1
|
Bin Y, Tian M, Xie J, Wang M, Chen C, Jiang A. Bamboo leaf extract treatment alleviates the surface browning of fresh-cut apple by regulating membrane lipid metabolism and antioxidant properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2888-2896. [PMID: 38018275 DOI: 10.1002/jsfa.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The effect of bamboo leaf extract (BLE) on controlling the browning of fresh-cut apple stored at 4 °C was investigated. Browning index, H2 O2 content, O2 - production rate, malondialdehyde (MDA) contents, total phenolic content (TPC) and soluble quinone content (SQC), the activities of polyphenol oxidase (PPO), peroxidase (POD), lipoxygenase (LOX), superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), DPPH (2,2-diphenyl-2-picryl-hydrazyl) and ABTS [2,2-azinobis(3-ethylbenzothiazoline- 6-sulfonic acid)] radical scavenging activities, and the expression of genes related to browning were all investigated. RESULTS BLE effectively alleviated the surface browning of fresh-cut apple, accompanied by a reduction in SQC, LOX activity, H2 O2 , O2 - production rate and MDA accumulation. Furthermore, BLE treatment enhanced the TPC, enzymatic (SOD, CAT, APX and POD) and non-enzymatic antioxidant activities. Principal component analysis and Pearson correlation analysis found the browning inhibition by BLE is not through the reduction of phenolic substrates and PPO activity. CONCLUSION BLE controls the browning of fresh-cut apple by increasing the antioxidant capacity to scavenge ROS, which could alleviate oxidative damage and maintain the membrane integrity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuqi Bin
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Mixia Tian
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Jiani Xie
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Mingyu Wang
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Chen Chen
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
2
|
Altamirano-Gutiérrez W, Molina-Botero IC, Fuentes-Navarro E, Arango J, Salazar-Cubillas K, Paucar R, Gómez-Bravo C. Bamboo forage in Peruvian Amazon: a potential feed for cattle. Trop Anim Health Prod 2023; 55:288. [PMID: 37578575 DOI: 10.1007/s11250-023-03703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
During the dry and rainy seasons of the Northeastern Zone of Peru, a chemical characterization of five species of bamboo prevalent in the area (Guadua lynnclarkiae, G. takahashiae, Bambusa vulgaris, G. weberbaueri, and Dendrocalamus asper) was conducted. Then, the effect of supplementing bamboo leaves (0, 20, and 40% inclusion of D. asper) on the intake and live weight gain of 18 Gyr × Holstein heifers was evaluated for 28 days. Among the species evaluated, D. asper has the greatest crude protein (CP) concentration (158-166 g/kg Dry matter- DM), post-ruminal CP supply (127 g/kg DM), and in vitro organic matter digestibility (444-456 g/kg DM) but similar concentrations of crude ash (124 g/kg DM), calcium (2.4-2.8 mg/g), phosphorus (0.7-2.1 mg/g), protein fractions A, B1, B2, B3, C (45, 5, 35, 56, and 17g/kg DM, respectively), rumen-undegraded CP (31% CP), neutral detergent fiber (NDF, 685g/kg DM), and acid detergent fiber (ADF, 357 g/kg DM) than the other species evaluated. Dry matter intake was higher in the control treatment and in the 20% bamboo leaf inclusion treatment than in the 40% bamboo inclusion treatment. Intake of CP and NDF decreased with the increase in bamboo inclusion. Despite the differences in DM, CP, and NDF intake, the live weight gain remained similar across treatments. However, there was a greater feed conversion in the 20% bamboo leaf inclusion treatment. During the dry season, bamboo leaves can be used as an alternative supplement at a maximum inclusion of 20% without affecting the live weight gain.
Collapse
Affiliation(s)
- W Altamirano-Gutiérrez
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, 15024, Lima, Peru
| | - I C Molina-Botero
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, 15024, Lima, Peru
| | - E Fuentes-Navarro
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, 15024, Lima, Peru
| | - J Arango
- Tropical Forages Program of the International Center for Tropical Agriculture (CIAT), Km 17, Palmira, 763022, Valle del Cauca, Colombia
| | - K Salazar-Cubillas
- Institute of Animal Nutrition and Physiology, Christian-Albrechts- Universität zu Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany
| | - R Paucar
- International Bamboo and Rattan Organization - INBAR, Av. Centro de convenciones Campo Ferial, Junín, Satipo, Peru
| | - C Gómez-Bravo
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, 15024, Lima, Peru.
| |
Collapse
|
3
|
Moreira J, Machado M, Dias-Teixeira M, Ferraz R, Delerue-Matos C, Grosso C. The neuroprotective effect of traditional Chinese medicinal plants-A critical review. Acta Pharm Sin B 2023; 13:3208-3237. [PMID: 37655317 PMCID: PMC10465969 DOI: 10.1016/j.apsb.2023.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Neurodegenerative and neuropsychiatric diseases are increasingly affecting individuals' quality of life, thus increasing their cost to social and health systems. These diseases have overlapping mechanisms, such as oxidative stress, protein aggregation, neuroinflammation, neurotransmission impairment, mitochondrial dysfunction, and excitotoxicity. Currently, there is no cure for neurodegenerative diseases, and the available therapies have adverse effects and low efficacy. For neuropsychiatric disorders, such as depression, the current therapies are not adequate to one-third of the patients, the so-called treatment-resistant patients. So, searching for new treatments is fundamental. Medicinal plants appear as a strong alternative and complement towards new treatment protocols, as they have been used for health purposes for thousands of years. Thus, the main goal of this review is to revisit the neuroprotective potential of some of the most predominant medicinal plants (and one fungus) used in traditional Chinese medicine (TCM), focusing on their proven mechanisms of action and their chemical compositions, to give clues on how they can be useful against neurodegeneration progression.
Collapse
Affiliation(s)
- João Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| | - Mariana Machado
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Porto 4200-072, Portugal
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, Lisboa 1950-396, Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Porto 4200-072, Portugal
- REQUIMTE/LAQV, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto 4249-015, Portugal
| |
Collapse
|
4
|
Liu F, Li R, Zhong Y, Liu X, Deng W, Huang X, Price M, Li J. Age-related alterations in metabolome and microbiome provide insights in dietary transition in giant pandas. mSystems 2023; 8:e0025223. [PMID: 37273228 PMCID: PMC10308887 DOI: 10.1128/msystems.00252-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/06/2023] Open
Abstract
We conducted UPLC-MS-based metabolomics, 16S rRNA, and metagenome sequencing on the fecal samples of 44 captive giant pandas (Ailuropoda melanoleuca) from four age groups (i.e., Cub, Young, Adult, and Old) to comprehensively understand age-related changes in the metabolism and gut microbiota of giant pandas. We characterized the metabolite profiles of giant pandas based on 1,376 identified metabolites, with 152 significantly differential metabolites (SDMs) found across the age groups. We found that the metabolites and the composition/function of the gut microbiota changed in response to the transition from a milk-dominant diet in panda cubs to a bamboo-specific diet in young and adult pandas. Lipid metabolites such as choline and hippuric acid were enriched in the Cub group, and many plant secondary metabolites were significantly higher in the Young and Adult groups, while oxidative stress and inflammatory related metabolites were only found in the Old group. However, there was a decrease in the α-diversity of gut microbiota in adult and old pandas, who exclusively consume bamboo. The abundance of bacteria related to the digestion of cellulose-rich food, such as Firmicutes, Streptococcus, and Clostridium, significantly increased from the Cub to the Adult group, while the abundance of beneficial bacteria such as Faecalibacterium, Sarcina, and Blautia significantly decreased. Notably, several potential pathogenic bacteria had relatively high abundances, especially in the Young group. Metagenomic analysis identified 277 CAZyme genes including cellulose degrading genes, and seven of the CAZymes had abundances that significantly differed between age groups. We also identified 237 antibiotic resistance genes (ARGs) whose number and diversity increased with age. We also found a significant positive correlation between the abundance of bile acids and gut bacteria, especially Lactobacillus and Bifidobacterium. Our results from metabolome, 16S rRNA, and metagenome data highlight the important role of the gut microbiota-bile acid axis in the regulation of age-related metabolism and provide new insights into the lipid metabolism of giant pandas. IMPORTANCE The giant panda is a member of the order Carnivora but is entirely herbivorous. The giant panda's specialized diet and related metabolic mechanisms have not been fully understood. It is therefore crucial to investigate the dynamic changes in metabolites as giant pandas grow and physiologically adapt to their herbivorous diet. This study conducted UPLC-MS-based metabolomics 16S rRNA, and metagenome sequencing on the fecal samples of captive giant pandas from four age groups. We found that metabolites and the composition/function of gut microbiota changed in response to the transition from a milk-dominant diet in cubs to a bamboo-specific diet in young and adult pandas. The metabolome, 16S rRNA, and metagenome results highlight that the gut microbiota-bile acid axis has an important role in the regulation of age-related metabolism, and our study provides new insights into the lipid metabolism of giant pandas.
Collapse
Affiliation(s)
- Fangyuan Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Rengui Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Yi Zhong
- China Wildlife Conservation Association, Beijing, China
| | - Xu Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Xiaoyu Huang
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Megan Price
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Cheng Y, Wan S, Yao L, Lin D, Wu T, Chen Y, Zhang A, Lu C. Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116166. [PMID: 36649850 DOI: 10.1016/j.jep.2023.116166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bamboos are perennial evergreen plants that belong to the subfamily Bambusoideae of the true grass family Poaceae, with more than thousands of species distributed around the world. They are used as a traditional medicine with demonstrated effects of anti-oxidation, free radical scavenging, anti-inflammatory, liver protection and ameliorating cognitive deficits. Bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic and nervous system diseases. AIM OF THE STUDY This review aims to provide up-to-date information on the traditional medicinal properties, phytochemistry, pharmacology, and purification technologies of bamboo leaf. MATERIALS AND METHODS Relevant information on bamboo leaf was obtained by an online search of worldwide accepted scientific databases (Web of Science, ScienceDirect, Elsevier, SpringerLink, ACS Publications, Wiley Online Library and CNKI). RESULTS More than 100 chemical compounds, including flavonoids and flavonoid glycosides, volatile components, phenolic acids, polysaccharide, coenzyme Q10, phenylpropanoid and amino acids have been reported to be present. These compounds were usually extracted by column chromatography and membrane separation technologies. Preparative high performance liquid chromatography (PHPLC), high-speed counter-current chromatography (HSCCC), simulated moving bed chromatography (SMB) and dynamic axial compression chromatography (DAC) were the advanced separation technologies have been used to isolate C-glycosides from bamboo leaf flavonoid, the main bioactive ingredient of bamboo leaf. Currently, bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic, hepatic diseases and nervous system related symptoms, which are attributed to the presence of bioactive components of bamboo leaf. CONCLUSIONS Phytochemical and pharmacological analyses of bamboo leaf have been revealed in recent studies. However, most of the pharmacological studies on bamboo leaf have focused on bamboo leaf flavonoids. Further studies need to pay more attention to other phytochemical components of bamboo leaf. In addition, there is lack of sufficient clinical data and toxicity studies on bamboo leaf. Therefore, more clinical and toxicity researches on this plant and constituents are recommended.
Collapse
Affiliation(s)
- Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Linna Yao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Yongjian Chen
- Zhejiang Limited Company of Science and Technology of SHENGSHI BIOLOGY, Huzhou, 313000, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Abdelhameed RFA, Habib ES, Ibrahim AK, Yamada K, Abdel-Kader MS, Ibrahim AK, Ahmed SA, Badr JM, Nafie MS. Chemical profiling, cytotoxic activities through apoptosis induction in MCF-7 cells and molecular docking of Phyllostachys heterocycla bark nonpolar extract. J Biomol Struct Dyn 2022; 40:9636-9647. [PMID: 34074230 DOI: 10.1080/07391102.2021.1932599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemical constituents of the nonpolar fractions of the bamboo shoot skin Phyllostachys heterocycla were extensively studied. The phytochemical study was divided into two parts: the first deals with isolation of the chemical constituents using different chromatographic techniques that resulted in isolation of four compounds. The chemical structures of the pure isolated compounds were elucidated using different spectroscopic data. The second part deals with identification of the rest of the constituents using the GC technique. Additionally, both crude extract and the pure isolated compounds were investigated for cytotoxic activity. One of the isolated compounds; namely glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM), and it remarkably stimulated apoptotic breast cancer cell death with 31.6-fold (16.13% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Moreover, the identified compounds especially 1 were found to have high binding affinity towards both TPK and VEGFR-2 through the molecular docking studies which highlight its mode of action. HighlightsChemical profiling of Phyllostachys heterocycla bark nonpolar extract was fully identified.Glyceryl 1-monopalmitate showed highly promising effect against the MCF-7 cells with (IC50 = 19.78 µM) compared to 5-FU (26.98 µM).Glyceryl 1-monopalmitate significantly stimulated apoptotic breast cancer cell death with 31.6-fold by arresting cell cycle at G2/M and preG1 phases.Molecular docking simulation showed good binding affinities towards TPK and VEGFR-2 proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Eman S Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Ahmed K Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Koji Yamada
- Garden for Medicinal Plants, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amany K Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Safwat A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Jihan M Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed S Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Park SH, Lim CY, Moon JM, Gwag JE, Lee JY, Yang SA. Toxicological assessment of enzyme-treated Zizania latifolia extract: Oral toxicology and genotoxicity in rats. Regul Toxicol Pharmacol 2022; 133:105220. [PMID: 35792245 DOI: 10.1016/j.yrtph.2022.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Zizania latifolia Turcz. has long been used as a food source in Southeast Asia. The grains, stems, and leaves of Z. latifolia and its major component, tricin, have also been studied to determine their biological activities. Previously, we hydrolyzed the aerial part of Z. latifolia using an enzyme mixture to maximize the tricin content of the Z. latifolia extract. However, the safety of enzyme-treated Z. latifolia extract (ETZL; DermaNiA™) has not yet been determined. In this study, we performed an in vivo 90-day repeated-dose evaluation and genotoxicity study to assess the toxicological potential of ETZL. EZTL did not exhibit genotoxicity in the bacterial reverse mutation test, in vitro chromosomal aberration assay, or in vivo micronucleus test. Moreover, no changes in body weight or hematological and serum biological parameters were observed in male or female rats under high-dose EZTL treatment (5000 mg/kg body weight (bw)/day) for 90 days with a 4-week recovery period. Significant changes were noted in the forestomach, kidneys, and adrenal glands in the test groups, but these changes, or tendency for recovery, were not observed in the recovery group. Based on these data, the no adverse effect level was determined to be 1250 mg/kg bw/day in rats.
Collapse
Affiliation(s)
- Se-Ho Park
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, 39177, South Korea; Institute of Natural Science, Keimyung University, Daegu, 42601, South Korea
| | - Cho Young Lim
- R&D Center, BTC Corporation, Sangnok-gu, Ansan, 15588, South Korea
| | - Joo Myung Moon
- R&D Center, BTC Corporation, Sangnok-gu, Ansan, 15588, South Korea
| | - Jung Eun Gwag
- R&D Center, BTC Corporation, Sangnok-gu, Ansan, 15588, South Korea
| | - Jae-Yeul Lee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, 39177, South Korea; Institute of Natural Science, Keimyung University, Daegu, 42601, South Korea
| | - Seun-Ah Yang
- Department of Food Science and Technology, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
8
|
Sasa borealis Ethanol Extract Protects PC12 Neuronal Cells against Oxidative Stress. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The overproduction of reactive oxygen species (ROS) can cause oxidative stress to biomolecules such as nucleic acids, proteins, and lipids, leading to neurodegenerative disorders. Sasa borealis (SB) has antioxidant, anti-inflammatory, antidiabetic, and anti-obesity effects. We evaluated the neuroprotective activity of SB on hydrogen peroxide (H2O2)-induced oxidative stress. We investigated the antioxidant and neuroprotective effects of SB water extract (SBW) and SB ethanol extract (SBE) by measuring the radical scavenging activities and intracellular ROS production. SBE, which had a high level of isoorientin, had higher antioxidative activities than SBW in 2,2′-azino-bis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (ABTS+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. It also reduced ROS generation in pheochromocytoma 12 (PC12) cells more significantly than SBW. It increased the translation of heme oxygenase-1 (HO-1), superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase (GPx) with a corresponding increase in the translation of NF-E2-related factor-2 (Nrf-2). In conclusion, SBE with high levels of phenolic compounds such as isoorientin shows promise for preventing neurodegenerative diseases.
Collapse
|
9
|
Cao G, Yu Y, Wang H, Liu J, Zhang X, Yu Y, Li Z, Zhang Y, Yang C. Effects of Oral Administration of Bamboo (Dendrocalamus membranaceus) Leaf Flavonoids on the Antioxidant Capacity, Caecal Microbiota, and Serum Metabolome of Gallus gallus domesticus. Front Nutr 2022; 9:848532. [PMID: 35308272 PMCID: PMC8930276 DOI: 10.3389/fnut.2022.848532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
The consumption of bamboo leaf flavonoids (BLFs) as novel dietary antioxidants has increased owing to their beneficial biological and pharmacological functions. This study assessed the in vivo effects of BLFs on antioxidant capacity, as well as caecal microbiota, serum metabolome, and health status. The Gallus gallus domesticus model and the oral administration approach were used with four treatment groups (basal diet, basal diet with 20 mg bacitracin/kg, basal diet with 50 mg BLF/kg, and basal diet with 250 mg BLF/kg). Ultra-high-performance liquid chromatography triple-quadrupole mass spectrometry analysis indicated that vitexin, fumaric acid, orientin, isoorientin, and p-coumaric acid were the predominant BLF components. From days 1 to 21, BLF increased the average daily gain and decreased the feed:gain of broilers. Moreover, BLF enhanced the serum antioxidant capacity and immune responses. Further, 16S rRNA sequencing showed that BLF modulated the caecal microbial community structure, which was dominated by Betaproteobacteriales, Erysipelatoclostridium, Parasutterella, Lewinella, Lactobacillus, and Candidatus Stoquefichus in BLF broilers. Among the 22 identified serum metabolites in BLF broilers, sphinganine, indole-3-acetaldehyde retinol, choline, 4-methylthio-2-oxobutanoic acid, and L-phenylalanine were recognised as biomarkers. In summary, BLFs appeared to modulate the caecal microbiome, alter the serum metabolome, and indirectly improve antioxidant capacity and health status.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Huixian Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Xiping Zhang
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yan Zhang
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
- *Correspondence: Caimei Yang,
| |
Collapse
|
10
|
SHEN D, JIN T, WANG J, ZHU X. Mechanochemical-assisted extraction of polysaccharides from bamboo leaves and its optimized processing parameters. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.117821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dan SHEN
- Zhejiang University of Technology, China
| | - Tingyu JIN
- Zhejiang University of Technology, China
| | | | - Xingyi ZHU
- Zhejiang University of Technology, China; Zhejiang University of Technology, China
| |
Collapse
|
11
|
Wang L, Huang G, Hou R, Qi D, Wu Q, Nie Y, Zuo Z, Ma R, Zhou W, Ma Y, Hu Y, Yang Z, Yan L, Wei F. Multi-omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non-model mammal. MICROBIOME 2021; 9:192. [PMID: 34548111 PMCID: PMC8456708 DOI: 10.1186/s40168-021-01142-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/10/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Flavonoids are important plant secondary metabolites (PSMs) that have been widely used for their health-promoting effects. However, little is known about overall flavonoid metabolism and the interactive effects between flavonoids and the gut microbiota. The flavonoid-rich bamboo and the giant panda provide an ideal system to bridge this gap. RESULTS Here, integrating metabolomic and metagenomic approaches, and in vitro culture experiment, we identified 97 flavonoids in bamboo and most of them have not been identified previously; the utilization of more than 70% flavonoid monomers was attributed to gut microbiota; the variation of flavonoid in bamboo leaves and shoots shaped the seasonal microbial fluctuation. The greater the flavonoid content in the diet was, the lower microbial diversity and virulence factor, but the more cellulose-degrading species. CONCLUSIONS Our study shows an unprecedented landscape of beneficial PSMs in a non-model mammal and reveals that PSMs remodel the gut microbiota conferring host adaptation to diet transition in an ecological context, providing a novel insight into host-microbe interaction. Video abstract.
Collapse
Affiliation(s)
- Le Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangping Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
| | - Dunwu Qi
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
| | - Qi Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenqiang Zuo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangzhou, China
| | - Rui Ma
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
| | - Wenliang Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yingjie Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Li Yan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, Guangzhou, China.
| |
Collapse
|
12
|
Mustafa AA, Derise MR, Yong WTL, Rodrigues KF. A Concise Review of Dendrocalamus asper and Related Bamboos: Germplasm Conservation, Propagation and Molecular Biology. PLANTS 2021; 10:plants10091897. [PMID: 34579429 PMCID: PMC8468032 DOI: 10.3390/plants10091897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Bamboos represent an emerging forest resource of economic significance and provide an avenue for sustainable development of forest resources. The development of the commercial bamboo industry is founded upon efficient molecular and technical approaches for the selection and rapid multiplication of elite germplasm for its subsequent propagation via commercial agro-forestry business enterprises. This review will delve into the micropropagation of Dendrocalamus asper, one of the most widely cultivated commercial varieties of bamboo, and will encompass the selection of germplasm, establishment of explants in vitro and micropropagation techniques. The currently available information pertaining to molecular biology, DNA barcoding and breeding, has been included, and potential areas for future research in the area of genetic engineering and gene regulation have been highlighted. This information will be of relevance to both commercial breeders and molecular biologists who have an interest in establishing bamboo as a crop of the future.
Collapse
|
13
|
Araujo Sousa B, Nascimento Silva O, Farias Porto W, Lima Rocha T, Paulino Silva L, Ferreira Leal AP, Buccini DF, Oluwagbamigbe Fajemiroye J, de Araujo Caldas R, Franco OL, Grossi-de-Sá MF, de la Fuente Nunez C, Moreno SE. Identification of the Active Principle Conferring Anti-Inflammatory and Antinociceptive Properties in Bamboo Plant. Molecules 2021; 26:3054. [PMID: 34065427 PMCID: PMC8160853 DOI: 10.3390/molecules26103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years. In Brazilian folk medicine, plant extracts from the bamboo plant Guadua paniculata Munro have been used for the treatment of infections and pain. However, the chemical basis of these therapeutic effects has not yet been identified. Here, we performed protein biochemistry and downstream pharmacological assays to determine the mechanisms underlying the anti-inflammatory and antinociceptive effects of an aqueous extract of the G. paniculata rhizome, which we termed AqGP. The anti-inflammatory and antinociceptive effects of AqGP were assessed in mice. We identified and purified a protein (AgGP), with an amino acid sequence similar to that of thaumatins (~20 kDa), capable of repressing inflammation through downregulation of neutrophil recruitment and of decreasing hyperalgesia in mice. In conclusion, we have identified the molecule and the molecular mechanism responsible for the anti-inflammatory and antinociceptive properties of a plant commonly used in Brazilian folk medicine.
Collapse
Affiliation(s)
- Bruna Araujo Sousa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília CEP 70790-160, DF, Brazil; (B.A.S.); (W.F.P.); (O.L.F.); (M.F.G.-d.-S.)
| | - Osmar Nascimento Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
- Centro Universitário de Anápolis, Unievangélica, Anápolis CEP 75083-515, GO, Brazil;
| | - William Farias Porto
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília CEP 70790-160, DF, Brazil; (B.A.S.); (W.F.P.); (O.L.F.); (M.F.G.-d.-S.)
- Porto Reports, Brasília CEP 72236-011, DF, Brazil
| | - Thales Lima Rocha
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Brasília CEP 70770-917, DF, Brazil; (T.L.R.); (L.P.S.)
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Brasília CEP 70770-917, DF, Brazil; (T.L.R.); (L.P.S.)
| | - Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
| | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
| | - James Oluwagbamigbe Fajemiroye
- Centro Universitário de Anápolis, Unievangélica, Anápolis CEP 75083-515, GO, Brazil;
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Universidade Federal de Goiás, Goiânia 74605-220, GO, Brazil
| | - Ruy de Araujo Caldas
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília CEP 70790-160, DF, Brazil; (B.A.S.); (W.F.P.); (O.L.F.); (M.F.G.-d.-S.)
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
- Departamento de Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Maria Fátima Grossi-de-Sá
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília CEP 70790-160, DF, Brazil; (B.A.S.); (W.F.P.); (O.L.F.); (M.F.G.-d.-S.)
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Brasília CEP 70770-917, DF, Brazil; (T.L.R.); (L.P.S.)
| | - Cesar de la Fuente Nunez
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Biological Engineering, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susana Elisa Moreno
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
| |
Collapse
|
14
|
Chen X, Jia W, Wang Q, Han J, Cheng J, Zeng W, Zhao Q, Zhang Y, Zhang Y. Protective effect of a dietary flavonoid-rich antioxidant from bamboo leaves against internal exposure to acrylamide and glycidamide in humans. Food Funct 2020; 11:7000-7011. [PMID: 32812964 DOI: 10.1039/d0fo00811g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenolic antioxidants may effectively reduce acrylamide contents in processed foods. However, few studies focused on their detoxification effects via estimating the profile change of internal exposure biomarkers. Here we showed the protective effect of a water-soluble flavone-C-glycoside-rich antioxidant from bamboo leaves (AOB-w) against acrylamide-induced toxicity in college students. The participants were randomly assigned to either the AOB-w or control group and served potato chips, corresponding to 12.6 μg per kg·bw of dietary exposure to acrylamide, followed by capsules containing 350 mg AOB-w or equivalent placebo. The kinetics of acrylamide, glycidamide, and mercapturic acid metabolites was profiled, and their hemoglobin adducts were measured. The toxicokinetic study showed that AOB-w promoted the excretion of acrylamide and shortened the distribution but prolonged the excretion of N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine. The intervention with AOB-w reduced the peak concentration and area under curve of AAMA by 42.1% and 49.8%, respectively. Besides, AOB-w gender-dependently altered the toxicokinetic profile and reduced the amount of a human-specific urinary biomarker, N-acetyl-S-(2-carbamoylethyl)-l-cysteine-sulfoxide in women. AOB-w accelerated the metabolism of hemoglobin adducts of acrylamide and glycidamide in blood of women. Compared with the baseline levels on the beginning day, we observed a significant enhancement of hemoglobin adducts on the 10th day after serving them potato chips, showing 54.5% and 20.9% higher levels of the hemoglobin adducts of acrylamide and glycidamide, respectively, which thus indicated a lower level of glycidamide-to-acrylamide ratio in blood of participants. Overall AOB-w could effectively reduce the internal exposure to acrylamide in college students, which provides advanced insights into protective functions of natural antioxidants against in vivo toxicity of chemical contaminants from diet.
Collapse
Affiliation(s)
- Xinyu Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019; 24:E4132. [PMID: 31731614 PMCID: PMC6891691 DOI: 10.3390/molecules24224132] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, great interest has been focused on using natural antioxidants in food products, due to studies indicating possible adverse effects that may be related to the consumption of synthetic antioxidants. A variety of plant materials are known to be natural sources of antioxidants, such as herbs, spices, seeds, fruits and vegetables. The interest in these natural components is not only due to their biological value, but also to their economic impact, as most of them may be extracted from food by-products and under-exploited plant species. This article provides an overview of current knowledge on natural antioxidants: their sources, extraction methods and stabilization processes. In addition, recent studies on their applications in the food industry are also addressed; namely, as preservatives in different food products and in active films for packaging purposes and edible coatings.
Collapse
Affiliation(s)
| | | | - Vítor D. Alves
- LEAF, Linking, Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.C.L.); (M.M.-M.)
| |
Collapse
|
16
|
Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food Chem Toxicol 2019; 135:110941. [PMID: 31697970 DOI: 10.1016/j.fct.2019.110941] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Bamboo leaves soups were subjected to in vitro digestion (including separated oral, gastric and small intestinal digestions, and complete digestion containing above three stages), and their phenolics and antioxidant activities were determined. Compared to control groups, total phenolic content (TPC) in treated groups (including undigested and digested groups) increased at gastric digestion stage but decreased at other digestion stages, and the decrease in small intestinal digestion stage (19.97%) was nearly the same with that in complete digestion stage (19.39%). The antioxidant activity in digested groups almost changed accordingly to their TPC but with no significant difference (p > 0.05) as compared with undigested groups; similar results were found in four main individual phenolics including cryptochlorogenic acid, chlorogenic acid, neochlorogenic acid and isoorientin, and their contents were negatively correlated to the pH value of digestion buffers (-0.68 < r < -0.80, p < 0.01). These results indicated that the change of phenolic content and antioxidant activity in digested bamboo leaves soups mainly resulted from the pH of digestion buffers rather than digestive enzymes. In addition, the decrease of phenolics may mainly occur at small intestinal digestion stage where the pH value is the highest in the digestive system.
Collapse
|
17
|
Liu H, He P, He L, Li Q, Cheng J, Wang Y, Yang G, Yang B. Structure characterization and hypoglycemic activity of an arabinogalactan from Phyllostachys heterocycla bamboo shoot shell. Carbohydr Polym 2018; 201:189-200. [DOI: 10.1016/j.carbpol.2018.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/06/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022]
|
18
|
Wang L, Bai M, Qin Y, Liu B, Wang Y, Zhou Y. Application of Ionic Liquid-Based Ultrasonic-Assisted Extraction of Flavonoids from Bamboo Leaves. Molecules 2018; 23:molecules23092309. [PMID: 30201916 PMCID: PMC6225495 DOI: 10.3390/molecules23092309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids (ILs), known as environmentally benign “green” solvents, were developed as an optimal solvent for the green extraction and separation field. In this paper, an ionic liquid-based ultrasonic-assisted extraction (IL-UAE) of flavonoids (FVs) from bamboo leaves of Phyllostachys heterocycla was developed for the first time. First, 1-butyl-3-methylimidazolium bromide ([Bmim] Br), with the best extraction efficiency, was selected from fifteen ionic liquids with diverse structure, like carbon chains or anions. Then, the influencing parameters of ionic liquid (IL) concentration, liquid-solid ratio, ultrasonic time, and ultrasonic power, were investigated by single factor tests, and further optimized using response surface methodology (RSM). In the optimization experiment, the best conditions were 1.5 mol/L [BMIM]Br aqueous solution, liquid-solid ratio 41 mL/g, ultrasonic time 90 min, and ultrasonic power 300 W. Furthermore, the microstructures of bamboo leaves and the recovery of FVs and [BMIM]Br were also studied. Therefore, this simple, green and effective IL-UAE method has potentiality for the extraction of FVs from bamboo leaves for the large-scale operations.
Collapse
Affiliation(s)
- Liling Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Minge Bai
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yuchuan Qin
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Bentong Liu
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yanbin Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China.
| | - Yifeng Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Produces, Hangzhou 310023, China.
- Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacuring, Hangzhou 310023, China.
| |
Collapse
|
19
|
García-Martínez E, Andújar I, Yuste Del Carmen A, Prohens J, Martínez-Navarrete N. Antioxidant and anti-inflammatory activities of freeze-dried grapefruit phenolics as affected by gum arabic and bamboo fibre addition and microwave pretreatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3076-3083. [PMID: 29194637 DOI: 10.1002/jsfa.8807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Recent epidemiological studies have suggested that phenolic compounds present in grapefruit play an important role in the bioactive properties of this fruit. However, the consumption of fresh grapefruit is low. Freeze-dried powdered grapefruit can be an alternative to promote this fruit consumption. To improve the quality and stability of the powdered fruit, encapsulating and anticaking agents can be added. In the present study, different grapefruit powders obtained by freeze-drying with the addition of gum arabic (1.27 g per 100 g) and bamboo fibre (0.76 g per 100 g) with and without a pre-drying microwave treatment were compared with the fresh and freeze-dried fruit with no carriers added, aiming to evaluate the effect of these preservation processes on phenolics content and on its antioxidant [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing ability of plasma (FRAP)] and anti-inflamatory (evaluated in RAW 264.7 macrophages) capacities. RESULTS Freeze-drying and gum arabic and bamboo fibre addition significantly increased total phenolics, as well as the antioxidant and anti-inflammatory activities (by inhibiting nitric oxide production of lipopolysaccharide activated RAW 264.7 macrophages), of grapefruit. An additional increase in these parameters was obtained with microwave pretreatment before freeze-drying. CONCLUSIONS The combined addition of gum arabic and bamboo fibre to grapefruit puree and the application of a microwave pretreatment improve the functional properties of the fruit without showing cytotoxicity in vitro. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva García-Martínez
- Universitat Politècnica de València, Departamento de Tecnología de Alimentos, Grupo de Investigación e Innovación Alimentaria, Valencia, Spain
| | - Isabel Andújar
- Universitat Politècnica de València, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Valencia, Spain
| | - Alberto Yuste Del Carmen
- Universitat Politècnica de València, Departamento de Tecnología de Alimentos, Grupo de Investigación e Innovación Alimentaria, Valencia, Spain
| | - Jaime Prohens
- Universitat Politècnica de València, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Valencia, Spain
| | - Nuria Martínez-Navarrete
- Universitat Politècnica de València, Departamento de Tecnología de Alimentos, Grupo de Investigación e Innovación Alimentaria, Valencia, Spain
| |
Collapse
|
20
|
Insight into solvent effects on phenolic content and antioxidant activity of bamboo leaves extracts by HPLC analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9840-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Ma Y, Zhu D, Wang C, Zhang Y, Shang Y, Liu F, Ye T, Chen X, Wei Z. Simultaneous and fast separation of three chlorogenic acids and two flavonoids from bamboo leaves extracts using zirconia. Food Chem Toxicol 2018; 119:375-379. [PMID: 29425934 DOI: 10.1016/j.fct.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/24/2018] [Accepted: 02/04/2018] [Indexed: 11/18/2022]
Abstract
Phenolic acids and flavonoids in bamboo leaves are of great importance for their functional attributes, but they can hardly be separated simultaneously. In this study, zirconia was prepared and applied as a potential absorbent for simultaneous separation of these phenolic compounds. Three phenolic acids (neochlorogenic acid, chlorogenic acid and cryptochlorogenic acid) and two flavonoids (isoorientin and orientin) were isolated at the same time. The influence of bamboo leaves extraction conditions, zirconia calcination temperatures, desorption conditions and absorption/desorption dynamics on the separation were further investigated. When zirconia-400 (calcined at 400 °C) was treated with 70% ethanol extract of bamboo leaves for 40 min followed by desorption with 70% acetic acid solution for 60 min, the recovery of three chlorogenic acids and two flavonoids was about 65%. To conclude, the concise method developed here may provide a new way for simultaneous separation of phenolic acids and flavonoids from various plants.
Collapse
Affiliation(s)
- Yilong Ma
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China; Department of Chemical Engineering and Food Processing, Xuancheng Campus,, Hefei University of Technology, Xuancheng, PR China.
| | - Danye Zhu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China; Department of Chemical Engineering and Food Processing, Xuancheng Campus,, Hefei University of Technology, Xuancheng, PR China
| | - Caihong Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China; Department of Chemical Engineering and Food Processing, Xuancheng Campus,, Hefei University of Technology, Xuancheng, PR China
| | - Yingshuo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China; Department of Chemical Engineering and Food Processing, Xuancheng Campus,, Hefei University of Technology, Xuancheng, PR China
| | - Yafang Shang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China; Department of Chemical Engineering and Food Processing, Xuancheng Campus,, Hefei University of Technology, Xuancheng, PR China
| | - Fengru Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China; Department of Chemical Engineering and Food Processing, Xuancheng Campus,, Hefei University of Technology, Xuancheng, PR China
| | - Tongqi Ye
- Department of Chemical Engineering and Food Processing, Xuancheng Campus,, Hefei University of Technology, Xuancheng, PR China
| | - Xue Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China; Department of Chemical Engineering and Food Processing, Xuancheng Campus,, Hefei University of Technology, Xuancheng, PR China
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China.
| |
Collapse
|
22
|
Fahmi MZ, Haris A, Permana AJ, Nor Wibowo DL, Purwanto B, Nikmah YL, Idris A. Bamboo leaf-based carbon dots for efficient tumor imaging and therapy. RSC Adv 2018; 8:38376-38383. [PMID: 35559085 PMCID: PMC9089817 DOI: 10.1039/c8ra07944g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/26/2018] [Indexed: 01/27/2023] Open
Abstract
In this study, carbon dots synthesized from bamboo leaf cellulose were used simultaneously as a staining agent and for doxorubicin delivery to target cancer cells.
Collapse
Affiliation(s)
| | - Abdul Haris
- Department of Chemistry
- Universitas Airlangga
- Surabaya 61115
- Indonesia
| | | | | | - Bambang Purwanto
- Department of Physiology
- Department of Medical Biochemistry
- Faculty of Medicine
- Universitas Airlangga
- Surabaya 60131
| | - Yatim Lailun Nikmah
- Department of Chemistry
- Faculty of Natural Science
- Sepuluh Nopember Institute of Technology
- Surabaya 60111
- Indonesia
| | - Adi Idris
- Menzies Health Institute Queensland
- School of Medical Science
- Griffith University
- Australia
| |
Collapse
|
23
|
Alabi OA, Esan BE, Sorungbe AA. Genetic, Reproductive and Hematological Toxicity Induced in Mice Exposed to Leachates from Petrol, Diesel and Kerosene Dispensing Sites. J Health Pollut 2017; 7:58-70. [PMID: 30524841 PMCID: PMC6221447 DOI: 10.5696/2156-9614-7.16.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/20/2017] [Indexed: 04/30/2023]
Abstract
BACKGROUND With a population of over 165,000,000, growing at an average rate of 2.7% per annum and an economic growth rate of about 5.7% in the past five years, the market for refined petroleum products in Nigeria is growing. As a result, the number of filling stations is increasing. OBJECTIVES The present study evaluated the reproductive and genetic toxicity of simulated leachate of soil from petrol, diesel and kerosene dispensing sites in a filling station using the murine sperm abnormality test, sperm count and bone marrow micronucleus assay. METHODS Simulated leachate of soil collected from petrol, diesel and kerosene dispensing sites in a filling station was intraperitoneally administered to mice at different concentrations. Bone marrow micronucleus assay was carried out after 5-days exposure, while sperm morphology assay was carried out 35 days from the first day of exposure. Alterations to hematological parameters were evaluated and physico-chemical analysis of the leachate samples was also carried out. RESULTS The results showed a significant (p<0.05) concentration-dependent increase in abnormal sperm cells and decrease in mean sperm count in all the samples tested. Increased induction of micronucleated polychromatic erythrocytes was observed in the exposed mice. Hematological analysis showed a significant (p<0.05) increase in the values of white blood cell count (WBC), lymphocytes, neutrophils, monocytes, eosinophils and mean corpuscular volume (MCV), while a significant (p<0.05) reduction in basophils, hemoglobin, mean corpuscular hemoglobin (MCH), packed cell volume and mean corpuscular hemoglobin concentration (MCHC) values were observed. DISCUSSION In the present study, simulated leachates from soil obtained from petrol, diesel and kerosene dispensing sites were shown to cause genomic disruptions in germ and somatic cells, and hematotoxicity in an animal model. These observed reproductive, genetic and hemato-toxicities are believed to be caused by the presence of lead, copper, mercury, polycyclic aromatic hydrocarbons, and benzene in the samples. CONCLUSIONS This study showed the negative impact of petroleum products in the contamination of soil, with a capability of inducing genetic damage in somatic and germ cells of exposed plants and animals. ETHICS APPROVAL The study was approved by the ethical committee of the Federal University of Technology, Akure, Ondo State, Nigeria.
Collapse
Affiliation(s)
- Okunola A. Alabi
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Babatunde E. Esan
- Department of Basic Sciences, Babcock University, Ilisan Remo, Ogun State, Nigeria
| | - Adewale A. Sorungbe
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
24
|
Antimicrobial activities of bamboo (Phyllostachys heterocycla cv. Pubescens) leaf essential oil and its major components. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-3006-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Sun Y, Yang K, Cao Q, Sun J, Xia Y, Wang Y, Li W, Ma C, Liu S. Homogenate-assisted Vacuum-powered Bubble Extraction of Moso Bamboo Flavonoids for On-line Scavenging Free Radical Capacity Analysis. Molecules 2017; 22:molecules22071156. [PMID: 28696360 PMCID: PMC6152191 DOI: 10.3390/molecules22071156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 11/16/2022] Open
Abstract
A homogenate-assisted vacuum-powered bubble extraction (HVBE) method using ethanol was applied for extraction of flavonoids from Phyllostachys pubescens (P. pubescens) leaves. The mechanisms of homogenate-assisted extraction and vacuum-powered bubble generation were discussed in detail. Furthermore, a method for the rapid determination of flavonoids by HPLC was established. HVBE followed by HPLC was successfully applied for the extraction and quantification of four flavonoids in P. pubescens, including orientin, isoorientin, vitexin, and isovitexin. This method provides a fast and effective means for the preparation and determination of plant active components. Moreover, the on-line antioxidant capacity, including scavenging positive ion and negative ion free radical capacity of different fractions from the bamboo flavonoid extract was evaluated. Results showed that the scavenging DPPH˙ free radical capacity of vitexin and isovitexin was larger than that of isoorientin and orientin. On the contrary, the scavenging ABTS⁺˙free radical capacity of isoorientin and orientin was larger than that of vitexin and isovitexin.
Collapse
Affiliation(s)
- Yinnan Sun
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Kui Yang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Qin Cao
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Jinde Sun
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Yu Xia
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Yinhang Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Wei Li
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Chunhui Ma
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Shouxin Liu
- College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
26
|
Zhao HP, Zhang Y, Liu Z, Chen JY, Zhang SY, Yang XD, Zhou HL. Acute toxicity and anti-fatigue activity of polysaccharide-rich extract from corn silk. Biomed Pharmacother 2017; 90:686-693. [DOI: 10.1016/j.biopha.2017.04.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/24/2023] Open
|
27
|
Hao X, Sun H, Liu W, Li L, Zhao H, Li Y, Zhang D, Shao M. Safety evaluation of soybean protein isolate oxidized by a hydroxyl radical-generating system. Food Chem Toxicol 2017; 103:102-110. [DOI: 10.1016/j.fct.2017.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/28/2017] [Accepted: 02/16/2017] [Indexed: 11/27/2022]
|
28
|
Ying C, Mao Y, Chen L, Wang S, Ling H, Li W, Zhou X. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats. Int J Biol Macromol 2017; 105:1587-1594. [PMID: 28359892 DOI: 10.1016/j.ijbiomac.2017.03.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) is one of the most severe diabetic complication and it is becoming become a worldwide epidemic, accounting for approximately one-third of all case of end-stage renal disease. However, the underlying mechanism and strategy to alleviate renal injury remain unclear. In the present study, we assessed the protective effect of bamboo leaf extract on the DN, and investigated the underlying mechanism by which bamboo leaf extract ameliorating DN. Diabetic rats were induced by 4 weeks high sugar and high fat diet, and then injected a single dose of STZ (35mg/kg) into abdominal cavity. Different dose of bamboo extract (50mg/kg, 100mg/kg and 200mg/kg) were orally administered every day for a period of 12 weeks. Body weight, blood glucose, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and 24-hour urinary protein (24 h-UP) were assessed. Total superoxide dismutase (T-SOD) activity and MDA (methane dicarboxylic aldehyde, MDA) level were tested by assay kit. Microstructural changes were observed by hematoxylin-eosin (HE) staining and electron microscopy. Expression of phosphorylated ser/thr protein kinase (P-AKT), phosphorylated glycogen synthase kinase-3 beta (P-GSK-3β), B cell lymphoma/leukemia 2-associated X protein (BAX) and cleaved-cysteinyl aspartate-specific proteinase-3 (Cleaved Caspase-3) were measured by Western-Blotting (WB). Results showed that diabetic rats had weight loss, high blood glucose, HbAlc, BUN, Scr and 24-UP and T-SOD activity were increased and MDA level was decreased in diabetic rats. Moreover, hyperglycemia could injury renal tissue ultrastructure, inhibit P-AKT level and increase P-GSK-3β, BAX and Cleaved Caspase-3 levels in rats. However, bamboo leaf extract treatment could reduce body weight loss, BUN, Scr, 24 h-UP and MDA level, improve T-SOD activity and alleviate renal injury in diabetic rats. Furthermore, bamboo leaf extract increased P-AKT level, decreased P-GSK-3β, BAX and Cleaved Caspase-3 levels in STZ-diabetic rats. In conclusion, our study suggested that bamboo leaf extract ameliorated DN in diabetic rats, and this protective effect is possibly related to suppressing oxidative stress through activating AKT signaling pathway. Bamboo leaf extract treatment may be a potential promising therapy for DN.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yizhen Mao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Lei Chen
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Shanshan Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Wei Li
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
29
|
Shruthi S, Vijayalaxmi K. Antigenotoxic effects of a polyherbal drug septilin against the genotoxicity of cyclophosphamide in mice. Toxicol Rep 2016; 3:563-571. [PMID: 28959580 PMCID: PMC5615931 DOI: 10.1016/j.toxrep.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022] Open
Abstract
Septilin (Spt) is a polyherbal drug formulation from Himalaya Drug Company, consisting of extracts from different medicinal plants and minerals. In the traditional system of medicine, septilin is being used as immunomodulatory, antioxidant and anti-inflammatory agent. In the present study, the protective effects of septilin against the genotoxicity of cyclophosphamide (CP) a widely used alkylating anticancer drug was evaluated by using in vivo micronucleus (MN) and sperm shape abnormality assays in Swiss albino mice. CP administered intraperitoneally at a dose of 50 mg/kg b.w. was used as positive mutagen. Different doses of septilin viz., 125, 250 and 500 mg/kg b.w. was orally administered for 5 consecutive days. CP was administered intraperitoneally on 5th day. MN and sperm preparations were made after 24 h and 35 days respectively. CP induced significant MN in both bone marrow and peripheral blood cells and also a high frequency of abnormal sperms. In septilin supplemented animals, no significant induction of MN and abnormal sperms was recorded. In septilin supplemented groups, a dose dependent significant decrease in CP induced clastogenicity was observed. Thus the current in vivo study revealed the antigenotoxic effects of septilin against CP induced damage, in both somatic and germ cells of Swiss albino mice.
Collapse
Key Words
- A, amorphous
- Antigenotoxic
- B, banana shaped
- BSA, bovine serum albumin
- CMC, carboxymethyl cellulose
- CP, cyclophosphamide
- Cyclophosphamide
- DH, double headed
- DT, double tailed
- F, folded
- H, hookless
- MN, micronucleus
- MNNCE, micronucleus in normochromatic erythrocytes
- MNPCE, micronucleus in polychromatic erythrocytes
- Micronucleus test
- NCE, normochromatic erythrocytes
- PCE, polychromatic erythrocytes
- Septilin
- Sperm abnormality
- Spt, septilin
Collapse
Affiliation(s)
- S. Shruthi
- Department of Applied Zoology, Mangalore University, Mangalagangothri, 574 199, D.K., India
| | | |
Collapse
|
30
|
Patel M, Mehta P, Bakshi S, Tewari S. Effect of Phyllostachys parvifolia leaf extract on ionizing radiation-induced genetic damage: A preliminary in vitro cytogenetic study. J Ayurveda Integr Med 2016; 7:138-140. [PMID: 27658911 PMCID: PMC5052393 DOI: 10.1016/j.jaim.2016.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
The ionizing radiation is a known carcinogen as well as cancer therapeutic agent however, the side effect on normal tissue is a limiting factor and inadequate doses necessitates search for an ideal radioprotective agent. Bamboo species are rich source of antioxidants hence have therapeutic value in many free radical mediated diseases. This is the first report regarding in vitro protective effect of bamboo leaf extract against radiation induced genetic damage in human peripheral blood lymphocytes by cytokinesis blocked micronuclei (CBMN) assay. Fresh whole blood was exposed to 5Gy of cobalt-6o gamma radiation with or without 30 min pre-treatment with 3 μl and 5 μl of hydro alcoholic leaf extract of Phyllostachys parvifolia. In addition to whole extract the effect of potential active compound orientin was also assessed. The frequency of radiation induced micronuclei decreased significantly in a dose dependent manner following treatment with whole extract as well as orientin. The extent of reduction in micronuclei frequency was higher with whole bamboo leaf extract as compared to orientin alone.
Collapse
Affiliation(s)
- Mansi Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India.
| | - Sonal Bakshi
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| | - Shikha Tewari
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat 382481, India
| |
Collapse
|
31
|
Liu MH, Ko CH, Ma N, Tan PW, Fu WM, He JY. Chemical profiles, antioxidant and anti-obesity effects of extract of Bambusa textilis McClure leaves. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
ZHU G, XIAO Z. Study on creation of an indocalamus leaf flavor. FOOD SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1590/1678-457x.6770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Jun P. Potential medicinal application and toxicity evaluation of extracts from bamboo plants. ACTA ACUST UNITED AC 2015; 9:681-692. [DOI: 10.5897/jmpr2014.5657] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Liu Y, Lan N, Ren J, Wu Y, Wang ST, Huang XF, Yu Y. Orientin improves depression-like behavior and BDNF in chronic stressed mice. Mol Nutr Food Res 2015; 59:1130-42. [PMID: 25788013 DOI: 10.1002/mnfr.201400753] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 01/11/2023]
Abstract
SCOPE Oxidative stress is involved in chronic stress-induced depression and the disruption of neurotransmission and neuroplasticity. Recently, orientin, a phenolic compound abundant in some fruits, millet, and herbs, has been shown to have antioxidant properties. This study investigated the potential antidepressant effects of orientin against chronic stress and its underlying mechanisms. METHODS AND RESULTS The chronic unpredictable mild stress (CUMS) model was used to investigate the effects of orientin on behavior and biochemical alterations in mice. After 2 weeks of the CUMS protocol, the mice were treated with orientin (20 mg/kg and 40 mg/kg, oral gavage) for 3 weeks. Administration of orientin significantly alleviated the CUMS-induced depression-like behavior, including sucrose preference reduction, locomotor activity decline, and hypomotility. Orientin treatment attenuated the oxidative stress markers and increased the concentrations of serotonin and norepinephrine in the hippocampus and prefrontal cortex of CUMS mice. Orientin treatment also increased the brain-derived neurotrophic factor and synapse-associated proteins (synaptophysin and postsynaptic density protein 95) of CUMS mice. CONCLUSION Orientin exerts antidepressant-like effects on CUMS mice, specifically by improving central oxidative stress, neurotransmission, and neuroplasticity. Therefore, supplementation with orientin-enriched food or fruit could be beneficial as a preventive strategy for chronic stress-induced depression.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Nuo Lan
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Jing Ren
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Yizhen Wu
- Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Shu-ting Wang
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu, P. R. China
| | - Xu-Feng Huang
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - Yinghua Yu
- Schizophrenia Research Institute (SRI), Sydney, NSW, Australia.,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| |
Collapse
|
35
|
Wang CZ, Zhang HY, Li WJ, Ye JZ. Chemical constituents and structural characterization of polysaccharides from four typical bamboo species leaves. Molecules 2015; 20:4162-79. [PMID: 25751781 PMCID: PMC6272521 DOI: 10.3390/molecules20034162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/14/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022] Open
Abstract
In order to find bamboo leaves with high contents of bioactive polysaccharides, 32 samples were chosen to analyze their polysaccharide content by GC and sulfuric acid-anthrone colorimetric assays. Purified polysaccharides (BLPS) were separated from the four varieties P. nigra (Lodd.) Munro (PN), P. vivax McClure (PV), Chimonobambusa quadrangularis (Fenzi) Makino (CQ), and P. bambussoides cv. Tanakae (PB) by ultrasound extraction, solution precipitation, ion exchange resin, DEAE-52 and Sephadex G-100 chromatography. BLPS structural characterization was accomplished by HPLC-GPC, Fourier transform infra-red spectroscopy (FTIR) and NaIO4-HIO4 oxidation reactions. The results showed that the total polysaccharides of the bamboo leaves in samples 1–32 ranged between 1.4% and 5.4%, Samples No. 29–No. 32 (PN, PV, CQ, and PB) contained 2–3 fold more polysaccharides than No. 1~No. 28 among the 32 different species, particularly the content of galactose was in a range of 21.5%–34.1% for these four typical bamboo species leaves, which was also more than 2–3 fold higher than in No. 1–No. 28. Sugar analysis indicated that PN-PBLPS-1, PV-PBLPS-1, CQ-PBLPS-1 and PB-PBLPS-1 from the four varieties were homogeneous polysaccharides with molecular weights of 2.04 × 104, 1.15 × 104, 8.75 × 104 and 1.48 × 104 Da, respectively. PB-PBLPS-1 was a mixture of α-galactopyranose and β-d-glucopyranose linkages with α-(1→6) or β-(1→6)glycosidic bonds, while PN-PBLPS-1, PV-PBLPS-1, and CQ-PBLPS-1 had α galactopyranose linkages with α-(1→6) glycosidic bonds.
Collapse
Affiliation(s)
- Cheng-Zhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, China.
- Key Laboratory of Biomass Energy and Material, Nanjing 210042, China.
- Institute of New Technology of Forestry, CAF, Beijing 100091, China.
| | - Hong-Yu Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
| | - Wen-Jun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
| | - Jian-Zhong Ye
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
| |
Collapse
|
36
|
Wang J, Cao X, Jiang H, Qi Y, Chin KL, Yue Y. Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS. Molecules 2014; 19:21226-38. [PMID: 25525823 PMCID: PMC6271855 DOI: 10.3390/molecules191221226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/27/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
Hibiscus sabdariffa has gained attention for its antioxidant activity. There are many accessions of H. sabdariffa in the world. However, information on the quantification of antioxidant compounds in different accessions is rather limited. In this paper, a liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) method for simultaneous determination of five antioxidant compounds (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, and isoquercitrin) in H. sabdariffa leaves was developed. The method was validated for linearity, sensitivity, precision, repeatability and accuracy. The validated method has been successfully applied for determination of the five analytes in eight accessions of H. sabdariffa. The eight accessions of H. sabdariffa were evaluated for their antioxidant activities by DPPH free radical scavenging assay. The investigated accessions of H. sabdariffa were rich in rutin and exhibited strong antioxidant activity. The two accessions showing the highest antioxidant activities were from Cuba (No. 2) and Taiwan (No. 5). The results indicated that H. sabdariffa leaves could be considered as a potential antioxidant source for the food industry. The developed LC-Q-TOF-MS method is helpful for quality control of H. sabdariffa.
Collapse
Affiliation(s)
- Jin Wang
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing 100102, China.
| | - Xianshuang Cao
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing 100102, China.
| | - Hao Jiang
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing 100102, China.
| | - Yadong Qi
- Southern University Agricultural Research and Extension Center, Baton Rouge, LA 70813, USA.
| | - Kit L Chin
- Southern University Agricultural Research and Extension Center, Baton Rouge, LA 70813, USA.
| | - Yongde Yue
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing 100102, China.
| |
Collapse
|
37
|
Luo GY, Luo YG, Zhou R, Zhou M, Gu J, Ye Q, Dai Y, Zhang GL. Antioxidant compounds from ethanol extracts of bamboo (Neosinocalamus affinis) leaves. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 17:248-255. [PMID: 25424560 DOI: 10.1080/10286020.2014.981164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Activity-guided fractionation of Neosinocalamus affinis leaves led to obtain two new flavonoids, 4'-O-((7″R,8″S)-8″-guaiacylglyceryl)-pleioside B (9) and apigenin 6-C-β-d-fucopyranosyl-7-O-β-d-glucopyranoside (10) along with eight known compounds. Their structures were elucidated on the basis of spectroscopic data (UV, IR, NMR, and MS). Among these 10 compounds, farobin A (4) and isoorientin (7) showed significant antioxidant activity evaluated by 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), superoxide anion and nitric oxide (NO) radical-scavenging assays.
Collapse
Affiliation(s)
- Guo-Yong Luo
- a Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041 , China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gong J, Xia D, Huang J, Ge Q, Mao J, Liu S, Zhang Y. Functional components of bamboo shavings and bamboo leaf extracts and their antioxidant activities in vitro. J Med Food 2014; 18:453-9. [PMID: 25394178 DOI: 10.1089/jmf.2014.3189] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study was designed to detect characteristic compounds and evaluate the free radical scavenging capacity of the bamboo leaves extract and bamboo shavings extract (BSE). The antioxidant capacity of bamboo leaf n-butanol fraction (AOB) exhibited the highest total phenolic content (49.93%), total flavonoids content (24.11%), and characteristic flavonoids and phenolic acids, such as chlorogenic acid, caffeic acid, ferulic acid, p-coumaric acid, orientin, homoorientin, vitexin, and isovitexin. Available data obtained with in vitro models suggested that AOB had higher free radical scavenging capacity with IC(50) values of 1.04, 4.48, 5.37, and 1.12 μg/mL on DPPH(•), O(2)(•-), (•)OH, and H(2)O(2), respectively, than the other two extracts, bamboo leaf water extract and BSE. The results indicated that the extracts from different parts of the bamboo possess excellent antioxidant activity, which can be used potentially as a readily accessible and valuable bioactive source of natural antioxidants.
Collapse
Affiliation(s)
- Jinyan Gong
- 1 Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Kamkar A, Qajarbeygi P, Jannat B, Haj Hosseini Babaei A, Misaghi A, Molaee Aghaee E. The inhibitory role of autolysed yeast ofSaccharomyces cerevisiae,vitamins B3and B6on acrylamide formation in potato chips. TOXIN REV 2014. [DOI: 10.3109/15569543.2014.974765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Liu L, Xia B, Jin C, Zhang Y, Zhang Y. Chemical Acylation of Water-Soluble Antioxidant of Bamboo Leaves (AOB-w) and Functional Evaluation of Oil-Soluble AOB (cAOB-o). J Food Sci 2014; 79:C1886-94. [DOI: 10.1111/1750-3841.12578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Lingyi Liu
- Dept. of Food Science and Nutrition; School of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 Zhejiang PR China
| | - Boneng Xia
- Dept. of Food Science and Nutrition; School of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 Zhejiang PR China
| | - Cheng Jin
- Dept. of Food Science and Nutrition; School of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 Zhejiang PR China
| | - Yu Zhang
- Dept. of Food Science and Nutrition; School of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 Zhejiang PR China
| | - Ying Zhang
- Dept. of Food Science and Nutrition; School of Biosystems Engineering and Food Science; Zhejiang Univ; Hangzhou 310058 Zhejiang PR China
| |
Collapse
|
41
|
Yang JP, He H, Lu YH. Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7760-7770. [PMID: 25019533 DOI: 10.1021/jf501931m] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bamboo leaf extract as a food additive has been used for preventing the oxidation of food. In the present study, we investigated the influence of Phyllostachys edulis leaf extract on starch digestion. Orientin, isoorientin, vitexin, and isovitexin were determined as its α-amylase inhibitory constituents. An inhibitory kinetics experiment demonstrated that they competitively inhibit α-amylase with Ki values of respectively 152.6, 11.5, 569.6, and 75.8 μg/mL. Molecular docking showed the four flavones can interact with the active site of α-amylase, and their inhibitory activity was greatly influenced by the glucoside linking position and 3'-hydroxyl. Moreover, the results of starch-iodine complex spectroscopy, X-ray diffraction, and scanning electron microscopy indicated that P. edulis flavonoids retard the digestion of starch not only through interaction with digestive enzymes, but also through interaction with starch. Thus, P. edulis leaf extract can be potentially used as a starch-based food additive for adjusting postprandial hyperglycemia.
Collapse
Affiliation(s)
- Jun-Peng Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, People's Republic of China
| | | | | |
Collapse
|
42
|
The Nutritional Facts of Bamboo Shoots and Their Usage as Important Traditional Foods of Northeast India. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:679073. [PMID: 27433496 PMCID: PMC4897250 DOI: 10.1155/2014/679073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 12/19/2022]
Abstract
Bamboo shoots are considered as one of the useful health foods because of their rich contents of proteins, carbohydrates, vitamins, fibres, and minerals and very low fat. Though bamboo shoots provide lots of health benefits, their consumption is confined mostly to Southeast Asian and East Asian countries. The acceptability of bamboo shoots as popular vegetable crop is very less due to their high pungent smell and bitter acidic taste. The use of bamboo as food in India is mainly restricted to Northeastern part of the country where they form an indispensable part of several traditional speciality dishes. The different ethnic communities take fresh or fermented bamboo shoot as one of most preferred traditional food items. Some of the important bamboo based traditional foods are ushoi, soibum, rep, mesu, eup, ekhung, hirring, and so forth. Bamboo shoots should be properly processed before they are consumed as freshly harvested shoots have high content of toxic cyanogenic glycosides which may pose serious health problems. The prospect of bamboo shoot industry in Northeast India is bright due to its rich genetic resources of bamboos. However, habitat destruction and extensive use of bamboos for food, handicraft, and construction purposes have resulted in severe depletion of natural bamboo resources. This review stresses upon the high nutritive values and health benefits of bamboo shoots and their usage as important traditional foods in Northeast India. The bamboo market potential of the region and use of in vitro plant micropropagation methods as effective means of bamboo conservation are also emphasized in this paper.
Collapse
|
43
|
Song Y, Lee SJ, Jang SH, Ha JH, Song YM, Ko YG, Kim HD, Min W, Kang SN, Cho JH. Sasa borealis stem extract attenuates hepatic steatosis in high-fat diet-induced obese rats. Nutrients 2014; 6:2179-95. [PMID: 24905748 PMCID: PMC4073142 DOI: 10.3390/nu6062179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/12/2014] [Accepted: 05/26/2014] [Indexed: 01/04/2023] Open
Abstract
The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yuno Song
- Institute of Agriculture and Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Soo-Jung Lee
- Department of Foods and Nutrition, Gyeongsang National University, Jinju 660-701, Korea.
| | - Sun-Hee Jang
- Institute of Agriculture and Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Ji Hee Ha
- Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea.
| | - Young Min Song
- Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea.
| | - Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon 590-832, Korea.
| | - Hong-Duck Kim
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, USA.
| | - Wongi Min
- Institute of Agriculture and Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Suk Nam Kang
- Department of Bioindustry, Daegu University, Gyungsan 712-714, Korea.
| | - Jae-Hyeon Cho
- Institute of Agriculture and Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
44
|
Bamboo: a new source of carbohydrate for biorefinery. Carbohydr Polym 2014; 111:645-54. [PMID: 25037399 DOI: 10.1016/j.carbpol.2014.05.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/08/2014] [Accepted: 05/03/2014] [Indexed: 01/08/2023]
Abstract
Bamboo is perennial woody grass, which distributed widely in the world and belonged to the Gramineae family and Bambuseae subfamily. It may be consider as a candidate lignocellulosic substrate for bio-ethanol production for its environmental benefits and higher annual biomass yield. The conversion of bamboo into bio-ethanol, bio-methane, natural food, flavonoids, and functional xylo-oligosaccharides production were reviewed in this paper. Future prospects for research include pretreatment, enzymatic hydrolysis and fermentation will also be performed to improve the whole process of ethanol production more economical. And revealing the molecular regulation mechanism of the fast growth of bamboo will provide chance for improving bamboo or other energy plants biomass yield through genetic engineering.
Collapse
|
45
|
You Y, Kim K, Heo H, Lee K, Lee J, Shim S, Jun W. Stimulatory Effects ofPseudosasa japonicaLeaves on Exercise Performance. Biosci Biotechnol Biochem 2014; 70:2532-5. [PMID: 17031056 DOI: 10.1271/bbb.60137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The performance-enhancing effects of Pseudosasa japonica were investigated in mice using an adjustable-current water pool. Compared to the control group, a 1.5-fold increase in swimming time was observed in the mouse group administered an 80% ethanol extract (PJE) of the leaves of P. japonica. The blood lactate level, an important indicator of fatigue, was significantly lower (28%, P<0.05) in PJE group than in the control group. These results suggest that PJE possesses stimulatory effects that can enhance exercise endurance and reduce fatigue.
Collapse
Affiliation(s)
- Yanghee You
- Department of Food and Nutrition, Chonnam National University, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Colour and rheological properties of non-conventional grapefruit jams: Instrumental and sensory measurement. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Li H, Li Y, Li G, Tan X, Chen G, Zhang Y. Ultrasonically Assisted Simultaneous Extraction of Isoorientin, Orientin, and Vitexin from Leaves ofNeosinocalamus affinis (Rendle) Keng f.(N. affinis). SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.779280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Zhang Y, Yu C, Mei J, Wang S. Formation and mitigation of heterocyclic aromatic amines in fried pork. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1501-7. [DOI: 10.1080/19440049.2013.809627] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Li YX, Jin XB, Chu FJ, Liu MY, Shi DY, Zhu JY. Scientific evaluation of the subchronic toxicity of musca domestica larvae extracts in Sprague Dawley rats. Food Chem Toxicol 2013; 59:464-9. [DOI: 10.1016/j.fct.2013.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/20/2013] [Accepted: 06/07/2013] [Indexed: 11/15/2022]
|
50
|
Zhang S, Chen J, Sun A, Zhao L. Protective effects and antioxidant mechanism of bamboo leaf flavonoids on hepatocytes injured by CCl4. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2013.810709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|