortic arch operation (HPAO): a randomized, controlled, double-blind clinical trial. Trials 2020; 21:954. [PMID: 33228727 PMCID: PMC7684885 DOI: 10.1186/s13063-020-04858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cardiopulmonary bypass (CPB) is an important cause of significant systemic inflammatory response syndrome (SIRS) in the surgical treatment of acute type A aortic dissection (ATAAD). In patients with arch vessel involvement, extensive surgical repairs often necessitate prolonged use of CPB and results in extensive inflammatory responses. Cytokines and chemokines released during CPB contribute to the progression of SIRS, increase perioperative complications, and negatively impact surgical outcomes. A cytokine adsorber (HA380) is expected to reduce the level of cytokines during CPB, which may decrease both intraoperative and postoperative inflammation. The purpose of this study is to investigate if HA380 is able to reduce the levels of inflammatory cytokines and decrease perioperative complications in ATAAD patients undergoing CPB and deep hypothermic circulatory arrest (DHCA). Methods This study is a single-center, randomized, controlled, double-blind clinical trial. The study aims to recruit 88 patients with ATAAD and aortic arch involvement who will undergo CPB and DHCA to repair the dissected aorta. Patients will be randomized equally into the CPB/DHCA only group (control group) and the CPB/DHCA + HA380 hemoperfusion group (intervention group), with 44 patients each. Patients in the control group will undergo CPB and DHCA only, while patients in the intervention group will undergo continuous hemoperfusion with HA380, in addition to CPB and DHCA. The primary outcome is a composite of major perioperative complications. The secondary outcomes include related inflammatory markers, coagulation parameters, and minor perioperative complications. To comprehensively evaluate the effect of hemoperfusion on the perioperative outcomes, we will also determine if there are differences in perioperative all-cause mortality, length of ICU stay, and total hospitalization costs. Discussion In the current trial, hemoperfusion will be applied in patients undergoing CPB and DHCA for repair of the aorta involving the aortic arch. This trial aims to test the safety and efficacy of our hemoperfusion device (HA380) in such settings. Upon completion of the trial, we will determine if HA380 is effective in reducing perioperative proinflammatory cytokine levels. Further, we will also verify if reduction in the proinflammatory cytokine levels, if present, translates to improvement in patient outcomes. Trial registration ClinicalTrials.gov NCT04007484. Registered on 1 July 2019 (retrospectively registered).
Collapse
Affiliation(s)
- Jing Yang
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Dong Ji
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Yue-Qian Zhu
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Yun Ren
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Xun Zhang
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Hong-Yu Dai
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Xu Sun
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Yi Zhou
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Zhi-Yuan Chen
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qing-Guo Li
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China.
| | - Hao Yao
- Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China.
| |
Collapse
|
42
|
Dai JX, Lin Q, Ba HJ, Ye LZ, Li ZW, Cai JY. Utility of serum macrophage migration inhibitory factor as a potential biomarker for detection of cerebrocardiac syndrome following severe traumatic brain injury. Clin Chim Acta 2020; 512:179-184. [PMID: 33181151 DOI: 10.1016/j.cca.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cerebrocardiac syndrome (CCS) is a common complication after severe traumatic brain injury (sTBI) and its occurrence obviously increases the risk of a poor outcome. Macrophage migration inhibitory factor (MIF) acts as an inflammatory cytokine and its circulating concentration are related to acute heart and brain injury. The aim of this study was to examine the association of serum concentration of MIF with posttraumatic CCS. METHODS From January 2016 to February 2019, 116 sTBI patients and 116 healthy controls with similar age and gender percentage were recruited. Relationship between serum MIF concentration and CCS was assessed using multivariate analysis. RESULTS Serum MIF concentration of patients were significantly higher than those among controls. Serum MIF concentration were intimately correlated with Glasgow coma scale scores (t = -5.553, P < 0.001) and serum C-reactive protein concentration (t = 5.320, P < 0.001) in a multivariate linear regression model. 61 patients (52.6%) displayed CCS. Under ROC curve analylsis, there was a strong discriminatory ability for CCS regarding serum MIF concentration (area under curve, 0.834; 95% confidence interval, 0.754-0.897). Serum MIF concentration were highly associated with CCS independent of other confounding factors (odds ratio, 5.608; 95% CI: 1.896-16.587). CONCLUSIONS Increased MIF in serum may be a useful biomarker for early detection of CCS after head trauma.
Collapse
Affiliation(s)
- Jun-Xia Dai
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Qun Lin
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Hua-Jun Ba
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Liang-Zhi Ye
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Zhi-Wei Li
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Jian-Yong Cai
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China.
| |
Collapse
|
43
|
Genetic regulation of gene expression of MIF family members in lung tissue. Sci Rep 2020; 10:16980. [PMID: 33046825 PMCID: PMC7552402 DOI: 10.1038/s41598-020-74121-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine found to be associated with chronic obstructive pulmonary disease (COPD). However, there is no consensus on how MIF levels differ in COPD compared to control conditions and there are no reports on MIF expression in lung tissue. Here we studied gene expression of members of the MIF family MIF, D-Dopachrome Tautomerase (DDT) and DDT-like (DDTL) in a lung tissue dataset with 1087 subjects and identified single nucleotide polymorphisms (SNPs) regulating their gene expression. We found higher MIF and DDT expression in COPD patients compared to non-COPD subjects and found 71 SNPs significantly influencing gene expression of MIF and DDTL. Furthermore, the platform used to measure MIF (microarray or RNAseq) was found to influence the splice variants detected and subsequently the direction of the SNP effects on MIF expression. Among the SNPs found to regulate MIF expression, the major LD block identified was linked to rs5844572, a SNP previously found to be associated with lower diffusion capacity in COPD. This suggests that MIF may be contributing to the pathogenesis of COPD, as SNPs that influence MIF expression are also associated with symptoms of COPD. Our study shows that MIF levels are affected not only by disease but also by genetic diversity (i.e. SNPs). Since none of our significant eSNPs for MIF or DDTL have been described in GWAS for COPD or lung function, MIF expression in COPD patients is more likely a consequence of disease-related factors rather than a cause of the disease.
Collapse
|
44
|
Nagy EE, Frigy A, Szász JA, Horváth E. Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp Ther Med 2020; 20:2510-2523. [PMID: 32765743 PMCID: PMC7401670 DOI: 10.3892/etm.2020.8933] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence hints to the central role of neuroinflammation in the development of post-stroke depression. Danger signals released in the acute phase of ischemia trigger microglial activation, along with the infiltration of neutrophils and macrophages. The increased secretion of proinflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα) provokes neuronal degeneration and apoptosis, whereas IL-6, interferon γ (IFNγ), and TNFα induce aberrant tryptophane degradation with the accumulation of the end-product quinolinic acid in resident glial cells. This promotes glutamate excitotoxicity via hyperexcitation of N-methyl-D-aspartate receptors and antagonizes 5-hydroxy-tryptamine, reducing synaptic plasticity and neuronal survival, thus favoring depression. In the post-stroke period, CX3CL1 and the CD200-CD200R interaction mediates the activation of glial cells, whereas CCL-2 attracts infiltrating macrophages. CD206 positive cells grant the removal of excessive danger signals; the high number of regulatory T cells, IL-4, IL-10, transforming growth factor β (TGFβ), and intracellular signaling via cAMP response element-binding protein (CREB) support the M2 type differentiation. In favorable conditions, these cells may exert efficient clearance, mediate tissue repair, and might be essential players in the downregulation of molecular pathways that promote post-stroke depression.
Collapse
Affiliation(s)
- Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Attila Frigy
- Department of Internal Medicine IV, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - József Attila Szász
- Neurology Clinic II, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emőke Horváth
- Department of Pathology, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
45
|
Zhao J, Mao Z, Sun Q, Liu Q, Jian H, Xie B. MiMIF-2 Effector of Meloidogyne incognita Exhibited Enzyme Activities and Potential Roles in Plant Salicylic Acid Synthesis. Int J Mol Sci 2020; 21:ijms21103507. [PMID: 32429304 PMCID: PMC7278917 DOI: 10.3390/ijms21103507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
Plant-parasitic nematodes secrete a series of effectors to promote parasitism by modulating host immunity, but the detailed molecular mechanism is ambiguous. Animal parasites secrete macrophage migration inhibitory factor (MIF)-like proteins for evasion of host immune systems, in which their biochemical activities play essential roles. Previous research demonstrated that MiMIF-2 effector was secreted by Meloidogyne incognita and modulated host immunity by interacting with annexins. In this study, we show that MiMIF-2 had tautomerase activity and protected nematodes against H2O2 damage. MiMIF-2 expression not only decreased the amount of H2O2 generation during nematode infection in Arabidopsis, but also suppressed Bax-induced cell death by inhibiting reactive oxygen species burst in Nicotiana benthamiana. Further, RNA-seq transcriptome analysis and RT-qPCR showed that the expression of some heat-shock proteins was down regulated in MiMIF-2 transgenic Arabidopsis. After treatment with flg22, RNA-seq transcriptome analysis indicated that the differentially expressed genes in MiMIF-2 expressing Arabidopsis were pointed to plant hormone signal transduction, compound metabolism and plant defense. RT-qPCR and metabolomic results confirmed that salicylic acid (SA) related marker genes and SA content were significantly decreased. Our results provide a comprehensive understanding of how MiMIF-2 modulates plant immunity and broaden knowledge of the intricate relationship between M. incognita and host plants.
Collapse
Affiliation(s)
- Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Qinghua Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Plant Pathology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China;
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Plant Pathology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China;
- Correspondence: (H.J.); (B.X.)
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
- Correspondence: (H.J.); (B.X.)
| |
Collapse
|
46
|
The Dichotomic Role of Macrophage Migration Inhibitory Factor in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21083023. [PMID: 32344747 PMCID: PMC7216212 DOI: 10.3390/ijms21083023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine expressed by different cell types and exerting multiple biological functions. It has been shown that MIF may be involved in several disorders, including neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), and Huntington disease (HD), that represent an unmet medical need. Therefore, further studies are needed to identify novel pathogenetic mechanisms that may translate into tailored therapeutic approaches so to improve patients’ survival and quality of life. Here, we reviewed the preclinical and clinical studies investigating the role of MIF in ALS, PD, and HD. The emerging results suggest that MIF might play a dichotomic role in these disorders, exerting a protective action in ALS, a pathogenetic action in HD, and a yet undefined and debated role in PD. The better understanding of the role of MIF in these diseases could allow its use as a novel diagnostic and therapeutic tool for the monitoring and treatment of the patients and for eventual biomarker-driven therapeutic approaches.
Collapse
|
47
|
Pathogenic contribution of the Macrophage migration inhibitory factor family to major depressive disorder and emerging tailored therapeutic approaches. J Affect Disord 2020; 263:15-24. [PMID: 31818772 DOI: 10.1016/j.jad.2019.11.127] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/28/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Immunoinflammatory disorders are often accompanied by depression. Here, we review the available preclinical and clinical studies suggesting a role for the pro-inflammatory cytokine Macrophage migration inhibitory factor (MIF) and the second member of the MIF family, D-dopachrome tautomerase (D-DT; DDT), in the pathogenesis of Major Depressive Disorders (MDD). METHODS We prepared a narrative review from a search on PubMed of studies pertaining to MDD and MIF, as for October 2019. Both humans and animal studies haves been considered. RESULTS Preclinical data show conflicting results on the role of endogenous MIF and DDT in depression. In contrast, several human studies show that circulating MIF levels tend to increase during the course of MDD. Higher levels of inflammatory biomarkers have also been associated with poorer responses to antidepressants and the levels of MIF significantly decrease after treatment, despite this may not be necessarily associated to an improvement in psychiatric symptoms. LIMITATIONS This is a narrative and not a systematic review of the literature on the involvement of MIF in MDD. We have highlighted studies performed in humans and in animal models, irrespective of population size and methodological approach. CONCLUSIONS This review highlights a role of MIF, and possibly DDT, in the pathogenesis of MDD. Whilst studies in animal models are discordant, the studies in patients with MDD convergently suggest that MIF plays a role in induction and maintenance of the disease. Additional studies are also needed on DDT that often displays synergistic function with MIF and their receptors.
Collapse
|
48
|
Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J, Jin K, Yenari MA, Song T, Wang Q. Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Exp Neurol 2019; 322:113060. [PMID: 31505162 DOI: 10.1016/j.expneurol.2019.113060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
Abstract
Our previous studies have indicated that depression and declined cognition have been involved in some neurodegenerative diseases including Stroke, Parkinson's diseases and Vascular Parkinsonism. Post-stroke depression (PSD) is the most common psychiatric disorder following a stroke and has high morbidity and mortality. Studies on PSD are increasingly common, but the specific mechanisms remain unknown. Current research mainly includes clinical and animal aspects. Questionnaires and peripheral blood examination are two of the most common methods used to study clinical PSD. The results of questionnaires are influenced by multiple factors such as disease history, education background, occupation, economic status, family relationships and social support. There are certain limitations to blood sample testing; for example, it is influenced by cerebrovascular diseases and some other disruptions of the internal environment. It is difficult for either method to fully clarify the pathophysiological mechanism of PSD. Animal models provide alternative methods to further understand the pathophysiological mechanisms of PSD, such as the involvement of neuronal circuits and cytokines. More than ten animal models of PSD have been developed, and new models are constantly being introduced. Therefore, it is important to choose the appropriate model for any given study. In this paper, we will discuss the characteristics of the different models of PSD and comment on the advantages and disadvantages of each model, drawing from research on model innovation. Finally, we briefly describe the current assessment methods for the core symptoms of PSD models, point out the shortcomings, and present the improved sucrose preference test as a rational evaluation of anhedonia.
Collapse
Affiliation(s)
- Xi Tao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chujuan Liu
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Tao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jia Wang
- Department of Scientific Research, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Danheng Mo
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Jieqiong Tan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tao Song
- Department of Neurological Rehabilitation, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410016, Hunan Province, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
49
|
Wang Y, Wei S, Song H, Zhang X, Wang W, Du N, Song T, Liang H, Chen X, Wang Y. Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation. FASEB J 2019; 33:14798-14810. [PMID: 31689136 DOI: 10.1096/fj.201801966rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Macrophages and their initiation of acute inflammation have been defined to be functionally important in tissue repair and regeneration. In injury-induced production of macrophage migration inhibitory factor (MIF), which has been described as a pleiotropic protein that participates in multiple cellular and biologic processes, it is unknown whether it is involved in the regulation of macrophage events during the epimorphic regeneration. In the model of gecko tail amputation, the protein levels of gecko MIF (gMIF) have been determined to be significantly increased in the nerve cells of the spinal cord in association with the recruitment of macrophages to the lesion site. gMIF has been shown to interact with the CD74 receptor to promote the migration of macrophages through activation of Ras homolog gene family member A and to trigger inflammatory responses through MAPK signaling pathways. The determination of microsphere phagocytosis also indicated that gMIF could enhance macrophage phagocytosis. gMIF-mediated recruitment and activation of macrophages have been found to be necessary for gecko tail regeneration, as evidenced by the depletion of macrophages using clodronate liposomes. The results present a novel function of MIF during the epimorphic regeneration, which is beneficial for insights into its pleiotropic property.-Wang, Y., Wei, S., Song, H., Zhang, X., Wang, W., Du, N., Song, T., Liang, H., Chen, X., Wang, Y. Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sumei Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuejie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Nan Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tiancheng Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hao Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaojun Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
50
|
Cavalli E, Mazzon E, Basile MS, Mangano K, Di Marco R, Bramanti P, Nicoletti F, Fagone P, Petralia MC. Upregulated Expression of Macrophage Migration Inhibitory Factor, Its Analogue D-Dopachrome Tautomerase, and the CD44 Receptor in Peripheral CD4 T Cells from Clinically Isolated Syndrome Patients with Rapid Conversion to Clinical Defined Multiple Sclerosis. ACTA ACUST UNITED AC 2019; 55:medicina55100667. [PMID: 31581595 PMCID: PMC6843666 DOI: 10.3390/medicina55100667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
Background and objectives: Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT) are two pleiotropic and primarily, but not exclusively, proinflammatory cytokines belonging to the MIF family of cytokines that have recently been shown to be implicated in the pathogenesis of progressive forms of human progressive Multiple Sclerosis (MS) and the experimental model counterpart in rodents. Materials and Methods: We have presently evaluated a transcriptomic analysis of the expression of MIF, DDT, their receptors CD74 and CD44, and MIF co-receptors CXCR2, CXCR4, and CXCR7 in peripheral blood of patients with Clinically Isolated Syndrome (CIS), with rapid progression to clinical defined MS. Results: Our analysis reveals that MIF, DDT, and CD44 are overexpressed in CD4+ T cells from patients with CIS, as compared to healthy controls. Accordingly, a significant overlap was observed between the genes overexpressed in CD4+ T cells from patients with CIS and the genes belonging to the MIF regulatory network. This upregulated expression appeared to be unique for CD4+ T cells, as other immune cells including CD8+ T cells, B cells, and monocytes from these patients exhibited expression levels of these molecules that were superimposable to those observed in healthy controls. Conclusions: Overall, our data suggest that the overexpression MIF cytokine family signature may occur in CD4+ T cells from patients with CIS, and that this phenomenon may be implicated in the pathogenesis of the disease, offering the possibility to represent both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy.
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Roberto Di Marco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy.
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy.
| | | |
Collapse
|