1
|
Shi W, Liu Y, Liu Y, Bai X, Liang Y, Yang Y, Wu F, Liu M, Xu N. The unique activity of the bone morphogenetic protein TGH4 affects the embryonic development of Trichinella spiralis and the establishment of vaccine protection. Vet Res 2025; 56:31. [PMID: 39915830 PMCID: PMC11803935 DOI: 10.1186/s13567-025-01473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
In recent years, animal outbreaks of trichinellosis have been reported in Mexico, China, Algeria, Croatia and others, which is a challenge to meat safety and public health. Vaccination is an important means to control trichinellosis, but one of the main challenges in vaccine development is screening for protective candidate antigens. Bone morphogenetic proteins (BMP)), which are potential vaccine research targets, play key roles in the growth and development of metazoans. The BMP homologue TGH4 was identified from Trichinella spiralis (T. spiralis), and recombinant C-terminal mature rTGH4-m had BMP activity and exerted regulatory effects on both mouse fibroblast and T. spiralis embryonic development. The construction of a protein mutant without activation potential confirmed that BMP activity had a negative regulatory effect on the establishment of immune protection by affecting the innate, adaptive, and humoral immunity of mice. Stripping protein activity can enhance immune protection and host resistance to T. spiralis. Our findings demonstrate that the TGH4 mutant is an important vaccine candidate antigen that blocks embryonic development, kills larvae, and provides insight into parasite vaccine research.
Collapse
Affiliation(s)
- Wenjie Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yi Liu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, 132013, China
| | - Xue Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yue Liang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yaming Yang
- Department of Helminth, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Fangwei Wu
- Department of Helminth, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Chaimon S, Phuphisut O, Reamtong O, Ampawong S, Fongsodsri K, Chantree P, Thanongsaksrikul J, Malaithong P, Sreesai S, Maleewong W, Sadaow L, Martviset P, Adisakwattana P. Molecular and biological characterization of transforming growth factor-β homolog derived from Trichinella spiralis. Sci Rep 2024; 14:31229. [PMID: 39732815 DOI: 10.1038/s41598-024-82599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
The cytokine homologs, particularly transforming growth factor (TGF)-β, is a crucial immunomodulatory molecule and involved in growth and developmental processes in several helminths. In this study, the basic properties and functions of T. spiralis TGF-β homolog 2 (TsTGH2) were characterized using bioinformatics and molecular biology approaches. Bioinformatics analyses indicated that TsTGH2 belongs to the TGF-β subfamily. Recombinant TsTGH2 (rTsTGH2) expressed in Escherichia coli was used to produce a polyclonal antibody (pAb) in mice. Western blot and immunolocalization using pAb detected native TsTGH2 in crude worm antigens from muscle larvae and adults, showing it was mainly localized in the body wall muscles and the epithelia of the ovary and uterus. To assess the interplay between TsTGH2 and the human TGF-β signaling pathway, rTsTGH2 produced in a HEK293T cell was incubated with the SBE luciferase-HEK293 cell. The result indicated a significant increase in luciferase activity after treatment with rTsTGH2 compared to untreated control (p < 0.05). In conclusion, these findings are the first to characterize the basic properties and functions of TGF-β homologs in T. spiralis, demonstrating their interaction with the human TGF-β receptor. Further investigation is required to identify and optimize an appropriate expression system or conditions for TsTGH2. Additionally, studies are needed to clarify the specific role of native TsTGH2 in parasite development and host immunomodulation.
Collapse
Affiliation(s)
- Salisa Chaimon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, 12120, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Thammasat University Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand
| | - Preeyarat Malaithong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Suthasinee Sreesai
- Central Equipment Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wanchai Maleewong
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lakkhana Sadaow
- Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Graduate Program in Applied Biosciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, 12120, Thailand.
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Derakhshani A, Mousavi SM, Rezaei M, Afgar A, Keyhani AR, Mohammadi MA, Dabiri S, Fasihi Harandi M. Natural history of Echinococcus granulosus microcyst development in long term in vitro culture and molecular and morphological changes induced by insulin and BMP-4. Front Vet Sci 2023; 9:1068602. [PMID: 36699324 PMCID: PMC9868913 DOI: 10.3389/fvets.2022.1068602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Cystic echinococcosis (CE) caused by the cestode Echinococcus granulosus is a disease of worldwide public health and economic importance. The determinants and underlying cellular mechanisms of CE development and fate in intermediate hosts are largely unknown. Hormones and cytokines such as insulin and BMP-4 are the key players in the development, differentiation, and apoptosis. In this study, we evaluated the long term natural history of E. granulosus microcysts in an vitro setting and the molecular and morphological changes induced by the growth factors, insulin and BMP4 during the development of metacestode stage of E. granulosus. Methods E. granulosus protoscoleces were cultivated and the parasite development was followed in the long term mono-phasic culture for 105 days and the morphometric, molecular and immunohistochemical changes were evaluated, including the microcysts number and size, microcysts development and deformation rates as well as the markers of calcification (Alizarin Red staining) and apoptosis (BAX, BCL2, Caspase-3, Caspase-8 and TNF-α expression) in the microcysts. Also the biological, histological and molecular consequences of insulin and BMP-4 treatment on the parasite development were evaluated. Results Insulin and BMP-4 treatment of microcysts resulted in significant increase in microcyst formation, increased size, reduced apoptosis and deformation of the microcysts. Alizarin red staining of the microcysts treated with the insulin and BMP-4 confirmed that calcium deposition is significantly lower than the untreated microcysts. Also Alizarin Red staining and Immunohistochemistry of the microcysts indicates that calcium accumulation in deformed microcysts is higher than the normal ones on day 105. The microcysts began to wrinkle and the germinal layer was partially detached from the laminated layer on day 84. Conclusion Results of the present study suggest that the degenerative changes in hydatid cysts can be slowed down by insulin and BMP-4, indicating that cellular factors and host hormones could contribute to the longevity of hydatid cysts. Significant evidences are provided suggesting that the microcysts cultivated in vitro can undergo calcification and apoptotic processes similar to what have been observed in the natural hydatid infection in the intermediate hosts.
Collapse
Affiliation(s)
- Ali Derakhshani
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Rezaei
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Reza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Mohammadi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology, Afzalipour Medical School, Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran,*Correspondence: Majid Fasihi Harandi ✉
| |
Collapse
|
4
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
6
|
Tang CL, Li YH, Dai WQ, Zhu YW, Wu ZX, Li Y, Zuo T. GENE EXPRESSION LEVEL, IMMUNOLOCALIZATION, AND FUNCTION OF FATTY ACID-BINDING PROTEIN FROM SCHISTOSOMA JAPONICUM. J Parasitol 2021; 107:529-536. [PMID: 34198340 DOI: 10.1645/19-42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Schistosoma japonicum fatty acid-binding protein (FABP) is used in the cell membrane to absorb and transport fatty acids, which cannot be resynthesized by the organism and combined with hydrophobic ligands. Among the 5 stages of the worm life cycle examined, FABP messenger ribonucleic acid (mRNA) expression was highest in male adult worms, followed by the liver-stage schistosome, and was the lowest in the lung-stage schistosome. The fabp gene-coding region was cloned and expressed to obtain recombinant S. japonicum FABP (rSjFABP) with a molecular weight of approximately 18 kDa. Mice were then immunized against rSjFABP to prepare anti-FABP serum. Using immunohistochemical techniques, FABP protein was found to localize to the eggshell, parenchyma, and digestive tract. Double-stranded RNA-mediated knockdown of FABP mRNA by RNA interference decreased the number of transcripts by >70%. Moreover, the egg production rate decreased, whereas the abnormal egg ratio was significantly increased in the FABP-silenced group compared with the negative control group (P < 0.05). These results demonstrate that FABP localizes in adults and in various stages. FABP contributes to the egg-laying capacity of adults, which may be related to the reproductive function of S. japonicum.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Yan-Hong Li
- Department of Endocrinology, Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Wen-Qin Dai
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Zhao-Xia Wu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Yan Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Tao Zuo
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| |
Collapse
|
7
|
Caña-Bozada V, Chapa-López M, Díaz-Martín RD, García-Gasca A, Huerta-Ocampo JÁ, de Anda-Jáuregui G, Morales-Serna FN. In silico identification of excretory/secretory proteins and drug targets in monogenean parasites. INFECTION GENETICS AND EVOLUTION 2021; 93:104931. [PMID: 34023509 DOI: 10.1016/j.meegid.2021.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The Excretory/Secretory (ES) proteins of parasites are involved in invasion and colonization of their hosts. In addition, since ES proteins circulate in the extracellular space, they can be more accessible to drugs than other proteins, which makes ES proteins optimal targets for the development of new and better pharmacological strategies. Monogeneans are a group of parasitic Platyhelminthes that includes some pathogenic species problematic for finfish aquaculture. In the present study, 8297 putative ES proteins from four monogenean species which genomic resources are publicly available were identified and functionally annotated by bioinformatic tools. Additionally, for comparative purposes, ES proteins in other parasitic and free-living platyhelminths were identified. Based on data from the monogenean Gyrodactylus salaris, 15 ES proteins are considered potential drug targets. One of them showed homology to 10 cathepsins with known 3D structure. A docking molecular analysis uncovered that the anthelmintic emodepside shows good affinity to these cathepsins suggesting that emodepside can be experimentally tested as a monogenean's cathepsin inhibitor.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Martha Chapa-López
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Rubén D Díaz-Martín
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | | | - José Ángel Huerta-Ocampo
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - F Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico; Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico.
| |
Collapse
|
8
|
Tang CL, Zhang RH, Li R, Li XR, Pan Q, Li L, Xiao JL. EFFECT OF ADENYLATE KINASE 1 ON THE GROWTH AND DEVELOPMENT OF SCHISTOSOMA JAPONICUM SCHISTOSOMULUM. J Parasitol 2021; 107:472-480. [PMID: 34153095 DOI: 10.1645/19-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We investigated the effect of Schistosoma japonicum adenylate kinase 1 (Sjak1) on the growth and development of schistosomula. Quantitative real-time PCR showed that Sjak1 mRNA was expressed in 3-, 10-, 14-, 18-, and 21-day-old schistosomula, and its levels increased gradually with the development of S. japonicum. Using immunohistochemical techniques, ak1 protein was found to be mainly distributed in the tegument and some parenchymal tissues of the schistosomula. Double-stranded RNA-mediated knockdowns of ak1 decreased ak1 mRNA transcripts by more than 90%, and western blot results showed that expression of ak1 protein was decreased by 66%. Scanning electron microscopy following the RNA-mediated ak1 knockdown showed that the sensory papillae did not develop. Transmission electron microscopy showed a lower mean thickness of the tegument in the Sjak1 interference group than in the negative control group. Terminal deoxynucleotidyl transferase dUTP nick-end labeling suggested higher apoptosis in the interference group than the negative control group. These results showed that ak1 may be involved in the growth and development of S. japonicum schistosomula and especially in the development of the integument. Consequently, ak1 may be a potential target in developing prevention methods for schistosomiasis in the future.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ru Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiu-Rong Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Qun Pan
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Li Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Jin-Lei Xiao
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| |
Collapse
|
9
|
Cheng WJ, Gu MJ, Ye F, Zhang YD, Zhong QP, Dong HF, Liu R, Jiang H. Prohibitin 1 (PHB1) controls growth and development and regulates proliferation and apoptosis in Schistosoma japonicum. FASEB J 2020; 34:11030-11046. [PMID: 32627884 DOI: 10.1096/fj.201902787rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a zoonotic parasitic disease caused by the trematode blood flukes of the genus Schistosoma. The prodigious egg output of females is the main cause of the disease in definitive hosts, while the female worm relies on continuous pairing with the male worm to fuel the growth and maturation of the reproductive organs and egg production. Prohibitin, which contains the functionally interdependent PHB1 and PHB2 subunits in human and some other species, has been proposed to participate in the cell proliferation and apoptosis regulation in mammals. However, little is known about the function of PHB homolog in the growth and reproductive development of schistosomes. Here, we reported the Phb1 gene that was structurally and evolutionarily conserved in Schistosoma japonicum when compared with that of other species from Caenorhabditis elegans to human. Real-time PCR detected that SjPhb1 was highly transcribed in the vitellaria of female worms. SjPhb1 knockdown achieved through the dsRNA-mediated RNAi in vivo resulted in retarded growth, decreased pairing, and fecundity in adult worms, as well as attenuated pathogenicity or virulence of worms to their hosts. Cell proliferation and apoptosis examination found decreased cell proliferation and increased cell apoptosis in SjPhb1 dsRNA-treated worms. Therefore, our study provides the first characterization of S. japonicum PHB1 and reveals its fundamental role in the regulation of growth and development of S. japonicum by specific dsRNA-mediated RNAi in vivo. Our findings prompt for a promising molecular of schistosomes that can be targeted to effectively retard the growth and development of the schistosomes.
Collapse
Affiliation(s)
- Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Meng-Jie Gu
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
10
|
Role of adenylate kinase 1 in the integument development of Schistosoma japonicum schistosomula. Acta Trop 2020; 207:105467. [PMID: 32277925 DOI: 10.1016/j.actatropica.2020.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022]
Abstract
Schistosomula antigens play an important role in the growth and development of Schistosoma japonicum. We investigated the role of S. japonicum adenylate kinase 1 (SjAK1) in the growth and development of schistosomula. Quantitative real-time PCR showed that SjAK1 mRNA was expressed in all schistosomula stages, but increased gradually with the development of S. japonicum schistosomula. Using immunohistochemical techniques, the AK1 protein was found to be mainly distributed in the tegument and in some parenchymal tissues of the schistosomula. Double-stranded RNA-mediated knockdown of AK1 reduced AK1 mRNA transcripts by more than 90%; western blot analysis demonstrated that AK1 protein expression decreased by 66%. Scanning electron microscopy following RNA-mediated AK1 knockdown demonstrated that the sensory papillae degenerated significantly. Transmission electron microscopy demonstrated that the mean thickness of the tegument in the SjAK1 interference group was lower than that in the negative control group. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) suggested that, compared with the negative control group, apoptosis increased in the interference group. These results show that AK1 may be involved in the growth and development of S. japonicum schistosomula, and thus may be a target when developing treatments for schistosomiasis.
Collapse
|
11
|
Huang W, Gu M, Cheng W, Zhao QP, Ming Z, Dong H. Characteristics and function of cathepsin L3 from Schistosoma japonicum. Parasitol Res 2020; 119:1619-1628. [PMID: 32185481 DOI: 10.1007/s00436-020-06647-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 01/18/2023]
Abstract
Schistosomiasis is still prevalent and seriously endangering the health of people and livestock in many countries. There have been great efforts to develop vaccines against schistosomiasis for prolonged protection in epidemic areas. Molecules from lung-stage schistosomula have been regarded as potential vaccine candidates against schistosomiasis. Our previous work has shown that cathepsin L3 from Schistosoma japonicum (SjCL3) is expressed in lung-stage schistosomula, but its role is not well known. In the present study, we characterized SjCL3 and detected its effect as a possible vaccine in vivo and in vitro. From the results of quantitative PCR (qPCR) and western blot, SjCL3 was present throughout the lifecycle of the worm, and its relative expressed level was higher in the liver eggs and adult worms than other stages. Additionally, immunofluorescence assay showed that SjCL3 was mainly concentrated in the eggshell, alimentary canal, and musculature of worms. Compared with the adjuvant group, the immunization of SjCL3 in mice resulted in a 28.9% decrease in worm burden and a 29.2% reduction in egg number in the host liver. In antibody-dependent cell-mediated cytotoxicity (ADCC) insecticidal experiments in vitro, the existence of SjCL3 could in part suppress adherence between macrophages and worm. The above results indicated that the immunization of SjCL3 could induce limited immune protection against S. japonicum infection in mice, and this protease played a role in breaking the process of ADCC, which was beneficial to the survival of worms.
Collapse
Affiliation(s)
- Wenling Huang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Mengjie Gu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Wenjun Cheng
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Qin Ping Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Zhenping Ming
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
12
|
Gao YR, Xu JH, Tang CL, Cai Z, Wu Q, Xiong Y, Wang LX. Effects of programmed cell death protein 10 on fecundity in Schistosoma japonicum. Parasitol Res 2020; 119:1317-1325. [PMID: 32152713 DOI: 10.1007/s00436-020-06635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
Abstract
Programmed cell death protein 10 (PCDP10) is widely distributed in animal tissues and exerts extensive biological effects. This study aimed to investigate the effect of Schistosoma japonicum PCDP10 (SjPCDP10) on the fecundity of schistosomes. We performed real-time PCR to assess Sjpcdp10 expression levels at different developmental stages of S. japonicum. Immunoprotection against S. japonicum was assessed in vivo in mice, and Sjpcdp10 expression was inhibited via RNA interference (RNAi) to determine its role in fecundity. Real-time PCR analysis revealed that Sjpcdp10 mRNA was expressed during different developmental stages in S. japonicum, reaching maximum and minimum levels in female worms and lung-stage schistosomula, respectively. Recombinant SjPCDP10 had a molecular weight of approximately 28 kDa, displaying good immunogenicity but poor immunoprotection. SjPCDP10 was primarily localized in the egg, eggshell, epiphragm of adult worms, and especially the vitelline glands of female worms. RNAi-mediated knockdown of Sjpcdp10 by greater than 90%, and the protein expression decreased by 73%, reduced the number of eggs per female worm significantly more than RNAi-mediated knockdown of Egfp (negative control) (P < 0.05). The present results indicate that Sjpcdp10 knockdown affects the fecundity of schistosomes and may play a vital role in oogenesis.
Collapse
Affiliation(s)
- Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Ji-Hong Xu
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Chun-Lian Tang
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Zhou Cai
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Qiong Wu
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Ying Xiong
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China.
| | - Li-Xia Wang
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
13
|
Liu R, Cheng WJ, Ye F, Zhang YD, Zhong QP, Dong HF, Tang HB, Jiang H. Comparative Transcriptome Analyses of Schistosoma japonicum Derived From SCID Mice and BALB/c Mice: Clues to the Abnormality in Parasite Growth and Development. Front Microbiol 2020; 11:274. [PMID: 32218772 PMCID: PMC7078119 DOI: 10.3389/fmicb.2020.00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis, caused by the parasitic flatworms called schistosomes, remains one of the most prevailing parasitic diseases in the world. The prodigious oviposition of female worms after maturity is the main driver of pathology due to infection, yet our understanding about the regulation of development and reproduction of schistosomes is limited. Here, we comparatively profiled the transcriptome of Schistosoma japonicum recovered from SCID and BALB/c mice, which were collected 35 days post-infection, when prominent morphological abnormalities could be observed in schistosomes from SCID mice, by performing RNA-seq analysis. Of the 11,183 identified genes, 62 differentially expressed genes (DEGs) with 39 upregulated and 23 downregulated messenger RNAs (mRNAs) were found in male worms from SCID mice (S_M) vs. male worms from BALB/c mice (B_M), and 240 DEGs with 152 upregulated and 88 downregulated mRNAs were found in female worms from SCID mice (S_F) vs. female worms from BALB/c mice (B_F). We also tested nine DEGs with a relatively higher expression abundance in the gonads of the worms (ovary, vitellaria, or testis), suggesting their potential biological significance in the development and reproduction of the parasites. Gene ontology (GO) enrichment analysis revealed that GO terms such as “microtubule-based process,” “multicellular organismal development,” and “Rho protein signal transduction” were significantly enriched in the DEGs in S_F vs. B_F, whereas GO terms such as “oxidation–reduction process,” “response to stress,” and “response to DNA damage stimulus” were significantly enriched in the DEGs in S_M vs. B_M. These results revealed that the differential expression of some important genes might contribute to the morphological abnormalities of worms in SCID mice. Furthermore, we selected one DEG, the mitochondrial prohibitin complex protein 1 (Phb1), to perform double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) in vivo targeting the worms in BALB/c mice, and we found that it was essential for the growth and reproductive development of both male and female S. japonicum worms. Taken together, these results provided a wealth of information on the differential gene expression profiles of schistosomes from SCID mice when compared with those from BALB/c mice, which were potentially involved in regulating the growth and development of schistosomes. These findings contributed to an understanding of parasite biology and provided a rich resource for the exploitation of antischistosomal intervention targets.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-Bin Tang
- Laboratory Animal Center, School of Medicine, Wuhan University, Wuhan, China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Gao YR, Mei D, He YB, Chen RX, Gao J, Liu HX, Zhang Y, Yu WH, Wang LX. Effects of programmed cell death protein 10 on the Schistosoma japonicum female reproductive system. Acta Trop 2020; 202:105253. [PMID: 31678234 DOI: 10.1016/j.actatropica.2019.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the effects of programmed cell death protein 10 (PCDP10) on the female reproductive system of Schistosoma japonicum, one of the major infectious agents of schistosomiasis. We found that PCDP10 was widely distributed in the integument, the worm parenchymal area, and the vitellarium of the female worm, but was localized to a lesser extent in the ovary and testicles. RNAi experiments successfully achieved gene knockdown, and the ultrastructural morphology of the adult reproductive organs was observed. The results demonstrated that, compared with those of the negative control group, the number of cortical granules around oocytes decreased and the number of immature oocyte cells increased. Fusion of yolk globules occurred, and the number and the diameter of yolk droplets decreased significantly. Real-time PCR showed that the expression of yolk glands reached its peak before ovulation and then decreased. The TUNEL assay results showed that apoptosis in the RNAi group was significantly higher than that in the negative control group. These results suggested that SjPCDP10 plays an important role in the female reproductive system. In conclusion, PCD10 is involved in oocyte growth and development, especially in eggshell formation, which may provide a reference for further elucidating the molecular mechanism of PCDP10 involved in egg formation and embryo development in Schistosoma japonicum.
Collapse
|
15
|
Zhang Y, He L, Zong HY, Cai GB. A membrane-associated metalloprotease of Schistosoma japonicum structurally related to the FACE-1/Ste24p protease family. Mol Biochem Parasitol 2019; 233:111220. [PMID: 31542424 DOI: 10.1016/j.molbiopara.2019.111220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/14/2023]
Abstract
The CaaX proteases are closely related in the post-translational modification of many membrane-bound or secreted proteins and play a key role in the activation or stabilization of these molecules belonging to the CAAX family. In this study, a full-length cDNA putatively encoding a FACE-1/Ste24p CaaX protease (type I) of the Schistosoma japonicum was isolated. The cDNA, named SjSte24p, composed of 1646 bp and encoded 473 amino acids with predicted Mr/pI as 54.77 kDa/8.04. SjSte24p is a monoexonic gene constantly expressed in the parasite from cercariae to adult stages. It contained the characteristic of CaaX protease topology, including seven trans-membrane domains and a metallo-protease segment with a zinc-binding motif (HEXXH). SjSte24p shared a considerable degree of sequence identity with the type I CaaX proteases. A phylogenetic analysis showed that this protein family is tightly conserved from fungi to vertebrates. The expressed recombinant SjSte24p protein showed a proteolytic activity, which was inhibited by EDTA. Its activity was increased at low doses of the Zn2+ (0.001-0.01 mM); but was reversibly down-regulated at high doses (>0.1 mM). The native SjSte24p appeared to function in insoluble from. The protein was mainly localized in the tegument on the surface of adult worms. These results indicated that the SjSte24p is a practical zinc-dependent metalloprotease, which belongs to the FACE-1/Ste24p protease family.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Genetics, Wuhan University School of Basic Medicial Sciences, Wuhan, 430071, China
| | - Li He
- Department of Medical Parasitology, Wuhan University School of Basic Medicial Sciences, Wuhan, 430071, China
| | - Hong-Ying Zong
- Department of Medical Parasitology, Wuhan University School of Basic Medicial Sciences, Wuhan, 430071, China
| | - Guo-Bin Cai
- Department of Medical Parasitology, Wuhan University School of Basic Medicial Sciences, Wuhan, 430071, China.
| |
Collapse
|
16
|
Protein extract from head-foot tissue of Oncomelania hupensis promotes the growth and development of mother sporocysts of Schistosoma japonicum via upregulation of parasite aldolase gene. Parasitol Res 2019; 118:1821-1831. [PMID: 31011809 DOI: 10.1007/s00436-019-06308-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Previous studies showed that protein extract from head-foot tissue of Oncomelania hupensis (O. hupensis) (PhfO), when cocultured with mother sporocysts of Schistosoma japonicum (S. japonicum), was beneficial for parasite's growth and development but the underlying mechanisms remain unclear. One possible strategy for PhfO to promote the growth and development of mother sporocysts of S. japonicum is to upregulate parasite's survival genes. Fructose-1,6-bisphosphate aldolase (ALD), an essential enzyme of glycometabolism in the energy metabolism process, plays an important role in the survival and the growth and development of schistosomes. Using an in vitro coculture system, in this study, we analyzed the potential involvement of the ald gene in the growth and development of mother sporocysts of S. japonicum following coculture with PhfO. We found that coculture with PhfO promoted the growth and development and the survival of mother sporocysts, and increased parasites' ATP consumption level. Mother sporocysts cocultured with PhfO showed a significantly increased expression of the ald gene at both RNA and protein levels. The ALD protein mainly expressed in the cytoplasm of mother sporocysts. Knockdown of ald gene in parasites decreased the ALD protein expression and the ATP consumption level, suppressed the growth and development, and attenuated the survival of mother sporocysts. In ald knockdown mother sporocysts, the effects of PhfO on the ALD expression, the ATP consumption level, the growth and development, and the survival of larvae were significantly abolished. Therefore, the data suggest that PhfO could promote the growth and development, and the survival of mother sporocysts of S. japonicum via upregulating the expression of the ald gene.
Collapse
|
17
|
Tang CL, Zhou HH, Zhu YW, Huang J, Wang GB. Glutathione S-transferase influences the fecundity of Schistosoma japonicum. Acta Trop 2019; 191:8-12. [PMID: 30578749 DOI: 10.1016/j.actatropica.2018.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the effect of Schistosoma japonicum glutathione S-transferase (SjGST) on the developmental stages of the parasite. We found that the mRNA levels of GST were higher in schistosomula obtained from the host and the eggs than that in other developmental stages. SjGST was mainly distributed in the egg shells, teguments of the worms, and part of the parenchyma of the worms. GST knockdown with RNA interference in S. japonicum worms resulted in a silencing rate higher than 80%. The egg reduction rate (18%) and abnormal egg ratio (28%) were significantly higher (P < 0.05) in the GST-silenced group than in the negative control group. These results indicate that SjGST plays an important role in the fecundity of S. japonicum, specifically in egg formation.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Hong-Hua Zhou
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jin Huang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Guo-Bo Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
18
|
Influence of Schistosoma japonicum programmed cell death protein 10 on the growth and development of schistosomula. Parasit Vectors 2018; 11:46. [PMID: 29347959 PMCID: PMC5774102 DOI: 10.1186/s13071-018-2636-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Schistosomiasis caused by Schistosoma japonicum is among the most serious endemic zoonoses in China. To study interactions between schistosomula, the pre-adult juvenile stage, and hosts, it is important to study the functions of key genes involved in schistosomula growth and development. Programmed cell death protein 10 (pcdp10) is an important apoptosis-related gene with various biological functions. This study described the molecular characterization of S. japonicum PCDP10 (SjPCDP10) and evaluated its functions in schistosomula. Methods Real-time quantitative polymerase chain reaction (qPCR) and western blot were used to detect Sjpcdp10 mRNA and protein levels, respectively, at different developmental stages. Immunolocalization was performed to determine SjPCDP10 expression in the parasite. RNA interference (RNAi) experiments were used to assess gene functions associated with SjPCDP10 in schistosomula growth and development. Results Real-time qPCR revealed that Sjpcdp10 was expressed during all investigated developmental stages and upregulated during schistosomula growth and development. Histochemical localization showed that SjPCDP10 was mainly distributed in the teguments of schistosomula in all investigated stages and part of the parenchymal area of 14-, 18-, and 21-day-old schistosomula. Following Sjpcdp10 knockdown by RNAi, the lengths, widths, areas, and volumes of schistosomula were significantly lower than those in the control group. Scanning electron microscopy showed that the body surfaces of schistosomula subjected to RNAi were seriously damaged, with few tegumental spines and sensory papillae. Transmission electron microscopy indicated that the teguments of Sjpcdp10-knockdown schistosomula were incomplete, the number of layers was reduced, and the thickness decreased significantly as compared with those in the control group. Furthermore, terminal deoxynucleotidyl transferase dUTP nick-end labelling results showed that the rate of apoptosis in Sjpcdp10-knockdown schistosomula was significantly higher than that in the control group. Conclusions Sjpcdp10-knockdown influenced the growth and development of schistosomula. Therefore, our results indicated that SjPCDP10 contributes to the regulation of cell apoptosis and is essential for schistosomula growth and development. Electronic supplementary material The online version of this article (10.1186/s13071-018-2636-8) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Global issues in allergy and immunology: Parasitic infections and allergy. J Allergy Clin Immunol 2017; 140:1217-1228. [PMID: 29108604 DOI: 10.1016/j.jaci.2017.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
Allergic diseases are on the increase globally in parallel with a decrease in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in human subjects have generated a large knowledge base on the complexity of the interrelationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths can cause allergic-type inflammation, including symptoms of "classical" allergic disease. From an evolutionary perspective, subjects with an effective immune response against helminths can be more susceptible to allergy. This narrative review aims to inform readers of the most relevant up-to-date evidence on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but thus far, clinical trials in human subjects have not demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.
Collapse
|
20
|
Effect of Transforming Growth Factor-β upon Taenia solium and Taenia crassiceps Cysticerci. Sci Rep 2017; 7:12345. [PMID: 28955045 PMCID: PMC5617888 DOI: 10.1038/s41598-017-12202-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/05/2017] [Indexed: 01/14/2023] Open
Abstract
Taeniids exhibit a great adaptive plasticity, which facilitates their establishment, growth, and reproduction in a hostile inflammatory microenvironment. Transforming Growth Factor-β (TGFβ), a highly pleiotropic cytokine, plays a critical role in vertebrate morphogenesis, cell differentiation, reproduction, and immune suppression. TGFβ is secreted by host cells in sites lodging parasites. The role of TGFβ in the outcome of T. solium and T. crassiceps cysticercosis is herein explored. Homologues of the TGFβ family receptors (TsRI and TsRII) and several members of the TGFβ downstream signal transduction pathway were found in T. solium genome, and the expression of Type-I and -II TGFβ receptors was confirmed by RT-PCR. Antibodies against TGFβ family receptors recognized cysticercal proteins of the expected molecular weight as determined by Western blot, and different structures in the parasite external tegument. In vitro, TGFβ promoted the growth and reproduction of T. crassiceps cysticerci and the survival of T. solium cysticerci. High TGFβ levels were found in cerebrospinal fluid from untreated neurocysticercotic patients who eventually failed to respond to the treatment (P = 0.03) pointing to the involvement of TGFβ in parasite survival. These results indicate the relevance of TGFβ in the infection outcome by promoting cysticercus growth and treatment resistance.
Collapse
|
21
|
Gao Y, Zhou X, Wang H, Liu R, Ye Q, Zhao Q, Ming Z, Dong H. Immunization with recombinant schistosome adenylate kinase 1 partially protects mice against Schistosoma japonicum infection. Parasitol Res 2017; 116:1665-1674. [PMID: 28455627 DOI: 10.1007/s00436-017-5441-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
Highly effective and safe prophylactic vaccines are urgently needed to sustainably control schistosomiasis, one of the most serious endemic zoonoses in China. In this study, we characterized adenylate kinase 1 from Schistosoma japonicum (SjAK1), a phosphotransferase that regulates cellular energy and metabolism, and evaluated its potential as a recombinant vaccine. Based on real-time quantitative PCR, western blot, and immunolocalization, SjAK1 is active throughout the life of the worm, although its expression is higher in 21-day-old schistosomula, adult worms, and eggs deposited in the host liver. Further, the enzyme accumulates in the eggshell, intestinal epithelium, integument of adult worms and in the vitellaria tissue in female worms. A 594-bp full-length complementary DNA (cDNA) encoding SjAK1 was synthesized from total RNA of 3-day-old schistosomes, and immunization with recombinant SjAK1 reduced worm burden by 50%, decreased the density of eggs deposited in the host liver by 40%, and reduced the area of granulomas in the host liver by 56%. ELISA results showed that recombinant SjAK1 also stimulated Th1 cytokines such as IL-2 and IFN-γ, but not IL-5 and IL-4. Collectively, a recombinant form of the enzyme SjAK1 elicits partial protective immunity against Schistosoma japonicum infection and the induction of Th1 cytokines. Thus, the enzyme has potential as a component of a multivalent vaccine against schistosomiasis.
Collapse
Affiliation(s)
- Yanru Gao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China.,Department of Physiology, School of Basic Medicine Sciences, Hubei University of Science and Technology, Xianning, Hubei Province, 437000, China
| | - Xiaoshan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Huan Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Rong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Qing Ye
- Renmin Hospital, Wuhan University, Wuhan, Hubei Province, 430000, China
| | - Qinping Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Zhenping Ming
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China.
| |
Collapse
|
22
|
Smallwood TB, Giacomin PR, Loukas A, Mulvenna JP, Clark RJ, Miles JJ. Helminth Immunomodulation in Autoimmune Disease. Front Immunol 2017; 8:453. [PMID: 28484453 PMCID: PMC5401880 DOI: 10.3389/fimmu.2017.00453] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022] Open
Abstract
Helminths have evolved to become experts at subverting immune surveillance. Through potent and persistent immune tempering, helminths can remain undetected in human tissues for decades. Redirecting the immunomodulating "talents" of helminths to treat inflammatory human diseases is receiving intensive interest. Here, we review therapies using live parasitic worms, worm secretions, and worm-derived synthetic molecules to treat autoimmune disease. We review helminth therapy in both mouse models and clinical trials and discuss what is known on mechanisms of action. We also highlight current progress in characterizing promising new immunomodulatory molecules found in excretory/secretory products of helminths and their potential use as immunotherapies for acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jason P Mulvenna
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Brehm K, Koziol U. Echinococcus-Host Interactions at Cellular and Molecular Levels. ADVANCES IN PARASITOLOGY 2017; 95:147-212. [PMID: 28131363 DOI: 10.1016/bs.apar.2016.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The potentially lethal zoonotic diseases alveolar and cystic echinococcosis are caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively. In both cases, metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular host-parasite interactions that regulate nutrient uptake by the parasite as well as metacestode persistence and development. Using in vitro cultivation systems for parasite larvae, and informed by recently released, comprehensive genome and transcriptome data for both parasites, these molecular host-parasite interactions have been subject to significant research during recent years. In this review, we discuss progress in this field, with emphasis on parasite development and proliferation. We review host-parasite interaction mechanisms that occur early during an infection, when the invading oncosphere stage undergoes a metamorphosis towards the metacestode, and outline the decisive role of parasite stem cells during this process. We also discuss special features of metacestode morphology, and how this parasite stage takes up nutrients from the host, utilizing newly evolved or expanded gene families. We comprehensively review mechanisms of host-parasite cross-communication via evolutionarily conserved signalling systems and how the parasite signalling systems might be exploited for the development of novel chemotherapeutics. Finally, we point to an urgent need for the development of functional genomic techniques in this parasite, which will be imperative for hypothesis-driven analyses into Echinococcus stem cell biology, developmental mechanisms and immunomodulatory activities, which are all highly relevant for the development of anti-infective measures.
Collapse
Affiliation(s)
- K Brehm
- University of Würzburg, Würzburg, Germany
| | - U Koziol
- University of Würzburg, Würzburg, Germany; Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
24
|
Sulaiman AA, Zolnierczyk K, Japa O, Owen JP, Maddison BC, Emes RD, Hodgkinson JE, Gough KC, Flynn RJ. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes. PLoS Pathog 2016; 12:e1005991. [PMID: 27806135 PMCID: PMC5091765 DOI: 10.1371/journal.ppat.1005991] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/11/2016] [Indexed: 12/03/2022] Open
Abstract
The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF) superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL)-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs) in their evasion of antibody-dependent cell cytotoxicity (ADCC) by reducing the NO response of macrophages—again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow for a reduced effector response targeting juvenile parasites which we demonstrate extends to an abrogation of the ADCC response. Thus suggesting that FhTLM is a stage specific evasion molecule that utilises host cytokine receptors. These findings are the first to clearly demonstrate the interaction of a helminth cytokine with a host receptor complex resulting in immune modifications that facilitate the non-protective chronic immune response which is characteristic of F. hepatica infection. Parasitic worms, helminths, can cause long-lived chronic infection in many hosts that they infection. The liver fluke, Fasciola hepatica, is one such parasite causing global infection of both humans and animals. F. hepatica exerts an influence over the immune system such that it avoids effector mechanisms and prevents the development of effective immunity. Here we characterise a molecule—FhTLM—derived from juvenile parasites that is similar to the regulatory cytokine TGF-β. We show that FhTLM will bind to host TGF-β receptors with a reduced affinity when compared with mammalian TGF-β. Despite this FhTLM can induce Smad2/3 signalling in host leukocytes, which is key to initiating gene transcription. Phenotypically FhTLM causes fibroblasts to slow their growth and replication response resulting in slower wound healing. Importantly FhTLM induces a macrophage phenotype that resembles a regulatory macrophage phenotype identified in other species undergoing helminth infection. Finally we Our work highlights the potential of FhTLM to play important roles in controlling host immunity when initially infected with juvenile parasites, thereby preventing the development of effective immunity.
Collapse
Affiliation(s)
- Azad A. Sulaiman
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Katarzyna Zolnierczyk
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Ornampai Japa
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
- School of Medicine, University of Phayao, Phayao, Thailand
| | - Jonathan P. Owen
- ADAS UK, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Ben C. Maddison
- ADAS UK, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Richard D. Emes
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Jane E. Hodgkinson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Kevin C. Gough
- School of Veterinary Medicine and Science, the University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Robin J. Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Shu L, Yang Y, Huang H, Ye H. A bone morphogenetic protein ligand and receptors in mud crab: A potential role in the ovarian development. Mol Cell Endocrinol 2016; 434:99-107. [PMID: 27345242 DOI: 10.1016/j.mce.2016.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/21/2022]
Abstract
In vertebrates, bone morphogenetic proteins (BMPs) play an important role in various biological processes. However, the function of BMPs in crustaceans is still unknown. In our study, a ligand (BMP7) and two receptors (Sp-BMPRIB and Sp-BMPRII) are cloned firstly in the mud crab, Scylla paramamosain. The qRT-PCR demonstrated that both ligand and receptors were expressed in various tissues, especially in ovary. The expression of BMPRs mRNA increased along the ovarian development, while BMP7 had an opposite tendency. In-situ hybridization revealed that Sp-BMPRIB and Sp-BMPRII were expressed in both oocytes and follicle cells, whereas Sp-BMP7 was exclusively localized in follicle cells. RNAi experiments showed that the expression levels of Smad1 and vitellogenin receptor declined rapidly after BMPRs were silenced. Based on these data, we hypothesized that in S. paramamosain, BMP7 and BMPRs had impact on the ovarian development, presumably via the autocrine/paracrine way.
Collapse
Affiliation(s)
- Ling Shu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yanan Yang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361102, China.
| |
Collapse
|
26
|
Johnston CJC, Smyth DJ, Dresser DW, Maizels RM. TGF-β in tolerance, development and regulation of immunity. Cell Immunol 2015; 299:14-22. [PMID: 26617281 PMCID: PMC4711336 DOI: 10.1016/j.cellimm.2015.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
The broader superfamily of TGF-β-like proteins is reviewed, and signaling pathways summarised. The role of TGF-β in the immune tolerance and control of infectious disease is discussed. The superfamily member AMH is involved in embryonic sexual differentiation. Helminth parasites appear to exploit the TGF-β pathway to suppress host immunity. TGF-β homologues and mimics from parasites offer a new route for therapeutic tolerance induction.
The TGF-β superfamily is an ancient metazoan protein class which cuts across cell and tissue differentiation, developmental biology and immunology. Its many members are regulated at multiple levels from intricate control of gene transcription, post-translational processing and activation, and signaling through overlapping receptor structures and downstream intracellular messengers. We have been interested in TGF-β homologues firstly as key players in the induction of immunological tolerance, the topic so closely associated with Ray Owen. Secondly, our interests in how parasites may manipulate the immune system of their host has also brought us to study the TGF-β pathway in infections with longlived, essentially tolerogenic, helminth parasites. Finally, within the spectrum of mammalian TGF-β proteins is an exquisitely tightly-regulated gene, anti-Müllerian hormone (AMH), whose role in sex determination underpins the phenotype of freemartin calves that formed the focus of Ray’s seminal work on immunological tolerance.
Collapse
Affiliation(s)
- Chris J C Johnston
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Danielle J Smyth
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - David W Dresser
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| |
Collapse
|
27
|
Japa O, Hodgkinson JE, Emes RD, Flynn RJ. TGF-β superfamily members from the helminth Fasciola hepatica show intrinsic effects on viability and development. Vet Res 2015; 46:29. [PMID: 25879787 PMCID: PMC4354977 DOI: 10.1186/s13567-015-0167-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/25/2015] [Indexed: 12/31/2022] Open
Abstract
The helminth Fasciola hepatica causes fasciolosis throughout the world, a major disease of livestock and an emerging zoonotic disease in humans. Sustainable control mechanisms such as vaccination are urgently required. To discover potential vaccine targets we undertook a genome screen to identify members of the transforming growth factor (TGF) family of proteins. Herein we describe the discovery of three ligands belonging to this superfamily and the cloning and characterisation of an activin/TGF like molecule we term FhTLM. FhTLM has a limited expression pattern both temporally across the parasite stages but also spatially within the worm. Furthermore, a recombinant form of this protein is able to enhance the rate (or magnitude) of multiple developmental processes of the parasite indicating a conserved role for this protein superfamily in the developmental biology of a major trematode parasite. Our study demonstrates for the first time the existence of this protein superfamily within F. hepatica and assigns a function to one of the three identified ligands. Moreover further exploration of this superfamily may yield future targets for diagnostic or vaccination purposes due to its stage restricted expression and functional role.
Collapse
Affiliation(s)
- Ornampai Japa
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| | - Jane E Hodgkinson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L3 5RF, UK.
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| | - Robin J Flynn
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| |
Collapse
|