1
|
Zhai X, Guo Y, Shang M, Guo Z, Ren D, Abd El-Aty AM. Preparation, characterization and antibacterial investigation of water-soluble curcumin-chitooligosaccharide complexes. Carbohydr Polym 2025; 351:123083. [PMID: 39779006 DOI: 10.1016/j.carbpol.2024.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Curcumin has a wide range of application prospects, with various bioactivities in the food industry and in the biomedical field. However, curcumin has poor water solubility and is sensitive to pH, light and temperature. In this study, curcumin-chitooligosaccharide (CUR-COS) complexes were prepared via mechanochemical methods, and the CUR-COS complex was more soluble after freeze-drying (up to 862-fold greater than that of curcumin). The complex was characterized by SEM, XRD, FT-IR and thermal analysis, and its stability against pH, light and thermal treatment was evaluated. COSs could serve as carriers for curcumin delivery. Additionally, the antibacterial activity of the formed complex was determined. As a result, CUR-COS exhibited significantly better water solubility, enhanced stability, and stronger antibacterial properties than did pure CUR, offering a promising pathway for the extensive application of lipophilic natural products in foods, especially water-based products.
Collapse
Affiliation(s)
- Xingchen Zhai
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Yu Guo
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Man Shang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Ziyan Guo
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Difeng Ren
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
2
|
Muthusamy V, Govindhan T, Amirthalingam M, Pottanthara Ashokan A, Thangavel H, Palanisamy S, Paramasivam P. Chitosan nanoparticles encapsulated Piper betle essential oil alleviates Alzheimer's disease associated pathology in Caenorhabditis elegans. Int J Biol Macromol 2024; 279:135323. [PMID: 39241994 DOI: 10.1016/j.ijbiomac.2024.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
A multifaceted approach in treating Alzheimer's disease (AD), a neurodegenerative condition that poses health risks in the aging population is explored in this investigation via encapsulating Piper betle essential oil (PBEO) in chitosan nanoparticles (ChNPs) to improve solubility and efficacy of PBEO. PBEO-ChNPs mitigated AD-like features more effectively than free PBEO by delaying paralysis progression and reducing serotonin hypersensitivity, ROS levels, Aβ deposits, and neurotoxic Aβ-oligomers in the Caenorhabditis elegans AD model. PBEO-ChNPs significantly improved lifespan, neuronal health, healthspan, cognitive function, and reversed deficits in chemotaxis and reproduction. PBEO-ChNPs also induced stress response genes daf-16, sod-3, and hsp-16.2. The participation of the DAF-16 pathway in reducing Aβ-induced toxicity was confirmed by daf-16 RNAi treatment, and upregulation of autophagy genes leg-1, unc-51, and bec-1 was noted. This study is the first to demonstrate an alternative biopolymeric nanoformulation with natural PBEO and chitosan, in mitigating AD and its associated symptoms.
Collapse
Affiliation(s)
- Velumani Muthusamy
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Thiruppathi Govindhan
- Department of Zoology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Mohankumar Amirthalingam
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | | | - Hema Thangavel
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Sundararaj Palanisamy
- Department of Zoology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India.
| | - Premasudha Paramasivam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India.
| |
Collapse
|
3
|
Wijesekara T, Xu B. New Insights into Sources, Bioavailability, Health-Promoting Effects, and Applications of Chitin and Chitosan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17138-17152. [PMID: 39042786 DOI: 10.1021/acs.jafc.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chitin and chitosan are mostly derived from the exoskeletons of crustaceans, insects, and fungi. Chitin is the second most abundant biopolymer after cellulose, and it is a fibrous polysaccharide which resists enzymatic degradation in the stomach but undergoes microbial fermentation in the colon, producing beneficial metabolites. Chitosan, which is more soluble in the alkaline small intestine, is more susceptible to enzymatic action. Both biopolymers show limited absorption into the bloodstream, with smaller particles exhibiting better bioavailability. The health effects include anti-inflammatory properties, potential in immune system modulation, impacts on cholesterol levels, and antimicrobial effects, with a specific focus on implications for gut health. Chitin and chitosan exhibit anti-inflammatory properties by interacting with immune cells, influencing cytokine production, and modulating immune responses, which may benefit conditions characterized by chronic inflammation. These biopolymers can impact cholesterol levels by binding to dietary fats and reducing lipid absorption. Additionally, their antimicrobial properties contribute to gut health by controlling harmful pathogens and promoting beneficial gut microbiota. This review explores the extensive health benefits and applications of chitin and chitosan, providing a detailed examination of their chemical compositions, dietary sources, and applications, and critically assessing their health-promoting effects in the context of human well-being.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec H9X 3V9, Canada
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|
4
|
Lu H, Wang M, Zhou S, Chen K, Wang L, Yi Z, Bai L, Zhang Y. Chitosan Oligosaccharides Mitigate Flooding Stress Damage in Rice by Affecting Antioxidants, Osmoregulation, and Hormones. Antioxidants (Basel) 2024; 13:521. [PMID: 38790626 PMCID: PMC11117766 DOI: 10.3390/antiox13050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, during direct seeding, rice is extremely vulnerable to flooding stress, which impairs rice's emergence and seedling growth and results in a significant yield loss. According to our research, chitosan oligosaccharides have the potential to be a chemical seed-soaking agent that greatly increases rice's resistance to flooding. Chitosan oligosaccharides were able to enhance seed energy supply, osmoregulation, and antioxidant capacity, according to physiological index assessments. Using transcriptome and metabolomic analysis, we discovered that important differential metabolites and genes were involved in the signaling pathway for hormone synthesis and antioxidant capacity. Exogenous chitosan oligosaccharides specifically and significantly inhibit genes linked to auxin, jasmonic acid, and abscisic acid. This suggested that applying chitosan oligosaccharides could stabilize seedling growth and development by controlling associated hormones and reducing flooding stress by enhancing membrane stability and antioxidant capacity. Finally, we verified the effectiveness of exogenous chitosan oligosaccharides imbibed in seeds by field validation, demonstrating that they can enhance rice seedling emergence and growth under flooding stress.
Collapse
Affiliation(s)
- Haoyu Lu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Mei Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Shangfeng Zhou
- Hunan Agricultural Biotechnology Research Institute, Changsha 410125, China;
| | - Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
- Hunan Agricultural Biotechnology Research Institute, Changsha 410125, China;
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (H.L.); (M.W.); (K.C.); (L.W.)
| |
Collapse
|
5
|
Geng H, Chen M, Guo C, Wang W, Chen D. Marine polysaccharides: Biological activities and applications in drug delivery systems. Carbohydr Res 2024; 538:109071. [PMID: 38471432 DOI: 10.1016/j.carres.2024.109071] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The ocean is the common home of a large number of marine organisms, including plants, animals, and microorganisms. Researchers can extract thousands of important bioactive components from the oceans and use them extensively to treat and prevent diseases. In contrast, marine polysaccharide macromolecules such as alginate, carrageenan, Laminarin, fucoidan, chitosan, and hyaluronic acid have excellent physicochemical properties, good biocompatibility, and high bioactivity, which ensures their wide applications and strong therapeutic potentials in drug delivery. Drug delivery systems (DDS) based on marine polysaccharides and modified marine polysaccharide molecules have emerged as an innovative technology for controlling drug distribution on temporal, spatial, and dosage scales. They can detect and respond to external stimuli such as pH, temperature, and electric fields. These properties have led to their wide application in the design of novel drug delivery systems such as hydrogels, polymeric micelles, liposomes, microneedles, microspheres, etc. In addition, marine polysaccharide-based DDS not only have smart response properties but also can combine with the unique biological properties of the marine polysaccharide base to exert synergistic therapeutic effects. The biological activities of marine polysaccharides and the design of marine polysaccharide-based DDS are reviewed. Marine polysaccharide-based responsive DDS are expected to provide new strategies and solutions for disease treatment.
Collapse
Affiliation(s)
- Hongxu Geng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Meijun Chen
- Yantai Muping District Hospital of Traditional Chinese Medicine, No.505, Government Street, Muping District, Yantai, 264110, PR China.
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao, 266003, PR China.
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
6
|
Bui VH, Vo HTN, Kim SK, Ngo DN. Caffeic acid-grafted chitooligosaccharides downregulate MAPK and NF-kB in RAW264.7 cells. Chem Biol Drug Des 2024; 103:e14496. [PMID: 38444006 DOI: 10.1111/cbdd.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 03/07/2024]
Abstract
Chitooligosaccharide (COS) is a derivative of chitosan, which is a natural macromolecular compound. COS has been shown effects in an inflammatory response. Recent reports show that COS derivatives have enhanced anti-inflammatory activity by inhibiting intracellular signals. Evaluation of the anti-inflammatory effect of caffeic acid conjugated COS chain (CA-COS) was performed in this study. The effects of CA-COS on the inflammatory response were demonstrated in lipopolysaccharide-stimulated RAW264.7 macrophages. The results showed that CA-COS inhibited nitric oxide (NO) production and downregulated the gene expression of nitric oxide synthase (iNOS), and cytokines such as tumor necrosis factor-alpha (TNF-α), IL-1β, and IL-6 without cytotoxic effect. In addition, western blot analysis showed that CA-COS inhibits the protein expression of iNOS and nuclear factor kappa B (NF-kB), including p50 and p65, and mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these results provide clear evidence for the anti-inflammatory mechanism of CA-COS that show great potential as a novel agent for the prevention and therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Van-Hoai Bui
- Department of Biochemistry, Faculty of Biology-Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Ho Chi Minh City University of Industry and Trade (HUIT), Ho Chi Minh City, Vietnam
| | - Hong-Tham N Vo
- Department of Biochemistry, Faculty of Biology-Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Seoul, Korea
| | - Dai-Nghiep Ngo
- Department of Biochemistry, Faculty of Biology-Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Wang J, Duan X, Zhong D, Zhang M, Li J, Hu Z, Han F. Pharmaceutical applications of chitosan in skin regeneration: A review. Int J Biol Macromol 2024; 261:129064. [PMID: 38161006 DOI: 10.1016/j.ijbiomac.2023.129064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Skin regeneration is the process that restores damaged tissues. When the body experiences trauma or surgical incisions, the skin and tissues on the wound surface become damaged. The body repairs this damage through complex physiological processes to restore the original structural and functional states of the affected tissues. Chitosan, a degradable natural bioactive polysaccharide, has attracted widespread attention partly owing to its excellent biocompatibility and antimicrobial properties; additionally, a modified form of this compound has been shown to promote skin regeneration. This review evaluates the recent research progress in the application of chitosan to promote skin regeneration. First, we discuss the basic principles of the extraction and preparation processes of chitosan from its source. Subsequently, we describe the functional properties of chitosan and the optimization of these properties through modification. We then focus on the existing chitosan-based biomaterials developed for clinical applications and their corresponding effects on skin regeneration, particularly in cases of diabetic and burn wounds. Finally, we explore the challenges and prospects associated with the use of chitosan in skin regeneration. Overall, this review provides a reference for related research and contributes to the further development of chitosan-based products in cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jie Wang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Donghuo Zhong
- Medical college of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Mengqi Zhang
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Jianying Li
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Zhijian Hu
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China
| | - Feng Han
- Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang 332000, Jiangxi, China.
| |
Collapse
|
8
|
Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers (Basel) 2023; 15:2867. [PMID: 37447512 DOI: 10.3390/polym15132867] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Chitosan is a naturally occurring compound that can be obtained from deacetylated chitin, which is obtained from various sources such as fungi, crustaceans, and insects. Commercially, chitosan is produced from crustaceans. Based on the range of its molecular weight, chitosan can be classified into three different types, namely, high molecular weight chitosan (HMWC, >700 kDa), medium molecular weight chitosan (MMWC, 150-700 kDa), and low molecular weight chitosan (LMWC, less than 150 kDa). Chitosan shows several properties that can be applied in horticultural crops, such as plant root growth enhancer, antimicrobial, antifungal, and antiviral activities. Nevertheless, these properties depend on its molecular weight (MW) and acetylation degree (DD). Therefore, this article seeks to extensively review the properties of chitosan applied in the agricultural sector, classifying them in relation to chitosan's MW, and its use as a material for sustainable agriculture.
Collapse
Affiliation(s)
- Ramón Román-Doval
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca 68230, Mexico
| | | | - Aldo Y Tenorio-Barajas
- Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla, Puebla 72570, Mexico
| | - Alejandro Gómez-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Oaxaca 68230, Mexico
| | | |
Collapse
|
9
|
Liu Y, Yang H, Wen F, Bao L, Zhao Z, Zhong Z. Chitooligosaccharide-induced plant stress resistance. Carbohydr Polym 2023; 302:120344. [PMID: 36604042 DOI: 10.1016/j.carbpol.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
In nature, the production of plant stress resistance traits is often induced by extreme environmental conditions. Under extreme conditions, plants can be irreversibly damaged. Intervention with phytostimulants, however, can improve plant stress resistance without causing damage to the plants themselves, hence maintaining the production. For example, exogenous substances such as proteins and polysaccharides can be used effectively as phytostimulants. Chitooligosaccharide, a plant stimulant, can promote seed germination and plant growth and development, and improve plant photosynthesis. In this review, we summarize progress in the research of chitooligosaccharide-induced plant stress resistance. The mechanism and related experiments of chitooligosaccharide-induced resistance to pathogen, drought, low-temperature, saline-alkali, and other stresses are classified and discussed. In addition, we put forward the challenges confronted by chitooligosaccharide-induced plant stress resistance and the future research concept that requires multidisciplinary cooperation, which could provide data for the in-depth study of the effect of chitooligosaccharide on plants.
Collapse
Affiliation(s)
- Yao Liu
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hehe Yang
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fang Wen
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Liangliang Bao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Zhao
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhimei Zhong
- College of Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
10
|
Rout SR, Kar B, Pradhan D, Biswasroy P, Haldar J, Rajwar TK, Sarangi MK, Rai VK, Ghosh G, Rath G. Chitosan as a potential biomaterial for the management of oral mucositis, a common complication of cancer treatment. Pharm Dev Technol 2023; 28:78-94. [PMID: 36564887 DOI: 10.1080/10837450.2022.2162544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oral mucositis is a serious issue in patients receiving oncological therapies. Mucosal protectants considered to be one of the preferred choices used in the management of mucositis. However, the protective efficacy of currently available mucosal protectants has been significantly compromised due to poor retention, lack of lubrication, poor biodegradability, and inability to manage secondary complications. Chitosan is a promising material for mucosal applications due to its beneficial biomedical properties. Chitosan is also anti-inflammatory, anti-microbial, and capable of scavenging free radicals, makes it a good candidate for the treatment of oral mucositis. Additionally, chitosan's amino polysaccharide skeleton permits a number of chemical alterations with better bioactive performance. This article provides a summary of key biological properties of chitosan and its derivatives that are useful for treating oral mucositis. Current literature evidence shows that Chitosan has superior mucosal protective properties when utilised alone or as delivery systems for co-encapsulated drugs.
Collapse
Affiliation(s)
- Sudhanshu Ranjan Rout
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Prativa Biswasroy
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jitu Haldar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
11
|
Bhowmik S, Agyei D, Ali A. Bioactive chitosan and essential oils in sustainable active food packaging: Recent trends, mechanisms, and applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jiang S, Hu H. Characteristics of catechin loading rice porous starch/chitosan functional microsphere and its adsorption towards Pb2+. Heliyon 2022; 8:e10048. [PMID: 35965989 PMCID: PMC9364094 DOI: 10.1016/j.heliyon.2022.e10048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we explore the adsorption potential of catechin (CT) loaded composite microspheres and provide a new micron scale carrier of functional factor. Chitosan (CS) modified rice porous starch (RPS/CS) was used as a CT adsorption carrier to prepare bioactive CT-loaded composite microspheres (CT@RPS/CS). The adsorption kinetics, storage characteristics, and biological activity maintenance of CT@RPS/CS were studied in an aqueous solution, and the sustained-release characteristics of CT@RPS/CS were studied in vitro during simulated gastrointestinal digestion. An aqueous solution further studied the removal characteristics of adsorbed heavy metal ion Pb2+. RPS/CS can significantly improve the ability to adsorb CT. RPS/CS can also significantly improve CT's storage stability, antioxidant stress, and slow-release characteristics, and the sustained release effect in gastric and intestinal juice. CT@RPS/CS can be removed Pb2+ by adsorbing in the solution, and their adsorption was physical adsorption and chemisorption, but the primary interaction is chemisorption. CT@RPS/CS can be used as a micron carrier of new food functional factors, which has potential space for improving and expanding the functional characteristics of its loaded functional factors and the endowing of new functions.
Collapse
Affiliation(s)
- Suwei Jiang
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, Anhui, China
- Corresponding author.
| | - Hailiang Hu
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Anhui, 230022, China
| |
Collapse
|
13
|
Wang Y, Shen C, Huo K, Cai D, Zhao G. Antioxidant activity of yeast mannans and their growth-promoting effect on Lactobacillus strains. Food Funct 2021; 12:10423-10431. [PMID: 34596192 DOI: 10.1039/d1fo01470f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yeast mannans from Saccharomyces cerevisiae (123.2 kDa, 40.5 kDa and 21.3 kDa) were prepared. The scavenging abilities of Fe2+, OH˙, and O2˙- and protective capacities against lipid peroxidation and oxidative DNA damage increased with the reduction of the molecular weights of yeast mannans. The highest scavenging abilities of Fe2+, OH˙ and O2˙- (25.32%, 70.8%, and 61.5%) were observed with YM-90, and it showed an anti-lipid peroxidation capacity of 65.82%, which was much stronger than that of vitamin C (VC), with a thiobarbituric acid-reactive substance (TBARS) inhibition rate of 80.41%. However, the highest DPPH scavenging rate (88.7%) was exhibited by YM-30. In addition, the growth-promoting effect of yeast mannans on Lactobacillus strains was further confirmed, and a 54.2% increment of Lactobacillus plantarum ZWR5 cell viability was achieved by YM-90. The results indicated the potential industrial applications of this yeast mannan technology in therapeutic and nutraceutical production.
Collapse
Affiliation(s)
- Yong Wang
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Chongyu Shen
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Kai Huo
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqun Zhao
- Fermentation Technology Innovation Center of Hebei Province, College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| |
Collapse
|
14
|
Hamed HS, Ali RM, Shaheen AA, Hussein NM. Chitosan nanoparticles alleviated endocrine disruption, oxidative damage, and genotoxicity of Bisphenol-A- intoxicated female African catfish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109104. [PMID: 34146699 DOI: 10.1016/j.cbpc.2021.109104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Bisphenol-A (BPA) is widely used in production of plastic products. It can reach the ecosystems affecting aquatic organisms most likely fishes. The purpose of this study was to study the toxic effects of BPA on the biochemical variables and oxidative stress in female African catfish, Clarias gariepinus and to estimate the protective role of chitosan nanoparticles (CSNPs) against BPA toxicity. Five groups in triplicates of fish were divided as follows: group I was control, group II was treated with CSNPs (0.66 ml/L), group III was exposed to BPA (1.43 μg/L), group IV was treated with BPA (1.43 μg/L) plus CSNPs (0.33 ml/L), and group V was treated with BPA (1.43 μg/L) plus CSNPs (0.66 ml/L) for 30 days. Blood and liver tissue samples were collected at the end of experiment for the biochemical and oxidative stress biomarkers analyses. Results exhibited that serum Follicle Stimulating Hormone (FSH) and 17-β Estradiol (E2) were significantly decreased in female catfish. While, serum Testosterone (T.) and Luteinizing Hormone (LH) were increased after exposure to BPA. Marked increment in superoxide dismutase (SOD) and malondialdehyde (MDA) levels of hepatic tissue of catfish exposed to BPA. Furthermore, significant reduction in hepatic catalase (CAT), glutathione peroxidase (GSH-px), total antioxidant capacity (TAC), reduced glutathione (GSH), and glutathione S-transferase (GST) levels were decreased significantly in BPA-exposed catfish compared to the control group. However, administration of female C. gariepinus with the low and high doses (0.33 ml/L and 0.66 ml/L) of CNPs restored the biochemical parameters to be close to the normal values of the control group and also, reduced oxidative stress induced by BPA toxicity. This improvement was evident in fish administrated with the high CSNPs dose (0.66 ml/L) compared to catfish exposed to BPA in group (III). Furthermore, the percentage of hepatic DNA damage was detected in group III exposed to BPA alone. However, it was declined after co- administration with both the low and high doses of CSNPs. The study has revealed that treatment with CSNPs has antagonistic functions against the toxicity of BPA in female African catfish.
Collapse
Affiliation(s)
- Heba S Hamed
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt.
| | - Rokaya M Ali
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| | - Adel A Shaheen
- Department of Aquatic animals Diseases and Management, Faculty of Veterinary Medicine, Banha University, Banha, Egypt
| | - Naema M Hussein
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| |
Collapse
|
15
|
Hao W, Li K, Ma Y, Li R, Xing R, Yu H, Li P. Preparation and Antioxidant Activity of Chitosan Dimers with Different Sequences. Mar Drugs 2021; 19:md19070366. [PMID: 34201994 PMCID: PMC8305433 DOI: 10.3390/md19070366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023] Open
Abstract
As a popular marine saccharide, chitooligosaccharides (COS) has been proven to have good antioxidant activity. Its antioxidant effect is closely related to its degree of polymerization, degree of acetylation and sequence. However, the specific structure-activity relationship remains unclear. In this study, three chitosan dimers with different sequences were obtained by the separation and enzymatic method, and the antioxidant activity of all four chitosan dimers were studied. The effect of COS sequence on its antioxidant activity was revealed for the first time. The amino group at the reducing end plays a vital role in scavenging superoxide radicals and in the reducing power of the chitosan dimer. At the same time, we found that the fully deacetylated chitosan dimer DD showed the strongest DPPH scavenging activity. When the amino groups of the chitosan dimer were acetylated, it showed better activity in scavenging hydroxyl radicals. Research on COS sequences opens up a new path for the study of COS, and is more conducive to the investigation of its mechanism.
Collapse
Affiliation(s)
- Wentong Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Yuzhen Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (K.L.); (R.X.); Tel.: +86-0532-82898512 (K.L.); +86-0532-82898780 (R.X.)
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (W.H.); (Y.M.); (R.L.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
16
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
17
|
Sutthasupha P, Lungkaphin A. The potential roles of chitosan oligosaccharide in prevention of kidney injury in obese and diabetic conditions. Food Funct 2021; 11:7371-7388. [PMID: 32839793 DOI: 10.1039/d0fo00302f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is closely associated with insulin resistance (IR). The most likely links between the two are obesity-mediated systemic low-grade chronic inflammation, endoplasmic reticulum stress and mitochondrial dysfunction, which are all known to contribute to the development of type 2 diabetes (T2DM) and eventually diabetic nephropathy (DN). Chitosan oligosaccharide (COS) is an oligomer of chitosan prepared by the deacetylation of chitin commonly found in exoskeletons of crustaceans such as shrimp and crab as well as the cell walls of fungi. COS has various biological effects including lipid lowering, anti-inflammation, anti-diabetes, and anti-oxidant effects. Therefore, COS is a potential new therapeutic agent for treatment of the obesity-induced DN condition. It is an abundant natural polymer and therefore freely available. This review includes information regarding the relationship between obesity, IR, T2DM, and DN as well as the potential usefulness of COS in controlling lipid and cholesterol metabolism, T2DM and kidney injury models in both in vivo and in vitro studies. However, evidence is limited regarding the effect of COS on the DN model. Further studies, especially in obesity-induced DN, are needed to support the mechanisms proposed in this review.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. and Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Wei L, Li Y, Chang Q, Guo G, Lan R. Effects of chitosan oligosaccharides on intestinal oxidative stress and inflammation response in heat stressed rats. Exp Anim 2021; 70:45-53. [PMID: 32921697 PMCID: PMC7887628 DOI: 10.1538/expanim.20-0085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
This study was to verify the effects of chitosan oligosaccharides (COS) on intestinal integrity, oxidative status, and inflammatory response in a heat-stressed rat model. A total of 24 male Sprague Dawley rats were randomly divided into 3 treatment: CON, the control group; HS, the heat stress group; HSC, the heat stress group with 200 mg/kg COS. Rats in the HS and HSC group exposed to a cyclical heat stress for 7 consecutive days. The CON and HS group provided basal diet, and the HSC group provided the same diet with 200 mg/kg COS. Compared with the HS group, rats in the HSC group had lower serum diamine oxidase and D-lactate acid level, higher villus height of jejunum and ileum, lower malondialdehyde (MDA) content in duodenum, jejunum, and ileum mucosa, higher glutathione peroxidase (GSH-Px), catalase (CAT) and total antioxidant capacity (T-AOC) activity in duodenum mucosa, higher T-AOC activity in jejunum mucosa, and higher glutathione (GSH) level in ileum mucosa. Compared with the HS group, rats in the HSC group had higher interleukin-10 (IL-10) level, but lower tumor necrosis factor-α (TNF-α) level in duodenum, jejunum, and ileum mucosa. These results indicated that COS may alleviate intestinal damage under heat stress condition, probably by modulating intestinal inflammatory response and oxidative status.
Collapse
Affiliation(s)
- Linlin Wei
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| | - Yaxuan Li
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| | - Qingqing Chang
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| | - Guangzhen Guo
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| | - Ruixia Lan
- College of Coastal Agriculture Science, Guangdong Ocean University, No. 1 Haida Road, Mazhang District, Zhanjiang 524-088, Guangdong, P.R. China
| |
Collapse
|
19
|
Yousef MI, Abd HH, Helmy YM, Kamel MAN. Synergistic effect of curcumin and chitosan nanoparticles on nano-hydroxyapatite-induced reproductive toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9362-9376. [PMID: 33141380 DOI: 10.1007/s11356-020-11395-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity/biocompatibility of hydroxyapatite nanoparticles (HAPNPs), a prospective nano-biomaterial, is extensively studied, its interaction on the reproductive system following exposure is less exploited. In the present study, male rats were exposed to HAPNPs (300 mg/kg BW) to determine its possible reproductive toxicity. Also, the protective effects of chitosan (CSNPs, 280 mg/kg BW) and/or curcumin (CurNPs, 15 mg/kg BW) nanoparticles against HAPNPs-induced reproductive toxicity were studied. Animals were orally gavage daily with respective doses for 45 consecutive days. The obtained results indicated that HAPNPs caused a significant decrease in sperm count, sperm motility, testosterone hormone, steroidogenic enzymes (17-ketosteroid reductase and 17β-hydroxysteroid dehydrogenase), and antioxidant enzymes (glutathione peroxidase, glutathione S-transferase, catalase, and superoxide dismutase) in addition to total antioxidant capacity and reduced glutathione. LH and FSH, abnormal sperm, oxidative stress parameters (thiobarbituric acid-reactive substances (TBARS), nitric oxide (NO), and 8-hydroxy-deoxyguanosine (8-OHdG)), p53, TNFα, and interleukin-6 were significantly increased. The DNA damage was also analyzed by assaying 8-OHdG level which is considered as an indicator of genotoxicity and also suppression of the gene expression of mtTFA, induction of UCP2. Similarly, the histopathological evaluation was also changed following exposure to HAPNPs. The antioxidant activity of CSNPs and CurNPs showed mitigating effect against reproductive deterioration induced by HAPNPs throughout improvements in semen characteristics, sex hormones, inflammatory factors, and antioxidant status. The present study concluded that HAPNPs induced reproductive toxicity and it is important to use nano-antioxidants CSNPs and CurNPs as protective agents.
Collapse
Affiliation(s)
- Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby, PO Box 832, Alexandria, 21526, Egypt.
| | - Haitham Hassan Abd
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby, PO Box 832, Alexandria, 21526, Egypt
| | - Yasser Mohamed Helmy
- Scientific Consultant at Pharco Company for Pharmaceutical Products, Alexandria, Egypt
| | - Maher Abdel-Nabi Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Vieira TF, Corrêa RCG, Peralta RA, Peralta-Muniz-Moreira RF, Bracht A, Peralta RM. An Overview of Structural Aspects and Health Beneficial Effects of Antioxidant Oligosaccharides. Curr Pharm Des 2020; 26:1759-1777. [PMID: 32039673 DOI: 10.2174/1381612824666180517120642] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides. METHODS The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. RESULTS The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules. CONCLUSION A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.
Collapse
Affiliation(s)
- Tatiane F Vieira
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil
| | - Rúbia C G Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.,Program of Master in Science, Technology and Food Safety, Cesumar Institute of Science, Technology and Innovation (ICETI), Centro Universitário de Maringá, Maringá, Paraná, Brazil
| | - Rosely A Peralta
- Department of Chemistry, Universidade Federal de Santa Catarina, SC, Brazil
| | | | - Adelar Bracht
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Rosane M Peralta
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
21
|
Lan R, Wei L, Chang Q, Wu S, Zhihui Z. Effects of dietary chitosan oligosaccharides on oxidative stress and inflammation response in liver and spleen of yellow-feather broilers exposed to high ambient temperature. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1850215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Linlin Wei
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Qingqing Chang
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Shengnan Wu
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| | - Zhao Zhihui
- Department of Animal Science, College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang, P.R. China
| |
Collapse
|
22
|
Li M, Xie R, Liu J, Gan L, Long M. Preparation of chitooligosaccharide acetate salts with narrow molecular size distribution and the antioxidative activity. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Manek E, Darvas F, Petroianu GA. Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer's Disease. Molecules 2020; 25:E4866. [PMID: 33096898 PMCID: PMC7587961 DOI: 10.3390/molecules25204866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 24 million people worldwide and represents an immense medical, social and economic burden. While a vast array of active pharmaceutical ingredients (API) is available for the prevention and possibly treatment of AD, applicability is limited by the selective nature of the blood-brain barrier (BBB) as well as by their severe peripheral side effects. A promising solution to these problems is the incorporation of anti-Alzheimer drugs in polymeric nanoparticles (NPs). However, while several polymeric NPs are nontoxic and biocompatible, many of them are not biodegradable and thus not appropriate for CNS-targeting. Among polymeric nanocarriers, chitosan-based NPs emerge as biodegradable yet stable vehicles for the delivery of CNS medications. Furthermore, due to their mucoadhesive character and intrinsic bioactivity, chitosan NPs can not only promote brain penetration of drugs via the olfactory route, but also act as anti-Alzheimer therapeutics themselves. Here we review how chitosan-based NPs could be used to address current challenges in the treatment of AD; with a specific focus on the enhancement of blood-brain barrier penetration of anti-Alzheimer drugs and on the reduction of their peripheral side effects.
Collapse
Affiliation(s)
- Eniko Manek
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| | - Ferenc Darvas
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA;
| | - Georg A. Petroianu
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| |
Collapse
|
24
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
25
|
Dietary chitosan oligosaccharides alleviate heat stress-induced intestinal oxidative stress and inflammatory response in yellow-feather broilers. Poult Sci 2020; 99:6745-6752. [PMID: 33248590 PMCID: PMC7705058 DOI: 10.1016/j.psj.2020.09.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study was to evaluate the effects of chitosan oligosaccharides (COS) on intestinal permeability, morphology, antioxidant status, and inflammatory response in heat-stressed broilers. A total of 108 thirty-five-day-old Chinese yellow-feather broilers (body weight 470.31 ± 13.15 g) were randomly allocated to 3 dietary treatments as follows: CON group, basal diet and raised under normal temperature (24°C); HS group, basal diet and raised under cycle heat stress (34°C from 10:00–18:00 and 24°C for the rest time); HSC group, basal diet with 200 mg/kg COS supplementation and raised under cycle heat stress. Each treatment had 6 replication pens and 6 broilers per pen. Compared with the CON group, heat stress decreased (P < 0.05) the relative weight of duodenum and jejunum; the relative length and villus height (VH) of duodenum, jejunum, and ileum; the ileum VH to crypt depth ratio; duodenum mucosal catalase (CAT) activity; and jejunum mucosal glutathione peroxidase (GSH-Px) and CAT activity, whereas it increased (P < 0.05) serum diamine oxidase (DAO) activity and D-lactate acid (D-LA) content, duodenum and jejunum mucosal malondialdehyde (MDA) and interleukin-1β (IL-1β) content, and ileum mucosal tumor necrosis factor-α content. Compared to the HS group, dietary COS supplementation increased (P < 0.05) the relative length of duodenum, jejunum, and ileum; the VH of jejunum and ileum; and duodenum and jejunum mucosal GSH-Px activity, whereas it decreased (P < 0.05) serum DAO activity and D-LA concentration and duodenum and jejunum mucosal MDA and IL-1β content. These results suggested that dietary COS supplementation had beneficial effects on intestinal morphology by increasing jejunum and ileum VH; permeability by decreasing serum DAO activity and D-LA content; antioxidant capacity by decreasing duodenum and jejunum mucosal MDA content and by increasing duodenum and jejunum GSH-Px activity; and inflammatory response by decreasing duodenum and jejunum mucosal IL-1β content.
Collapse
|
26
|
Chen M, Chen XQ, Tian LX, Liu YJ, Niu J. Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108791. [PMID: 32413493 DOI: 10.1016/j.cbpc.2020.108791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 11/18/2022]
Abstract
This study was to explore the impacts of water-soluble chitosan and mixed probiotics on growth performance, intestinal short-chain fatty acids (SCFAs) and immunity and ammonia resistance in Litopenaeus vannamei. Shrimp were fed one of four experimental diets including basal diet (CON), 0.10% water-soluble chitosan diet (WSC), 0.30% mixed probiotics (MP) and 0.10% water-soluble chitosan +0.30% mixed probiotics (SYN) for 8 weeks. Results showed shrimp fed with dietary MP and SYN diets could significantly improve growth performance and feed utilization in comparison with those of shrimp fed with CON diet (P < 0.05). Acetic acid content was significantly higher in shrimp fed with all supplemented diets compared to that in shrimp fed with CON diet (P < 0.05). Compared to shrimp fed with CON diet, dietary WSC and MP significantly influenced the contents and/or activities of aspartate aminotransferase (AST), total protein (TP), superoxide dismutase (SOD), lysozyme (LZM) in serum, SOD, malondialdehyde (MDA), acid phosphatase (ACP) in hepatopancreas and SOD and MDA in intestine. In addition, the gene expression levels of prophenoloxidase (proPO), penaiedin 3a (Pen-3a), crustin (Crustin), serine proteinase (SP), GPX and SOD in hepatopancreas, were significantly upregulated compared to those in CON diet at some time points (P < 0.05). Significantly higher survival rate in all supplemented diets were observed after ammonia challenge (P < 0.05). Therefore, the above results indicated dietary WSC and MP or SYN could enhance intestinal SCFAs content, stimulated antioxidant capacity and immune response, and increase the ammonia resistance of Litopenaeus vannamei. Besides, the growth performance was also improved by dietary MP and SYN.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xian-Quan Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
27
|
Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β expression. Int J Biol Macromol 2020; 164:1565-1574. [PMID: 32735924 DOI: 10.1016/j.ijbiomac.2020.07.212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 01/20/2023]
Abstract
The study aimed to investigate the potential attenuation effect of chitosan in liver ischemia/reperfusion injury (I/R), and its relevant protective mechanisms. Chitosan (200 mg/kg) has been administered orally for 30 days, later animals underwent liver 45 min ischemia and reperfusion for 60 min. Following treatment with chitosan, the levels of serum aminotransferases and lactate dehydrogenase were significantly reduced. Similarly, hepatic (GSH, SOD, CAT, GST and GPx) were enhanced, and the level of tissue malondialdehyde (MDA) was decreased. In addition, inflammatory cytokinesis (TNF-α and TGF-β) have recorded a significant decrease in their mRNA expression and protein levels using qPCR and ELISA respectively. Marked reduction of apoptosis has been indicated by the elevation in BCL2, and decreasing in BAX, Caspace-3 and Cytochrome-c expression levels, which furthermore confirmed by DNA fragmentation assay. The enhancement of the previous parameters resulted in a marked improvement in the liver architectures after chitosan administration. In conclusion, chitosan has proved its efficiency as an anti-inflammatory and antioxidant agent through its inhibitory effect of cytokines and reducing ROS respectively. In addition, chitosan could modulate the changes in histological structure and alleviate apoptosis induced by liver I/R, which recommend it as an efficient agent for protection against liver I/R injury.
Collapse
|
28
|
Amirani E, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy. Int J Biol Macromol 2020; 164:456-467. [PMID: 32693135 DOI: 10.1016/j.ijbiomac.2020.07.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K)-AKT pathway is one of the most important kinase signaling networks in the context of cancer development and treatment. Aberrant activation of AKT, the central mediator of this pathway, has been implicated in numerous malignancies including endometrial, hepatocellular, breast, colorectal, prostate, and, cervical cancer. Thus regulation and blockage of this kinase and its key target nodes is an attractive approach in cancer therapy and diverse efforts have been done to achieve this aim. Chitosan is a carbohydrate with multiple interesting applications in cancer diagnosis and treatment strategies. This bioactive polymer and its derivative oligomers commonly used in drug/DNA delivery methods due to their functional properties which improve efficiency of delivery systems. Further, these compounds exert anti-tumor roles through the stimulation of apoptosis, immune enhancing potency, anti-oxidative features and anti-angiogenic roles. Due to the importance of PI3K-AKT signaling in cancer targeting and treatment resistance, this review discusses the involvement of chitosan, oligochitosaccharides and carriers based on these chemicals in the regulation of this pathway in different tumors.
Collapse
Affiliation(s)
- Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Bockuviene A, Sereikaite J. New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study. Foods 2020; 9:E765. [PMID: 32531942 PMCID: PMC7353500 DOI: 10.3390/foods9060765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
The application of β-carotene in food industry is limited due to its chemical instability. The drawback may be overcome by designing new delivery systems. The stability of β-carotene complexed with chitooligosaccharides by kneading, freeze-drying and sonication methods was investigated under various conditions. The first-order kinetics parameters of the reaction of β-carotene degradation were calculated. The complexation improved the stability of β-carotene at high temperatures and ensured its long-term stability in the dark at 4 °C and 24 °C, and in the light at 24 °C. In water solutions, the best characteristics were exhibited by the complexes prepared by freeze-drying and sonication methods. In the powder form, the complexes retained their colour for the period of the investigation of four months. The calculated total colour differences of the complexes were qualified as appreciable, detectable by ordinary people, but not large. Therefore, β-carotene-chitooligosaccharides complexes could be used as a new delivery system suitable for food fortification.
Collapse
Affiliation(s)
- Alma Bockuviene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania;
- Department of Polymer Chemistry, Institute of Chemistry, Vilnius University, 01513 Vilnius, Lithuania
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania;
| |
Collapse
|
30
|
Shahbaz U. Chitin, Characteristic, Sources, and Biomedical Application. Curr Pharm Biotechnol 2020; 21:1433-1443. [PMID: 32503407 DOI: 10.2174/1389201021666200605104939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitin stands at second, after cellulose, as the most abundant polysaccharide in the world. Chitin is found naturally in marine environments as it is a crucial structural component of various marine organisms. METHODS Different amounts of waste chitin and chitosan can be discovered in the environment. Chitinase producing microbes help to hydrolyze chitin waste to play an essential function for the removal of chitin pollution in the Marine Atmosphere. Chitin can be converted by using chemical and biological methods into prominent derivate chitosan. Numerous bacteria naturally have chitin degrading ability. RESULTS Chitin shows promise in terms of biocompatibility, low toxicity, complete biodegradability, nontoxicity, and film-forming capability. The application of these polymers in the different sectors of biomedical, food, agriculture, cosmetics, pharmaceuticals could be lucrative. Moreover, the most recent achievement in nanotechnology is based on chitin and chitosan-based materials. CONCLUSION In this review, we examine chitin in terms of its natural sources and different extraction methods, chitinase producing microbes and chitin, chitosan together with its derivatives for use in biomedical and agricultural applications.
Collapse
Affiliation(s)
- Umar Shahbaz
- Jiangnan University, School of Biotechnology, Jiangnan University Wuxi, Jiansu, China
| |
Collapse
|
31
|
Doan CT, Tran TN, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production. Polymers (Basel) 2020; 12:polym12051163. [PMID: 32438616 PMCID: PMC7284385 DOI: 10.3390/polym12051163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan oligosaccharide (COS) has become of great interest in recent years because of its worthy biological activities. This study aims to produce COS using the enzymatic method, and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase productivity on several chitinous material-containing mediums from fishery process wastes. The highest amount of chitosanase was produced on the medium using 2% (w/v) squid pens powder (0.60 U/mL) as the single carbon and nitrogen (C/N) source. The molecular mass of TKU047 chitosanase, which could be the smallest one among chitinases/chitosanases from the Paenibacillus genus, was approximately 23 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. TKU047 chitosanase possessed the highest activity at 60 °C, pH 7, and toward chitosan solution with a higher degree of deacetylation (DDA) value. Additionally, the hydrolysis products of 98% DDA chitosan catalyzed by TKU047 chitosanase showed the degree of polymerization (DP) ranging from 2 to 9, suggesting that it was an endo-type activity chitosanase. The free radical scavenging activity of the obtained chitosan oligosaccharide (COS) was determined. The result showed that COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than that from the commercial COSs with maximum activity and IC50 values of 81.20% and 1.02 mg/mL; 18.63% and 15.37 mg/mL; and 15.96% and 15.16 mg/mL, respectively. As such, Paenibacillus sp. TKU047 may have potential use in converting squid pens waste to produce chitosanase as an enzyme for bio-activity COS preparation.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Trung Dung Tran
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
32
|
Chen H, Wang S, Zhou A, Miao J, Liu J, Benjakul S. A novel antioxidant peptide purified from defatted round scad (Decapterus maruadsi) protein hydrolysate extends lifespan in Caenorhabditis elegans. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103907] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
33
|
Ma C, Li X, Yang K, Li S. Characterization of a New Chitosanase from a Marine Bacillus sp. and the Anti-Oxidant Activity of Its Hydrolysate. Mar Drugs 2020; 18:md18020126. [PMID: 32092959 PMCID: PMC7073567 DOI: 10.3390/md18020126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
Chitooligosaccharide (COS) has been recognized to exhibit efficient anti-oxidant activity. Enzymatic hydrolysis using chitosanases can retain all the amino and hydroxyl groups of chitosan, which are necessary for its activity. In this study, a new chitosanase encoding gene, csnQ, was cloned from the marine Bacillus sp. Q1098 and expressed in Escherichia coli. The recombinant chitosanase, CsnQ, showed maximal activity at pH 5.31 and 60 °C. Determination of CsnQ pH-stability showed that CsnQ could retain more than 50% of its activity over a wide pH, from 3.60 to 9.80. CsnQ is an endo-type chitosanase, yielding chitodisaccharide as the main product. Additionally, in vitro and in vivo analyses indicated that chitodisaccharide possesses much more effective anti-oxidant activity than glucosamine and low molecular weight chitosan (LMW-CS) (~5 kDa). Notably, to our knowledge, this is the first evidence that chitodisaccharide is the minimal COS fragment required for free radical scavenging.
Collapse
|
34
|
Bai R, Yu Y, Wang Q, Shen J, Yuan J, Fan X. Laccase-catalyzed polymerization of hydroquinone incorporated with chitosan oligosaccharide for enzymatic coloration of cotton. Appl Biochem Biotechnol 2019; 191:605-622. [PMID: 31828592 DOI: 10.1007/s12010-019-03169-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Abstract
Chitosan oligosaccharide (COS), a water-soluble carbohydrate obtained from chemical or enzymatic hydrolysis of chitosan, has similar structure and properties to non-toxic, biocompatible, and biodegradable chitosan. However, COS has many advantages over chitosan due to its low molecular weight and high water solubility. In the current work, COS was incorporated in the laccase-catalyzed polymerization of hydroquinone. The laccase-catalyzed polymerization of hydroquinone with or without COS was investigated by using simple structure of glucosamine hydrochloride as an alternative to COS to understand the mechanism of COS-incorporated polymerization of hydroquinone. Although polyhydroquinone can be regarded as the polymeric colorant with dark brown color, there is no affinity or chemical bonding between polyhydroquinone and cotton fibers. Cotton fabrics were successfully in-situ dyed into brown color through the laccase-catalyzed polymerization of hydroquinone by incorporating with COS as a template. The presence of COS enhanced the dye uptake of polyhydroquinone on cotton fibers due to high affinity of COS to cotton and covalent bonding between COS and polyhydroquinone during laccase catalysis. This novel approach not only provides a simple route for the biological coloration of cotton fabrics but also presents a significant way to prepare functional textiles with antibacterial property.
Collapse
Affiliation(s)
- Rubing Bai
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Textile Engineering and Materials Research Group, School of Design, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Jinsong Shen
- Textile Engineering and Materials Research Group, School of Design, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
35
|
Recent Updates in Pharmacological Properties of Chitooligosaccharides. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4568039. [PMID: 31781615 PMCID: PMC6875261 DOI: 10.1155/2019/4568039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Chemical structures derived from marine foods are highly diverse and pharmacologically promising. In particular, chitooligosaccharides (COS) present a safe pharmacokinetic profile and a great source of new bioactive polymers. This review describes the antioxidant, anti-inflammatory, and antidiabetic properties of COS from recent publications. Thus, COS constitute an effective agent against oxidative stress, cellular damage, and inflammatory pathogenesis. The mechanisms of action and targeted therapeutic pathways of COS are summarized and discussed. COS may act as antioxidants via their radical scavenging activity and by decreasing oxidative stress markers. The mechanism of COS antidiabetic effect is characterized by an acceleration of pancreatic islets proliferation, an increase in insulin secretion and sensitivity, a reduction of postprandial glucose, and an improvement of glucose uptake. COS upregulate the GLUT2 and inhibit digestive enzyme and glucose transporters. Furthermore, they resulted in reduction of gluconeogenesis and promotion of glucose conversion. On the other hand, the COS decrease inflammatory mediators, suppress the activation of NF-κB, increase the phosphorylation of kinase, and stimulate the proliferation of lymphocytes. Overall, this review brings evidence from experimental data about protective effect of COS.
Collapse
|
36
|
Singh A, Benjakul S, Prodpran T. Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0005-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Chitooligosaccharides (COS) from squid pen produced using amylase, lipase and pepsin were characterized. COS produced by 8% (w/w) lipase (COS-L) showed the maximum FRAP and ABTS radical scavenging activity than those prepared using other two enzymes. COS-L had the average molecular weight (MW) of 79 kDa, intrinsic viscosity of 0.41 dL/g and water solubility of 49%. DPPH, ABTS radical scavenging activities, FRAP and ORAC of COS-L were 5.68, 322.68, 5.66 and 42.20 μmol TE/g sample, respectively. Metal chelating activity was 2.58 μmol EE/g sample. For antibacterial activity, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of COS-L against the targeted bacteria were in the range of 0.31–4.91 mg/mL and 0.62–4.91 mg/mL, respectively. Sardine surimi gel added with 1% (w/w) COS-L showed the lower PV, TBARS and microbial growth during 10 days of storage at 4 °C. COS-L from squid pen could inhibit lipid oxidation and extend the shelf-life of refrigerated sardine surimi gel.
Graphical abstract
Collapse
|
37
|
Jesus S, Schmutz M, Som C, Borchard G, Wick P, Borges O. Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far. Front Bioeng Biotechnol 2019; 7:261. [PMID: 31709243 PMCID: PMC6819371 DOI: 10.3389/fbioe.2019.00261] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
The physicochemical properties of nanobiomaterials, such as their small size and high surface area ratio, make them attractive, novel drug-carriers, with increased cellular interaction and increased permeation through several biological barriers. However, these same properties hinder any extrapolation of knowledge from the toxicity of their raw material. Though, as suggested by the Safe-by-Design (SbD) concept, the hazard assessment should be the starting point for the formulation development. This may enable us to select the most promising candidates of polymeric nanobiomaterials for safe drug-delivery in an early phase of innovation. Nowadays the majority of reports on polymeric nanomaterials are focused in optimizing the nanocarrier features, such as size, physical stability and drug loading efficacy, and in performing preliminary cytocompatibility testing and proving effectiveness of the drug loaded formulation, using the most diverse cell lines. Toxicological studies exploring the biological effects of the polymeric nanomaterials, particularly regarding immune system interaction are often disregarded. The objective of this review is to illustrate what is known about the biological effects of polymeric nanomaterials and to see if trends in toxicity and general links between physicochemical properties of nanobiomaterials and their effects may be derived. For that, data on chitosan, polylactic acid (PLA), polyhydroxyalkanoate (PHA), poly(lactic-co-glycolic acid) (PLGA) and policaprolactone (PCL) nanomaterials will be evaluated regarding acute and repeated dose toxicity, inflammation, oxidative stress, genotoxicity, toxicity on reproduction and hemocompatibility. We further intend to identify the analytical and biological tests described in the literature used to assess polymeric nanomaterials toxicity, to evaluate and interpret the available results and to expose the obstacles and challenges related to the nanomaterial testing. At the present time, considering all the information collected, the hazard assessment and thus also the SbD of polymeric nanomaterials is still dependent on a case-by-case evaluation. The identified obstacles prevent the identification of toxicity trends and the generation of an assertive toxicity database. In the future, in vitro and in vivo harmonized toxicity studies using unloaded polymeric nanomaterials, extensively characterized regarding their intrinsic and extrinsic properties should allow to generate such database. Such a database would enable us to apply the SbD approach more efficiently.
Collapse
Affiliation(s)
- Sandra Jesus
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mélanie Schmutz
- Laboratory for Technology and Society, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Claudia Som
- Laboratory for Technology and Society, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Olga Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
38
|
Guan D, Sun H, Meng X, Wang J, Wan W, Han H, Wang Z, Li Y. Effects of different molar mass chitooligosaccharides on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in GIFT tilapia Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:500-507. [PMID: 31377430 DOI: 10.1016/j.fsi.2019.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
A feeding trial was conducted to evaluate the effects of different molar mass chitooligosaccharides (1000 Da, 3000 Da and 8000 Da) on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in GIFT tilapia (Oreochromis niloticus). A total of 600 fish were divided into four treatments with five replicates of thirty fish per tank. The results showed that the supplementation of 1000 Da and 3000 Da COS significantly improved the growth performance and feed utilization in GIFT tilapia. The trend of decreasing total cholesterol, triglyceride, ALT, and ACP activity was observed in fish fed diet supplemented COS. The supplementation of 1000 Da and 3000 Da COS significantly improved the serum TAC activity, and decreased the serum MDA and catalase activities (P < 0.05). The lysozyme activity of blood, liver, and gills in fish fed diets supplemented with 1000 Da and 3000 Da COS was significantly higher than that of fish fed control diet after 56 days of feeding (P < 0.05). The phagocytic activity and phagocytic index of fish fed diets supplemented with 1000 Da and 3000 Da COS were significantly higher than those of fish fed control diet. Post-challenge test showed that fish mortality in 1000 Da, 3000 Da, and 8000 Da COS groups were significantly lower than that of fish in control group (P < 0.05). In conclusion, the present study indicated that dietary 1000 Da and 3000 Da COS supplementation could enhance more performance and immune response of GIFT tilapia than 8000 Da COS.
Collapse
Affiliation(s)
- Dongyan Guan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition & Environmental Health, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Huiwen Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition & Environmental Health, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Xiao Meng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition & Environmental Health, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Jiting Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition & Environmental Health, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China.
| | - Wenju Wan
- Department of Basic Medicine, Taishan Medical University, 2 Yingsheng East Road, Taian City, Shandong Province, 271018, China.
| | - Haojun Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition & Environmental Health, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Zhen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition & Environmental Health, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Lab of Aquatic Animal Nutrition & Environmental Health, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province, 271018, China
| |
Collapse
|
39
|
Preparation and characterisation of novel water-soluble β-carotene-chitooligosaccharides complexes. Carbohydr Polym 2019; 225:115226. [PMID: 31521299 DOI: 10.1016/j.carbpol.2019.115226] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
β-carotene and chitooligosaccharides are bioactive compounds that find their application in the food industry as well in biomedical fields. However, the application of β-carotene is limited due to its very low water solubility, as well as its air, light and temperature sensitivity. The preparation of β-carotene-chitooligosaccharides complexes by mechanochemical methods was presented. Their physical and chemical properties including solubility, size, zeta potential and radical scavenging activity were investigated. The interaction of the two components was shown by NMR, FT-IR, and Raman spectroscopy. The complexes were analysed by scanning and transmission electron microscopy. Chitooligosaccharides could serve as a carrier for β-carotene delivery. The complexation did not cause the loss of the radical scavenging activity of β-carotene and guaranteed its water solubility.
Collapse
|
40
|
Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar Drugs 2019; 17:E369. [PMID: 31234361 PMCID: PMC6627199 DOI: 10.3390/md17060369] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Huge amounts of chitin and chitosans can be found in the biosphere as important constituents of the exoskeleton of many organisms and as waste by worldwide seafood companies. Presently, politicians, environmentalists, and industrialists encourage the use of these marine polysaccharides as a renewable source developed by alternative eco-friendly processes, especially in the production of regular cosmetics. The aim of this review is to outline the physicochemical and biological properties and the different bioextraction methods of chitin and chitosan sources, focusing on enzymatic deproteinization, bacteria fermentation, and enzymatic deacetylation methods. Thanks to their biodegradability, non-toxicity, biocompatibility, and bioactivity, the applications of these marine polymers are widely used in the contemporary manufacturing of biomedical and pharmaceutical products. In the end, advanced cosmetics based on chitin and chitosans are presented, analyzing different therapeutic aspects regarding skin, hair, nail, and oral care. The innovative formulations described can be considered excellent candidates for the prevention and treatment of several diseases associated with different body anatomical sectors.
Collapse
Affiliation(s)
| | | | | | - Siyuan Deng
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
41
|
Fucoxanthin Exerts Cytoprotective Effects against Hydrogen Peroxide-induced Oxidative Damage in L02 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1085073. [PMID: 30581841 PMCID: PMC6276502 DOI: 10.1155/2018/1085073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/20/2018] [Accepted: 10/28/2018] [Indexed: 12/16/2022]
Abstract
Several previous studies have demonstrated the excellent antioxidant activity of fucoxanthin against oxidative stress which is closely related to the pathogenesis of liver diseases. The present work was to investigate whether fucoxanthin could protect human hepatic L02 cells against hydrogen peroxide- (H2O2-) induced oxidative damage. Its effects on H2O2-induced cell viability, lactate dehydrogenase (LDH) leakage, intracellular reduced glutathione, and reactive oxygen species (ROS) contents, along with mRNA and protein relative levels of the cytoprotective genes including Nrf2, HO-1, and NQO1, were investigated. The results showed that fucoxanthin could upregulate the mRNA and protein levels of the cytoprotective genes and promote the nuclear translocation of Nrf2, which could be inhibited by the PI3K inhibitor of LY294002. Pretreatment of fucoxanthin resulted in decreased LDH leakage and intracellular ROS content but enhanced intracellular reduced glutathione. Interestingly, pretreatment using fucoxanthin protected against the oxidative damage in a nonconcentration-dependent manner, with fucoxanthin of 5 μM demonstrating the optimal effects. The results suggest that fucoxanthin exerts cytoprotective effects against H2O2-induced oxidative damage in L02 cells, which may be through the PI3K-dependent activation of Nrf2 signaling.
Collapse
|
42
|
Zhang N, Yin SN, Hou ZS, Xu WW, Zhang J, Xiao MH, Zhang QK. Preparation, physicochemical properties and biocompatibility of biodegradable poly(ether-ester-urethane) and chitosan oligosaccharide composites. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1614-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Rahimnejad S, Yuan X, Wang L, Lu K, Song K, Zhang C. Chitooligosaccharide supplementation in low-fish meal diets for Pacific white shrimp (Litopenaeus vannamei): Effects on growth, innate immunity, gut histology, and immune-related genes expression. FISH & SHELLFISH IMMUNOLOGY 2018; 80:405-415. [PMID: 29908322 DOI: 10.1016/j.fsi.2018.06.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the effects of supplementing chitooligosaccharide (COS) in low fish meal (FM) diets on growth, immune response, intestine and hepatopancrease histology, and expression of inflammatory and immune-related genes in Pacific white shrimp (Litopenaeus vannamei). A basal diet was formulated using FM and soybean meal (SM) as primary protein sources and considered as a high FM (HFM) diet, then a low FM (LFM) diet was prepared by substituting 50% of FM with SM and supplemented with 0, 0.3, 0.6, 0.9, 1.2 or 1.5 g COS kg-1 diet (LFM, COS3, COS6, COS9, COS12 and COS15 diets). Each diet was fed to quadruplicate groups of shrimp (0.9 g) to apparent satiation three times daily for eight weeks. At the end of the experiment no significant changes in growth and survival rate were observed among treatments (P > 0.05). FM replacement led to significant (P < 0.05) reduction of serum lysozyme activity and significant improvements were obtained by adding 0.3 or 0.6 g kg-1 COS to the LFM diet. A significant decrease in nitric oxide synthase activity was found in LFM group and no beneficial effects could be achieved by COS application. LFM group showed higher hepatopancrease superoxide dismutase and glutathione peroxidase activities than HFM group and further enhancements were obtained by COS application. Hepatopancrease total antioxidant capacity and alkaline phosphatase activity decreased in LFM group and COS supplementation improved their values. Expression of lysozyme, crustin, Pen3 and proPo genes were significantly up-regulated in hepatopancrease of groups received 0.3-0.9 g COS kg-1 diet. FM substitution enhanced the expression of HSP70 and inflammatory genes such as AIF and TNF in hepatopancrease and intestine, and COS administration at a moderate level down-regulated their expression level. Remarkable enhancement in intestinal fold height was obtained by inclusion of 0.3 or 0.6 g COS kg-1 diet compared to the group received LFM diet. Shrimps fed HFM and COS containing diets exhibited higher number of E-cells within their hepatopancrease tubules than the LFM group. The findings in this study clearly demonstrated that COS could enhance non-specific immune response and antioxidant activity, and ameliorate the negative impacts of high SM diets on gut and hepatopancrease health in pacific white shrimp. The optimum inclusion level of COS seems to be 0.3-0.6 g kg-1 of diet.
Collapse
Affiliation(s)
- Samad Rahimnejad
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Xiangli Yuan
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
44
|
Sun T, Qin Y, Xie J, Xue B, Zhu Y, Wu J, Bian X, Li X. Antioxidant activity of oligochitosan Maillard reaction products using oligochitosan as the amino or carbonyl groups donors. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1493605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tao Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yingying Qin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Bin Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yun Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Jikui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Xiaohui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
45
|
Liu J, Pu H, Zhang X, Xiao L, Kan J, Jin C. Effects of ascorbate and hydroxyl radical degradations on the structural, physicochemical, antioxidant and film forming properties of chitosan. Int J Biol Macromol 2018; 114:1086-1093. [DOI: 10.1016/j.ijbiomac.2018.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 02/05/2023]
|
46
|
Kumar M, Brar A, Vivekanand V, Pareek N. Bioconversion of Chitin to Bioactive Chitooligosaccharides: Amelioration and Coastal Pollution Reduction by Microbial Resources. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:269-281. [PMID: 29637379 DOI: 10.1007/s10126-018-9812-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Chitin-metabolizing products are of high industrial relevance in current scenario due to their wide biological applications, relatively lower cost, greater abundance, and sustainable supply. Chitooligosaccharides have remarkably wide spectrum of applications in therapeutics such as antitumor agents, immunomodulators, drug delivery, gene therapy, wound dressings, as chitinase inhibitors to prevent malaria. Hypocholesterolemic and antimicrobial activities of chitooligosaccharides make them a molecule of choice for food industry, and their functional profile depends on the physicochemical characteristics. Recently, chitin-based nanomaterials are also gaining tremendous importance in biomedical and agricultural applications. Crystallinity and insolubility of chitin imposes a major hurdle in the way of polymer utilization. Chemical production processes are known to produce chitooligosaccharides with variable degree of polymerization and properties along with ecological concerns. Biological production routes mainly involve chitinases, chitosanases, and chitin-binding proteins. Development of bio-catalytic production routes for chitin will not only enhance the production of commercially viable chitooligosaccharides with defined molecular properties but will also provide a means to combat marine pollution with value addition.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India
| | - Amandeep Brar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India.
| |
Collapse
|
47
|
Nikapitiya C, Dananjaya SHS, De Silva BCJ, Heo GJ, Oh C, De Zoysa M, Lee J. Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2018; 76:240-246. [PMID: 29510255 DOI: 10.1016/j.fsi.2018.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Chitosan nanoparticles (CNPs) were synthesized by ionic gelation method and its immunomodulatory properties were investigated in zebrafish larvae. Average particle size and zeta potential were 181.2 nm and +37.2 mv, respectively. Initially, toxicity profile was tested in zebrafish embryo at 96 h post fertilization (hpf) stage using medium molecular weight chitosan (MMW-C) and CNPs. At 5 μg/mL, the hatching rate was almost similar in both treatments, however, the survival rate was lower in MMW-C compared to CNPs exposure, suggesting that toxicity effect of CNPs in hatched larvae was minimal at 5 μg/mL compared to MMW-C. Quantitative real time PCR results showed that in CNPs exposed larvae at 5 days post fertilization (5 dpf) stage, immune related (il-1β, tnf-α, il-6, il-10, cxcl-18b, ccl34a.4, cxcl-8a, lyz-c, defβl-1, irf-1a, irf-3, MxA) and stress response (hsp-70) genes were induced. In contrast, basal or down regulated expression of antioxidant genes (gstp-1, cat, sod-1, prdx-4, txndr-1) were observed. Moreover, zebrafish larvae (at 5 dpf stage) exposed to CNPs (5 μg/mL) showed higher survival rate at 72 h post infection stage against pathogenic Aeromonas hydrophila challenge compared to controls. These results suggest that although CNPs can have toxic effects to the larvae at higher doses, CNPs exposure at 5 μg/mL could enhance the immune responses and develop the disease resistance against A. hydrophila, which could be attributed to its strong immune modulatory properties.
Collapse
Affiliation(s)
- Chamilani Nikapitiya
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - B C J De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Gang-Joon Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chulhong Oh
- Jeju International Marine Science Research and Education Center, Korea Institute of Ocean Science and Technology, Jeju Special Self-Governing Province, 63349, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Jehee Lee
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
48
|
Cao R, Zhao Y, Zhou Z, Zhao X. Enhancement of the water solubility and antioxidant activity of hesperidin by chitooligosaccharide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2422-2427. [PMID: 29023808 DOI: 10.1002/jsfa.8734] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/30/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Hesperidin is a natural product and a strong antioxidant with potential applications in various food and pharmaceutical products. However, its poor water solubility greatly limits its applications. RESULTS In this study, chitooligosaccharide (COS) was applied to prepare a stable complex with hesperidin (Hesp-COS) via the spray-drying method at 100 °C for 20 min. The resultant complex was characterized by Fourier transformation infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and proton nuclear magnetic resonance spectroscopy. It was demonstrated that the aromatic rings of hesperidin interacted with COS through hydrogen bonding and formed Hesp-COS complex. As a result, both the water solubility and antioxidant activity of Hesp-COS were higher than that of the free hesperidin. CONCLUSION The preparation conditions of Hesp-COS in this study were efficient and produced an increment in both the water solubility and antioxidant activity of hesperidin. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruge Cao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yali Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Xiaoyu Zhao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
49
|
Xu C, Guan S, Wang B, Wang S, Wang Y, Sun C, Ma X, Liu T. Synthesis of protocatechuic acid grafted chitosan copolymer: Structure characterization and in vitro neuroprotective potential. Int J Biol Macromol 2018; 109:1-11. [DOI: 10.1016/j.ijbiomac.2017.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
|
50
|
Abdel-Wahhab MA, Aljawish A, El-Nekeety AA, Abdel-Aziem SH, Hassan NS. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem Toxicol 2017; 99:209-221. [PMID: 27923682 DOI: 10.1016/j.fct.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate the protective role of chitosan nanoparticles (COS-NPs) singly or plus quercetin (Q) against OTA-induced oxidative stress and renal genotoxicity. Twelve groups of male Sprague-Dawley rats were treated orally for 3 weeks included the control group, animals fed OTA-contaminated diet (3 mg/kg diet); COS-NPs-treated groups at low (140 mg/kg b.w.) or high (280 mg/kg b.w.) dose, Q-treated group (50 mg/kg b.w.), Q plus low or high dose of COS-NPs-treated groups and OTA plus Q and/or COS-NPs at the two tested doses-treated groups. The results indicated that COS-NPs were roughly rod in shape with average particle size of 200 nm and zeta potential 31.4 ± 2.8 mV. Animals fed OTA-contaminated diet showed significant changes in serum biochemical parameters, increase kidney MDA and DNA fragmentation and decreased GPx and SOD gene expression accompanied with severe histological changes. Q and/or COS-NPs at the two tested doses induced significant improvements in all tested parameters and succeeded to overcome these effects especially in the animals treated with Q plus the high dose of COS-NPs. It could be concluded that COS-NPs are promise candidate to enhance the antioxidant effect of Q and protect against the nephrotoxicity of OTA in high endemic areas.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt.
| | - Abdulhadi Aljawish
- Laboratory of Nutrition and Toxicology (NUTox), INSERM UMR 866, Bourgogne University, 1 Esplanade Erasme, 21000 Dijon, France
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Dept., National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|